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A shallow-water model for
high-Reynolds-number gravity currents
for a wide range of density differences

and fractional depths
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(Received 19 October 2006 and in revised form 8 February 2007)

We consider the propagation of a gravity current of density ρc from a lock of length
x0 and height h0 into an ambient fluid of density ρa in a channel of height H . When
the Reynolds number is large, the resulting flow is governed by the parameters ρc/ρa

and H ∗ = H/h0. We show that the shallow-water one-layer model, combined with
a Benjamin-type front condition, provides a versatile formulation for the thickness
and speed of the current, without any adjustable constants. The results cover in
a continuous manner the range of light ρc/ρa � 1, Boussinesq ρc/ρa ≈ 1, and heavy
ρc/ρa � 1 currents in a fairly wide range of depth ratio. We obtain analytical solutions
for the initial dam-break or slumping stage of propagation with constant speed, and
derive explicitly the trends for small and large values of the governing parameters.
This reveals the main features: (a) the heavy current propagates faster and its front
is thinner than for the light counterpart; (b) the speed of the heavy current depends
little on H ∗, while that of the light current increases with H ∗; and (c) in the shallow
ambient case (H ∗ close to 1) the light current is choked to move with the thickness
of half-channel, while the heavy current typically moves with an unrestricted smaller
thickness. These qualitative predictions are in accord with previous observations, and
some quantitative comparisons with available experimental and numerical simulations
data also show fair agreement. However, given the paucity of the available data, the
main deficiency of the model is the unknown practical limit of applicability. For large
time, t , a self-similar propagation with t2/3 is feasible for both the heavy and light
currents, but the thickness profiles display differences.

1. Introduction
We consider the propagation of a gravity current of density ρc into an ambient fluid

of density ρa in a channel of height H . When ρc/ρa > 1 we refer to a heavy (dense,
bottom) current and when ρc/ρa < 1 we refer to a light (ceiling, top) current. (Note
that the terms light or heavy are with respect to the ambient.) The current is released
from a lock (of length x0 and height h0) adjacent to the horizontal boundary on
which it will spread out, illustrated in figure 1. We assume that the Reynolds number
uNh0/ν is large and hence viscous effects can be discarded (here uN is the speed of
the nose and ν is the representative kinematic viscosity of the fluids). It is well known
that in the Boussinesq case ρc/ρa ≈ 1 the light and heavy currents display the same
behaviour, i.e. in the configuration of figure 1 the bottom and top Boussinesq currents
would appear as mirror images with respect to the horizontal boundary (but note
that our figure emphasizes the lack of symmetry). The Boussinesq currents depend
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Figure 1. Schematic description of the (a) heavy and (b) light current released from a lock
of length x0 and height h0 into an ambient of height H .

on one parameter only, the depth ratio

H ∗ =
H

h0

, (1.1)

which can be in the range [1, ∞). This is not an easy problem in general, but there is
a solid body of knowledge and well developed prediction tools for this current in the
two-dimensional case (see Klemp, Rotunno & Skamarock 1994; Ungarish & Zemach
2005 where additional references are given). The non-Boussinesq flow is more com-
plicated. First, mathematical difficulty is introduced because the propagation depends
on an additional parameter, the density ratio ρc/ρa , which theoretically is in the
range (0, ∞). (We exclude from our direct analysis the special ρa = 0 case of a
liquid propagating freely into a gas or vacuum, see for example Stansby, Chegini
& Barnes 1998; Hogg & Pritchard 2004). Second, setting up experiments or
simulations with fluids of significantly different densities requires more resources
than the relatively simple water–saline systems used for the Boussinesq cases.
Fanneløp & Jacobsen (1984), Keller & Chyou (1991), Gröbelbauer, Fanneløp &
Britter (1993), Lowe, Rottman & Linden (2005), Birman, Martin & Meiburg (2005)
and Etienne, Hopfinger & Saramito (2005), present theoretical, experimental, and
numerical simulations results on the behaviour of the non-Boussinesq currents
(and also discuss previous pertinent contributions). It is clear that the Boussinesq
symmetry for light–heavy currents disappears when ρc/ρa departs from 1. However,
the generalization of the available results (especially the quantitative ones) into a
comprehensive theory and reliable prediction tool requires further work.

