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Abstract

In this paper we study the treewidth of the random geometric graph, obtained by
dropping n points onto the square [0,

√
n]2 and connecting pairs of points by an edge

if their distance is at most r = r(n). We prove a conjecture of Mitsche and Perarnau
(2014) stating that, with probability going to 1 as n → ∞, the treewidth of the random
geometric graph is �(r

√
n) when lim inf r > rc, where rc is the critical radius for the

appearance of the giant component. The proof makes use of a comparison to standard
bond percolation and with a little bit of extra work we are also able to show that, with
probability tending to 1 as k → ∞, the treewidth of the graph we obtain by retaining
each edge of the k × k grid with probability p is �(k) if p > 1

2 and �(
√

log k) if p < 1
2 .
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1. Introduction and main results

The random geometric graph G(n, r) is the random graph obtained by taking n points
X1, . . . , Xn independent and identically distributed (i.i.d.) uniformly at random from the square
[0,

√
n]2, and joining Xi and Xj by an edge if their Euclidean distance is at most r . Here

r = r(n) may and often does depend on n. To avoid having to deal with annoying trivial special
cases we assume that r ≤ √

2n throughout the paper. The study of random geometric graphs
essentially goes back to Gilbert [7] who defined a very similar model in 1961. For this reason
random geometric graphs are often also called the Gilbert model of random graphs. Random
geometric graphs have been the subject of a considerable research effort in the last two decades.
As a result, detailed information is now known on various aspects such as (k-)connectivity [22],
[23], the largest component [24], the chromatic number and clique number [17], [20], the
(non-)existence of Hamilton cycles [2], [21], monotone graph properties in general [8], and
the simple random walk on the graph [4]. One of the most well-known phenomena in random
geometric graphs is the ‘sudden emergence of a giant component’. By this we mean that there
exists a critical value rc such that if lim sup r < rc then, a.a.s., every component of G(n, r)

has O(log n) vertices, whereas if lim inf r > rc then, a.a.s., there exists a ‘giant’ component
with �(n) vertices. Here and in the rest of the paper, we say that a sequence of events (En)n
holds asymptotically almost surely (a.a.s.) if limn→∞ P(En) = 1. The exact value of rc is not
known at this time, but simulations suggest that the exact value is approximately 1.2 (see [24]).
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50 A. LI AND T. MÜLLER

For more details, and proofs, on the giant component phenomenon and background on random
geometric graphs in general we refer the reader to [24].

In this paper we consider the treewidth of random geometric graphs. The treewidth of a graph
was introduced by Halin [10] and independently, but later, by Robertson and Seymour [25].
It is a graph parameter that in a sense measures how similar a given graph is to a tree. (We
postpone the precise—and technical—definition of treewidth until Section 2.) Treewidth plays
an important role in modern algorithmic graph theory. Many NP-hard algorithmic decision
problems have, for instance, been shown to be polynomially solvable when restricted to the
class of instances with a bounded tree-width. In fact, a striking result of Courcelle [5] states that
any algorithmic decision problem that can be expressed in monadic second-order logic can be
solved in linear time for the class of graphs with bounded treewidth. An example of a decision
problem that is NP-hard, in general, and can be expressed in monadic second-order is k-colora-
bility (for any fixed k). As random geometric graphs have been used extensively as models for
modeling communication networks, this motivated Mitsche and Perarnau [19] to consider the
treewidth (tw) of random geometric graphs. They proved that if r ∈ (0, rc) is fixed then, a.a.s.,
tw(G(n, r)) = �(log n/log log n), while if r > C, where C is a large constant, then, a.a.s.,
tw(G(n, r)) = �(r

√
n). Mitsche and Perarnau [19] also conjectured that the second result

should extend all the way to the critical value. Here we will prove their conjecture.

Theorem 1.1. If r = r(n) is such that lim inf r > rc, where rc is the critical value for the
emergence of the giant component, then, a.a.s. as n → ∞, tw(G(n, r)) = �(r

√
n).

