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We study to what extent the known results concerning the behaviour of Hopf vector
fields, with respect to volume, energy and generalized energy functionals, on the
round sphere are still valid for the metrics obtained by performing the canonical
variation of the Hopf fibration.

1. Introduction

Let V : M — TM be a smooth vector field on a manifold. For a given Riemannian
metric g on M, the tangent manifold can be endowed with a natural metric g%
known as the Sasaki metric. The volume of V' is the volume of V(M) considered as
a submanifold of (T'M, ¢°). Analogously, we can define the energy of V as the energy
of themap V : (M, g) — (T M, g°) and, more generally, if § is another metric on M,
we can define the generalized energy of V as the energy of V : (M, §) — (T M, g%).
On each manifold, these functionals have a lower bound and then a natural problem
arises, namely that of determining the infimum of their values when acting on vector
fields such that g(V,V) = 1 and finding the minimizers, or at least a minimizing
sequence. It is easy to see that if M admits unit parallel vector fields, these should
be exactly the minimizers, and so volume and energy can be seen as a measure of
how much the vector field deviates from being parallel. The geometrically simplest
manifolds admitting unit vector fields but not parallel ones are odd-dimensional
round spheres, and Hopf vector fields on them are very special unit vector fields.
They are tangent to the fibres of the Hopf fibration 7 : $2™+! — CP™. When
both manifolds are endowed with their usual metrics, this map is a Riemannian
submersion with totally geodesic fibres whose tangent space is generated by the
unit vector field V' = JN, where N is the unit normal to the sphere and J is
the usual complex structure of R?™*2, It is also usual to call a Hopf vector field
any vector field obtained as the image of N by any complex structure; they can
be characterized as the unit Killing vector fields of the sphere. In [9], Gluck and
Ziller showed that Hopf vector fields on the three-dimensional round sphere are
the absolute minimizers of the volume and the analogous result for the energy was
shown by Brito [3]. For spheres of higher dimension, they are unstable critical points
of the energy (see [7,13,14]) and critical points of the volume, which is equivalent

(© 2005 The Royal Society of Edinburgh
789

https://doi.org/10.1017/50308210505000405 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210505000405

790 0. Gil-Medrano and A. Hurtado

to defining a minimal immersion in the unit tangent bundle, as has been shown
in [8].

The results quoted above are independent of the radius of the sphere. Neverthe-
less, concerning the stability of Hopf vector fields as critical points of the volume it
has been shown [1,7] that for m > 1 they are unstable if and only if the curvature
is lower than 2m — 3. The infimum of the volume of unit vector fields (as well as the
regularity and properties of minimizers) appears to be a very sensitive geometrical
invariant that enables us to detect a variation of the metric by homotheties.

In order to better understand these phenomena, we study the behaviour of the
Hopf vector field with respect to the volume and the energy when we consider
another variation of the standard metric on the sphere (which is a little more com-
plicated but also very natural): the canonical variation of the Riemannian submer-
sion given by the Hopf fibration. The metrics so constructed are known as Berger
metrics; they consist in a one-parameter variation g, for u > 0. In the last section,
we will also consider the Lorentzian Berger metrics, i.e. when p < 0. This paper
is organized as follows. In §2 we recall the definitions and state the results we will
need in the remainder of the paper, and show that, for all u # 0, the unit Hopf
vector field V# defines a harmonic map V# : (§2™+1 gy) — (T1S?™+1, %) for all
A # 0 and that consequently it is a critical point for the generalized energy E,, .
Moreover, V# defines a minimal immersion.

In §3, we study the special case of the three-dimensional sphere and show that
the unit Hopf vector field on (S®,g,,) is the only absolute minimizer of the energy,
and of the volume, if and only if p < 1. For u > 1, we show that it is not even a
local minimum, since it is unstable.

So, the minimizing properties of Hopf vector fields on the round S2 can be
extended to Berger 3-spheres if 4 < 1, but not otherwise. It is worthwhile to recall
here that with these metrics the sphere can be isometrically immersed as a geodesic
sphere in the complex projective space and that, in contrast, for g > 1 it can be
identified with a geodesic sphere of the complex hyperbolic space.

For higher-dimensional spheres, we have determined the values of u for which the
Hopf vector field is stable as a critical point of the energy and as a critical point
of the volume. More precisely the Hopf vector field on (5™, g,), with m > 1, is
energy stable if and only if (2m — 2)u? < 1 and it is volume stable if and only if
(2m — 2)pu® — p < 1. This is done in §5, by using the methods developed in [1,7]
for the round sphere and the various expressions of the Hessians computed in § 4.

We have used the same ideas to study the subset £ of RT x RT of pairs (u, \)
such that V# is stable as a critical point of the generalized energy E,,. Although
a complete description of £ is still unavailable, we can show, for example, that if
(2m —1)p < 2, then (u, ) € &, for all A > 0, and that if (2m —1)p > 2 and p < 2,
then (u, \) € & if and only if ((2m — 1) — 2)A < (u— 1)2. As a consequence, Hopf
vector fields of the round sphere S?™*1, with m > 1, are unstable as critical points
of the generalized energy F,, for all A > 0.

Section 6 is devoted to the study of the behaviour of Hopf vector fields on
Lorentzian Berger spheres with respect to energy and volume functionals. Obtaining
the corresponding expressions for the Hessians is straightforward: one should only
pay attention to the timelike character of the Hopf vector field in these metrics. We
have shown that on (S?™ %1, g,,), with u < 0, if (2m—2)u? < 1, the unit Hopf vector
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field is an unstable critical point of the energy and if (2—2m)u3+(4m—4)u?+u < 1,
it is an unstable critical point of the volume. In contrast, neither the stability results
nor the minimizing properties for the three-dimensional case have Lorentzian ana-
logues; in fact we have shown that on (S3,g,), for all p < 0, the unit Hopf vector
field is unstable. These kind of difficulties which we met when trying to determine
the stability are not exclusive to Berger spheres and, moreover, since on Lorentzian
manifolds the energy of unit timelike vector fields is not bounded below, it is not
natural to talk about absolute minimizers. These facts led us to define in [6] a new
functional on the space of unit timelike vector fields of a Lorentz manifold, which
we called spacelike energy and which is given by the integral of the square norm
of the projection of the covariant derivative of the vector field onto its orthogonal
complement. In [6] we have shown that Hopf vector fields are stable critical points of
the spacelike energy. We finish this paper by showing that on any Lorentzian Berger
3-sphere, the Hopf vector field is, up to sign, the only minimizer of the spacelike
energy.