Most investigations, and the most accurate experimental and numerical data, are
concerned with the full-depth lock exchange problem H ∗ = 1. It is difficult to extend
these results to fractional depth configurations which may have applications in hazard
prediction. The previously suggested theoretical formulations contain unspecified
adjustable constants, or employ hydraulic (or box) model approximations. These
models usually rely on assumed velocity and interface profiles, and employ difficult-
to-justify closures (like global energy conservation). They can cover only a limited
distance of propagation (for example, the constant-velocity initial phase). Other
theoretical approaches have been concerned simply with deriving curve-fit formulas
from numerical or experimental data, and extrapolating these results. This is useful
information, but lacks physical support and does not provide sharp insights.

Our objective is to improve the theoretical modelling and predictions concerning
the non-Boussinesq currents. We suggest a formulation based on clear equations of
motion with realistic boundary and initial conditions, which covers a fairly wide range
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A model for gravity currents for a range of density differences 375

of density ratio and fractional depth (with the possible exception of full-depth or
nearly so configurations, which are also special cases in the Boussinesq limit). These
equations can be used continuously for initial, intermediate and long times, until
viscous forces become important.

2. Formulation
We consider incompressible immiscible fluids, and assume that the viscous effects

are negligible (both in the interior and at the boundaries). The density of the current
and of the ambient is ρc and ρa , respectively. The current propagates in the positive
x-direction, and the gravitational acceleration g acts in the negative z-direction. The
bottom and the top of the half-infinite channel are at z = 0 and z = H . The propagating
fluid is originally in a reservoir of length x0 and height h0 located adjacent to the
boundary on which propagation occurs, i.e. the bottom for the heavy current and the
top for the light current, see figure 1. The x = 0 boundary is a rigid wall.

We use dimensional variables unless stated otherwise. The thickness of the current
is h(x, t) and its horizontal velocity (z-averaged) is u(x, t). Initially, at t = 0, h =h0

and u = 0. We assume a shallow current with h0/x0 � 1.
The continuity equation is

∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
= 0. (2.1)

Let p denote the pressure reduced with ρagz, and the subscripts a, c denote the
current and the ambient domains. In the shallow-water (SW) approximation the
pressure obeys the hydrostatic balance in the vertical direction. The one-layer model
also assumes that the momentum flux in the ambient is negligible (compared to
that of the current) and hence pa = C. Pressure continuity pc =pa at the interface
(z = h(x, t) for the heavy current and z = H − h(x, t) for the light current) yields

pc(x, z, t) = −�ρgz + |�ρ|gh(x, t) + C1, (2.2)

where

�ρ = ρc − ρa, (2.3)

and C1 = C and C + �ρH for the heavy and light currents, respectively. The z-
averaged horizontal momentum equation is employed to express the balance between
the inertial forces (proportional to ρc) and the −∂pc/∂x term, which is eliminated by
(2.2). Here we assume that the deviation of the real horizontal velocity component
from the z-averaged u is small, which is a reasonable approximation for low-viscosity
fluids released from rest. We obtain

∂u

∂t
+ u

∂u

∂x
= −|�ρ|

ρc

g
∂h

∂x
. (2.4)

The system (2.1) and (2.4) for h(x, t) and u(x, t) is hyperbolic, and the characteristic
equations can be expressed as(

|�ρ|
ρc

g

)1/2
dh

h1/2
± du = 0 on

dx

dt
= u ±

(
|�ρ|
ρc

g

)1/2

h1/2. (2.5a, b)

To obtain realistic gravity current solutions the system of equations must be
subjected to a boundary condition at the nose (or front) x = xN (t) (see Klemp et al.
1994 for a discussion). The vertical plane which moves with the nose of the inviscid
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376 M. Ungarish

