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SUMMARY
This paper introduces a new RGBD-Simultaneous Localization And Mapping (RGBD-SLAM) based
on a revisited keyframe SLAM. This solution improves the localization by combining visual and
depth data in a local bundle adjustment. Then, it presents an extension of this RGBD-SLAM that
takes advantage of a partial knowledge of the scene. This solution allows using a prior knowledge
of the 3D model of the environment when this latter is available which drastically improves the
localization accuracy. The proposed solutions called RGBD-SLAM and Constrained RGBD-SLAM
are evaluated on several public benchmark datasets and on real scenes acquired by a Kinect sensor.
The system works in real time on a standard central processing units and it can be useful for certain
applications, such as localization of lightweight robots, UAVs, and VR helmet.

KEYWORDS: Simultaneous localization and mapping; RGBD sensor; Bundle adjustment; 3D
model; RGBD-SLAM.

1. Introduction
To safely navigate, especially in GPS-denied environments such as indoor environments, a robot
must have the ability to localize itself accurately using visual sensor. This problem is referred to as
Simultaneous Localization And Mapping (SLAM). Visual SLAM techniques reconstruct a sparse
map of an unknown environment and simultaneously localize the sensor in this map by tracking
salient image points across frames of video. Over the last few years, several works on real-time
sparse and dense SLAM have been published.1–5 Despite this, several challenges persist, such as
localization in challenging environments and the problem of drift over long trajectories.

Indeed, visual SLAM is an incremental process prone to small drifts which when integrated over
time, become increasingly significant over large distances. To correct the accumulated error, loop
closure can be performed but this solution requires that the sensor returns to a mapped area place in
order to relocalize the camera, which is not always possible.

With the emergence of RGBD sensors in particular the Microsoft Kinect, which provide pixel-
level depth (D) and visual (RGB) information, the use of the 3D data in SLAM algorithms becomes
increasingly widespread. Indeed, the use of depth data may solve the issues cited earlier and may
allow reliable SLAM solutions. Nonetheless, the problems of such sensors are their limited range
and noisy depth maps with missing data for reflective or highly absorptive surfaces.

To cope with these limitations, the proposed solution is focused on the integration of additional
information into an existing monocular visual SLAM system in order to constrain the camera local-
ization and the mapping points. This additional information is the depth provided by a 3D sensor
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(Microsoft Kinect) and geometric information about scene structure. This work has been conducted
with an objective to keep the high speed of the initial SLAM process but also with the goal to avoid
that the lack of these precited additional constraints should give rise to the failure of the process.
Therefore, the proposed solution can work just like a monocular SLAM when these constraints are
not available.

We propose a new RGBD-SLAM with the two following contributions. The primary contribution
consists in modifying a visual SLAM algorithm2 to take into account the depth measurement pro-
vided by a 3D sensor. It mainly consists in combining the depth and visual data in a local bundle
adjustment (BA) process. The second contribution is a solution that uses, in addition to the depth
and visual data, constraints lying on points which belong to the 3D model of the scene. We called
this solution as Constrained RGBD-SLAM. In contrast to the state-of-the-art RGBD approaches, the
proposed method operates in real time on central processing unit (CPU) and it is able to deal with
environments where the depth maps are very poor or unavailable using not only the depth informa-
tion but also the triangulation of visual features. In the same way, when 3D model is unavailable, the
system works like an RGBD-SLAM.

This paper brings together the work presented in two previous publications.6, 7 In this paper, we
provide a number of additions to that work including new experiments and comparison with the
state of the art. We discuss related work in Section 2, describe our RGBD-SLAM in Section 3, and
present the Constrained RGBD-SLAM that includes depth and geometric data in Section 4. Section 5
provides a quantitative evaluation using multiple benchmark datasets. Section 6 presents conclusions
on the work and future directions of our research.

