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1. Introduction

Fix an algebraically closed field K of characteristic zero. The following is the main result

of this paper.

Theorem 1.1. Suppose X is an algebraic variety, Z is an irreducible algebraic scheme,

and φ1, φ2 : Z → X are rational maps whose restrictions to Zred are dominant, all over

K . Then the following are equivalent:

(1) There exist nonempty Zariski open subsets V ⊆ Z and U ⊆ X such that the

restrictions φV
1 , φ

V
2 : V → U are dominant regular morphisms, and there exist

infinitely many hypersurfaces H on U satisfying

(φV
1 )
−1(H) = (φV

2 )
−1(H).

(2) There exists g ∈ K (X) \ K such that gφ1 = gφ2.

If Z is reduced, then these are also equivalent to the following:

(3) There exist infinitely many hypersurfaces H on X satisfying φ∗1 H = φ∗2 H .

Here and throughout this paper, we only consider algebraic schemes, i.e., separated

schemes of finite type. By an algebraic variety we mean an integral (so reduced and

irreducible) algebraic scheme, and by a hypersurface we mean a Zariski closed subset of

pure codimension one. If φ : Z → X is a morphism of schemes and H ⊆ X is a Zariski

closed subset, then we use φ−1(H) to denote the scheme-theoretic inverse image of H .

If φ : Z → X is a dominant rational map of algebraic varieties, then φ∗H denotes the

proper transform of H , i.e., the union of those irreducible components of the Zariski

closure of the set-theoretic inverse image of H that project dominantly onto irreducible

components of H .

As motivation, let us consider two well-known special cases of the theorem.

The first is from differential-algebraic geometry. By an algebraic D-variety we mean
an affine algebraic variety X over K equipped with a regular section to the tangent

bundle, s : X → T X . A closed subvariety H ⊆ X is a D-subvariety if s �H : H → T H .

Note that s corresponds to a K -linear derivation δ on the coordinate ring K [X ], and that

a D-subvariety corresponds to a δ-ideal of K [X ]. Note also that the derivation δ extends

uniquely to a derivation on the fraction field K (X). The following is a consequence of

unpublished work of Hrushovski [5] in the mid-nineties on model-theoretic implications

of a theorem of Jouanalou [6] on foliations from the seventies; see [4, Theorem 4.2] for a

published account.

Corollary 1.2 (Jouanolou–Hrushovski). Suppose (X, s) is an algebraic D-variety with

infinitely many D-subvarieties of pure codimension one. Then there exists g ∈ K (X) \ K
such that δ(g) = 0.

Proof. If X = Spec(R), apply Theorem 1.1 to

• Z = Spec(R[ε]/ε2),

• φ1 : Z → X , the morphism induced by the K -algebra homomorphism from R to R[ε]/ε2

given by r 7→ r + δ(r)ε, and
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• φ2 : Z → X , the morphism induced by the natural inclusion of R in R[ε]/ε2.

See § 5 for details.

In fact, we obtain the Jouanolou–Hrushovski result for the general setting of ‘algebraic

D-varieties’, where the derivation is replaced by any system D of generalised operators

in the sense of Moosa–Scanlon [11]. This is Theorem 5.8.

We also recover from Theorem 1.1 a result in rational dynamics. By a rational dynamical

system we mean an algebraic variety X over K equipped with a dominant rational

self-map φ : X → X . A Zariski closed subset H ⊆ X is totally invariant if φ∗H = H .

The following is the algebraic case of [3, Theorem B].

Corollary 1.3 (Cantat [3]). Suppose (X, φ) is a rational dynamical system with infinitely

many totally invariant hypersurfaces. Then there exists g ∈ K (X) \ K such that gφ = g.

Proof. Apply Theorem 1.1 to

• Z = X ,

• φ1 = φ, and

• φ2 = idX .

See § 6 for details.

Again, we actually get more: we can replace the dominant rational self-map φ in the

above corollary with an arbitrary self-correspondence. This is Corollary 6.2. In fact, it is,

we think, useful to view the data of Theorem 1.1, namely the diagram

Z

φ2
��

φ1 // X

X

as a generalised notion of self-correspondence on X , a self-correspondence that need not

be reduced and need not be finite-to-finite.

Our theorem thus unifies these two well-known results, yielding at the same time

natural generalisations in both cases.

A word about the proof of Theorem 1.1. Our approach is algebraic, thus differing

significantly from the methods of Jouanalou–Hrushovski, and Cantat in the special
cases. We first reduce to a situation where everything is defined over a finitely generated

subfield and the hypersurfaces have principal vanishing ideals. In that setting, our result

appears as Theorem 3.1, whose proof is where the main technical work of the paper is

done. When Z is reduced, we follow to some extent the approach of [2, Theorem 1.2],

which is related to Cantat’s theorem but obtained independently. A separate argument

(appearing in § 6) is required to replace the scheme-theoretic inverse image with the

proper transform in the reduced case. When Z is nonreduced, we concoct a derivation and

rely on a refinement of [1, Proposition 6.10] that is itself a refinement (but independent)

of Jouanolou–Hrushovski. Besides this use of [1], which is substantial, our proof of

Theorem 1.1 is largely self-contained.
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Once Theorem 1.1 is proved, we look closer in § 7 at the case where Z is reduced,

and are led to study the birational geometry of algebraic varieties equipped with a set of

hypersurfaces. More precisely, we consider the category whose objects are normal varieties

X equipped with a set of prime divisors S, and where a morphism (X, S)→ (Y, T ) is a

dominant rational map X → Y with generic fibre irreducible, and such that, up to a finite

set, S is obtained as the proper transform of elements of T . For this category, in the case

when we are working over a field of finite transcendence degree, we give a geometric proof

that every object (X, S) admits a terminal morphism; one that factors through every other

morphism originating at (X, S). See Theorem 7.2 for a precise statement. Combining this

theorem – which may be of independent interest – with Cantat’s theorem, we obtain a
more conceptual alternative proof of Theorem 1.1 in the special case when Z is reduced

and φ1, φ2 have irreducible generic fibres.

In § 8, we discuss what goes through in positive characteristic. Because of our reliance

on the characteristic zero differential-algebraic geometry of [1] when Z is nonreduced, we

restrict our attention to the reduced case. But even that – namely, the equivalence of

conditions (2) and (3) of Theorem 1.1 when Z is reduced – does not hold as stated in
positive characteristic. We do expect it to hold if we ask the generic fibres of φ1 and φ2 to

be geometrically reduced – something that is automatically satisfied in characteristic zero.

But we are only able to prove the equivalence if we add to (3) the additional constraint

that infinitely many of the invariant hypersurfaces H are defined over (the separable

closure of) a fixed finitely generated subfield. This is Theorem 8.1.

Our current methods have a couple of drawbacks that we present here as suggesting

possibilities for future work. The first is regarding effective uniform bounds. Tracing

through the proofs, it is possible to compute explicitly a bound N such that the ‘infinitely

many’ in (1) and (3) of Theorem 1.1 can be replaced by ‘more than N ’. But N will depend

not only on natural geometric invariants associated with the data but also on the rank

of the divisor class group of X (over a minimal field of definition). So these bounds are

worse, less uniform, than those that arise in the special cases dealt with by the work of
Jouanolou–Hrushovski and Cantat. It would be useful to find an effective bound N that

remains constant as Z , X, φ1, φ2 vary in an algebraic family.

A second deficiency is that we are not able to work in the complex analytic

setting. The methods of Jouanolou–Hrushovski and Cantat, in contrast, extend to

compact complex manifolds and meromorphic maps. In particular, Cantat’s results

in [3] include as a special case Krasnov’s theorem [8] that a compact complex manifold

without nonconstant meromorphic functions has only finitely many hypersurfaces. A

generalisation of Theorem 1.1 that includes complex analytic spaces would therefore be

of significant interest.

Throughout this paper, all rings are assumed to be commutative and unitary, and all fields

are of characteristic zero except in § 8.

2. Some differential algebra preliminaries

By a derivation we mean a linear map δ : R→ S, where R ⊆ S is an extension of integral

domains of characteristic zero, such that δ(ab) = aδ(b)+ δ(a)b for all a, b ∈ R. If A ⊆ R
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is a subring, then we say that δ is A-linear to mean that δ(a) = 0 for all a ∈ A – which we

note is equivalent to δ being a morphism of A-modules. By the constants of the derivation

δ : R→ S we mean the subring Rδ := {a ∈ R : δa = 0}. If R = S, then we call (R, δ) a

differential ring. A differential ring whose underlying ring is a field is called a differential

field.

Here is a basic fact about derivations that we record now for later use, and that is

deduced by a straightforward computation using the Leibniz rule.

Fact 2.1. Suppose δ : R→ S is a derivation, P is a polynomial in R[x1, . . . , xn], and

a = (a1, . . . , an) ∈ Rn. Then

δP(a) =
n∑

j=1

δP
δx j

(a)δ(a j )+ Pδ(a),

where Pδ ∈ S[x1, . . . , xn] is obtained by applying δ to the coefficients of P.

The following two lemmas are also very elementary and well known.

Lemma 2.2. Suppose K/k is a function field extension, δ is a k-linear derivation on K ,

and R ⊆ K is a finitely generated k-subalgebra. Then there exists a finitely generated

k-algebra extension R′ of R in K such that δ restricts to a differential ring structure
on R′.

Proof. We may as well assume that R = k[a] for some a = (a1, . . . , an) such that K =
k(a). Because of Fact 2.1, it suffices to show after possibly extending a to a longer finite

tuple a′ = (a1, . . . , am) from K , and setting R′ := k[a′], that δai ∈ R′ for all i 6 m. If we

write δ(ai ) =
Pi (a)
Qi (a)

for i 6 n, then it is not hard to see, using Fact 2.1 again, as well as

the quotient rule for derivations, that a′ := (a1, . . . , an,
1

Q1(a)
, . . . , 1

Qn(a)
) works.

Lemma 2.3. If (L , δ) ⊇ (K , δ) is a differential field extension, then

(K δ)alg
∩ L = K alg

∩ Lδ.