2. Definitions and first results

2.1. Energy and volume of vector fields
Given a Riemannian manifold (M, g), the Sasaki metric g% on the tangent bundle
T M is defined, using g and its Levi-Civita connection V, as follows:

3(C1,G2) = g(me 0 C1, T 0 Go) + g(k 0 Gy, 0 Ca),

where m : TM — M is the projection and & is the connection map of V. We also
consider its restriction to the tangent sphere bundle, obtaining the Riemannian
manifold (T M, ¢%).

As in [5], for each metric § on M we can define the generalized energy of the
vector field V, denoted E;(V), as the energy of the map V : (M,g) — (T M, ¢°)
that is given by

1
Eg(V) = 5/ tI‘L(§7\/) dl)g,
M
where L vy is the endomorphism determined by VS (X,Y) = (LG vy(X),Y).

This energy can also be written as

1 -
E;(V) = 5 /M Vdet Py tr(P; Yo Ly)dv,, (2.1)
where P; and Ly are defined by
§XY) = g(P4(X).Y) and V'3 (X,Y) = g(Ly(X),Y),

respectively. By the definition of the Sasaki metric, Ly = Id+(VV)ToVV. In
particular, for g = g,
E, (V)= 1/ tr Ly dvg = tnvol(M, g) + 1/ |VV|? dv,. (2.2)
2 ) 2Jm

This functional is known as the energy and will be represented by E. Its relevant
part, B(V) = % [}, [VV||?> dvg, is known as the total bending of V and its restriction
to unit vector fields has been thoroughly studied by Wiegmink in [13] (see also [14]).
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On the other hand, the volume of a vector field V is defined as the volume of the
submanifold V(M) of (T M, ¢%). Tt is given by

F(V) = /M Vdet Ly du,. (2.3)

Since for § = V*¢% we have P; = Ly, (2.1) and (2.3) give

FV)= %Ev*gs(‘/).

The first variation of the generalized energy was computed in [5]. It has also been
shown there that V is a critical point of F' if and only if V is a critical point of
Ey.gs and that, on a compact M, a critical vector field of any of these generalized
energies should be parallel. This is one of the reasons why it is usual to restrict the
functionals to the submanifold of unit vector fields, and so critical points are those
V' which are stationary for variations consisting of unit vector fields, or equivalently
with variational field orthogonal to V.. From now on, we consider the restriction of
these functionals to the submanifold of unit vector fields. The following proposition,
shown in [5], generalizes the characterization of critical points of the total bending
in [13] and of the volume in [8].

PROPOSITION 2.1 (Gil-Medrano [5]). Let (M, g) be a Riemannian manifold. A unit
vector field V is a critical point of Eg if and only if

w(v,g)(Vl) = {0},
with w(v.g) = C1VK (g and Kz = \/det B;P; ' o(VV)T.

REMARK 2.2. For a (1,1)-tensor field K, if {E;} is a g-orthonormal local frame,
we have

As a particular case of proposition 2.1, for § = g, a unit vector field V' is a critical
point of the energy (or of the total bending) if and only if

W, (V) = {0}, with wy,g) = CIV(VV)T.

Furthermore, if we put § = V*¢°, we find that critical points of the volume are
characterized by the condition

wy(VH) ={0}, where wy = C]VKy and Ky =+/det Ly L' o(VV)T.

In [8] it was proved that a unit vector field is a critical point of F' if and only if
it defines a minimal immersion in (T M, ¢%). Nevertheless, as shown in [5], for a
critical point V of Ej to determine a harmonic map of (M, §) in (I M, %), V has
to satisfy the condition

S R(VV)ELV,E)+ > (Vg Ei— Vg E;) =0, (2.4)
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where {E~‘Z} is a g-orthonormal frame and R represents the curvature operator of
the metric g, that is

R(X,)Y,Z) = -VxVyZ +VyVxZ+Vixy1Z

THEOREM 2.3 (Gil-Medrano and Llinares-Fuster [7]). Let V' be a unit vector field
on the Riemannian manifold (M, g).

(a) If V is a critical point of Eg, the Hessian of E; at V acting on A € V* is
given by

(Hess Ey)y / 1A 2wg) (V) du,

+/ V/det Py tr(Pg_ o(VA)T o VA) du,.
M

(b) IfV is a critical point of the energy, the Hessian of E at V acting on A € V*
s given by

(Hess E)v /||AH wev,g) (V) dvg + /||VAH duy.

(¢) For a unit vector field V defining a minimal immersion, the Hessian of F at
V acting on A € V* is given by

(Hess F)y /||A||2wv ) dvg + /m 2(Ky o VA) dy,
—/ tr(Ly' o(VA)T o VV o Ky 0 VA) do,

/ det Ly tr(Ly' o(VA)T 0 VA) duy,

where oo is the second elementary symmetric polynomial function. In partic-

ular, o3(Ky 0o VA) = 1(tr(Ky o VA))? — tr(Ky o VA)%

REMARK 2.4. The Hessian of the volume at a vector field V' defining a minimal
immersion can be simplified if V' is assumed to be a Killing vector field. Using [7,
lemma 9], we obtain

(Hess F)y / Al 2wy (V) dv, + / \/m o2(Ky o VA) du,
+ / Vdet Ly tr(Ly' o(VA)T o Ly 0o VA) dvy.  (2.5)
M

2.2. Berger spheres

Hopf vector fields on odd-dimensional spheres are tangent to the fibres of the
Hopf fibration 7 : (S?>™*1, g) — (CP™,g), where g is the usual metric of curvature
1 and g is the Fubini-Study metric with sectional curvatures between 1 and 4.
This map is a Riemannian submersion with totally geodesic fibres whose tangent
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space is generated by the unit vector field V' = JN, where N is the unit outward
normal to the sphere and J is the usual complex structure of R?*2; in other words,
V(p) = ip.