Our proof of Theorem 1.1 makes use of a comparison to bond percolation on Z
2. Recall that

this refers to the infinite random graph obtained by retaining each edge of the familiar integer
lattice with probability p and discarding it with probability 1−p, independently of the choices
for all other edges. We will denote by �(k, p) the restriction of this process to the k × k integer
grid. That is, �(k, p) has vertex set [k]2 and for every pair of points u, v ∈ [k]2 with Euclidean
distance equal to 1, we add an edge with probability p, independently of the choices for all
other pairs. (Here and in the rest of the paper we use the notation [k] := {1, . . . , k}.) For the
proof of Theorem 1.1 we only need to consider the treewidth of �(k, p) when p is very close
to 1, but with a little bit of extra work we are able to obtain the following result in addition to
Theorem 1.1.

Theorem 1.2. If p ∈ (0, 1) is fixed then, a.a.s. as k → ∞,

tw(�(k, p)) =
{

�(k) if p > 1
2 ,

�(
√

log k) if p < 1
2 .

(1.1)

Note that k is the square root of the number of vertices of �(k, p).

2. Notation and preliminaries

In this section we give some definitions and results which we will need in the sequel. We
start with the precise definition of treewidth. For a graph G = (V , E) on n vertices, we call
(T , W) a tree decomposition of G, where W is a set of vertex subsets W1, . . . , Ws ⊂ V , called
bags, and T is a forest with vertices in W , such that

• ⋃s
i=1 Wi = V ;

• for any e = uv ∈ E there exists a set Wi ∈ W such that u, v ∈ Wi ;

• for any v ∈ V , the subgraph induced by the Wi 	 v is connected as a subgraph of T .
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Treewidth of RGGs and percolated grids 51

The width of a tree-decomposition is w(T , W) = max1≤i≤s |Wi | − 1, and the treewidth of a
graph G can be defined as

tw(G) := min
(T ,W)

w(T , W),

where the minimum is taken over all tree decompositions (T , W) of G. From the definition of
treewidth, one can see that the treewidth of a tree is one, while the treewidth of a k-clique is
k − 1. We also observe that if H is a subgraph of G, then tw(H) ≤ tw(G), and if G is a graph
with connected components G1, . . . , Gm, then tw(G) = max1≤i≤m tw(Gi).

Given an edge xy of graph G, the graph G/xy is obtained from G by contracting the edge xy.
That is, to obtain G/xy, we identify the vertices x and y and remove all resulting loops and
duplicate edges. A graph H is a minor of G if it is a subgraph of the graph obtained from G by
a sequence of edge-contractions. Again, one can see from the definitions that if H is a minor
of G, tw(H) ≤ tw(G).

Alon et al. [1] proved the following powerful result, bounding the treewidth of graphs without
a given minor.

Theorem 2.1. (See [1].) If G does not have H as a minor, then tw(G) ≤ |V (H)|3/2√|V (G)|.
In this paper we will make use of the following immediate corollary.

Corollary 2.1. There exists a constant C > 0 such that every planar graph G satisfies tw(G) ≤
C

√|V (G)|.
Throughout the paper we will denote by�(k) (:= �(k, 1)) the k×k grid. The next observation

appears as Exercise 16 in [6, Chapter 12].

Lemma 2.1. We have tw(�(k)) = k.

For one of our lower bounds on the treewidth, we will need the following lemma which links
the treewidth of a graph and the existence of a partition of its vertex set with special properties.
A vertex partition V = {A, S, B} is a balanced k-partition if |S| = k + 1, there are no edges
in G between a vertex in A and a vertex in B, and 1

3 (n − k − 1) ≤ |A|, |B| ≤ 2
3 (n − k − 1). In

this case, S is called a balanced separator. The following result connecting balanced partitions
and treewidth is due to Kloks [14], which provides a necessary condition for a graph to have a
treewidth of certain size.

Lemma 2.2. (See [14].) Let G be a graph and suppose that tw(G) ≤ k ≤ |V (G)|−1. Then G

has a balanced k-partition.

We say that A ⊆ {0, 1}n is an up-set if whenever we take a point of A and we change one
of its coordinates into a one, then the resulting point is still in A. We will use the following
lemma later on.