In particular, taking L = K , we have that K δ is relatively algebraically closed in K .

Proof. If a ∈ L is algebraic over K δ, then we apply Fact 2.1 with P(x) a minimal

polynomial of a over K δ and conclude that d P
dx (a)δ(a) = 0. But as deg P > 1, we must

have that d P
dx 6= 0 and of degree strictly less than deg P, so that δ(a) = 0.

Conversely, if a ∈ Lδ is algebraic over K , then we apply Fact 2.1 with P(x) the minimal

monic polynomial of a over K and conclude that Pδ(a) = 0. But as P is monic, Pδ

will be of strictly smaller degree unless it is identically zero. So it must be identically

zero, implying that all of the coefficients of P are in K δ, and hence that a is algebraic

over K δ.

The following is maybe less widely known, but it is a consequence of an argument

appearing in [5]. We give a proof here for the sake of completeness.
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Lemma 2.4. Suppose F/k is a function field extension, K/F is a field extension, and

δ : F → K is a k-linear derivation. Then δ extends to a differential field structure on K
such that K δ is algebraic over Fδ.

Proof. Suppose t ∈ K is transcendental over F . For each γ ∈ k, consider the derivation

δγ : F(t)→ K induced by δγ (t) = γ t . We claim that for some γ ∈ k, F(t)δγ = Fδ. Fix

a sufficiently saturated differentially closed field (U , D) with constant field C. Each

extension δγ : F(t)→ K embeds into (U , D). Moreover, as these extensions all agree

on F , we may as well assume that F ⊆ U and that these embeddings are over F . So

we get elements tγ ∈ U and subfields Kγ ⊆ U , such that (F(t), K , δγ ) is isomorphic

to (F(tγ ), Kγ , D �F(tγ )). In particular, D(tγ ) = γ tγ . Now, if F(t)δγ 6= Fδ, and we let

g ∈ F(t)δγ \ F , then the image of g in (U , D) is an element h ∈ F(tγ )D
\ F . It follows

by Steinitz exchange that tγ ∈ F(h)alg. Writing the function field F as k(a), we have that

F(h)alg
⊆ C(a)alg. That is, tγ is a solution to the equation Dx = γ x in C(a)alg. But the set

of γ ∈ C such that Dx = γ x has a solution in fixed finite transcendence degree extension

of C – such as C(a)alg is – forms a finite rank additive subgroup of C. This is an old result

of Kolchin [7], but see also [4, Fact 4.3]. Hence there must exist γ ∈ k for which Dx = γ x
has no solution in C(a)alg. For such a γ , F(t)δγ = Fδ, as desired.

So, iterating this process, if we let E be a transcendence basis for K over F , then we

can find an extension of δ, which we will also call δ, to F(E) with no new constants.

Since K is algebraic over F(E), there is by Fact 2.1 a unique further extension of δ to K .

By Lemma 2.3, K δ is algebraic over F(E)δ = Fδ.

As discussed in § 5, a special case of our main theorem is the finite-dimensional case of
the Jouanalou–Hrushovski theorem on D-subvarieties of codimension one. An algebraic

proof of this finiteness theorem in the context of several derivations was given in [1]. We

will rely on the following refinement of that result in the case of a single derivation.

Proposition 2.5. Suppose k is a finitely generated field, A is a finitely generated k-algebra

that is an integral domain, and δ : A→ A is a k-linear derivation. Suppose that there

exists an infinite sequence (r j : j < ω) in Frac(A) such that δ(r j )/r j ∈ A for all j < ω, and

such that (r j : j < ω) is multiplicatively independent modulo (kalg)×. Then there exists

g ∈ Frac(A)δ \ kalg. In fact, if G is the multiplicative group generated by (r j : j < ω), then

G ∩Frac(A)δ is nontrivial.

Remark 2.6. By the sequence being multiplicatively independent modulo (kalg)× we mean

that its image in Frac(A)×/(Frac(A)× ∩ kalg) is multiplicatively independent. In other

words, no nontrivial product of integer powers of the r j ’s is in kalg.

Proof. This is quite close to [1, Proposition 6.10], but among the differences are that

we are working over a finitely generated field rather than an uncountable algebraically

closed field, and that the r j are coming from Frac(A) rather than from A itself. We have

therefore something to do.

First, let us observe that we get the ‘in fact’ clause for free. Indeed, letting F :=
Frac(A)δ, consider the finitely generated F-algebra A′ = F A. Then F is again a finitely
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generated field, δ is an F-linear differential structure on A′, and (r j : j < ω) in Frac(A′) =
Frac(A) satisfies δ(r j )/r j ∈ A′ for all j < ω. We can apply the main statement of the

theorem – which we are assuming we have proved – to this context over F . Since

Frac(A′)δ = F , we must have that (r j : j < ω) is not multiplicatively independent modulo

Falg. But note that F is relatively algebraically closed in Frac(A) by Lemma 2.3. So

(r j : j < ω) is not multiplicatively independent modulo F . That is, some nontrivial

product of integer powers of the r j is in F . We have shown that G ∩ F is nontrivial,

as desired.

So it suffices to prove that Frac(A)δ 6⊆ kalg.

Next, observe that we can always replace A by a finitely generated localisation. Indeed,
this does not change the fraction field, and since δ( 1

f ) = −
δ f
f 2 , any such localisation is

a differential subring of
(

Frac(A), δ
)
. So we may assume that A is integrally closed.

Moreover, as k is a finitely generated field, some finitely generated localisation of A is a
unique factorisation domain – this is by [1, Lemma 6.11] though one expects it to have

appeared elsewhere and earlier. So we may also assume that A is a UFD.

Consider k′ := Frac(A)∩ kalg. By integral closedness, k′ ⊆ A. Moreover, δ is k′-linear.

The hypotheses of the theorem hold for (A, k′), and if the conclusion were true for (A, k′),
then it would be true for (A, k). That is, it suffices to prove the theorem for k′ in place

of k. So we may also assume Frac(A)∩ kalg
= k.

Next, we move the r j into A itself. For each j < ω, write r j =
c j
d j

, where c j , d j ∈ A are

coprime. Since
δ(r j )

r j
=

δ(c j )

c j
−
δ(d j )

d j
, it follows that

δ(c j )d j
c j
∈ A. Coprimality of c j and d j

in A then implies
δ(c j )

c j
∈ A. A symmetric argument shows that

δ(d j )

d j
∈ A. Note that the

multiplicative group generated by {c j , d j : j < ω} contains that generated by {r j : j < ω},

so the former must also have infinite rank modulo its intersection with kalg. We can

therefore find in A a sequence (a j : j < ω) that is multiplicatively independent modulo

(kalg)× and such that
δ(a j )

a j
∈ A for all j < ω.

Let K be an uncountable algebraically closed field extending k. It follows that AK :=

A⊗k K is an integrally closed domain extending A, finitely generated over K , and with

the property that Frac(A)∩ K = k in Frac(AK ). Hence, no nontrivial product of integer

powers of the a j is in K either. Moreover δ extends to a K -linear derivation on Frac(AK )

and
δ(a j )

a j
∈ AK for all j < ω. Proposition 6.10 of [1] now applies and we obtain an element

g ∈ Frac(AK )
δ
\ K .

At this point, we can use a specialisation argument or, as we prefer to do, the

model completeness of the first-order theory of algebraically closed fields, to see that

Frac(Akalg)δ \ kalg
6= ∅, where Akalg := A⊗k kalg. Indeed, letting (X, s) be the D-variety

associated with (A, δ), we denote by (X K , s) the base extension to K , that is, the D-variety

associated with (AK , δ). Hence, g : (X K , s)→ (A1
K , 0) is a nonconstant rational map over

K . This is a first-order expressible property over k of the parameters in K over which

g is defined. As kalg is an elementary substructure of K , we thus obtain nonconstant

g′ : (Xkalg , s)→ (A1
kalg , 0) over kalg. That is, g′ ∈ Frac(Akalg)δ \ kalg. Now, Frac(Akalg)δ is

algebraic over Frac(A)δ, so the canonical parameter for the finite set of Galois conjugates
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of g′ is a tuple from Frac(A)δ not all of whose coordinates can be in kalg since g is not.

Hence Frac(A)δ \ kalg
6= ∅.

3. The principal algebraic statement

The key step in our proof of Theorem 1.1 will be the following statement in commutative

algebra. It is given here in slightly greater generality than necessary. We will only apply

it in the case where the nilradical of S is prime, and the reader is invited to make this

assumption, and thereby remove a few of the technicalities, if he or she desires.

Theorem 3.1. Suppose

• k is a finitely generated field of characteristic zero,

• R is a finitely generated k-algebra that is an integral domain and such that k is relatively

algebraically closed in Frac(R),

• S is a finitely generated k-algebra, such that k is relatively algebraically closed in

Frac(S/P) for every minimal prime ideal P of S, and

• f1, f2 : R→ S are k-algebra homomorphisms that take nonzero elements of R to regular

elements – that is, non-zero-divisors – of S.

Suppose there exists a sequence of nonzero elements (a j : j < ω) in R that is

multiplicatively independent modulo k×, and such that f1(a j )S = f2(a j )S for all j < ω.

Then there exists g ∈ Frac(R) \ k such that f1(g) = f2(g).
In fact, if we let F be the subfield of Frac(R) on which f1 and f2 agree, and we let G

be the subgroup of Frac(R)× generated by (a j : j < ω), then G ∩ F is nontrivial.

Remark 3.2. (a) The assumptions on f1 and f2 imply that they extend uniquely to

embeddings of Frac(R) into Frac(S), where by Frac(S) we mean the localisation of

S at the set of all regular elements. It is with respect to these extensions that we

mean f1(g) = f2(g) in the conclusion of the theorem.

(b) Any nontrivial element of G is necessarily transcendental over k; this follows from

the multiplicative independence of (a j : j < ω) modulo k× together with the fact

that k is relatively algebraically closed in Frac(R).

Proof. Let us first consider the case when S is a reduced ring.