2. Related Work
Several RGBD-SLAM approaches have been proposed in the state of the art.8–18 Newcombe et al.8

in the KinectFusion method proposed to incrementally build a dense model of the scene which is
refined by registering every new depth measurement to this model and used to estimate the camera
poses by ICP. This approach is limited to small scenes due to its volumetric representation. Whelan
et al.12 with their Kintinuous algorithm extended the KinectFusion algorithm to large scenes using a
rolling shutter cyclical buffer, with global optimization. Huang et al.11 proposed an RGBD-SLAM
based on FAST feature correspondences for visual odometry and sparse BA for global consistency.
Similarly, Endres et al.15 proposed a feature-based RGBD-SLAM, where the front-end computes
frame-to-frame motion by feature matching and ICP and the back-end performs pose-graph optimiza-
tion with loop closure. In a similar way, Belter et al.19 proposes also a feature-based RGBD-SLAM
system with a factor graph optimization including 3D features optimization. Kerl et al. proposed the
Dense Visual Odometry (DVO):14 a dense photometric-based RGBD visual odometry system that
combines dense tracking with keyframe selection and pose-graph optimization. Most of the above
approaches are focused on dense map reconstruction and require graphics processing unit (GPU) to
achieve quasi real-time performance. To avoid this limitation, other types of approaches are based
on a sparse visual SLAM: they propose to integrate depth measurements into an existing visual
keyframe-based SLAM.16, 17, 20 Scherer et al.20 revisit the PTAM-SLAM to exploit depth data and
propose its extension in ref. [17] with graph optimization to be able to operate in large environments.
Mur-Artal et al.16 revisit the ORB-SLAM to integrate the depth information of each ORB feature in
a BA like a stereo point by synthesizing a right coordinate for each feature using the associated depth
value. Their system performs a local BA to optimize the camera pose and points in a local mapping,
and after a loop closure to optimize all keyframes and points in a full BA.

In order to reduce the drift inherent in any iterative methods, most of the above approaches pro-
pose to incorporate loop closure.12–16 Unfortunately, this technique cannot be applicable in every
environment. It depends on the camera trajectory. Some recent methods propose to use a prior map
of the environment to improve the camera localization and limit the drift without using loop closure.
A number of them rely on particle filter methods with 2D Lidar data21 and recently with RGBD
data.22–24 Fallon et al.22 proposed an RGBD Monte-Carlo localization (MCL) approach for indoor
environments. Their technique requires a preliminary mapping phase, where only major plan seg-
ments are considered. Using this map as input, visual odometry is used for particle propagation and a
likelihood function is computed for each particle by comparing the current depth data with a predic-
tion of the scene geometry. A similar work was presented by Scherer et al..23 The authors compute
the frame-to-frame motion using depth and photometric information. Then, a particle filter-based
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method is proposed to locate the camera in the given 3D global map. Winterhalter et al.24 presented
an MCL approach for RGBD sensors where odometry is computed from RGBD and IMU data. The
likelihood model for the particle filter assigns a probability to the measurement using a function of a
distance between the depth measurement and the floor plan given by the environment model.

These MCL methods are usually computationally expensive due to the necessary large number
of particles for accurate localization and require GPU processing to operate in a receivable time.
Moreover, these approaches exploit only the depth data in the particle filter algorithm and may suffer
from the lack of depth information in challenging large indoor environments with reflective surfaces.

In this paper, we first introduce a new RGBD-SLAM based on a revisited keyframe SLAM. Then,
we present an extension of this RGBD-SLAM that takes advantage of a partial knowledge of the
scene (partial 3D model of the environment, for example, generated from the 2D plan of the building).
This information is integrated in a local BA process to provide long-term and globally consistent
localization. We call this new approach as Constrained RGBD-SLAM. The proposed solution uses
the depth and visual data and, when available, the 3D model of the scene to constrain the localization.
In contrast to the MCL approaches cited before, the proposed method operates in real time on CPU
and it is able to deal with environments where the depth maps are very poor or unavailable using not
only the depth information but also visual feature triangulation. In the same way, when 3D model is
unavailable, the system processes like an RGBD-SLAM.

Our contributions are summarized in the following list:

• We first propose an RGBD-SLAM based on a revision of a keyframe SLAM which integrates
visual and depth data in a local BA.

• Secondly, we propose an extension called Constrained RGBD-SLAM to integrate the geometric
information provided by a prior 3D model along with visual and depth data in a local BA pipeline.
The cost function is a combination of different types of residual errors: error based on visual fea-
tures, error based on depth data, and error based on geometric constraints provided by a 3D model
of the environment. Therefore, the proposed approach may not suffer in environments where the
RGBD sensor does not provide depth or in environments with an incomplete 3D model since in
this case the other visual information are still used.