SW gravity current is treated as a discontinuity. Following Benjamin (1968), it can be
shown that volume and momentum balances about the front, supplemented by the
constraint that the energy in this domain cannot increase, require that the velocity of
propagation must be related to the height of the current at the front by

uN =

(
|�ρ|
ρa

g

)1/2

h
1/2
N Fr(a), and a �

1

2
, (2.6)

where N denotes the nose (front), a = hN/H and Fr(a) is Benjamin’s Froude number
function,

Fr(a) =

[
(2 − a)(1 − a)

1 + a

]1/2

. (2.7)

We emphasize that equations (2.1), (2.4)–(2.7) are applicable to both heavy and
light currents (this is the reason for using the absolute value of �ρ). The non-
Boussinesq effect is already evident: equation (2.6) indicates that the speed of the
front is proportional to |�ρ|/ρa , while according to (2.4) and (2.5) the intrinsic speed
of the current is proportional to |�ρ|/ρc. This apparent conflict is accommodated by
the thickness (representing the pressure distribution) which thus becomes a function
of ρc/ρa . This interplay between speed and height is the backbone of the model.
Estimates of the effect of the return flow suggest that the momentum balance (2.4)
is restricted to, roughly, H ∗(ρc/ρa) > 2, but there are indications, see below, that the
model is useful beyond this bound. The other two equations of the model have a
wider range of relevance and apparently restrain the global error.

An advantage of the one-layer SW model is the possibility of obtaining simple
analytical solutions for the initial and fully developed phases of propagation, as
described below.

3. Dam-break and initial slumping motion
The analysis of system (2.5)–(2.7) indicates that after release from the rectangular

lock the current will enter a slumping phase of propagation with constant velocity over
a significant distance (several lock lengths). This constant-velocity feature is shared
by both Boussinesq and non-Boussinesq currents, as confirmed by experiments and
numerical Navier–Stokes simulations (Gröbelbauer et al. 1993; Lowe et al. 2005;
Birman et al. 2005; Etienne et al. 2005). During this slumping stage, the domain of
fluid trailing the nose is a rectangle of constant height, hN . In the absence of shocks, the
velocity of propagation and the thickness hN can be obtained analytically by matching
the solution on a forward-propagating characteristic with the front condition.
Integrating (2.5a) (on the + branch subject to u =0 for h = h0) and using (2.6) yields

2

(
|�ρ|
ρc

)1/2[
1 −

√
hN

h0

]
(gh0)

1/2 =

(
|�ρ|
ρa

)1/2√
hN

h0

Fr(a)(gh0)
1/2, (3.1)

where, again, a =hN/H and Fr(a) is given by (2.7). The left-hand side is the value of
uN imposed by the characteristic, and the right-hand side is the value of uN imposed
by the front conditions. This equation provides the value of hN/h0; then, uN can be
calculated using either side of the equation. However, this result has physical validity
only if it satisfies the restriction a � 1/2; otherwise, the right-hand side with a = 1/2
dominates, as discussed later. We expect that the left-hand side of (3.1) overestimates
the value of uN for a given hN because the hindering effects of the return flow were
not incorporated in the momentum equation.
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A model for gravity currents for a range of density differences 377

It is convenient to express the results in dimensionless form. The velocity result will
be expressed by means of an effective Froude number,

χ =
uN

(g′h0)1/2
where g′ =

|�ρ|
max(ρc, ρa)

g. (3.2)

The value of χ at (ρc/ρa) = 1 is defined as the corresponding limit, which is actually the
Boussinesq limit. We obtain a continuous function of the density ratio (as expected,
the right and left limits coincide, i.e. slightly heavier or lighter currents move with the
same speed). The height of the nose (and of the horizontal interface which follows)
will enter our results in the dimensionless combination hN/h0. (We note in passing
that Lowe et al. 2005 and Birman et al. 2005 use a similar scaling for speed and
height.) Our objective is to derive the behaviour of χ and hN/h0 as functions of ρc/ρa

and H ∗.