The canonical variation of the submersion is the one-parameter family of metrics
(S?m*1 g,), p# 0, defined by

Gulve = glve, gu(V,V) = ug(V, V), g.(V,VH) =0, (2.6)

where V+ denotes the orthogonal with respect to metric g of the one-dimensional
distribution generated by V. When p > 0, the new metric is Riemannian and if
i < 0, the metric is Lorentzian and V is timelike.

For all y1 # 0, the map 7 : (S?™*1 g,) — (CP™, §) is a semi-Riemannian submer-
sion with totally geodesic fibres. (5%, g,,), with x> 0, is known as a Berger sphere.
We will use the same name for all dimensions and we will call V* = (1//]u|)V the
Hopf vector field. It is a unit Killing vector field with geodesic flow.

We denote by V the Levi-Civita connection on R?”*2. The Levi-Civita connec-
tion V on (S?™+1 g)is VxY = VxY — (VxY,N)N and VxV = JVxN = JX.
Therefore, ViV =0 and if (X, V) =0, then VxV = JX.

Using the Koszul formula, one obtains the relation of V#, the Levi-Civita con-
nection of the metric g,, with V,

VEX =VyX +(u—1)VxV, VAV =uVxV, VAY =VxY, (27)

for all X, Y € V1.
By straightforward computations it can be seen that the sectional curvature K,
of (§?m*1 g,) takes the value

Ku(o) =1+ (1—p)g(X,JY)?,

if o C V+ and {X,Y} is an orthonormal basis, and it takes the value K, (o) = p if
the plane ¢ contains the vector V*. Consequently, the Ricci tensor has the form

Ric, (V#,V#) = 2m|u|,
Ric, (X, VH*) =0, (2.8)
Ric, (X, Y) =2(1— p+m)g(X,Y),

for all X, Y € V1, and the scalar curvature is given by
S, =2m(242m — p).
It has been shown in [5] that, for all A > 0, the map
Vo (S2MHL gy) s (TH(S2m 1), ¢5)
is harmonic. More generally we have the following.

PROPOSITION 2.5. For all pi, A # 0, the map V¥ : (521 gy) — (T'(S*™ 1), g5)
s harmonic.

Proof. According to proposition 2.1 and condition (2.4), we need to show that
Wiy (X) =0 forall X e V* (2.9)
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and
> R,(VMVME;, VF, E) + Y (V4 E; -V} E;) =0, (2.10)

E;

where {EZ} is a gy-orthonormal frame with E~'2m+1 =V
Using (2.7), for i = 1,...,2m, we have

Vi Ei=V3 Ei=0
and it is easy to see that R, (X, V*Y) = pug(X,Y)VH, for all X,Y € V+, and then
R, (VFVME;, VF E;) = ug((VFVH)E;, E;)VF = 0.
For the last equality we use the fact that V* is a Killing vector field. Since it is also
geodesic, we get (2.10).

The endomorphism P,, relating the metrics g, and gy is the identity on V+ and
Py, (V)= (A/p)V. On the other hand, for X € V4,

(VAVH)(X) = —E—JX.

vard
Then Kyu g, (V#) =0 and
W
K (X) = =0/ ITX.

Therefore, when either Y € V- or Y =V,

I
(VY Kvug))X = Tl Ng(X,Y)V,
and then
gu((vﬁK(Vuygx))X, Y) =0,
from which we get (2.9). O

Since (V#)*gh = (14 |pul)gr, where A = /(1 + |u]), as a consequence of the
proposition above, we have the following result.

COROLLARY 2.6. For all p # 0, the Hopf vector field V* is a critical point of the
generalized energy Eqg, , for all A # 0, and it defines a minimal immersion.

REMARK 2.7. Although we have stated proposition 2.1 and condition (2.4) only
for Riemannian metrics, it is easy to see that for Lorentzian metrics the analogous
result also holds, up to the sign of the terms involving V*, which does not appear
in this case because V* is geodesic.

Let us end this section by describing the holomorphic and anti-holomorphic
derivatives. Since a vector field on S?™*! can be seen as a map on C™*!, apart
from the covariant derivatives V# we will use other differential operators that take
into account the complex structure. Although it turns out that these operators are
independent of p, and so the description is identical to the corresponding one in [1],
we find it convenient to reproduce it here.
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Let W : U C C™+L — C™*! be a vector field. We put DSW =V x W — JVx W
and D%W =V yxW 4+ JVxW. Recall that W is holomorphic (respectively anti-
holomorphic) if, for all X, DSW = 0 (respectively DSW = 0).

Let V- be the distribution span(z, Jz)* on C™*1\ {0} and 7 : T(C™*1\ {0}) —
V< be the natural projections {x} x C™*! — V.-, We denote by |70 DW ||y .
the norm of WODCW”/L :VE = V4L that is

2m
lmo DW= ) |lwo DE, W%,
i=1
where E1, ..., Ey,, is a local orthonormal frame of V. Similarly,
2m
|mo DEWIs = llwo DE, WP,
i=1
but in that case
1o D"Wyyr = DWWy : V5V
so that
lmo DEW T, = |D"W[5,...
We compute |70 DCA|%, and |[D®A||?, in terms of the matrix B of VA in a
local frame, i.e. B] = (Vp, A, E;), to obtain

m

slmoDEAl}. = ) (BL - B’ + (Bl + B]")?
i,5=1
2m m
=Y (B}’ +2) (BLB]"~BB]) (2.11)
i,j=1 i,7=1
and
SIDCAIG. =Y (B] + B)? + (B], - B]")?
i,j=1
2m m
=Y (B)))-2) (BLB]"~B['B]). (2.12)
1,7=1 7,7=1

In the remainder of the paper, if not otherwise stated, we will assume that the
parameters p and A are positive; the study of Lorentzian Berger metrics will be
performed in the final section.

3. The special case of §3

The aim of this section is to show that the unit Hopf vector field on (52, g,,) is the
only absolute minimizer of the energy, and of the volume, if and only if u < 1. For
u > 1, we will show that it is not even a local minimum.