Lemma 2.3. (Harris’ lemma, [11].) Let A, B ⊆ {0, 1}n be up-sets and let X = (X1, . . . , Xn)

be a vector of independent Bernoulli random variables. Then P(X ∈ A ∩ B) ≥ P(X ∈
A)P(X ∈ B).

By a slight abuse of notation, throughout this paper we will denote the graph with vertex
set Z

2 and an edge vw ∈ E(Z2) if and only if ‖v − w‖ = 1 also by Z
2. Recall that bond

percolation on Z
2 refers to the random process where we keep each edge of Z

2 with probability p

and discard it with probability 1 − p, independently of all other edges. The edges that are kept
are referred to as open and the discarded edges as closed. If R := {a, . . . , b} × {c, . . . , d} is
an axis-parallel rectangle, then we say that R has a horizontal crossing if there is an open path
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52 A. LI AND T. MÜLLER

that stays inside R and connects the left side {a}× {c, . . . , d} to the right side {b}× {c, . . . , d}.
A vertical crossing is defined similarly. We denote by H(R) the event that there is a horizontal
crossing of R, and V (R) the event that there is a vertical crossing of R. In the sequel, we will
use the following well-known result on bond percolation on Z

2 with p > 1
2 . A proof can, for

instance, be found in [3, Lemma 8, p. 64].

Lemma 2.4. If p > 1
2 then limk→∞ P(H([3k] × [k])) = 1.

In words, when p > 1
2 then the probability of crossing a 3k×k rectangle in the long direction

can be made arbitrarily close to 1 by making k large.
Formally speaking, we can describe bond percolation on Z

2 as a random vector X taking
values in {0, 1}E(Z2). Here Xe = 1 if e is open, and Xe = 0 otherwise. In the standard setup,
the coordinates Xe are i.i.d. Bernoulli random variables. One can also consider more general
bond percolation models in which the coordinates are not independent. We say that such a
bond percolation model Y is 1-independent if, for every pair of sets S, T ⊆ E(Z2) with the
property that no edge in S shares an endpoint with any edge in T , the random vectors (Ye)e∈S

and (Ye)e∈T are independent. Recall that a coupling of two random objects X, Y is a joint
probability space on which both are defined (and have the correct marginal distributions). The
following result is a reformulation of a special case of a result by Liggett et al. [15].

Theorem 2.2. (See [15].) There exists a function π : [0, 1] → [0, 1] such that, limp↑1 π(p) =
1, and the following holds. Suppose that Y follows a 1-independent bond percolation model
on Z

2 and set p := infe∈E(Z2) P(Ye = 1). Then there exists a coupling of Y with standard
(i.e. independent) bond percolation X with P(Xe = 1) = π(p), such that, almost surely,
Xe ≤ Ye for all e ∈ E(Z2).

In words, this last theorem says that every 1-independent bond percolation model contains
the edges of an independent bond percolation model, and the edge probability π(p) of this
independent bond percolation approaches 1 as p := infe∈E(Z2) P(Ye = 1) approaches 1.

When working with random geometric graphs, it is often useful to consider a Poissonized
version of the random geometric graph. We define GPo(n, r) analogously to G(n, r) except
that now we take the points of a Poisson process of intensity 1 on [0,

√
n]2 and then build our

graph on that as before. Equivalently, we can say that we throw Nn
d= Po(n) i.i.d. uniform

points onto [0,
√

n]2 and then build the graph on those as before where, ‘
d=’ denotes equality

in distribution. Working with the Poissonized version is often useful in proofs because of the
convenient independence properties of the Poisson process. Recall that if Nn

d= Po(n) then
P(Nn > (1 + ε)n) = o(1), as can for instance be seen by Chebyschev’s inequality. Using a
straightforward coupling and rescaling, this gives the following observation.

Corollary 2.2. There is a coupling such that for every r = r(n), a.a.s., GPo((1−ε)n, r
√

1 − ε)

is a subgraph of G(n, r).