Since f1(a j )S = f2(a j )S, for each j < ω, there is a unit u j in S such that f1(a j ) =

u j f2(a j ). Let P1, . . . , P` be the minimal primes of S, and denote by Sµ := S/Pµ the

corresponding integral domain for each µ = 1, . . . , `. Let

ū j := (u j + P1, . . . , u j + P`) ∈ S×1 × · · ·× S×` .

Now, as k is relatively algebraically closed in Sµ, each S×µ /k× is a finitely generated group

– see, for example, [9, Corollary 2.7.3]. Hence, S×1 /k×× · · ·× S×` /k× is finitely generated.

It follows that for some N > 0 and all r > 0,

ūkr,1
(r−1)N+1 · ū

kr,2
(r−1)N+2 · · · ū

kr,N
r N = λr
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for some λr = (λr,1, . . . , λr,`) ∈ (k×)` and some kr,1, . . . , kr,N ∈ Z not all zero. (Note that

if you assumed in the theorem that the nilradical of S was prime, then here S is already

a domain and ` = 1 with P1 = (0).)
Let f1,µ, f2,µ : R→ Sµ be the k-algebra homomorphisms induced by f1 and f2 for

µ = 1, . . . , `. By assumption, they are still injective. Consider, for each r > 0,

hr := akr,1
(r−1)N+1 · a

kr,2
(r−1)N+2 · · · a

kr,N
r N

in Frac(R). By construction, f1,µ(hr ) = λr,µ f2,µ(hr ).

Letting m be greater than the transcendence degree of Frac(R) over k, we get that

{h1, . . . , hm} is algebraically dependent over k. Let
∑

ci1,...,im hi1
1 · · · h

im
m = 0 be a nontrivial

algebraic relation over k with a minimal number of nonzero coefficients. Note that as

none of the hr are zero, there are at least two nonzero coefficients in this relation. Fixing

µ = 1, . . . , ` and applying f1,µ to this, we get∑
ci1,...,imλ

i1
1,µ · · · λ

im
m,µ f2,µ(h1)

i1 · · · f2,µ(hm)
im = 0

while applying f2,µ yields∑
ci1,...,im f2,µ(h1)

i1 · · · f2,µ(hm)
im = 0.

Suppose that λi1
1,µ · · · λ

im
m,µ 6= λ

j1
1,µ · · · λ

jm
m,µ for some distinct (nonzero) ci1,...,im and c j1,..., jm .

Manipulating these two equations and then taking f −1
2,µ, we would get a relation among

the h1, . . . , hm with fewer nonzero coefficients. As this is impossible by minimality, it

must be that λi1
1,µ · · · λ

im
m,µ = λ

j1
1,µ · · · λ

jm
m,µ whenever ci1,...,im and c j1,..., jm are nonzero. But

then, fixing (i1, . . . , im) 6= ( j1, . . . , jm) with ci1,...,im and c j1,..., jm nonzero, we get that

f1,µ(h
i1− j1
1 · · · him− jm

m ) = f2,µ(h
i1− j1
1 · · · him− jm

m ).

Setting g := hi1− j1
1 · · · him− jm

m , we have that f1,µ(g) = f2,µ(g) for all µ = 1, . . . , `. Since S
is reduced, P1 ∩ · · · ∩ P` = (0), and hence f1(g) = f2(g). That is, g ∈ G ∩ F . It remains

only to verify that g 6= 1. Since ir − jr 6= 0 for some r = 1, . . . ,m, and the corresponding

kr,1, . . . , kr,N are not all zero, g is a nontrivial product of integer powers of the ai . By

multiplicative independence modulo k×, g 6= 1.

Now we deal with the case when the nilradical N of S is nontrivial. For any ideal I 6 N ,

let f I
ν : R→ S/I be the composition of fν with S→ S/I . Note that since I 6 N , the

image of a regular element in S remains regular in S/I . So f I
1 , f I

2 extend to embeddings

of Frac(R) in Frac(S/I ). Consider the subfield

FI := {g ∈ Frac(R) : f I
1 (g) = f I

2 (g)}.

Note that F = F(0). Note also that G/G ∩ FN is of finite rank. Indeed, otherwise we

would have a subsequence (b j : j < ω) of (a j : j < ω) that is multiplicatively independent

modulo FN . But the reduced case applied to this subsequence, which is a fortiori

multiplicatively independent modulo k×, implying that 〈b j : j < ω〉 ∩ FN is nontrivial,

contradicting the multiplicative independence modulo FN .
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Reduction 3.3. It suffices to prove the theorem under the assumption that for any nonzero

ideal I 6 N , G/(G ∩ FI ) is of finite rank.

Proof of Reduction 3.3. Assume we have proven the theorem under this addi-

tional condition. Set I := {I 6 N : G/(G ∩ FI ) is of infinite rank}. Suppose, towards a

contradiction, that I is nonempty. By Noetherianity there is a maximal element J ∈ I.

Let (b j : j < ω) be a subsequence of (ai : i < ω) that is multiplicatively independent

modulo FJ . Note that the assumptions of the theorem remain true of f J
1 , f J

2 and

(b` : ` < ω). Moreover, the condition of the claim is true of f J
1 , f J

2 and (b` : ` < ω) by

maximal choice of J . Applying the theorem to f J
1 , f J

2 and (b` : ` < ω), we get that
〈b` : ` < ω〉 ∩ FJ is nontrivial. But this contradicts the multiplicative independence of

(b` : ` < ω) over FJ .

So I is empty. In particular, G/(G ∩ F) is of finite rank. But then certainly G ∩ F is

nontrivial, as desired.

Reduction 3.4. It suffices to prove the theorem under the additional assumption that
there exists a nonzero x ∈ N such that x2

= 0, Q := ann(x) is prime, and if (x) = Q1 ∩

· · · ∩ Q` is the primary decomposition of (x), then Q1 ∪ · · · ∪ Q` contains no regular

element of S.

Proof of Reduction 3.4. As N is not trivial, let x ∈ N be a nonzero element with maximal

annihilator. Then x2
= 0 and primality of Q follow. For each of the finitely many ideals

in the primary decomposition of (x) that contain a regular element, choose one. Let S′

be the extension of S obtained by inverting the product of these finitely many regular

elements. Then S′ is still finitely generated and we can now apply the theorem with S′

in place of S, noting that x is still nonzero in S′, x2
= 0 remains true, annS′(x) = QS′ is

still prime, and now the primary ideals appearing in the decomposition of x S′ all have no

regular elements. We therefore obtain nonconstant g ∈ Frac(R) such that f1(g) = f2(g)
in Frac(S′) = Frac(S).

Let x be as in Reduction 3.4. By Reduction 3.3, we have that G/(G ∩ F(x)) is of

finite rank. There must exist a sequence (b j : j < ω) in G ∩ F(x) that is multiplicatively

independent modulo k×. Being in G implies that each b j is the product of integer powers

of some ai ’s. Since f1(ai )S = f2(ai )S, we have that f1(ai ) is a multiple of f2(ai ) by a unit

in S×. The same is therefore true of b j . That is,

f1(b j ) = u j f2(b j ) for some unit u j ∈ S× for all j < ω. (3.1)

On the other hand, being in F(x) means that

f1(b j )− f2(b j ) ∈ x Frac(S) for all j < ω. (3.2)

Let T := k[(b j : j < ω)] be the k-subalgebra of Frac(R) generated by these elements, and

consider the k-linear map f1− f2 restricted to T . Using the fact that the fi are ring

homomorphisms, and developing, one obtains the following twisted Leibniz rule:

( f1− f2)(uv) = ( f1− f2)(u) f1(v)+ f2(u)( f1− f2)(v). (3.3)
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Moreover,

( f1− f2)(T ) ⊆ x Frac(S). (3.4)

Indeed, equation (3.2) tells us that ( f1− f2) takes the generators of T into x Frac(S), and

this property is clearly linear. So assuming that ( f1− f2)(u), ( f1− f2)(v) ∈ x Frac(S), it

suffices to show that ( f1− f2)(uv) ∈ x Frac(S). This follows immediately from (3.3).

Let πQ : Frac(S)→ Frac(S/Q) be induced by the quotient S→ S/Q. Then πQ ◦ f1, πQ ◦

f2 : Frac(R)→ Frac(S/Q) are embeddings of fields. Since x2
= 0, we have x ∈ Q, and so

equation (3.4) tells us that πQ ◦ f1 and πQ ◦ f2 agree on T . We use this embedding to
view T ⊆ Frac(S/Q).

Claim 3.5. There exists a k-linear derivation δ on Frac(S/Q) satisfying the following:

(i) For all t ∈ T and s ∈ Frac(S), πQ(s) = δ(t) if and only if f1(t)− f2(t) = xs.

(ii) The constant field Frac(S/Q)δ is algebraic over Frac(T )δ.

(iii) Frac(T )δ ⊆ F .

Proof of Claim 3.5. We first find a derivation δ : T → Frac(S/Q) with property (i). Given

t ∈ T , we know by (3.4) that f1(t)− f2(t) = xs for some s ∈ Frac(S). Now, for any s′ ∈
Frac(S), we have

f1(t)− f2(t) = xs′ ⇐⇒ (s− s′)x = 0

⇐⇒ s− s′ ∈ Q Frac(S) since Q = ann(x)

⇐⇒ πQ(s) = πQ(s′).

So we can define δ(t) := πQ(s), and it will have the desired property. That δ is k-linear is

clear from the construction. That it is a derivation follows from (3.3). Indeed, given u, v ∈
T , let su, sv ∈ Frac(S) be such that ( f1− f2)(u) = xsu and ( f1− f2)(v) = xsv. Then (3.3)

along with the construction of δ gives us

δ(uv) = πQ
(
su f1(v)+ f2(u)sv)

= πQ(su)v+ uπQ(sv) by our identification of T ⊆ Frac(S/Q)

= δ(u)v+ uδ(v)

as desired.

Now, there is a unique extension of δ to Frac(T ) using the usual quotient rule: δ
( u
v

)
:=

vδu−uδv
v2 . Note that Frac(T ) is finitely generated over k as it is a subextension of the

finitely generated extension Frac(R). So we can apply Lemma 2.4 and extend δ further

to a derivation δ : Frac(S/Q)→ Frac(S/Q) whose constant field is algebraic over the
constants in Frac(T ). That is, it satisfies property (ii).