Since S? C R* = H, we can define on S a global g-orthonormal frame {V =
JoN,Ey = J1N, Ey = JoN}, where {Jy, J1, J2} denote the three standard complex
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structures defining the quaternionic structure of R*. Then {V# Ej, E;} is a Ju-
orthonormal frame.

LEMMA 3.1. Let X be a unit vector field which is an element of the two-dimensional
space generated by {E1, E2} and let W be of the form W = cos(t)V* + sin(t) X .
Then

1—
VAW ]2 = 2 —|—4sin2(t)T'u.

In particular,

]__
VA X2 = 2u +4T“ and ||[V*VE|? = 2.

Moreover,

1—
det Ly = (1 + )% + 4sin(¢)(1 + M)T“.

In particular

1—
det Ly = (1+ p)? +4(1 +,u)7u and det Ly. = (1 + p)?.
W

Proof. Since

VvV =Vg B =Vg,Ey =0, Vg, B2 =~-Vg,E1 = -V,
VvEl :—VEIV:—E27 VEQV:—VvEQZ—El,

using (2.7), we then find
Vi Vi =Vl By =V Ey =0, Vi, B2 = =Vl By = —\/uV*,

—2
Vi, By = “WE% Vi VE = /B,

n—2
VF\;MEQ = —WEL V%2VM = —\/ﬁEl.

For a unit vector field X = a1E; + axEy with a; € C®(S53), if we take Y =
7(12E1 + alEg, then

V’;(X = X(al)El + X(GQ)EQ,
—9
VA X = Vi(a))Ey + VP(ag)Es + E—2, 31
v (a1)En (a2)Es N (3.1)
VEX =Y (a1)E1 + Y (a2) By + JaV".

If we assume that the functions a; and as are constant, then

—9
VAX =0, VI, X= MWY and VEX = JuVH.
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Therefore, if W = cos(t)V* + sin(t) X, since VAW = cos(t)V*VH 4+ sin(¢)VF X, it
is not difficult to see that

Lw(X) = (14 pcos?(t))X + (u — 2)sin(t) cos(t)VH,

_9)2
Ly (V*) = (u — 2)sin(t) cos(t) X + <1 + Sin2(t)(:uu2)> Ve,
Lw(Y)=(1+p)Y,

from whence

1—
tr Ly = 3+ | VAW = 3 + 2 + 4sin?(t) M“,

and
2 .2 L—p
det Lyy = (14 p)* + 4sin (t)(l—l—,u)T.

O

For p = 1, all the elements of the unit sphere of the three-dimensional vector
space generated by {V# Ej, Ex} are also called Hopf vector fields; they can be
characterized as the unit Killing vector fields. It is known [3,9] that Hopf vector
fields have all the same volume and the same energy and that they are the only
minimizers of both functionals. For u # 1, the situation is quite different, as shown
in the next result.

THEOREM 3.2. Let (S3,g,) be the three-dimensional Berger sphere.

(a) Ifp <1, VH is, up to sign, the only minimizer of the energy and of the volume
of unit vector fields; the minima of the functionals are

E(VH) = (% + ) vol(SS,gM) and F(VH)=(1+4+p) VO](SS,QH),
respectively.

(b) If p > 1, for all unit vector fields A in the two-dimensional space generated
by {E1, E2} we have

3

B = (54t 2( 10 ) vol(s?.g,) < B7)

and

a vol(S?, g,) < F(VH).

F(A) = \/(1 +u)?2+4(1+ p)
In fact V¥ is not even a local minimum. Moreover, for all unit vector fields X,

E(X) > (- p)vol(s%,g,) and F(X) > (3 - p)vol($%, g,).
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Proof. For any three-dimensional compact manifold, the energy and the volume of
unit vector fields are related with the integral of the Ricci tensor, as shown in [3].
In this particular case the inequalities are written as

E(X) > 2vol(5°,g,) + l/ Ric, (X, X) dv,,
2 Jgs
(3.2)
F(X) = vol(S®,g,) + %/ Ric, (X, X) dv,,.
SS

In both cases, the equality holds if and only if VX =0, hi1 = hgg and hip = —hoy,
where h;; = g,(V'; X, E;) and {X, Ey, Eb} is a g,-orthonormal frame.
Using (2.8), we find that if p < 1, then

Ric, (X, X) > Ric, (V#, V*) = 2u

for all unit X, with equality if and only if X = £V*# and therefore E(X) > E(V#)
and F(X) > F(V*#). The Hopf vector field is then, up to sign, the only minimizer
and we have shown (a).

The first sentence of (b) is a direct consequence of lemma 3.1. To see that, for
i > 1, the Hopf vector field is not a local minimum, we need only to consider the
curve of unit vector fields W (t) = cos(t)V* + sin(t)A, where A = a1 E; + azEs,
with a; € R, is a unit vector field. In lemma 3.1 we have computed the value of the
functions E(t) = E(W(t)) and F(t) = F(W(t)), from which we observe that for
t = 0 both functions reach their maximum.

Moreover, (2.8) gives us that if 4 > 1, then

Ric, (X, X) > Ricu (A, A) =2(2 — p),

for all unit X and all unit A € V1, with equality if and only if X € V+. Conse-
quently, if we use (3.2),

E(X)> (5 —p)vol(S%,g,) and F(X) > (3—p)vol(S% g,),  (3.3)

with equality if and only if X € VL, VILXX = O, h11 = hgg and h12 = 7h21.

Let us assume that a unit vector field X satisfies the four conditions above.
Firstly X = a1FE; + aaEo with a; € C*(S3) and if we take Y = —azE1 + a1 Es,
then, by (3.1), the other three conditions become

X(al) = X(ag) = 0, (34)
—a2Y(a1) + aY (az) =0, (3.5)
_ 2p—2
iy

If ay vanishes identically, then a; should be constant and (3.6) give us a contradic-
tion. So, the open set where as # 0 is not empty, and (3.4) and (3.5) then imply

that on this set we have
(2 ()
ag ag

aQV”(al) — alV“(ag) (36)
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But, by the above choice of X and Y, this is equivalent to

£ (2)-5(2) -
a2 a2

which, using the relation between V# and [Ej, Es|, implies V#(a1/a2) = 0, which
is again in contradiction to (3.6). Therefore, the lower bounds in (3.3) are never
reached. 0

REMARK 3.3. Since on any three-dimensional manifold the functional E (respec-
tively F') is bounded below by % times the volume (respectively by the volume) of
the manifold, the lower bounds appearing in the above theorem are relevant only
for p < 2.