It, of course, also makes sense to simply consider the random geometric graph built on a
Poisson process P of intensity 1 on all of the plane R

2. This is the well-known continuum
percolation model defined originally by Gilbert [7]. We remark that Gilbert and several other
sources in the literature fix r = 1 and allow the intensity of the Poisson process to vary, but
it is easily seen that this is equivalent to the setting where we vary r and the intensity of
the Poisson process is fixed to be 1. Note that GPo(n, r) is just the restriction of continuum
percolation to the square [0,

√
n]2. We also remark that the critical rc for the ‘emergence of

a giant component’ in G(n, r) is the same as the critical value for the existence of an infinite
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component in continuum percolation (see [24, Chapters 9 and 10]). Similarly to the case of bond
percolation on Z

2, we can define crossing events for continuum percolation. Our definition
follows Meester and Roy [18]. For R = [a, b]× [c, d] ⊆ R

2 an axis-parallel rectangle, we say
that H(R) holds (i.e. there is a horizontal crossing of R) if it is possible to draw a continuous
curve between the right and left side that stays inside R and is completely covered by the balls
of radius r/2 centered on the points of P . Note that this in particular implies that there is a
path between a vertex that is within r/2 of the left side of R, and a vertex within r/2 of the
right side of R such that all other vertices of the path are either inside R or within distance r/2
of R. We have the following analogue of Lemma 2.4.

Lemma 2.5. (See [18, Corollary 4.1].) If r > rc then lima→∞ P(H([0, 3a] × [0, a])) = 1.

We say that an event A defined with respect to the Poisson process P is increasing if
whenever A holds for some set of points X = {x1, x2, . . . } ⊆ R

2 (i.e. some realization of P ),
then A also holds for any set X′ that contains X. We have the following analogue of Lemma 2.3
above.

Lemma 2.6. (See [18, Theorem 2.2].) If A, B are increasing events (with respect to P ) then
P(A ∩ B) ≥ P(A)P(B).

3. The treewidth of the percolated grid �(k, p)

3.1. When p is large

Instead of proving the p > 1
2 part of Theorem 1.2 directly, we first prove the following

weaker version.

Proposition 3.1. There exist constants c > 0 and p < 1 such that tw(�(k, p)) ≥ ck a.a.s.

If A ⊆ Z
2 is finite and connected (as a subgraph of Z

2) then there is a well defined
‘surrounding cycle’ surr(A) in the dual lattice (Z2)∗ = Z

2 + ( 1
2 , 1

2 ) (that separates A from ∞,
and every other cycle in (Z2)∗ that separates A from ∞ contains surr(A) in its interior). For
A ⊆ [k]2 connected, we define outer(A) to be the set of edges of �(k) that cross surr(A). (See
Figure 1 for a depiction.)

We will make use of the following straightforward observation. We include a proof for
completeness.

Lemma 3.1. Suppose that A ⊆ [k]2 is connected (as a subgraph of �(k)) and does not contain
a horizontal crossing of [k]2. Then |outer(A)| ≥ max(

√|A|, |surr(A)|/4).

Proof. First suppose thatA contains a vertical crossing. SinceAdoes not contain a horizontal
crossing, surr(A) must contain a (dual) path that separates the left edge of [k]2 from its right
edge. This implies that outer(A) contains at least k edges. Hence, outer(A) ≥ √|A|. Note
that, since A can intersect at most one of the vertical sides of [k]2, we have that the number of
edges of surr(A) that do not intersect edges of �(k) is at most |surr(A)| − |outer(A)| ≤ 3k.
This shows |outer(A)| ≥ |surr(A)|/4.

Let us then assume that A contains neither a horizontal nor a vertical crossing. Let a :=
|πx(A)|, b := |πy(A)|, where πx , respectively πy , denote the projection onto the x-axis,
respectively the y-axis. Clearly, we have |A| ≤ ab and |outer(A)| ≥ a + b. Thus,√|A| ≤ max(a, b) ≤ a + b ≤ |outer(A)|.
Also note that |surr(A)| − |outer(A)| ≤ a + b. So certainly |outer(A)| ≥ |surr(A)|/4. �
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54 A. LI AND T. MÜLLER

Figure 1: Depiction of surr(A) and outer(A) for a set A ⊆ [7]2.