Finally, we show (iii). Suppose g = u
v
∈ Frac(T ) and δ(g) = 0. This means vδ(u) =

uδ(v). Letting su, sv ∈ Frac(S) be such that ( f1− f2)(u) = xsu and ( f1− f2)(v) =

xsv, we have by (i) that πQ(su) = δ(u) and πQ(sv) = δ(v). Therefore, πQ
(

f1(v)su −

f1(u)sv
)
= vδ(u)− uδ(v) = 0 so that f1(v)su − f1(u)sv ∈ Q Frac(S). Hence 0 =

(
f1(v)su −

f1(u)sv
)
x = f1(v)( f1− f2)(u)− f1(u)( f1− f2)(v). That is, ( f1− f2)(u)

f1(u)
=

( f1− f2)(v)
f1(v)

, which
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implies that 1− f2(u)
f1(u)
= 1− f2(v)

f1(v)
, and so f1(u)

f1(v)
=

f2(u)
f2(v)

. That is, f1(g) = f2(g), as

desired.

Let M := {s ∈ Frac(S) : sx ∈ S}. This is an S-submodule of Frac(S) that contains

Q Frac(S).

Claim 3.6. πQ(M) = S/Q.

Proof of Claim 3.6. As M contains S, it suffices to show that πQ(M) ⊆ S/Q. Suppose
c
d ∈ M . So cx = yd for some y ∈ S. Let (x) = Q1 ∩ · · · ∩ Q` be the primary decomposition

of (x) in S. It follows that for each i = 1, . . . , `, yd ∈ Qi . Since d is regular, Reduction 3.4

implies no power of d can be in Qi . Hence y ∈ Qi for all i . So y = y′x for some y′ ∈
S. Hence cx = dy′x , so that (c− dy′) ∈ ann(x) = Q. It follows that πQ

( c
d

)
= πQ(y′) ∈

S/Q.

Let A be a finitely generated k-subalgebra of Frac(S/Q) that contains S/Q and is

preserved by the derivation δ obtained in Claim 3.5 – by Fact 2.2, this is possible. We

show that for all j < ω,
δ(b j )

b j
∈ A. Choose s j ∈ Frac(S) such that

f1(b j )− f2(b j ) = xs j .

By (3.1), we also have f1(b j )− f2(b j ) = f2(b j )(u j − 1), where u j ∈ S×. So
s j

f2(b j )
x ∈ S,

and hence
s j

f2(b j )
∈ M . Applying πQ , we get by Claim 3.5(i) that

δ(b j )

b j
∈ πQ(M). Now by

Claim 3.6,
δ(b j )

b j
∈ S/Q ⊆ A.

To recap then, (b j : j < ω) is a sequence in Frac(R) that is multiplicatively independent

modulo k×, and hence modulo (kalg)× since k is relatively algebraically closed in R. By

the discussion preceding Claim 3.5, we view (b j : j < ω) as a sequence in Frac(A) =
Frac(S/Q), and as such have just shown that it satisfies

δ(b j )

b j
∈ A for all j < ω. We are

thus in the context of Proposition 2.5, and we can conclude that 〈b j : j < ω〉 ∩Frac(A)δ

is nontrivial. But 3.5(ii) tells us that Frac(A)δ is algebraic over Frac(T )δ, and 3.5(iii) says

the latter is in F . It follows that 〈b j : j < ω〉 ∩ Falg is nontrivial.

Suppose g ∈ 〈b j : j < ω〉 ∩ Falg is nontrivial. We claim, finally, that g ∈ F . Indeed,

suppose towards a contradiction that for some m > 1,

P(X) = Xm
+ cm−1 Xm−1

+ · · ·+ c0

is the minimal polynomial of g over F . As f1 and f2 agree on F , we may as well identify

F with its image in Frac(S) so that f1, f2 become F-linear. Applying fν to P(g) = 0 for

ν = 1, 2 yields

fν(g)m + cm−1 fν(g)m−1
+ · · ·+ c0 = 0 (3.5)

in Frac(S). Since g ∈ F(x), we have that f1(g) = f2(g)+ sx for some s ∈ Frac(S).
Substituting this into (3.5) for ν = 1, we get

0 = ( f2(g)+ sx)m + cm−1( f2(g)+ sx)m−1
+ · · ·+ c0

=
(

f2(g)m + cm−1 f2(g)m−1
+ · · ·+ c0

)
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+ sxm f2(g)m−1
+ sx(m− 1)cm−1 f2(g)m−2

+ · · ·+ sxc1

= sxm f2(g)m−1
+ sx(m− 1)cm−1 f2(g)m−2

+ · · ·+ sxc1

= sx · f2
(
mgm−1

+ (m− 1)cm−1gm−2
+ · · ·+ c1

)
,

where the second equality uses (3.5) for ν = 2, and the fact that x2
= 0. So, if we let

g′ := mgm−1
+ (m− 1)cm−1gm−2

+ · · ·+ c1, then sx f2(g′) = 0. Note that g′ 6= 0 by the

minimality of the degree m, and hence f2(g′) is regular in S. It follows that sx = 0.
But this means that f1(g) = f2(g), so that g ∈ F , contradicting m > 1.

We have proved that 〈b j : j < ω〉 ∩ F , and hence G ∩ F , is nontrivial.

4. Proof of the main theorem

We now deduce the main part of Theorem 1.1 as stated in §1 from the algebraic

statement given in Theorem 3.1. We will deal with the rest of the statement, namely

the improvement in the reduced case, in § 6.

Theorem 4.1. Suppose X is an algebraic variety, Z is an irreducible algebraic scheme,
and φ1, φ2 : Z → X are rational maps whose restrictions to Zred are dominant, all over

an algebraically closed field K . Then the following are equivalent:

(1) There exist nonempty Zariski open subsets V ⊆ Z and U ⊆ X such that the

restrictions φV
1 , φ

V
2 : V → U are dominant regular morphisms, and there exist

infinitely many hypersurfaces H on U satisfying

(φV
1 )
−1(H) = (φV

2 )
−1(H).

(2) There exists g ∈ K (X) \ K such that gφ1 = gφ2.

Proof. That (2) implies (1) is more or less clear: we can choose nonempty Zariski open

sets V ⊆ Z and U ⊆ X such that the restrictions φV
1 , φ

V
2 : V → U are dominant regular

morphisms and such that g : U → A1 is a nonconstant morphism to the affine line. We

have the commuting diagram

V
φV

1 //

φV
2
��

U

g
��

U g
// A1

so that level sets of g over the K -points of A1 yield infinitely many hypersurfaces H on

U satisfying (φV
1 )
−1(H) = (φV

2 )
−1(H).

Assume that (1) holds.

Let k ⊆ K be a finitely generated subfield over which Z , X, V,U, φ1, φ2 are defined.

That is, X = Xk ×k K for some geometrically irreducible algebraic k-variety Xk , and Z =
Zk ×k K , where (Zk)red is a geometrically irreducible algebraic k-variety. We have similar

descent statements to k for V,U, φ1, φ2 as well.

We first claim that k can be chosen so that there are infinitely many hypersurfaces

H on U defined over k satisfying (φV
1 )
−1(H) = (φV

2 )
−1(H). Indeed, fix k and suppose
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there exists such a hypersurface H that is not defined over kalg. Then H is defined over

a finitely generated nonalgebraic extension L of k. Now Aut(Lalg/k) acts naturally on

the whole situation, and there are infinitely many Aut(Lalg/k)-conjugates of H in U . All

these conjugates are defined over Lalg and satisfy the property that their inverse images

under φV
1 and φV

2 agree. So choosing L instead of k, we may as well assume that we have

infinitely many such hypersurfaces over kalg to start with. Replacing each of these with

the union of their conjugates under the action of Gal(k), we may in fact assume they are

over k itself.

Suppose therefore that (H j : j < ω) is an infinite sequence of hypersurfaces over k on

U with (φV
1 )
−1(H j ) = (φ

V
2 )
−1(H j ) for all j < ω, and such that H j 6⊆

⋃
i< j Hi .

Replacing V and U by smaller nonempty Zariski open subsets, we may assume

U = Spec(RK ) and V = Spec(SK ), where R is a finitely generated k-algebra that is

an integral domain, S is a finitely generated k-algebra whose nilradical N is prime,

RK := R⊗k K and SK := S⊗k K , and φV
1 , φ

V
2 are induced by k-algebra homomorphisms

f1, f2 : R→ S. The assumption that the φi restrict to dominant rational maps on Zred
tells us that the fi composed with the quotient by N are injective. (Hence, f1, f2
themselves are embeddings.) Note that as Xk is geometrically irreducible, k is relatively

algebraically closed in Frac(R). Similarly, as (Zk)red is geometrically irreducible, k is

relatively algebraically closed in Frac(S/N ).
Now, as k is a finitely generated field, the localisation of R at some nonzero element is

a unique factorisation domain – this is by [1, Lemma 6.11]. So we may assume that R is

already a UFD. The vanishing ideals I (H j ) are of the form I j RK , where I j is a (radical)

height one ideal in R, and hence of the form I j = a j R for some sequence (a j : j < ω) in

R. The scheme-theoretic inverse images (φV
ν )
−1(H j ) are by definition given by the ideals

fν(I j )SK , for ν = 1, 2. That (φV
1 )
−1(H j ) = (φ

V
2 )
−1(H j ) therefore implies that f1(a j )S =

f2(a j )S for all j < ω. Moreover, since H j 6⊆
⋃

i< j Hi , each a j has an irreducible factor

that does not appear in ai for i < j , and so no nontrivial product of integer powers of the

a j can be a constant in Frac(R). That is, the hypotheses of Theorem 3.1 are satisfied, and

there must exist g ∈ Frac(R) \ k such that f1(g) = f2(g). Note that g ∈ Frac(RK ) = K (X)
and gφ1 = gφ2. In K (X) = Frac(R)⊗k K , the intersection of Frac(R) and K is k, so we

have that g /∈ K . This proves (2).