Part (a) of the theorem is a particular case of a result of [10] concerning unit

Killing vector fields on a three-dimensional compact manifold.

A relation between the energy and the integral of the Ricci tensor similar to the
one quoted in (3.2) is valid for any compact manifold (see [3]) and then we have
the following result.

PROPOSITION 3.4. For all unit vector fields X on (S*™*1,g,),

1

2m+1 m .
> VOI(S2 +1,gu) + m L2m+1 RICM(X,X) d’U‘“

EX) > 3

with equality if and only if Vi X = 0, and the distribution X+ determines a folia-
tion with umbilical leaves.

Since Ric,, (V#*,V#*) = 2mpu and Ric, (A, A) = 2(1 — u+m)||A||? for all A € V1,
if p <1,
EX)>

2m +1 mp
2 2m —1

Moreover, if m # 1, equality never holds because this will imply that X = V* and

) vol(S2™* g,).

2 142
E(VH) = onl(ngJﬂg#).
If > 1, then
2m+1 1—-pu+m o1
E(X) > 1(S2m+ g,
(0> (255 S wels? )

with equality if and only if X € V1, VA X = 0, and the distribution X+ determines
a foliation with umbilical leaves. As for the three-dimensional sphere, this lower
bound is relevant for 1 < p < m + 1.

In the case of the round sphere, ;. = 1, the bound

2m+1+ m
2 2m —1

) vol(§2mt1h)

is the value of the energy of radial vector fields defined on the complement of two
antipodal points. Moreover, it has been shown in [2] that it is the infimum of the
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energy. In contrast with this situation, for 1 > 1 we do not know if any unit vector
field which has this energy exists, even if we allow singularities.

Concerning the volume, the difference between the case 4 = 1 and the general one
is greater. In fact, it is shown in [4] that for the round spheres the volume of radial
vector fields is also a lower bound of F', but the proof is based on an inequality
relating the volume of a unit vector field with the curvature of the manifold that is
only valid for constant curvature spaces.

4. Second variation of the generalized energy and of the volume at
Hopf vector fields

For fixed px # 0, V# is a critical point of E' and F' and is also a critical point of
E,,, for all A # 0. We can then compute the Hessians of these functionals at V*.
For simplicity we give the proof only for positive values of the parameter.

PROPOSITION 4.1. Let V* be the Hopf unit vector field on (S*™*1, g,). For each
vector field A orthogonal to V* we have

(Hoss By Jve(4) = [ (~2my/SalAJP + /A V* A

SZm
+(V/X = VNIV Al?) duy, w)

(Hess E)yo(A) = [ (2mullAJP + 97 AI) v (4.2)

SZ'NL+1
(Hess F)ys (A) = (14 )™ / (u(=2mps + 2(1 — )| A

527n+1
VA2 + |Vl A+ ETA?) d,.
(4.3)

Proof. We need only to compute the elements appearing in theorem 2.3 for this par-
ticular case. Since L4, = \/)\/,u(g;lg#) and VAV# = | /iJ, by direct computation

we obtain
w(w,gk)(V“) = —2m~/ i,

and

2m
tr(Lgy o(V*A)T o(V#4)) = VA1 S 9u(Vie, A, Vi A) + /A 1gu (V50 A, V2, A)
i=1

2m
= VA 9, (Vi AV A) + /A (Vi A VL A),
=1

from whence (4.1) and (4.2) hold.
Since V#V# = /i, on (V#)+ and V* is geodesic, and we find that Ly.(V#) =
V# and Lyw = (1 + p)Id on (V). Then,

fVH)y=14+up)™ and Kyu=-—(1+ M)m—lvuvﬂ.
By direct computation we obtain

wyn(V4) = —2mp(L 4+ )™,
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and
(K o VFA)(X) = — /i1 + 0™ (V5T A + g(X, A)V),
from whence
2
mﬂz(Kvu o VHA) = 2u(1 + p)" 2 (02(VHJA) — 1g(Vi. T A, A)).

Using the fact that, on any Riemannian manifold, 202(VX) and Ric(X, X) differ
in a divergence (see, for example, [12, p. 170]) and using the value of the Ricci
tensor of g, (2.8), we have

1
/Szm+1 WUQ (KyuoVid) dvy

—u 02 [ (e DA = V(T TA ) v

SZ'm+1
Finally,
tr(Lys o( VFA) T o Lk 0 VHA)
2m
=1+ 1) Y 9V A ED? + (1) (Wl JAI? + V5, A7)
i,5=1

= L+ ) 2(IVFAP + @2l TAI? + 1l V5L AlP).
For the last equality we have used the fact that

2m
IVHAIP = 9u(Vi, A E)? + pll JAI? + V5, AJl%.
i,j=1
Since V*# is a Killing vector field, we can use (2.5) to compute the Hessian and then
we get (4.3). O

In order to study the stability of the Hopf vector field it will be useful to find
new expressions of the Hessians. We will proceed following closely the arguments
used in [1], for the volume functional in the case of the round spheres. There, the
key was to relate the integral of ||V A||> with the integral of |7 o D A||%, and that
of ||DCA||%/L.

Firstly, since

> (BLBI" = Bl!B) = =Y 9u(Vjp A IV A),
i,j=1 i=1

equations (2.11) and (2.12) can be written as

IV*A|? = §llmo DCA|L L + VL AP + ullAl® +2)  gu(Vh g A, TV, A)
i=1
and

IV AP = SIDCAIG s + V5L AP+l AI? =2 9u(Vhp, A, TV A),
=1

respectively.
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The second step is the following lemma, the proof of which is very similar to the
corresponding one in [1] and will be omitted.

LEMMA 4.2. For all u # 0 we have
omA/ |V = = (B, JE]+ Y divi(JE)E; — Y div*(E;)JE;
i=1 i=1 i=1
and

avan 9 (Vi A, JA) dv,

SZrn+1
m
= (mp—m — 1)/ 1|2 dv,, + / > (Vi A, TV A) du,.
S?m+1 S27n+1 i—1

Now, as a consequence, we have the following lemma.