We say a set A ⊆ [k]2 is dirty (with respect to �(k, p)) if

• A is connected (as a subgraph of �(k)),

• A intersects at most three sides of [k]2, and

• at most half of the edges of outer(A) are open in �(k, p).

We say that a vertex v ∈ [k]2 is dirty if it is contained in some dirty set.

Lemma 3.2. There exists a p0 < 1 such that whenever p ≥ p0 then, a.a.s., there are at most
k2/1010 dirty vertices.

Proof. Let Y denote the number of vertices contained in some dirty set A with |surr(A)| ≥
k0.01 and let Z denote the number of vertices contained in some dirty set A with |surr(A)| <

k0.01. It is easy to see that the number of cycles in (Z2)∗ that have length � and that surround a
given vertex v ∈ Z

2 is at most �4�. This allows us to bound the expectation of Y as

E(Y ) ≤ k2
∑

�≥k0.01

4�

(
�

�/8

)
(1 − p)�/8

≤ k2
∑

�≥k0.01

8�(1 − p)�/8

= k2(8(1 − p)1/8)k
0.01

1 − 8(1 − p)1/8

= o(1),

where we have used the fact that |outer(A)| ≥ |surr(A)|/8 in the first line, that
(

�
�/8

) ≤ 2� in the
second line, and where the last equality holds provided p0 was chosen sufficiently close to 1
(and p ≥ p0). In particular, for p0 sufficiently close to 1 and p > p0, we have Y = 0 a.a.s.
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Next, we consider Z. For v ∈ [k]2, we denote by Ev the event that v is contained in a dirty A

with |surr(A)| < k0.01. We have

P(Ev) ≤
∑

�≤k0.01

�4�

(
�

�/8

)
(1 − p)�/8

≤
∑

�≤k0.01

�(8(1 − p)1/8)�

≤ 8(1 − p)1/8

(1 − 8(1 − p)1/8)2

≤ 10−11,

where the last inequality holds provided p0 is chosen sufficiently close to 1 (and p ≥ p0).
On the other hand, we clearly have

P(Ev) ≥ (1 − p)4.

Hence, we have k2(1 − p)4 ≤ EZ = ∑
v P(Ev) ≤ k2/1011. In particular, EZ = �(k2).

Next we consider the second moment of Z. Observe that if |u − v|∞ ≥ 3k0.01, then Eu

and Ev are independent. (Here |(x, y)|∞ = max(|x|, |y|) denotes the familiar L∞-norm.) This
allows us to write

EZ2 =
∑
u,v

P(Eu ∩ Ev)

=
∑

v

P(Ev)
∑

|u−v|∞<3k0.01

P(Eu | Ev) +
∑

v

P(Ev)
∑

|u−v|∞≥3k0.01

P(Eu | Ev)

≤
∑

v

P(Ev)36k0.02 +
∑
u,v

P(Ev)P(Eu)

= E(Z) · o(k2) + (EZ)2

= (1 + o(1))(EZ)2.

This shows that var(Z) = o((EZ)2). An application of Chebyschev’s inequality shows that

P

(
Z >

k2

1010

)
≤ P

(
|Z − EZ| ≥ 9

10
EZ

)
≤

(
10

9

)2 var(Z)

(EZ)2 = o(1).

In conclusion, we have seen that, when p0 is sufficiently close to 1 and p0 < p ≤ 1, then
Y = 0 a.a.s. and Z ≤ k2/1010 a.a.s., which obviously implies the lemma. �

Proof of Proposition 3.1. Let us pick 1 > p > p0 with p0 as provided by Lemma 3.2. Then,
a.a.s.,�(k, p)has no more than k2/1010 dirty vertices. In the remainder of the proof we therefore
assume we are given a subgraph G ⊆ �(k) for which there are at most k2/1010 dirty vertices,
but which is otherwise arbitrary. We will show that any such G satisfies tw(G) ≥ k/1000.

Aiming for a contradiction, we assume that there exists some balanced partition {A, S, B}
of V (G) = [k]2 with |S| < k/1000.