• The algorithm runs in real time on CPU.

3. The Proposed RGBD-SLAM

3.1. Notation
Let us note the pose of the frame j as:

Pj =
[

R j t j

01×3 1

]

We note qi, j the observation of the 3D point Qi in the camera j such that qi, j = π(K Pj Qi ). π(x, y, z)
describes the perspective projection function such that π(x, y, z) = (x/z, y/z)�, and K denotes the
camera calibration matrix.

3.2. Overview of the RGBD-SLAM algorithm
The proposed RGBD-SLAM is a monocular SLAM revisited in order to exploit depth data. It is built
on the monocular keyframe SLAM proposed by ref. [2] but it could be built on other monocular
keyframe SLAM like.5, 25 The main components are summarized in Fig. 1 that presents how depth
information is exploited and which elements of the system are affected.

In this algorithm, two main steps are performed: (1) the estimation of the sensor pose between
the consecutive frames and (2) the refinement of the latest poses and the 3D points through a local
BA process. As illustrated in Fig. 1, the approach consists in solving in real-time and incrementally
conventional computer vision tasks (matching, pose computation, triangulation, and BA). For each
incoming frame, key points are detected using the SURF detector26 and matched with 3D points,
resulting in 2D–3D correspondences. The inter-frame pose is estimated by robust minimization of
the re-projection error. If the camera has moved at least a predefined distance, or if the number of
visible 3D points falls below a threshold, a new keyframe is created. At each new keyframe, new
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Fig. 1. Schematic overview of our approach. In gray, the elements affected by the integration depth information
in the process.

3D points are added to the map using the depth measurement when available or using triangulation
otherwise. The camera poses and the 3D map are then refined in a local BA which combines the
classical visual error and the depth measurement. These two types of error used in the cost function
of the BA are presented below.

We have chosen not to take depth information into account in the inter-frame pose estimation.
Indeed as the pose will be optimized in the BA, adding the depth measurements during inter-frame
pose estimation would not have a significant impact. This might even degrade the computational
performances. That explains why we have chosen to integrate the depth measurement only in the
initialization step and in the BA. The choice of SURF has been guided by the study of ref. [27]
which compares SURF, SIFT, and ORB techniques in term of processing time and robustness against
different kinds of transformations. According to ref. [27], SIFT provides the highest matching rate
in the most scenarios but the matchers ORB and SURF are significantly faster than SIFT. ORB and
SURF show quasi-equal performances concerning the computational time but SURF is more robust
against distortions like intensity variation and rotations, which are mainly encountered in successive
images. This last point is confirmed in the recent study of ref. [28].

3.3. BA with visual and depth data
BA optimizes the camera poses and the 3D points they observed by minimizing the 2D re-projection
error in the keyframes. This error is the difference between the estimated projection of the point Qi

through the camera Pj , and its corresponding observation qi, j . Conventional BA approaches simul-
taneously optimize the poses of all keyframes and the 3D points they observed using measurements
obtained from 2D images. To achieve time-efficient performances, the local BA2 optimizes only the
poses of the Nc latest cameras and the Np 3D points they observed. The local BA cost function is
given by:

εvisual

(
{Pj }Nc

j=0, {Qi }Np

i=0

)
=

Np∑
i=0

∑
j∈Ai

(
qi, j − π(K Pj Qi )

)
(1)

where Ai denotes the set of keyframes indices observing Qi
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To take advantage of the depth measurement, one solution is to integrate it, as a new constraint
into BA, in addition to the conventional 2D error εvisual.

Let qi,k = (ui,k, vi,k, 1)� be the observation of the 3D point Qi in the frame k, and di,k its depth.
We compute the 3D point Qi,k corresponding to the observation qi,k using the inverse of the

projection function π as mentioned in Eq. (2)

Qi,k = π−1(qi,k, di,k) = di,k K −1qi,k (2)

In the world coordinate system, this point is expressed as:

Qi = P−1
k π−1(qi,k, di,k) (3)

We measure the 2D projection error of the reconstructed 3D point Qi in each frame j on which it
appears, with ( j ∈ Ai and j �= k). The resulting cost function is given by:

εdepth

(
{Pj }Nc

j=0

)
=

Np∑
i=0

∑
j∈Ai

k �= j∑
k∈Ai

(
qi, j − π

(
K Pj P−1

k π−1(qi,k, di,k)
))

(4)

Hence, the overall error minimized in the BA of our RGBD-SLAM is summarized as:

εvisual.depth = εvisual + εdepth (5)

4. Constrained RGBD-SLAM

4.1. Motivation
The evaluation of the proposed RGBD-SLAM will be presented in Section 5.1. We will see that this
solution drastically reduces drift of a classical visual SLAM but does not allow to totally remove it.
Indeed, like many RGBD solutions, the drift recurs over long trajectories, more specially in areas
where the depth is not completely available (as illustrated in Fig. 2) and when loop closure is not
possible.