LEMMA 4.3. For all p > 0,

/ [V*A|? dv,
SZm+1
= [ Gllmo DOAR L + V5L AP + @+ o+ 2m(1 = ) A2

+2my/1g, (Vi A, JA)) duy,

/ IVHA|P do,
g2m+1
- /S DAL+ VAL + (s — 2+ 2m(a = D)AJ?
—2m/pg, (Vi A, JA)) do,,.

If we use these values on the corresponding expressions of proposition 4.1, we
obtain the following proposition.

PROPOSITION 4.4. Let V* be the Hopf unit vector field on (S*™*,g,). For each
vector field A orthogonal to V¥ we have

(Hess By, )y (4)
= /S+ ((N(l — 4m) + /M p(2m + 2 — xm?)) || A2

Am
#VIIAIVG A+ YLTAPR + b Nilo DAL ) du (44

(Hess Eg, )vn(A)

= / <<W — V/u(@m + 2+ dm®)) | A

IV, A—TJAH% ¢A/M|DCA||2VL)dvm (4.5)
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(Hess E)yu(A)
— [ (@2 (o am - )] AP
52m+1
IV A+ myRIAIR + Ymo DOAIR. ) duy  (46)
(Hess E)yu(A)
= [ (a2 = = ) AP
VA~ myEIAI + 31D IR, ) du, (47)
(Hess F)yu(A)
— g [ (Al @l vEa
+MJAH2+§||7TODCA||2W dv,, (4.8)
1+u
(Hess F)yu(A)

e [ (R plAPR + 00V
VA —m)

VLT A 4 J1DCAN ) du (49)

where
2
Jum, ) = (3 — o — 2m — 2mgs) + (2m + 2) — LB

1+ p
and

_ 2
fa(m, p) = p(3 — p+2m = 2mp) — (2m +2) — W

5. Stability of Hopf vector fields on S?™+! with m > 1

The instability results for the round spheres have been obtained by showing that the
Hessian is negative when it acts on the vector fields A, = a— (a, V)V — (a, N)N =
a— f.V — fuN for all a € R?™*+2 q # 0. A geometrical description of these vector
fields can be seen in [7], as well as the following lemma.

LEMMA 5.1.

) 2 |af? 2m+1
dv = dv = ——— vol(S .
/Szm+1 fa v /Szm+1 fa v 2m + 2 Vo ( )

If we use proposition 4.1 to compute the value of the Hessian acting on these
particular vector fields, we obtain the following lemma.
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LEMMA 5.2. Let V* be the Hopf unit vector field on (S*™*1 g,). For each a €
R2m+2 g #£ 0 we have

(Hess Eg, )vu(Aq) = n\l/in;|a|2 ((1 —2m)p+2+ (M)\l)2> vol(S?™+) (5.1)
(Hess E)yu (Aq) = %'“'2 ((1 —om)u+2 + ““ﬁ) Vol(Sm Y, (5.2)
(Hess F)yu(Ag) = (14 p)™ 2 Vi lal? f(m, p) vol(§%™+1), (5.3)

m+1
where f(m, p) = ((1—2m)p(l + p) +2mp+ 2+ (1 + p)(p — 1)* /).

Proof. We need to compute all the elements appearing in the formulae given in
proposition 4.1. Since A, is orthogonal to V' we have, as in the case p = 1 computed

in [7],

2m .
JAI? = la]> = f2 = 2 and > (B)? =2m(f2 + f2).

i,j=1

But now

PN~ 7 -
VA= —W ;(Ej(fa)Ej + Eju(fa)Ejx),
and then

IV, A2 = (“;” S (B ) + (Bpe(F)) = W(lalQ —Po),

Jj=1

-1
gW%ALﬁz%EﬂWfﬁfﬁ)

The integrands of the Hessians are obtained by straightforward computation and
then we use lemma 5.1 to conclude. O

It is an immediate consequence of (5.1) that, if m > 1, Hopf vector fields of
the round sphere are unstable when considered as critical points of all the energy
functionals Ey, , thus generalizing the corresponding result for the usual energy. But
lemma 5.2 gives us the instability of V# in many other cases, which we summarize
in the following proposition.

PROPOSITION 5.3. Let V# be the Hopf unit vector field on (S*™*1,g,) with m > 1.

(a) If (2m — D)p > 2, and ((2m — 1) — 2)A > (u — 1)2, then VH* is an unstable
critical point of the energy Ej, .

(b) If (2m — 2)u? > 1, then V* is energy unstable.
(¢) If (2m —2)u® — p > 1, then VH is volume unstable.

In all cases the index is at least 2m + 2.
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Proof. To show (b) and (c) we only need to use lemma 5.2 to write, respectively,
the conditions

(Hess E)yu(A,) <0 and (Hess F)yu(A,) < 0.
Analogously, from (5.1), we find that
(Hess By )vu(Aq) < 0

if (1—2m)p+2+ (p—1)2/\ < 0, which is equivalent to the condition stated
in (a). O

We will show that as concerns volume and energy the sufficient condition for
instability is also necessary. For the other functionals the situation is more compli-
cated and is still open for some values of (u, A).

In order to obtain the stability results, it is convenient to see a vector field A on
S§2m+1 " orthogonal to the Hopf vector field, as a map A : §?m+1 — VL c Cm+HL,
where V1 represents the distribution V;* = span{z, Jz}*. For such a map A, we

write
1

T o

27
Ai(p) / A(e’p)e 0 dg € V-
0

so that

Alp) =>_ Aulp)

ez
is the Fourier series of A. Since A;(e?p) = €' A;(p),
VvA=VyA=Y ild =Y 1JA
ez ez

and

1
[V Ar+ ad A||? = Pl + i+ o/ AP

If C(p) denotes the fibre of the Hopf fibration 7 : $?™+1 — CP™ passing through p

and, for [ # gq,
/ (A1, Ag) = 0.
C(p)

By the construction of the Berger metrics, this fact is independent of p and so the
essential following lemma, shown in [1] for the volume functional in the case p =1,
remains valid.