3.1. Asymptotes

We first derive analytical expressions and insights for very heavy (ρc/ρa � 1) and
very light (ρc/ρa � 1) currents, and also for shallow and deep ambients (H ∗ ≈ 1 and
H ∗ � 1).

Heavy current. We rewrite (3.1) as

2

(
ρa

ρc

)1/2[
1 −

√
hN

h0

]
=

√
hN

h0

Fr(a). (3.3)

For a very heavy current ρa/ρc → 0 the left-hand side becomes small, and in order
to balance it hN/h0 on the right-hand side must also be small, which also implies
that Fr(a) tends to Fr(0) =

√
2. A formal expansion of hN/h0 in terms of the small

parameter (ρa/ρc)
1/2 yields the leading terms approximation

χ = 2

(
1 −

√
2
ρa

ρc

)
,

hN

h0

= 2
ρa

ρc

(
1 − 2

√
2
ρa

ρc

)
,

(
ρa

ρc

� 1

)
. (3.4)

Simply, as the density ratio ρc/ρa increases, the speed of propagation increases and
the thickness of the nose decreases. Interestingly, this result does not depend on H ∗, a
consequence of the fact that the nose of the very heavy current is thin, and hence the
encountered ambient is, relatively, very deep. The leading coefficient of the effective
Froude number χ is 2 which indicates that the heavy current tends to propagate
much faster than could be anticipated from the Boussinesq counterpart value which
is typically below 1. For ρa/ρc → 0 the result (3.4) recovers the behaviour of the
classical dam-break problem of a liquid (water) in a passive gas (air) (see Stansby
et al. 1998 and Hogg & Pritchard 2004 where other references are also given).

Our results must be treated with care in the shallow ambient configuration H ∗ < 2.
In this case there is a significant return flow in the ambient, which seems to be
inconsistent with the one-layer dominance. However, we can argue that what is
important is momentum (not volume) flux, and when ρc/ρa is large the momentum
flux of the return flow is relatively small. In other words, we expect that the validity
of the one-layer model improves as the heavy current departs from the Boussinesq
case. Consider the worst case H ∗ = 1. Equation (3.3) yields the valid hN/h0 < 1/2 for
ρc/ρa > 1.373, and the unacceptable hN/h0 > 1/2 for a smaller ρc/ρa . In the latter
case it is necessary to impose the constraint hN/h0 = 1/2, which means that the flow
is controlled (blocked or choked) by the front condition, i.e. by the right-hand side of
(3.1). We thus obtain χ = 0.5(ρc/ρa)

1/2 for H ∗ = 1 and ρc/ρa < 1.373. As H ∗ increases
the a = 1/2 constraint must be applied to an even smaller range of ρc/ρa , and for
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378 M. Ungarish

H ∗ > 1.1 (approximately) the solutions of (3.3) satisfy a < 1/2 straightforwardly. The
major point is that the choking effect is a very restricted occurrence for the heavy
current, in contrast with the light current discussed below. The present model is able
to predict (approximately) the speed uN and height hN/h0 in chocked circumstances
(also for the light current), but does not resolve the mismatch between the sides of
(3.1). This indicates that the interface of the chocked slumping current will readjust,
most likely in accord with with the expansion-wave solution discussed by Lowe et al.
(2005).