We first observe that we can assume, without loss of generality, that A does not contain a
horizontal crossing. For, if it does then B cannot contain a vertical crossing (otherwise A, B
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would not be disjoint). Hence, by applying symmetry (switching the roles of A, B and rotating
by 90 degrees) we can indeed assume A does not contain a horizontal crossing. Observe that

|A| ≥ k2 − |B| − |S| ≥ k2 − 2
3k2 − 1

1000k ≥ 1
10k2.

Let A1, . . . , Am denote the connected components of A (connected when considered as sub-
graphs of G). We set

� := {i : Ai is not dirty}, A′ :=
⋃
i∈�

Ai.

Since the total number of dirty vertices is less that k2/1010, we have

|A′| ≥ |A| − k2

1010 ≥ k2

100
.

Note that every edge (in G) between a vertex of A′ and a vertex of [k2] \A′ must in fact connect
a vertex of A′ to a vertex of S. Hence, it follows that

4|S| ≥ 1
2

∑
i∈�

|outer(Ai)| ≥ 1
2

∑
i∈�

√|Ai | ≥ 1
2

√|A′| ≥ 1
20k.

(Here we have used Lemma 3.1 for the third expression and the concavity of the square root
function for the fourth expression.) So it follows that k/1000 ≥ |S| ≥ k/80, a contradiction.

This shows that there is no balanced partition with |S| < k/1000, which implies that tw(G) ≥
k/1000 by Kloks’ lemma (Lemma 2.2). �
3.2. When p > 1

2

We are now ready to prove the first part of Theorem 1.2 with the help of Proposition 3.1.

Proof of Theorem 1.2. (The p > 1
2 case.) Our proof is an application of a standard technique

for comparing supercritical percolation to percolation with p close to 1, by means of Lemma 2.4
and Theorem 2.2. See, for instance, [3, pp. 74–75].

Let p0 be as provided by Proposition 3.1, and let π be as provided by Theorem 2.2. We now
pick p1 such that π(p1) > p0. By Lemma 2.4, we can find an a ∈ N such that P(H([3a] ×
[a])) > 3

√
p1.

For R a 3a × a rectangle, we define the event E(R) := H(R) ∩ V (RL) ∩ V (RR), where
RL denotes the leftmost a × a subrectangle, and RR denotes the rightmost a × a rectangle
(see Figure 13 of [3, p. 74] for a depiction). If R is a a × 3a rectangle then we define
E(R) := V (R) ∩ H(RB) ∩ H(RT) with RB, respectively RT, the bottom, respectively top,
a × a subrectangle of A. Note that, by choice of a and Harris’ lemma, we have P(E(R)) > p1
for every 3a × a or a × 3a rectangle R.

We now define a (dependent) bond percolation model Y on Z
2 as follows. We declare

the horizontal edge between (i, j) and (i + 1, j) open in Y if E({2ai + 1, . . . , 2ai + 3a} ×
{2aj + 1, . . . , 2aj + a}) holds; similarly, the edge between (i, j) and (i, j + 1) is open in Y if
E({2ai + 1, . . . , 2ai + a}× {2aj + 1, . . . , 2aj + 3a}) holds. To clarify the construction, let us
mention that one could think of the square {2ai + 1, . . . , 2ai + a} × {2aj + 1, . . . , 2aj + a}
as representing the point (i, j) and in the 3a × a rectangle R that represents the edge between
(i, j) and (i + 1, j), we have that RL represents (i, j) and RR represents (i + 1, j). It is not
difficult to see that Y is in fact 1-independent. Hence, by Theorem 2.2, Y ≥ X, where X is
standard (independent) percolation on Z

2 with edge-probability > p0.
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We can view �(k, p) as the restriction of the (independent, edge-probability p) percolation
process to the k × k grid [k]2. We let �X, respectively �Y , denote the subgraph that X,
respectively Y , defines on [�]2, where � := �k/2a� − 1. As the reader can easily check, we
have chosen � so that each of the rectangles corresponding to the edges of �Y is contained
in [k]2. Observe that by construction (and Proposition 3.1) we have a.a.s.,

tw(�Y ) ≥ tw(�X) = �(�) = �(k).