5. An application to algebraic D-varieties

In this section, we specialise Theorem 4.1 to the differential context to see how we

recover the finite-dimensional Jouanalou–Hrushovski theorem. In fact, we work rather

more generally in a setting that appears in the work of the second author and Scanlon [11]

towards the model theory of fields equipped with a general class of operators. We will

thus obtain a Jouanalou–Hrushovski type theorem for these generalised operators.

The setting is as follows. Fix an algebraically closed field K of characteristic zero. Let

D denote the following fixed data:

• a finite-dimensional K -algebra B,

• a maximal ideal m of B with π : B → K the quotient map,
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• a K -basis (ε0, . . . , ε`) for B such that π(ε0) = 1 and ε1, . . . , ε` ∈ m.

The following notion first appears, with somewhat different notation, in [10]. It was

inspired by Alexandru Buium’s approach to differential algebra.

Definition 5.1. By a D-ring we will mean a pair (R, e), where R is a K -algebra
and e : R→ R⊗K B is a K -algebra homomorphism satisfying π R

◦ e = idR . Here π R
=

(idR ⊗Kπ) : R⊗K B → R is the R-algebra homomorphism induced by π . We denote by

RD
:= {r ∈ R : e(r) = r ⊗ 1} the subring of D-constants.

We will be applying Theorem 4.1 to X = Spec(R) when (R, e) is a D-ring

and R is a finitely generated K -algebra that is an integral domain. We will set

Z = Spec(R⊗K B), φ1 : Z → X the morphism induced by e, and φ2 : Z → X the

morphism induced by r 7→ r ⊗ 1. Note that the nonreduced nature of Z here is essential;
Zred = X and φ1, φ2 restricted to Zred are both the identity.

But in order to see what the theorem will say in this context, we need to explore

D-rings a bit further. First, we present two motivating examples.

Example 5.2 (Differential rings). Let D be given by the local K -algebra K [ε]/(ε2) with

maximal ideal m = (ε) and K -basis (1, ε). Suppose R is a K -algebra equipped with a

K -linear derivation δ : R→ R. Then we can make R a D-ring by letting e : R→ R[ε]/ε2

be r 7→ r + δ(r)ε. In fact, every D-ring is of this form.

Example 5.3 (Difference rings). Let D be given by the K -algebra K × K with maximal

ideal m generated by (0, 1) and K -basis
(
(0, 1), (1, 0)

)
. Then the D-rings are precisely the

K -algebras R equipped with an endomorphism σ : R→ R, where e : R→ R× R is given

by r 7→ (r, σ (r)).

In fact, as suggested by the examples, the D-ring formalism is really a way to study

rings equipped with certain operators. Note that (1⊗ ε0, . . . , 1⊗ ε`) is an R-basis for

R⊗K B, and e : R→ R⊗K B can be written with respect to this basis so that for all
r ∈ R,

e(r) = r ⊗ ε0+ ∂1(r)⊗ ε1+ · · ·+ ∂`(r)⊗ ε`,

where ∂i : R→ R are K -linear operators on R. (That the ε0-coefficient of e(r) is r comes

from the fact that π R
◦ e = idR and π(ε0) = 1.) Writing ∂ := (∂1, . . . , ∂`), we can recover

e from ∂ and vice versa. We will refer interchangeably to (R, e) and (R, ∂) as the D-ring.

The class of operators ∂ that can be fit into this context is rather broad and robust,
including various combinations and twists of differential and difference operators, and

closed under various operations. See [11, paragraphs 3.3–3.7] for a discussion of examples.

Naturally associated with the operators ∂ on R are certain K -algebra endomorphisms

of R. Let m = m0, . . . ,mt be the distinct maximal ideals of B, and π = π0, π1, . . . , πt
the corresponding quotient maps B → K . Let σi := π

R
i ◦ e : R→ R for i = 0, 1, . . . , t .

Note that σ0 = idR , and that σ1, . . . , σt are K -algebra endomorphisms of R that are in

fact K -linear combinations of the ∂1, . . . , ∂`. We write σ := (σ1, . . . , σt ) and call (R, σ )
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the difference ring associated with (R, e). Note that the associated endomorphism in

the differential case of Example 5.2 is just the identity, and in the difference case of

Example 5.3 is σ itself.

Definition 5.4 (Totally invariant D-ideals). Suppose (R, e) is a D-ring. An ideal I ⊆ R is

said to be a D-ideal if ∂i (I ) ⊆ I for all i = 1, . . . , `, and totally invariant if σ j (I ) = I for

all j = 1, . . . , t .

In what follows, we view R⊗K B as an R-algebra under the homomorphism r 7→ r ⊗ 1.

Hence, any ideal I of R generates an extension ideal of R⊗K B, which we denote by
I (R⊗K B).

Proposition 5.5. Suppose (R, e) is a D-ring with R Noetherian. Let I be an ideal of R.

Then I is a totally invariant D-ideal if and only if e(I )(R⊗K B) = I (R⊗K B).

Proof. Note that (1⊗ ε0, . . . , 1⊗ ε`) is an R-basis for R⊗K B and that

I (R⊗K B) = {a0⊗ ε0+ · · ·+ a`⊗ ε` : a0, . . . , a` ∈ I }.

Suppose e(I )(R⊗K B) = I (R⊗K B). If a ∈ I , then

e(a) = a⊗ ε0+ ∂1(a)⊗ ε1+ · · ·+ ∂`(a)⊗ ε` ∈ I (R⊗K B),

and hence ∂1(a), · · · , ∂`(a) ∈ I . So I is a D-ideal. For total invariance, fixing j = 1, . . . , t
and applying π R

j to e(I )(R⊗K B) = I (R⊗K B), we get immediately that σ j (I ) = I .

Conversely, suppose I is a totally invariant D-ideal. Then e(a) ∈ I (R⊗K B) for all

a ∈ I , since ∂1(a), . . . , ∂`(a) ∈ I . That is, e(I )(R⊗K B) ⊆ I (R⊗K B).
So it remains to show that I (R⊗K B) ⊆ e(I )(R⊗K B) whenever I is a totally invariant

D-ideal.

We first improve the choice of K -basis (ε0, . . . , ε`). Note that changing the basis, as

long as π(ε0) = 1 and ε2, . . . , ε` ∈ m remain true, does not affect e or σ as these are

intrinsically defined. While it does change ∂, it does so only by replacing these operators
with certain K -linear combinations of them. In particular, the property of being a totally

invariant D-ideal is not affected. We may therefore adjust the basis so that πi (ε j ) = δi, j for

i, j = 0, . . . , t , and (εt+1, . . . , ε`) forms a K -basis for the Jacobson radical J :=
⋂t

j=0 m j .
Note that one of the consequences of this choice of basis is that σ j = ∂ j for j = 0, . . . , t .
(Recall that σ0 = ∂0 = idR .)

Suppose now that I = (a1, . . . , am). For each j = 0, . . . , t , since σ j (I ) = I , there is

a j,k ∈ I such that σ j (a j,k) = ak for all k = 1, . . . ,m. Letting

yk :=

t∑
j=0

e(a j,k)(1⊗ ε j ),

we have that for each i = 0, . . . , t ,

π R
i (yk) =

t∑
j=0

π R
i

(∑̀
n=0

∂n(a j,k)⊗ εn

)
π R

i (1⊗ ε j )
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=

t∑
j=0

π R
i (∂i (a j,k)⊗ εi )δi, j

= σi (ai,k)

= ak

= π R
i (ak ⊗ 1).

The last equality uses the fact that π R
i is R-linear. Hence (ak ⊗ 1)− yk is of the form bt+1⊗

εt+1+ · · ·+ b`⊗ ε` for some bt+1, . . . , b` ∈ R. (Despite the notation, the bi ’s depend also

on k.) In fact, since yk ∈ e(I )(R⊗K B) ⊆ I (R⊗K B), we get that bt+1, . . . , b` ∈ I . Writing

bµ =
∑m
ν=1 rµ,ν,kaν , and setting sν,k := −

∑`
µ=t+1(rµ,ν,k ⊗ εµ), we have that

yk = (a1⊗ 1)s1,k + (a2⊗ 1)s2,k + · · ·+ (ak ⊗ 1)(1+ sk,k)+ · · ·+ (am ⊗ 1)sm,k

for all k = 1, . . . ,m. This can be written in matrix notation as

a(1+S) = y,

where a = (a1⊗ 1, . . . , am ⊗ 1), S = (sν,k) ∈ Matm(R⊗K B), 1 = idMatm (R⊗K B), and y =
(y1, . . . , ym). But since each sν,k ∈ R⊗K J , and J is a nilpotent ideal of B, we get that S
is nilpotent, and so 1+S is invertible. Hence,

a = y(1+S)−1
∈ (e(I )(R⊗K B))m .

That is, for each generator ak of I in R, we have ak ⊗ 1 ∈ e(I )(R⊗K B). Therefore I (R⊗K
B) ⊆ e(I )(R⊗K B), as desired.

We are ready now to specialise Theorem 4.1.

Definition 5.6. By an algebraic D-variety we mean an affine algebraic variety X over K
whose coordinate ring K [X ] comes equipped with a D-ring structure e : K [X ] → B[X ]
whose associated endomorphisms of K [X ] are injective. A Zariski closed subset of X is

said to be totally D-invariant if its corresponding ideal is a totally invariant D-ideal.

Remark 5.7. The assumption that the associated endomorphisms are injective is to

ensure that the D-ring structure extends (uniquely) to the fraction field K (X). See [11,

Lemma 4.9] for a proof of this.

Theorem 5.8. Suppose (X, e) is an algebraic D-variety over K . If (X, e) has infinitely

many totally D-invariant hypersurfaces, then there exists a D-constant rational function

g ∈ K (X) \ K .

Proof. Write X = Spec(R) with (R, e) a D-ring. Let Z := Spec
(
R⊗K B), φ1 : Z → X

the morphism induced by the K -algebra homomorphism e : R→ R⊗K B,

and φ2 : Z → X induced by r 7→ r ⊗ 1. Note that Zred = X and hence Z is irreducible.