LEMMA 5.4.
(Hess By v (4) = S (Hess By, v (A), (5.4)
lez
(Hess E)yu(A) = Z(Hess E)vu(4y), (5.5)
ez
(Hess F)yu(A) = Z(Hess Fyvu(4)). (5.6)
lez
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We can now show the following theorem.

THEOREM 5.5. On (S*™*1,g,), with m > 1, the Hopf unit vector field V" is stable
as a critical point of the energy if and only if (2m — 2)u? < 1, and it is stable as a
critical point of the volume if and only if (2m — 2)u® — u < 1.

Proof. We need only to show that under the hypothesis on p, the corresponding
Hessians are non-negative, when acting on any vector field A orthogonal to V.
By (4.6),

(Hess E)yu(A;) = e1(m, 1) /S2er1 | Ar]? dw,.,
with
er(m, 1) = p(1 —m2—4m)—|—2m+2+i(l— 14+ p(m +1))?
=p2-2m)+2l(m+1)+ i(l —1)%

Therefore, if (2m —2)u? < 1,
er(m,p, 1) = 2l(m+ 1) +v2m —2((1 — 1)* - 1).

Consequently, (Hess E)yu(A;) > 0 for all [ > 0. If we use now (4.7),

(Hess E) . (A7) >eg(m,u,1)/ AP o,

S2m+1

with
calm. o) = p(1 = m) = 2m =2 (1= 1+ (1 = m)?
=u(2—2m) +2(1 —m) — 4+ 3(1— 1)2.
I

If we assume again (2m — 2)u? < 1, we obtain
ea(m, 1) = 20(1 —m) —4++v2m —2((1 —1)* - 1).

Since v/2m — 2((1 —1)?2 — 1) > 4, for all [ < 0, we have (Hess E)yu(4;) > 0.
Equation (5.5) gives us that V* is energy stable. The corresponding result for
the volume can be established in a similar way.
By (4.8),

(Hess F)va(A) > (14 0" 2 fimapd) [ AP o,

with

(1+p)

2
Pl = fam )+ B0 (1 gy O,

1+p
Developing the right-hand side, we have

fr(m, 1) = p?(2 — 2m) + pdl + 20(m + 1) + (1 — 1)* + %(l —1)2
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In particular, ufi(m, p, 0) = p3(2—2m)+pu+1, and the condition (2m—2)u®—p < 1
then implies that (Hess F)yu(Ap) = 0.

Let us point out that if p verifies the condition above, then it should also verify
p < 1, and then for I > 1 we have fi(m,u,l) > (2 —2m) + 2(m + 1) and then
(Hess F')yu(4;) > 0.

Let us use now (4.9):

(Hess )y (A1) > (14 )™ falm 1) [

S2m

AP v,

with
2
fQ(m,,uJ):f2(m7N)+(1:/L)<Z_1+M+W>'

Developing the right-hand side, we have
1
falm, i, 1) = p(2 — 2m) + pdl + 12 — 3 — 2ml + ;(l — 1)

So, under the hypothesis, fa(m, u,1) > —1+ pdl + 1% — 3 — 2ml + p~ (1> — 21) and,
since u < 1, for all I < 0 we have fo(m,u,l) = 20 + 21> —4 — 2ml > 0, and then
(Hess F)yu(A4;) > 0. O

For the generalized energy we can use the same arguments to obtain the stability
of Hopf vector fields under some conditions.

PROPOSITION 5.6. On (S?™*1 g,), with m > 1, the Hopf unit vector field V" is
stable as a critical point of the energy Eg4, in the following cases:

(a) if (2m — 1) < 2, for all X > 0;
(b) if2/(2m—1) < p < 3, for

(n—172
S @2m -1 -2’

(c) if = 2m+2, for
w—2m—2
2 bl

A<

m

(d) if m>2 and 3 < p, for X such that

_ _1)2
=3 o D7
2m —4 2m—1pu—2

Proof. Let us show that under the hypothesis the corresponding Hessian is non-
negative, when acting on any vector field A orthogonal to V#.

The fact that this is the case for (i, \) as in (c) is a direct consequence of (4.5).
If instead we use (4.4),

(Hess g, )y (A1) = ex(m, s A D)V A /S AR
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with

1
el(m,,uJ\,l):,u(l—4m)+2m+2—)\m2—|—X(Z—l—i—u—l—)\m)Q.

In particular, if we assume (a), (b) or (d),

(p—1)?

e1(m, p, A,0) = 3

+p(l—2m)+2>0.

Moreover,
1

A(ﬂ +20(—=1+ p+ Am)) >0,

el(m7 122 )‘7 l) = el(m7 My )\7 0) +

provided [ > 1orl=1and p > 1. But

2

er(m, A1) =5 p 24 2m(l—p) 2 0,

when p < 1. Consequently, (Hess Eg, )y (A4;) > 0 for all [ > 0. If we now use (4.5),

(Hess Eg, )vn(A;) > eg(m,u,)\,l)\/)\//dt/2 B 1A du,,
S m

with 1
ea(m, i, A1) = p— (2m 4+ 2 + Am?) + X(l_ 14+ p—m)2

Under (a), (b) or (d) of the hypothesis,
1
ea(m, u, A1) = —4 — 2lm + X(IQ — 20+ 2lp).

Therefore, if p < %, then eg(m, u, A, 1) = 0 for all I < 0.
We get the same result if we assume that m > 2 and

24 —3
Az o—,
2m —4
since
2u—3 —2lp — 1%+ 21
2m -4~  —2m—4
for all I < —1. Equation (5.4) gives us that V* is stable. O

The proposition above, together with proposition 5.3, solves completely the prob-
lem of the stability of Hopf vector fields as critical points of the generalized energy
for p < % For other values of p we have only a partial answer. It is also worthwhile
to point out that, depending on p, the set of values of A for which condition (d) is
fulfilled can be empty.

6. The Lorentzian case

In this section we will consider the sphere endowed with a Berger metric g, with
p < 0. Then ||[V#||2 = —1 and it is a critical point of the energy restricted to unit
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timelike vector fields. Using the definition of the Sasaki metric in terms of horizontal
and vertical lifts, it is easy to see that gﬁ is a metric of index 2. The restriction of it
to the bundle of vectors of square —1, T~152™m+1 has index 1. So (T_152m+17g§)
is a Lorentzian manifold. These facts are true for any Lorentz manifold (M, g).