To handle this problem, we introduce in the cost function of the BA an additional error which
constrains some 3D points to belong to the 3D model of the environment. Note that this 3D model
can be easily generated from the 2D plan of the building.

4.2. BA with depth and plane constraints
The proposed solution is inspired from the work of Tamaazousti et al.29 The authors propose to
constrain the mapping of a visual SLAM using the prior knowledge of the 3D model of an interest
object in the scene. The main idea is that a 3D point Qi lying on a plane πi of the 3D model has only
two degrees of freedom, thus this 3D point is forced to move only on its associated plane.

Lets Mπi be the known transfer matrix between the coordinate frame of plane πi and the world
coordinate frame.

Then, Qi = Mπi Qπi
i where Qπi

i = (Xπi ; Y πi ; 0; 1)T and (Xπi ; Y πi ) are the coordinates of Qi in
the plane πi coordinate frame. Note that the association process to match each 3D point with its
corresponding plane is detailed in ref. [29].

This relation is integrated to the optimization process as follows:

εplan

(
{Pj }Nc

j=0, {Qi }Np

i=0

)
=

Np∑
i=0

∑
j∈Ai

(
qi, j − π(K Pj Mπi Qπi

i )
)

(6)

where Np is the set of the 3D points observed by the Ai cameras and Nc the number of cameras to
optimize.

Our contribution is to add the depth information along with the constraint given by the model’s
plans. The idea is that for each 3D point for which the depth measurement is available and to which
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Fig. 2. Localization in challenging environment: illustration of the depth (right) and color images (left) in the
textureless environment and in environment with missing depth measurements.

a plane has been associated, we add its depth reprojection error, considering that this 3D point has
only two degree of freedom.

εdepth-and-plan

(
{Pj }Nc

j=0, {Qi }Np

i=0

)
=

Np∑
i=0

∑
j∈Ai

(di, j − [Pj Mπi Qπi
i ]z

αd2
i, j

)
. (7)

where α is an experimentally estimated scaling parameter which models the uncertainty of the depth
data. The determination of its value is explained in ref. [20]. This parameter could be tuned for each
sequence according to its complexity. In our experiments, we found that setting α = 3, 3310e − 2
was satisfying for all sequences.

The constraints given by the 3D model of the environment are integrated as

εmodel = εplan + εdepth.and.plan (8)

The overall error to be minimized in the BA of the Constrained RGBD-SLAM is given by

εvisual.depth.model = εvisual.depth + εmodel (9)
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Fig. 3. Estimated trajectories on the freiburg3-long-office-household sequence. Left: SLAM trajectory.2 Right:
RGBD-SLAM trajectory.

Note that in practice, in the Levenberg–Marquardt algorithm used in BA, L2 norm in Eqs. (1), (4), (6),
and (7) is replaced by a robust norm to deal with outliers (i.e., inconsistent feature matches, wrong
data/model association, erroneous depth). The optimization is performed with the Geman–McClure
estimator.

Notice that the proposed BA retains the sparse blocks structure of the matrices involved in the
optimization. Like in the classical Bundle Ajustment, it is thus possible to implement it efficiently,
taking into account sparse structure blocks, as described in ref. [30].

5. Evaluation
This section is divided into two subsections. The first one presents the evaluation of the proposed
RGBD-SLAM. The second one is focused on the Constrained RGBD-SLAM.

5.1. RGBD-SLAM evaluation
We have evaluated our RGBD-SLAM on the popular TUM-RGBD dataset9 which contains indoor
sequences from Microsoft Kinect (V 1) sensor with different textures, illuminations, and trajectories.
This benchmark provides synchronized ground truth poses for the RGBD sensor moved through an
environment, captured with a highly precise motion capture system. Like proposed in ref. [9], we use
the absolute trajectory (ATE) root mean square error (RMSE) metric to evaluate our system, which
measures the root mean square of the Euclidean distances between all estimated camera poses and
the ground truth poses associated by timestamp .