Moreover, φ1, φ2 both restrict to the identity on Zred, and hence are dominant.

So Theorem 4.1 applies. By Proposition 5.5, if H ⊆ X is a totally D-invariant

hypersurface with ideal I = I (H), then e(I )(R⊗K B) = I (R⊗K B). This means that
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φ−1
1 (H) = φ−1

2 (H). Hence, condition (1) of Theorem 4.1 holds with U = X and V = Z .

The theorem gives us g ∈ K (X) \ K with gφ1 = gφ2. That is, e(g) = g⊗ 1 under the

canonical extension of e to Frac(R)→ Frac(R)⊗K B. We have found a nonconstant

D-constant rational function on X , as desired.

When D is given by B = K [ε]/ε2 as in Example 5.2, we recover the following

consequence of a theorem of Jouanolou [6] on solutions to rational foliations: an algebraic

D-variety with infinitely many D-hypersurfaces admits a nonconstant rational first

integral. This statement is the finite-dimensional case of Proposition 2.3 of Hrushovski’s

unpublished manuscript [5]; or, for a published proof, note that it is precisely the

(m, r) = (1, 0) case of [4, Theorem 4.2]. In fact, we get (a new proof of) the r = 0 case

of [4, Theorem 4.2] for arbitrary m > 1 by applying Theorem 5.8 to the case when D is

given by B = K [ε1, . . . , εm]/(ε1, . . . , εm)
2.

6. The reduced case and an application to rational dynamics

In this section, we improve Theorem 4.1 in the case when Z is also an (reduced) algebraic

variety, and thereby complete the proof of Theorem 1.1. We also deduce the application

to rational dynamics discussed in § 1.

First, for any function φ : Z → X and any subset H ⊆ X , let us denote by φ−1
[H ] the

set-theoretic inverse image of the set H . This is to avoid confusion with the notation

φ−1(H) we are using for the scheme-theoretic inverse image. Now, suppose φ : Z → X is

a dominant rational map between algebraic varieties.1 For a hypersurface H ⊆ X with
H ∩ Im(φ) Zariski dense in H , by the proper transform of H , denoted by φ∗H , we mean

the hypersurface on Z that is the union of those irreducible components of the Zariski

closure of φ−1
[H ] in Z that project dominantly onto some irreducible component of H .

Theorem 6.1. Suppose Z and X are algebraic varieties and φ1, φ2 : Z → X are dominant
rational maps, over an algebraically closed field K of characteristic zero. Then the

following are equivalent:

(1) There exist infinitely many hypersurfaces H on X satisfying φ∗1 H = φ∗2 H .

(2) There exists g ∈ K (X) \ K such that gφ1 = gφ2.

Note that when Z = X , φ1 = φ, and φ2 = id, this theorem says that if a rational

dynamical system (X, φ) has infinitely many totally invariant hypersurfaces, then φ

preserves a nonconstant rational function. That is, we recover the algebraic case of

[3, Corollary 3.3]. See also the closely related [2, Theorem 1.2]. But we can do better.

By a rational finite self-correspondence we will mean an algebraic variety X equipped

with a closed irreducible subvariety 0 ⊆ X × X such that the coordinate projections

π1, π2 : 0→ X are dominant and generically finite-to-one. Note that we get a rational

dynamical system by taking 0 to be the graph of a dominant rational self-map. A Zariski

closed subset V ⊆ X is totally invariant if its proper transforms in 0 by the two coordinate

projections agree. A rational function g on X is preserved by 0 if gπ1 = gπ2.

1Recall that we view algebraic varieties as integral algebraic schemes, and so φ includes in particular a
(partial) function on the underlying sets of these schemes.
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Corollary 6.2. Suppose (X, 0) is a rational finite self-correspondence with infinitely many

totally invariant hypersurfaces. Then 0 preserves a nonconstant rational function on X .

Proof. Apply Theorem 6.1 to Z := 0, φ1 := π1, and φ2 := π2.

In fact, Theorem 6.1 is precisely the generalisation of the above corollary to

arbitrary self-correspondences – where the coordinate projections need not be generically

finite-to-one. As such, it can be viewed as a statement in generalised rational dynamics.

In order to deduce Theorem 6.1 from Theorem 4.1, we need to observe that when

working over a finitely generated field, and restricting attention to sufficiently small

Zariski open sets, the scheme-theoretic inverse image and the proper transform agree on

hypersurfaces. This is Proposition 6.5, and may very well be known, but we could not

find it in the literature. Our proof will rely on the following elementary, and certainly

well-known, lemmas in commutative algebra.

Lemma 6.3. Suppose A is a Noetherian integral domain and B = A[x1, . . . , xn]g is

the localisation of a polynomial algebra over A. If I ⊆ A is a radical ideal, then so

is I B. Moreover, if A, B are in addition finitely generated k-algebras for some field k,

φ : Spec(B)→ Spec(A) is the induced morphism of k-varieties, V := V (I ) ⊆ Spec A is the

corresponding subvariety, and g /∈ I A[x1, . . . , xn], then φ−1(V ) = φ∗V .

Proof. It is straightforward to check that localisation preserves radicality. That taking
polynomial extensions also preserves radicality follows from:

(a) if P ⊂ A is a prime ideal, then so is P A[x1, . . . , xn], and

(b) for prime ideals P1, . . . , P` of A,(⋂̀
i=1

Pi

)
A[x1, . . . , xn] =

⋂̀
i=1

(Pi A[x1, . . . , xn]).

The ‘moreover’ clause follows by first noting that since I B is radical, the scheme-theoretic

and set-theoretic inverse images of V = V (I ) agree. Moreover, if P is a minimal prime

ideal of A containing I , then by (a) and the fact that g /∈ P A[x1, . . . , xn], P B is a prime

ideal. That is, the irreducible components of φ−1
[V ] are of the form φ−1

[W ], where W is

an irreducible component of V . Hence the proper transform agrees with the set-theoretic

inverse image of V .

Lemma 6.4. If A ⊆ B is an étale extension of Noetherian unique factorisation domains,

and I is a height one radical ideal of A, then I B is radical. Moreover, if A, B are

in addition finitely generated k-algebras for some field k, φ : Spec(B)→ Spec(A) is the

induced morphism of k-varieties, and H := V (I ) is the corresponding hypersurface on

Spec(A), then φ−1(H) = φ∗H .

Proof. Let P1, . . . , P` be the distinct minimal prime ideals containing I in A. Since A
is a UFD and each Pi is of height one, we have that Pi = pi A for some irreducible

pi ∈ A. Since I = P1 ∩ · · · ∩ P` and the pi are mutually nonassociate, we get that I =
(p1 · · · p`)A. Let pi = ui q

ni,1
i,1 · · · q

ni,mi
i,mi

be the prime factorisation of pi in the UFD B.
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Now, each Qi, j := qi, j B is a minimal prime ideal of Pi B, and hence by the going down

theorem for flat extensions, Qi, j lies over Pi . In particular, the qi, j are nonassociate

even as i varies. But moreover, as B over A is unramified, Pi BQi, j = Qi, j BQi, j . That is,

q
ni, j
i, j BQi, j = qi, j BQi, j . This forces each ni, j = 1. So I B = (

∏`
i=1

∏mi
j=1 qi, j )B is radical.

For the ‘moreover’ clause, again we first observe that the set-theoretic and

scheme-theoretic inverse images of H = V (I ) agree because I B is radical. Now, the

irreducible components of φ−1
[H ] = V (I B) are the V (qi, j ). That Qi, j lies over Pi says

exactly that V (qi, j ) projects dominantly onto V (pi ), which is an irreducible component
of H . Hence φ−1

[H ] = f ∗H , as desired.

Proposition 6.5. Suppose φ : Z → X is a dominant rational map between algebraic

varieties over a finitely generated field k. There exist nonempty Zariski open subsets

V ⊆ Z and U ⊆ X such that the restriction φV
: V → U is a dominant regular morphism,

and for all but finitely many hypersurfaces H on U , (φV )−1(H) = (φV )∗H .

Proof. Replacing Z and X by nonempty Zariski open subsets, it suffices to prove the

proposition in the case when X = Spec(R) and Y = Spec(S) are affine k-varieties and φ is a

dominant k-morphism induced by an injective k-algebra homomorphism f : R→ S. Now,

as we have used before, that k is a finitely generated field implies that the localisation of

R (respectively, S) at some nonzero element is a unique factorisation domain – this is [1,

Lemma 6.11]. So we may assume that R and S are already unique factorisation domains.

Next, by Noether’s normalisation lemma, after replacing S with Sg for some nonzero

g, we may assume that the homomorphism f factors through injective k-algebra

homomorphisms R→ R′ and R′→ S, where R′ is a polynomial algebra over R and

S is quasi-finite over R′. Localising both R′ and S further, we may in fact take R′→ S
to be étale, though now R′ is a finitely generated localisation of a polynomial algebra

over R.

So we have that φ factors as Spec(S)→ Spec(R′)→ Spec(R). Since R′ is of the form

R[x1, . . . , xn]g, Lemma 6.3 tells us that if I = I (H) is a radical height one ideal in R, then

I R′ is radical. Moreover, since V (g) can only contain finitely many hypersurfaces, for all

but finitely many such I , I R′ is again of height one. Since S is étale over R′, Lemma 6.4

now applies and we get that (I R′)S = f (I )S is radical. The ‘moreover’ clauses in the

lemmas tell us that φ−1(H) = φ∗H .