Next, we remark that �Y is in fact a minor of �(k, p) (under the natural coupling associated with
the construction of Y ). To see this, we can proceed as follows. If E(R) holds with R a 3a × a

rectangle that corresponds to some edge of �Y , then we perform a sequence of contractions that
will identify all vertices of RL that participate in (horizontal or vertical) crossings of RL into a
single vertex x, we produce a vertex y via contractions in RR similarly, and then we contract the
remaining edges of a long, horizontal crossing of R into a single edge that connects x and y. If
we carry this out for each rectangle corresponding to an edge of �Y and discard any unneeded
vertices (making sure to keep exactly one vertex in each a × a square that corresponds to a
vertex (i, j) ∈ [�]2 that was not incident to any edge of Y ), then we obtain a graph isomorphic
to �Y .

Since �Y is a minor of �(k, p), we have tw(�(k, p)) ≥ tw(�Y ) = �(k), a.a.s., as required,
completing the proof. �
3.3. When p < 1

2

In this section we prove the upper and lower bound of the treewidth �(k, p) for p < 1
2 . We

need the following result from percolation theory, that is originally due to Kesten [12], [13].

Theorem 3.1. (See [12], [13].) Consider bond percolation on Z
2 and let C0 denote the number

of vertices in the cluster (component) of the origin. For each p < 1
2 there exists λ(p) > 0 such

that
P(|C0| ≥ n) ≤ e−nλ(p) for all n ≥ 0.

This has the following easy consequence.

Corollary 3.1. If 0 < p < 1
2 then, a.a.s., all components of �(k, p) have O(log k) vertices.

Proof. Let us fix 0 < p < 1
2 and let λ(p) be as provided by Theorem 3.1. Let K :=

100/λ(p). Observe that, for every v ∈ [k]2 and � ∈ N, the probability that it is in a component
of order ≥ � in �(k, p) is no more than the probability that |C0| exceeds �. Thus, we can
conclude that

P(�(k, p) has a component of size ≥ K log k) ≤ k2 exp[−100 log k]
= exp[−98 log k]
= o(1). �

Since the treewidth of a graph is equal to the maximum of the treewidth of its components,
and all components of �(k, p) are planar, the required upper bound for tw(�(k, p)) in the case
when p < 1

2 follows immediately using Corollary 2.1.

Corollary 3.2. If 0 < p < 1
2 then, a.a.s., tw(�(k, p)) = O(

√
log k).

The following lemma now completes the proof of Theorem 1.2.

Lemma 3.3. Fix 0 < p < 1
2 then, a.a.s., tw(�(k, p)) = �(

√
log k).

https://doi.org/10.1017/apr.2016.78 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2016.78


58 A. LI AND T. MÜLLER

Proof. We fix a ε = ε(p) (small, to be determined later), and we set � := �√ε log k�.
We now fix N := �k/(� + 1)�2 = �(k2/log k) (vertex-)disjoint � × �-subgrids G1, . . . , GN

in [k]2. We will say that the subgrid Gi is intact if all of its edges are present in �(k, p).
By independence of the events that the Gi-s are intact, we have

P(at least one Gi is intact) = 1 − (1 − p2�(�−1))N

≥ 1 − exp[−Np2�(�−1)]
≥ 1 − exp[−Np�2 ]
≥ 1 − exp[−Npε log k].

Next, note that

Npε log k = �

(
k2

log k
exp[ε log p log k]

)
= �(exp[2 log k − log log k + ε log p log k]).

Hence, provided we choose ε < −2/ log p, we have Npε log k → ∞ and, hence, also

P(at least one Gi is intact) = 1 − o(1).

Hence, by Lemma 2.1, and since tw(H) ≤ tw(G) if H ⊆ G, it follows that tw(�(k, p)) ≥ � =
�(

√
log k) a.a.s. �

Corollary 3.2 and Lemma 3.3 together give the p < 1
2 part of Theorem 1.2.