In contrast with the energy, that is defined for all vector fields, the volume of
a unit timelike vector field V' will be defined only if V is an element of the open
subset consisting in the sections of 7~'M such that V*¢ is non-degenerate.

Now, since g% is Lorentzian, this subset has exactly two connected components
corresponding to unit timelike vector fields for which V*¢® is Riemannian and those
for which V*¢® is Lorentzian. Variational calculus has to be done separately in each
component.

In particular, Hopf vector fields on Berger Lorentzian spheres induce Lorentzian
metrics (V#)* ngL on the sphere and V* is critical for the volume restricted to the
open set of unit timelike vector fields having this property, which we will denote by
I (Tfls2m+1).

On a Lorentzian manifold, if V' is a unit timelike vector field and {V, E;}?™ is an
adapted orthonormal local frame, then the vector fields E; are spacelike for all 1 <
i < 2m and all vector fields X can be written as X = —g(X, V)V + 3", g(X, E;)E;.
Then we can state the following proposition.

PRrROPOSITION 6.1 (Hurtado [11]). Let V' be a unit timelike vector field on the com-
pact Lorentzian manifold (M, g).

(a) IfV is a critical point of the energy, the Hessian of E at V acting on A € V+
18 given by

(Hess By (A) = = [ Ay (V) do + [ V4] o,

(b) For a unit timelike vector field V. € I'" (T~ M) defining a minimal immer-
sion, the Hessian of F at V acting on A € V* is given by

2
(Hess F)y (A) = — /M | A||?wy (V) dv, + /M WUQ(KV o VA)dy,
7/ tr(Ly' o(VA)T o VV o Ky o VA)dy,
M

+ / Vdet Ly tr(Ly,' o(VA)T 0 VA) duy.
M
In a similar way to that described in proposition 4.1, we can show, by straight-

forward computation, the following proposition.

PROPOSITION 6.2. Let V* be the Hopf unit vector field on (S*™*1,g,,), where p <
0, for each vector field A orthogonal to V* we have

(Hess Eyu(d) = [ (-2mullAIP + |97 AJ) v (6.1)

S2m+1
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(Hoss F)yn(A) = (L= ™2 [ (u(2mp+ 20— dm = 2) |4 + |77 4]
S2m+l

+ [V A = V=T AIP) v (6.2)

Using these expressions to compute the Hessian in the direction of the vector
fields A,, as in lemma 5.2, we obtain the following lemma.

LEMMA 6.3. Let V* be the Hopf unit vector field on (S*™*1,g,), with p < 0. For
each a € R*™*2 q # 0 we have

(Hess )y (A,) = le |2<< 2m)u+2+(u;1)) vol(§7™+),

(Hess F)ya(4a) = (1= "> =2 af fom, ) vol (527

where )
_ 2 (n—1)
Flm.) = ((@m = D+ (1= dm)p 24 (1= ) =),
From here, an immediate consequence is the following proposition.

PROPOSITION 6.4. Let V# be the Hopf unit vector field on (S*™+1,g,), with p < 0.
If (2m—2)u? < 1, it is energy unstable, and if (2—2m)u3+(4m—4)p?+p < 1, then
it is volume unstable. In particular, on (S3,g,) the Hopf vector field is unstable,
for all p < 0.

The alternative expressions of the Hessian (see proposition 4.4), used to show sta-
bility results in the Riemannian case, can be extended without difficulty to include
negative values of .

PROPOSITION 6.5. Let V#* be the Hopf unit vector field on (S*™+1,g,), with p < 0.
For each vector field A orthogonal to V¥ we have

(Hess E)yu(A)
- /S2m+1 ((Qm +2 - N(mz +4m — 1))HA||2

= IV A = my=RTAP + 3o DOAL. ) du
(6.3)
(Hess E)yu(A)
= [ (e =2 = o )4
~IVh A+ iy TR + SIDCAR ) dn, (64)
(Hess F)yu(A)
— - [ (Al - - 194
- YR A 4 Yo DAL )
(6.5)
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(Hess F)yu(A)

— = [ (Al - - )14

+ iv_“w*’”)mﬁ i §|DCA||%,L) dv,, (6.6)

L—p
where
film,p) = p(=1+ p—6m+2mpu) + (2m +2) — ”(T_:)z
and
Falm, ) = p(1 + g+ 2mp) — (2m 4 2)(u+ 1) — W

Nevertheless, the arguments used in theorem 5.5 do not allow us to draw any
definitive conclusions and thus the stability question is open.

All these facts led us to consider in [6] a new functional B, better adapted to
the Lorentzian situation, which we called the spacelike energy. It is defined on the
manifold of unit timelike vector fields and it is related to the energy by

- 2 1
B0 =) - [ (2 v ) au,
S2m+1 2
Since the Hopf vector field is geodesic,
BV = E(V") — 3(2m + 1) vol(S*™ T, g,,) = B(V").

We have shown in [6] that it is also a critical point of the spacelike energy but,
in contrast to proposition 6.4, for any odd-dimensional sphere, endowed with a
Lorentzian Berger metric, the Hopf vector field is stable as a critical point of the
spacelike energy. The proof is obtained using (6.3) and the fact that

(Hess B)yu(A) = /52 . [VAVH + VL Al? dv,, + (Hess E)yu(A).
For the three-dimensional sphere we can do better because, although the inequal-
ity (3.2) fails on a Lorentzian manifold, we have shown in [6] that

B(X) > %/ Ric, (X, X) du,,
SS

for all timelike unit vector fields, with equality if and only if A1y = hos and hiy =
—ho1. The Ricci tensor verifies Ric, (X, X) > —2p = Ric,(V#,V#) for all unit
timelike vector fields X, with equality if and only if X = V*#. Therefore, we have
shown the following result.

PROPOSITION 6.6. On any Lorentzian Berger 3-sphere, the Hopf vector field is, up
to sign, the only minimizer of the spacelike energy.
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