Proof of Theorem 6.1. That (2) implies (1) is again clear: the level sets of g will

witness (1). Suppose (1) holds. Exactly as in the beginning of the proof of

Theorem 4.1, we can find a finitely generated subfield k ⊆ K over which Z , X, φ1, φ2
are defined and such that there is an infinite set H of hypersurfaces H on X over
k satisfying φ∗1 H = φ∗2 H . Applying Proposition 6.5 to (φν)k : Zk → Xk , there exist

nonempty Zariski open subsets V ⊆ Zk and U ⊆ Xk such that, for ν = 1, 2, the

restrictions (φν)
V
k : V → U are dominant regular morphisms and for all but finitely many

H ∈ H, ((φν)
V
k )
−1(Hk ∩U ) = ((φν)Vk )

∗(Hk ∩U ). Noting that proper transforms commute

with extending the base field, and observing that U and V avoid only finitely many

hypersurfaces on X and Z , respectively, we have that for all but finitely many H ∈
H, ((φ1)

V
k )
∗(Hk ∩U ) = ((φ2)

V
k )
∗(Hk ∩U ). Hence, ((φ1)

V
k )
−1(H ∩U ) = ((φ2)

V
k )
−1(H ∩U )
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for all but finitely many H ∈ H. As scheme-theoretic inverse images also commute

with extending the base field, we get that (φVK
1 )−1(H ∩UK ) = (φ

VK
2 )−1(H ∩UK ). This

witnesses the truth of condition (1) of Theorem 4.1, and so by that theorem, condition (2)

holds.

7. Normal varieties equipped with prime divisors

Theorem 6.1 is really about the birational geometry of algebraic varieties equipped with

a set of hypersurfaces. We will show how a direct study of this category leads us to an

alternative, more geometric and conceptual, proof of Theorem 6.1 in the case when we

assume that the fibres of φ1 and φ2 are irreducible. This section is self-contained and

largely independent from the rest of the paper.

Fix a field k of characteristic 0, and let K := kalg. We consider the following category

Vk . The objects of Vk are pairs (X, S), where X is a normal geometrically irreducible

algebraic variety over k and S is a set of prime divisors (i.e., irreducible hypersurfaces) on
X K := X ×k K . A morphism (X, S)→ (Y, T ) will be a dominant rational map φ : X → Y
over k whose generic fibre is geometrically irreducible, and such that the symmetric

difference between S and {φ∗K t : t ∈ T } is finite. Note that this implies, in particular, that

at most finitely many of the prime divisors in S can project dominantly onto Y .

Remark 7.1. Here φK : X K → YK is the base extension of φ : X → Y to K . Because the
generic fibre of φK is irreducible, the proper transform of all but finitely many prime

divisors on YK is a prime divisor on X K . Indeed, if t is an irreducible hypersurface on YK
that has nonempty intersection with the Zariski open subset of points in YK over which

the fibre of φK is irreducible, then φ∗K t will be irreducible.

Note that in this category the underlying varieties and rational maps are over k, but the

irreducible hypersurfaces they come with may be over the algebraic closure K . Things

would become notationally much clearer if we assumed that k is algebraically closed,

but in fact the main theorem will only apply when k is a finitely generated field. We

will systematically use the subscript K to indicate base extension from k up to K .

One exception, however, will be for fields of rational functions. For X a geometrically

irreducible algebraic variety over k, we will denote by K (X) the field of rational functions

on X K .

The category of algebraic varieties over k has a terminal object, namely Spec(k). At

first sight, one might think that (Spec(k),∅) is the terminal object in Vk , but this is not

the case. If S is a finite set, then there is a canonical morphism (X, S)→ (Spec(k),∅),
but if S is infinite, then it is not hard to see that the existence of a morphism (X, S)→
(Y, T ) implies dim Y > 0. We seek to repair this lack of terminal object by asking if the

undercategory of arrows originating at a given (X, S) in Vk has a terminal object.

Theorem 7.2. Suppose k is finitely generated. For every object (X, S) in Vk , there is a

morphism π : (X, S)→ (X ′, S′) that is terminal with respect to all morphisms originating

from (X, S). That is, given φ : (X, S)→ (Y, T ), there is a unique ψ : (Y, T )→ (X ′, S′)
such that ψφ = π .
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Proof. First of all, we can embed X as an open subvariety of a normal variety X , which

is proper over k. Let S denote the set of Zariski closures of elements of S in X K . The

embedding of X in X induces an isomorphism (X, S) ∼= (X , S) in Vk . It suffices therefore

to prove the theorem for (X , S). That is, we may assume X is proper over k.

Our assumption of normality means that for any rational function f ∈ K (X), we can

consider the Weil divisor div( f ) on X K . By the support of f we mean the set of prime

divisors appearing in div( f ) with nonzero coefficient – so it is the set of ‘zeros’ and

‘poles’ of f . Given a set T of prime divisors on X K , let us denote by T ] ⊆ K (X) the set

of rational functions whose support is contained in T , and by KT the relative algebraic

closure of K (T ]) in K (X).
Consider the natural action of Gal(k) on X K coming from the fact that X is over k.

For any set T of prime divisors on X K , let T̂ denote the set of all Gal(k)-conjugates of

elements of T .

We claim that there is a cofinite subset S0 ⊆ S such that for all cofinite T ⊆ S0, one

has K T̂ = K Ŝ0
. If this were not true, we would be able to construct a strictly descending

infinite chain of cofinite subsets of S,

· · · ( S2 ( S1 ( S,

such that

· · · ( K Ŝ2
( K Ŝ1

( K Ŝ .

Since K T̂ is a relatively algebraically closed subextension of K (X) over K by definition,

it would follow that

0 6 · · · < trdeg(K Ŝ2
/K ) < trdeg(K Ŝ1

/K ) < trdeg(K Ŝ/K ) 6 trdeg(K (X)/K ).

But K (X) has finite transcendence degree over K , so this is impossible.

For such a cofinite S0 ⊆ S, the identity map is an isomorphism between (X, S) and

(X, S0), so it suffices to prove the theorem for (X, S0). In other words, by replacing S
with such a sufficiently small cofinite subset, we may also assume that K T̂ = K Ŝ for all

cofinite subsets T ⊆ S.

There is also a natural action of Gal(k) on K (X). As Ŝ is Gal(k)-invariant, so is the set

of rational functions Ŝ], and hence also the subfield K Ŝ ⊆ K (X). This means that K Ŝ is

the function field of a K -variety that descends to k, that is, K Ŝ = K (X ′) for some normal

geometrically irreducible algebraic variety X ′ over k, and the embedding K (X ′) ⊆ K (X)
comes from a dominant rational map π : X → X ′ over k. As K Ŝ is relatively algebraically

closed in K (X), the generic fibre of π is also geometrically irreducible.

We claim that only finitely many s ∈ S map dominantly onto X ′K by πK . Suppose
towards a contradiction that infinitely many elements of S map dominantly onto X ′K . By

the Mordell–Weil–Néron–Severi theorem (see [9, Corollary 6.6.2] for details), the divisor

class group Cl(X) is finitely generated (as k is a finitely generated field). Let n be bigger

than the rank of Cl(X). Choose s1, . . . , sn ∈ S that map dominantly onto X ′K and have

distinct Gal(k)-orbits. Note that as π is over k, the Gal(k)-conjugates of the si also map

dominantly onto X ′K . If we let Hi be the union of the Gal(k)-conjugates of si , then Hi
descends to k and is k-irreducible. That is, we have distinct prime divisors d1, . . . , dn on X
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over k such that Hi = di K . By the choice of n, there are rational (and so integer) numbers

r1, . . . , rn not all zero, and f ∈ k(X) \ k, such that
∑

ri di = div( f ) in Div(X). So, working

again over K , the support of f ∈ K (X) is contained in {sσi : i = 1, . . . , n, σ ∈ Gal(k)}. In

particular, f ∈ K Ŝ = K (X ′). But the pullback of a rational function on X ′K cannot have

prime divisors in its support that project dominantly onto X ′K – they must all project

onto prime divisors on X ′K . This contradiction proves that only finitely many s ∈ S map

dominantly onto X ′K .

There are also only finitely many s ∈ S that reside in the indeterminacy locus of πK as

that indeterminacy locus is of codimension > 1. Let S0, therefore, be the cofinitely many

s ∈ S that are neither in the indeterminacy locus of πK nor do they project dominantly
onto X ′K by πK . For each s ∈ S0, the Zariski closure of πK (s) is then a proper irreducible

subvariety of X ′K , which we will denote by s′. By dimension considerations, for cofinitely

many s ∈ S0, the corresponding s′ is a prime divisor on X ′K . By Remark 7.1, π∗K s′ = s for

all but finitely many of these s. Let S1 be the cofinite subset of s ∈ S0 such that if s′ is

the Zariski closure of πK (s), then s′ is a prime divisor on X ′K and π∗K s′ = s. Let

S′ := {Zariski closure of πK (s) : s ∈ S1}.

We have that π : (X, S)→ (X ′, S′) is a morphism in Vk .

It remains to show that π is terminal. Given a morphism φ : (X, S)→ (Y, T ), we seek

to complete the triangle

(X, S)
φ //

π

��

(Y, T )

(X ′, S′)

with a morphism ψ : (Y, T )→ (X ′, S).
Since φ : (X, S)→ (Y, T ) is a morphism, it must be that only finitely many s ∈ S map

dominantly onto YK under φK . Replacing S by a cofinite subset, we may assume that

there are no such s ∈ S. It follows from the fact that φ : X → Y is over k that also no

elements of Ŝ will map dominantly onto YK . Now, suppose f ∈ Ŝ]. Then no member of

the support of f maps dominantly onto YK . This means that f has no zeros or poles on

the generic fibre Xη of φK . By the properness of X , and hence of Xη over K (Y ), we must

have that f is constant on the generic fibre. So f is the pullback of a rational function

on Y . That is, Ŝ] ⊆ K (Y ), and hence K (X ′) = K Ŝ ⊆ K (Y ). We thus obtain a dominant
rational map α : YK → X ′K with irreducible generic fibre such that πK = αφK . Since φ is

dominant, there is a unique such α. Since π and φ are over k, an automorphism argument

shows that α descends to k, that is, α = ψK for some dominant rational map ψ : Y → X ′

with geometrically irreducible generic fibre. In addition, we have

X
φ //

π

��

Y

ψ~~~~
~~
~~
~

X ′

It remains to verify that the symmetric difference between T and {ψ∗K s′ : s′ ∈ S′} is finite.