We first evaluate the gain obtained using depth information by comparing our RGBD-SLAM with
the original visual SLAM2 in multiple sequences of the dataset. The results of Fig. 3 and the tests
conducted in several sequences reported in Table I demonstrate that integrating depth data in the BA
of SLAM process improve significantly the accuracy and reduce the drift.

We also evaluate the computational performances of our system on a sequential single thread
using a single core from an Intel Xeon W3570 at 3.20 GHz. We measured that the average run time
required to process each frame is about 25 ms (the inter-frame pose estimation requires an average
of 20 ms and BA of 38 ms).

Then we compare our method to other state-of-the-art RGBD-SLAM systems, using the results
published by the original authors. Table II compares our RGBD-SLAM accuracy with the fol-
lowing state-of-the-art methods: DVO,14 RGBD,31 Kintinuous,12 dSLAM,20 and ORB-SLAM2.16

Concerning DVO, we note DVO(1) – the results published by14 and DVO(2) – the results we obtained
with the source code.1 Boldface highlights the better results.

Note that the results published by DVO(1), RGBD, Kintinuous, and ORB-SLAM2 use loop clo-
sure in their optimization to reduce the error accumulation which explains their better accuracy. Loop
closure requires that the sensor returns to a mapped area place in order to relocalize the camera using

1https://vision.in.tum.de/data/software/dvo.
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Table I. Comparison of our RGBD-SLAM with the visual SLAM on TUM-RBGD
dataset: absolute trajectory error (ATE) measured in meters (m).

ATE (m)

Sequences Algorithms RMSE STD

fr1/desk SLAM 0.631 0.201
RGBD-SLAM 0.062 0.024

fr1/xyz SLAM 0.183 0.061
RGBD-SLAM 0.028 0.091

fr1/rpy SLAM – –
RGBD-SLAM 0.056 0.025

fr1/plant SLAM – –
RGBD-SLAM 0.075 0.027

fr2/xyz SLAM 0.044 0.029
RGBD-SLAM 0.021 0.015

fr3/long SLAM 0.654 0.302
RGBD-SLAM 0.034 0.019

Table II. Comparison of ATE-RMSE (m) in TUM-RGBD dataset. “–” indicates that no results have been
published. Boldface highlights the better results.

Seq Ours dSLAM DVO(2) RGBD Kinti-nuous DVO(1) ORB-SLAM2

Loop closure no no no yes yes yes yes

fr1/desk 0.062 – 0.229 0.049 0.037 0.021 0.016
fr1/xyz 0.028 – 0.029 0.021 0.017 0.011 –
fr1/rpy 0.056 – 0.072 0.042 0.028 0.020 –
fr1/plant 0.073 – 0.097 0.142 0.041 0.028 –
fr2/xyz 0.021 – 0.023 – 0.029 0.018 0.004
fr3/long 0.034 0.136 0.222 0.067 0.031 0.035 –

reconstructed points, which is not always possible. Our method does not perform loop closure: we
want to evaluate its accuracy in cases where revisiting known parts of the map is not possible. So it is
interesting to focus the comparison on methods without loop closure: DSLAM, DVO(2). The results
show that our method is more accurate than DVO(2) and dSLAM.

An other important point concerns the computation time. The methods DVO, RGBD, and
Kintinuous are dense methods, and they use all the points of the image. Therefore, they are expensive
in computation time and require GPU to achieve real-time performance. Our goal is to propose an
algorithm working only on CPU for use on a lightweight structure with high autonomy like small
robots, UAVs, or VR helmet. The only methods which operate in real time on CPU are dSLAM,
ORB-SLAM2, and ours. Note that these three methods are all sparse keyframe SLAM approaches
revisited. We indicate in Table III their average processing time using the results published by the
original authors. It is difficult to compare their performances because they depend on the type of
CPU used but our solution seems to be faster. We can mention that their average time processing is
around 25 and 40 ms: these methods run in real time without using GPU. This average processing
time depends also on the number of keyframes created by the algorithm: each creation of a keyframe
involves a new local BA, so a new mapping process. So we mention also the processing time of each
process: tracking and mapping. The mapping process of our solution is significantly faster than the
others. This can be explained by the optimization of the sparse blocks structure of the matrices and
the low number Nc of estimated poses in our BA (see Section 4.2).