4. Proof of Theorem 1.1

Since Mitsche and Perarnau [19] have already shown the result holds when r = r(n) is
larger than some fixed constant C, we only need to consider the case when rc < lim inf r ≤
lim sup r ≤ C. Note that in this case �(r

√
n) simplifies to �(

√
n). Moreover, by monotonicity,

we see that for any such sequence r , a.a.s., tw(G(n, r)) ≤ tw(G(n, C)) = O(
√

n) by Mitsche
and Perarnau’s result. Hence, we only need to prove an a.a.s. lower bound for the treewidth of
order �(

√
n). Using Corollary 2.2 and monotonicity, Theorem 1.1 follows if we can establish

the following lemma.

Lemma 4.1. For every fixed r > rc, we have tw(GPo(n, r)) = �(
√

n) a.a.s.

Proof. The proof is almost exactly the same as the proof of the p > 1
2 case of Theorem 1.2

above. Again, we let p0 be as provided by Proposition 3.1, we let π be as provided by
Theorem 2.2, and we pick p1 such that π(p1) > p0. Using Lemma 2.5, we find an a such
that P(H([0, 3a] × [0, a])) > 3

√
p1. For R a 3a × a or a × 3a rectangle we define E(R) as in

the proof of the p > 1
2 case of Theorem 1.2 above. By choice of a and Lemma 2.6 we have

P(E(R)) > p1 for any such rectangle.
We again define a 1-independent bond percolation model Y on Z

2, by declaring the horizontal
edge between (i, j) and (i + 1, j) open in Y if E([2ai, 2ai + 3a] × [2aj, 2aj + a]) holds;
and the edge between (i, j) and (i, j + 1) is open in Y if E([2ai, 2ai + a] × [2aj, 2aj + 3a])
holds. (Note that 1-independence holds provided we chose a sufficiently large.) Again from
Theorem 2.2 it follows that Y ≥ X, where X is standard (independent) percolation on Z

2 with
edge probability > p0.

We set k := �√n/2a� − 1, and we let �X, respectively �Y , be the restriction of X,
respectively Y , to [k]2. Arguing analogously to the way we did in the proof of the p > 1

2
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case of Theorem 1.2, we see that �Y is in fact a minor of GPo(n, r) (under the natural coupling
we get from the construction of Y ). Hence, using Proposition 3.1, we have, a.a.s.,

tw(GPo(n, r)) ≥ tw(�Y ) ≥ tw(�X) = �(k).

Since k = �(
√

n), this concludes the proof. �

5. Discussion and further work

Together with the work of Mitsche and Perarnau [19], our Theorem 1.1 provides an almost
complete picture of the behavior of the treewidth of random geometric graphs, up to the order
of the leading constants.

Corollary 5.1. Asymptotically almost surely,

tw(G(n, r)) =

⎧⎪⎨
⎪⎩

�

(
log n

log log n

)
if 0 < lim inf r ≤ lim sup r < rc,

�
(
r
√

n
)

if lim inf r > rc.

Interestingly, by a result of McDiarmid [16], the clique number of random geometric graphs
is a.a.s. equal to (1 + o(1)) log n/log log n when r is constant. This gives rise to the following
natural questions.

Question 5.1. Suppose that 0 < lim inf r ≤ lim sup r < rc.

• Is tw(G(n, r)) = (1 + o(1)) log n/log log n a.a.s.?

• Is tw(G(n, r)) = ω(G(n, r)) a.a.s.?

Of course we would also be very interested to learn the precise leading constants for the
supercritical case. With our methods and those of Mitsche and Perarnau [19], the following
natural conjecture still seems out of reach.

Conjecture 5.1. Suppose that r > rc is fixed. Then there exists a c = c(r) such that
tw(G(n, r)) = (c + o(1))

√
n a.a.s.

Another tantalizing question is what happens precisely at the critical point. Based on
widely believed conjectures on the ‘critical exponents’ for two-dimensional percolation (see [9,
Chapters 9 and 10]), we offer the following conjectures.

Conjecture 5.2. Asymptotically almost surely, tw(G(n, rc)) = n91/192+o(1).

Conjecture 5.3. Asymptotically almost surely, tw(�(k, 1
2 )) = k91/96+o(1).

We have made two separate conjectures and added some slack in the exponent so that there
is a bit more hope that at least one of the conjectures will be solved.
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