But a diagram chase shows that for cofinitely many s′ ∈ S′, ψ∗K s′ is the Zariski closure of
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φK (π
∗

K s′). Hence, for cofinitely many s′ ∈ S′, ψ∗K s′ ∈ T . On the other hand, for cofinitely

many t ∈ T , t is the proper transform under ψ of the Zariski closure of πK (φ
∗

K t) in X ′K ,

which is in S′ for cofinitely many t .

While we think the above theorem may be of independent interest, our immediate

motivation is the following alternative proof of a special case of Theorem 6.1.

Corollary 7.3. Suppose Z and X are algebraic varieties and φ1, φ2 : Z → X are dominant

rational maps with generic fibres irreducible, all over an algebraically closed field K of

characteristic zero. If there exist infinitely many hypersurfaces H on X satisfying φ∗1 H =
φ∗2 H , then there is g ∈ K (X) \ K with gφ1 = gφ2.

Proof. The general idea of the proof is to use Theorem 7.2 to reduce to the case of a

rational dynamical system, and then apply the results of Cantat in that setting (namely,

Corollary 1.3).
First, we reduce to the case where dim X < dim Z . Indeed, suppose dim X = dim Z .

Then, both φ1 and φ2 are birational, and we can consider the birational self-map

α := φ2φ
−1
1 : X → X . If H is a hypersurface on X for which φ∗1 H = φ∗2 H , then α∗H = H .

We thus have infinitely many totally invariant hypersurfaces on X for the rational

dynamical system (X, α). By Corollary 1.3, there is a nonconstant g ∈ K (X) such that

gα = g. Precomposing with φ1 yields gφ2 = gφ1, as desired. We may therefore assume
that dim X < dim Z .

Suppose H is a countably infinite set of hypersurfaces on X whose strict transforms

with respect to φ1 and φ2 agree. One complication is that the H ∈ H are not necessarily

irreducible, and to deal with that we argue now that we may assume that no two members

of H share an irreducible component in common. First, consider some notation: for

H a hypersurface on X , let SH denote the (finite) set of its irreducible components.
Note that φ∗1 H = φ∗2 H if and only if φ∗1 (SH ) = φ

∗

2 (SH ) as sets of prime divisors on Z .

Now, enumerate H = {H0, H1, . . . } and define a new sequence H ′i recursively by setting

H ′0 := H0 and H ′i+1 to be the union of the prime divisors in the set SHi+1\(
⋃i

j=0 SH ′j
).

Then we get a sequence H ′0, H ′1, . . . whose nonempty members are hypersurfaces on Y
that still satisfy φ∗1 H ′i = φ

∗

2 H ′i because φ∗1 (SH ′i
) = φ∗2 (SH ′i

). No two nonempty members
of this sequence share an irreducible component. Moreover, there are infinitely many

nonempty H ′i as at any finite stage,
⋃i

j=0 SH ′j
is a finite set of irreducible hypersurfaces.

So we may as well assume that distinct members of the original H share no irreducible

components.

We now proceed by induction on the dimension of Z , with dim Z = 0 being vacuous.

For each H ∈ H, let SH denote the (finite) set of irreducible components of H , and TH
the set of irreducible components of φ∗1 H = φ∗2 H in Z . Set S :=

⋃
H∈H SH and T :=⋃

H∈H SH . Let k0 be a finitely generated subfield over which Z , X, φ1, φ2 are defined.

As the statement of the corollary is preserved under birational equivalence, we may

assume that Z and X are normal. Suppose for now that all the members of H (and hence

S and T ) are defined over K0 := kalg
0 . So (Z , T ), (X, S) are objects in Vk0 , and φ1, φ2 :

(Z , T )→ (X, S) are morphisms in Vk0 . By Theorem 7.2, there is a terminal morphism
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π : (Z , T )→ (Z ′, T ′). We get an induced diagram in Vk0 ,

(Z , T )
π

((QQ
QQQ

QQQ
QQQ

QQ

φ2

��

φ1 // (X, S)

ψ1
��

(X, S)
ψ2 // (Z ′, T ′).

We want to apply the induction hypothesis to ψ1, ψ2 : X → Z ′. To do so, we first remove

any H from H that maps dominantly onto Z ′ by ψ1. There can only be finitely many
elements of S with this property since ψ1 is a morphism in Vk0 . As S is the set of prime

divisors appearing as components of elements of H, and as no two members of H share

an irreducible component, there are only finitely many H ’s to remove. Removing finitely

many more, we may assume that for all H ∈ H, the Zariski closure of ψ1(H), which we

denote by H ′, is a hypersurface on Z ′, and that ψ∗1 H ′ = H . Chasing the above diagram,

we get that ψ∗2 H ′ = H also. We see that there are infinitely many hypersurfaces H ′ on

Z ′ such that ψ∗1 H ′ = ψ∗2 H ′. By the inductive hypothesis (as dim X < dim Z), there exists

nonconstant g′ ∈ K (Z ′) such that g′ψ1 = g′ψ2 =: g ∈ K (X). So gφ1 = gφ2, as desired.

We still have to consider the case where there is an H ∈ H that is not defined over

K0. But we have seen how to deal with this before: H then is defined over a finitely

generated nonalgebraic extension k1 of k0. Let K1 := kalg
1 . There are infinitely many

Aut(K1/k0)-conjugates of H and they all satisfy the property that their strict transforms

under φ1 and φ2 agree because φ1 and φ2 are defined over k0. Letting H̃ be this infinite

set, and working in Vk1 with H̃, rather than in Vk0 with H, we can carry out the above

argument.

8. Positive characteristic

We have worked so far exclusively in characteristic zero, mostly because the

differential-algebraic techniques we employ in dealing with the nonreduced case very
much require it. But it is reasonable to ask to what extent our proof of the reduced case

can be extended to positive characteristic.

The first thing to observe is that even the special case of Cantat’s theorem
(Corollary 1.3) is false in positive characteristic: consider the dynamical system (P1,Frp)

on the projective line over the prime finite field Fp equipped with the p-power Frobenius

morphism; there are no preserved nonconstant rational functions, but the Gal(Fp)-orbit

of any point in P1(F
alg
p ) is a totally invariant hypersurface. Our proof breaks down in

Proposition 6.5, where we replaced scheme-theoretic inverse images by proper transforms;

we used the characteristic zero fact that, after localising, a quasi-finite extension can be

made étale. The natural way to deal with this would be to impose some separability

condition: we should ask that the dominant rational maps φ1, φ2 : Z → X have generic

fibres that are geometrically reduced, or what is equivalent, that the function field

extensions they induce admit separating transcendence basis. This is of course automatic

in characteristic zero, and in positive characteristic rules out the Frobenius example.
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Indeed, the proof of Proposition 6.5 simply goes through in arbitrary characteristic with

this additional assumption.2

However, there is another key point in the proof of Theorem 6.1 where characteristic

zero is used. In reducing to the case when infinitely many of the invariant hypersurfaces

are defined over the same finitely generated field k, we first get them over kalg and then

take the union of the Galois conjugates. In positive characteristic, these hypersurfaces

will now only be guaranteed to be over the perfect hull of k, which is not necessarily

finitely generated. We do not see how to avoid this problem and are thus left with the

following partial result in arbitrary characteristic.

Theorem 8.1. Fix K an algebraically closed field of arbitrary characteristic. Suppose

φ1, φ2 : Z → X are dominant rational maps between algebraic varieties over K with

geometrically reduced generic fibres. Then the following are equivalent:

(1) There exist a finitely generated subfield k ⊆ K and infinitely many hypersurfaces H
on X defined over ksep satisfying φ∗1 H = φ∗2 H .

(2) There exists g ∈ K (X) \ K such that gφ1 = gφ2.

Proof. This is obtained by inspecting the proofs in characteristic zero, together with the

preceding remarks. We give only a brief sketch.

For (2) H⇒ (1), let k be a finitely generated field over which Z , X, φ1, φ2, g are defined.

Then the level sets of g over ksep give rise to infinitely many hypersurfaces satisfying

φ∗1 H = φ∗2 H .

Suppose (1) holds. We may assume that Z , X, φ1, φ2 are all defined over k as well.

Replacing the hypersurfaces by the union of their Gal(k)-conjugates, we may assume

that they are all defined over k itself. As discussed above, because of our assumption
of geometrically reduced generic fibres, Proposition 6.5 remains true. Hence, exactly as

in the proof of Theorem 6.1, after replacing Z and X with sufficiently small nonempty

Zariski open subsets, we may assume that we have an infinite sequence (H j : j < ω) of

hypersurfaces satisfying φ−1
1 (H j ) = φ

−1
2 (H j ). We now follow the proof of Theorem 4.1

keeping in mind that Z is reduced, but that the characteristic need not be zero. Possibly

shrinking X and Y further, we may assume X = Spec(RK ) and Y = Spec(SK ), where

R and S are finitely generated k-algebras, R is a UFD, S is an integral domain, k
is relatively algebraically closed in Frac(R) and Frac(S), and φ1, φ2 are induced by

k-algebra embeddings f1, f2 : R→ S. The hypersurfaces (H j : j < ω)must have principal

vanishing ideals and so we get a sequence (a j : j < ω) in R that is multiplicatively

independent modulo k×, and because the H j satisfy φ−1
1 (H j ) = φ

−1
2 (H j ), the a j satisfy

f1(a j )S = f2(a j )S. The hypotheses of Theorem 3.1 are satisfied, except that we may be

in positive characteristic. But the proof of Theorem 3.1 in the case when S is an integral

domain – this is the first three paragraphs of that proof – did not use characteristic zero.

Hence, there exists g ∈ Frac(R) \ k such that f1(g) = f2(g). This proves (2).

2Proposition 6.5 does make use of [1, Lemma 6.11], which is stated for characteristic zero. However,
the proof given there goes through in positive characteristic if we replace the use of Mordell–Weil with
Lang–Néron.
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Question 8.2. Is the assumption in 8.1(1) of the existence of a common finitely generated

field of definition necessary?

It may be worth pointing out that Theorem 7.2 on the category of normal varieties

equipped with a set of prime divisors remains true in positive characteristic up to

applications of Frobenius transforms – but this does not seem to help in answering

Question 8.2 even when the generic fibres of φ1, φ2 are assumed to be irreducible.
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