These results show that our solution has globally comparable accuracy than approaches of the
state of the art, with the advantage of being less computationally expensive. The second benefit of this
solution is that it can work in different types of environments like large open spaces, corridors, indoor,
or outdoor environments. Indeed, the proposed cost function in BA allows to perform localization in
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Table III. Type of method, type of processor CPU/GPU, and processing time for the sparse methods which
operate in real time on CPU.

Method Ours dSLAM DVO(2) RGBD Kinti-nuous DVO(1) ORB-SLAM2

Sparse Sparse Dense Dense Dense Dense Sparse
Type CPU CPU CPU GPU GPU GPU CPU

Processor Intel Xeon
W3570 at
3.20 GHz
using 1core

Intel Duo
P9400 at
2.40 GHz
using 1core

– – – – Intel Core
i7-4790 (4
cores @
3,6 GHz)

Average
process
time

25 ms 33 ms – – – – < 33 ms

Tracking
time

20 ms 12 ms – – – – 26 ms

Mapping
time

38 ms 148 ms – – – – 267 ms

a wide range of environments by automatically switching between two modes: classical monocular
SLAM mode when depth information is unavailable or RGBD-SLAM mode, using depth and visual
data, when depth information is available. This way our system is agnostic to the input being RGB
or RGBD.

5.2. Constrained RGBD-SLAM evaluation
This subsection is dedicated to the evaluation of the Constrained RGBD-SLAM. The main objective
of this algorithm is to reduce the drift over long trajectories even when loop closures are not possible,
by taking advantage of a partial knowledge of the scene.

We evaluate the algorithm on real sequences from the benchmark “CoRBS” dataset.32 This dataset
is composed of different sequences acquired with the Microsoft KinectV2. Each sequence includes a
3D model of an interest object in the scene and groundtruth camera poses. Figure 4 illustrates three
of them. Unfortunatly, for these datasets, we have no comparison with other RGBD methods of the
state of the art using prior knowledge of the scene. For this reason, the presented evaluations concern
only the comparisons between the visual SLAM,2 the Constrained SLAM,29 our RGBD-SLAM (Eq.
(5)), and our Constrained RGBD-SLAM (Eq. (9)). This comparison results from the comparison of
performances of our algorithm by taking into account a part or the totality of the terms of the cost
function in Eq. (9).

Figure 5 shows the evolution of the position error along the “Human” sequence for four algo-
rithms. The results confirm that adding depth information as an additional constraint in BA of the
visual SLAM process significantly improves its precision. Indeed, the visual SLAM suffers from
significant drift due to the difficulties like blur and textureless images. If we analyze the evolution of
the ATE, we see peaks of errors between the images 1190 and 1194. This can be explained by the
high angular velocity of the camera on this part of the sequence that causes motion blur and strongly
affects the frame-to-frame motion estimation. This error is compensated by the BA only with the
Constrained RGBD-SLAM. The results obtained in the other sequences from the “CoRBS” dataset
are summarized in Table IV. They highlight that the best performance is obtained by the Constrained
RGBD-SLAM for all sequences. We can note that the difference between the RGBD-SLAM and
the Constrained RGBD-SLAM is not very significant on the “Desk” sequence which is the easier
sequence (textured sequence without abrupt motion). However, in the “Human” sequence which is a
textureless sequence with abrupt motion and high average angular velocity causing motion blur, the
Constrained RGBD-SLAM is three times more precise than the RGBD-SLAM.

We have also evaluated Constrained RGBD-SLAM on a real sequence using the Microsoft Kinect
V1. The range of this sensor is about 5 m. The experiment is carried out on a difficult sequence of
about 60 m without loop closure. The scene is composed of:
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Fig. 4. Sequences “human”, “Desk”, and “Electrical Cabinet” from the “CoRBS” dataset32 and their associated
3D model. The top row shows the color images, the middle row shows color-coded depth images recorded
by the Kinect V2, and the botton row presents the associated 3D models. (a) Human. (b) Desk. (c) Electrical
Cabinet.

Fig. 5. Comparison of the four algorithms in the “human” sequence of “CoRBS” dataset. The camera trajectory
is about 12 m.
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Fig. 6. 3D model of the environment obtained from the 2D plan of building.

Fig. 7. Illustration of the path followed by the camera in the real scene.

• long (2 m) and narrow (1.5 m) corridors with doors and some walls with glass surfaces.
• large areas where the depth is about 20 m.

Figure 2 shows some images of the real sequence. We note that some areas are textureless and some
depth images are very poor (they have missing values) due to the limited range of the sensor or to the
reflective surfaces. Unfortunately, no ground truth is available for this trajectory. So we present the
resulting trajectory only in the 3D model and we compare it with the representation of the followed
path illustrated in Fig. 7. The 3D model is presented in Fig. 6.

This trajectory has been manually measured. During the navigation, we try to keep the sensor at
the center of the hallway and we took care to stop the trajectory at the final position identical to the
starting position (see Fig. 7). The trajectories estimated with the RGBD-SLAM and the Constrained
RGBD-SLAM are shown in Fig. 8. For the RGBD-SLAM, we obtain an error at the end of the
trajectory of 5.5 m which is 9% of the global trajectory with a significant deviation of the trajectory.
With the Constrained RGBD-SLAM, the final drift is around 1.5 m, which corresponds to 2.5% of the
global trajectory. From these results, we can see the positive contributions of the model constraints
for reducing the drift and improving the accuracy of the localization.

Indeed, the poor depth maps and the lack of visual features or geometric structures (long corridors)
pose big challenges for the localization. The proposed approach overcomes this limitation thanks to
the model constraint. Even when the frame-to-frame motion estimation is not precise, the model
constraint helps to correct it in the BA process.
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Table IV. Statistical errors (ATE) on the “CoRBS” sequences with visual SLAM, RGBD-SLAM, Constrained
SLAM, and Constrained RGBD-SLAM. The symbol “–” indicates that the visual SLAM was unable to

produce an estimate.

ATE (m)

Sequences Algorithms RMSE STD

Human Visual SLAM 0.583 0.172
RGBD-SLAM 0.114 0.055
Constrained visual SLAM 0.283 0.164
Constrained RGBD-SLAM 0.036 0.017

Desk Visual SLAM 0.165 0.041
RGBD-SLAM 0.016 0.006
Constrained visual SLAM 0.022 0.008
Constrained RGBD-SLAM 0.013 0.005

Electrical Visual SLAM – –
RGBD-SLAM 0.065 0.020
Constrained visual SLAM 0.057 0.031
Constrained RGBD-SLAM 0.040 0.017

Fig. 8. Camera trajectory obtained with our algorithm projected on the model of the environment. The blue tra-
jectory is the one obtained with the RGBD-SLAM with depth constraints. The red trajectory is the localization
obtained by the RGBD-SLAM with model and depth constraints.

6. Conclusion
In this paper, we have proposed a real-time RGBD-SLAM for long-term and global-consistent local-
ization even in case where loop closure is impossible. The proposed RGBD-SLAM is able to take
into account prior knowledge of the 3D model of the environment in a local BA to constrain the
localization.

The proposed cost function in BA allows to perform localization in a wide range of environments
by automatically switching between three modes: classical monocular SLAM mode when depth
information is unavailable, RGBD-SLAM mode using depth and visual data, or Constrained RGBD-
SLAM mode when a 3D model is available. Doing so, this system is agnostic of the input being RGB
or RGBD.

The proposed solution has been evaluated on common benchmarks and on our real sequences,
which depict various environments. It has been compared to the state-of-the-art methods. The perfor-
mances obtained demonstrate that the additional constraints significantly improve the accuracy and
the robustness of the SLAM localization. The proposed solution based on BA with RGBD observa-
tions allows for accurate trajectory estimation with metric scale and limited-drift localization without
loop closure. An additional advantage is to be less computationally expensive than the majority of
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solutions from the state of the art. It is lightweight and works with standard CPUs with an average
frame processing time of 25 ms.

This research has been conducted with Kinect sensors but it can be extended to other sensors like
a camera coupled to a Lidar. Our future work might include this extension with some interpolations
to deal with sparse Lidar map. Our current implementation is sensitive to highly blured images, so
the fusion with an IMU is also in our perspectives.
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