Light current. We rewrite (3.1) as[
1 −

√
hN

h0

]
=

1

2

(
ρc

ρa

)1/2√
hN

h0

Fr(a). (3.5)

For a very light current ρc/ρa → 0, the right-hand side becomes small, and in order to
balance it hN/h0 on the left-hand side must approach 1. A formal expansion of hN/h0

in terms of the small parameter (ρc/ρa)
1/2 yields the leading terms approximation

χ =Fr

(
1

H ∗

)[
1−

√
ρc

ρa

(
1

2
Fr

(
1

H ∗

)
− |Fr′|

H ∗

)]
,

hN

h0

=1−
√

ρc

ρa

Fr

(
1

H ∗

)
,

(
ρc

ρa

�1

)
,

(3.6)

where Fr′ = dFr/da calculated at a = 1/H ∗. The difference with the heavy current is
evident. Here the results depend on the initial depth ratio H ∗. For small ρc/ρa we
obtain the interesting collapse of χ to Fr corresponding to the initial h0/H = 1/H ∗.
The effective Froude number χ of the light current increases with the depth of the
ambient H ∗ and its maximum is

√
2. The height of the front of the current tends to

remain close to that of the lock, hN/h0 ≈ 1.
The results (3.6) are clearly non-applicable to shallow ambients H ∗ < 2

(approximately) because the hN/h0 ≈ 1 outcome violates the energy constraint
hN/h0 � (1/2)H ∗. Equation (3.5) shows that for H ∗ < 2 the flow becomes dominated
by this constraint. This is in full agreement with the results of Lowe et al. (2005) and
Birman et al. (2005) for the full-depth lock. Let us illustrate the pertinent result for the
particular case H ∗ =1. The thickness of the light current leaving the lock decreases,
but must decrease more than predicted by (3.5), until the energy constraint is first
fulfilled. This happens at hN/h0 = H ∗/2 = 1/2. At this value the right-hand side of
(3.1) (the nose condition) is smaller than the left-hand side (the intrinsic speed), and a
further decrease of hN will enhance the imbalance. The conclusion is that for H ∗ < 2
and a sufficiently small ρc/ρa the front discontinuity blocks the internal velocity of the
current, i.e. the flow is choked at this half-channel thickness by the attainable speed
of the nose. This can be generalized by the compact result (for the light current)

χ =
1

2

√
H ∗,

hN

h0

=
1

2
H ∗,

(
H ∗ < 2,

ρc

ρa

< [4(1 −
√

H ∗/2)]2/H ∗
)

. (3.7)

H ∗ → ∞, any ρc/ρa . Here a → 0 and hence Fr(a) =
√

2. Using this value in (3.1), and
denoting σ = [ρc/(2ρa)]

1/2 we obtain after some algebra

hN

h0

= (1 + σ )−2, χ =

{
2σ (1 + σ )−1 (ρc/ρa � 1)√

2(1 + σ )−1 (ρc/ρa � 1).
(3.8)

This remarkably simple exact solution of (3.1) predicts that in a deep ambient hN/h0

decreases from 1 to 0 as ρc/ρa increases from 0 to ∞, while χ first decreases from√
2 to the minimum 0.83 at the Boussinesq limit ρc/ρa = 1, then increases to 2. We
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Figure 2. χ and hN/h0 as functions of ρc/ρa for various depth ratio H ∗ =H/h0 (1, 2, 3, 6, 10).
Symbols show experiments of Gröbelbauer et al. (H ∗ = 1 circles, H ∗ = 6 ×) and numerical
simulations of Birman et al. (H ∗ =1 triangles).

note that equations (20), (21) of Fanneløp & Jacobsen (1984) provide a similar result,
except for the unspecified Fr(0) (denoted k1/2 in that paper).

3.2. General results

In general, (3.1) must be solved numerically for the unknown hN/h0, subject to
hN/h0 � (1/2)H ∗ as discussed above. The results for ρc/ρa in the range [10−2, 102]
and for various H ∗ are displayed in figure 2. The symbols are data from Navier–
Stokes simulations and experiments reported in previous studies, as specified in the
caption.

This figure confirms and further elaborates the asymptotic trends discussed above.
Indeed, except for a narrow range of density ratio about 1, there is a significant
difference between the heavy and the light current. The heavy current displays a
larger speed and a thinner front domain, and its features are less influenced by
the depth ratio. The speed of the light current increases quite significantly with the
thickness of the ambient. For H ∗ = 1 (relevant to <2) the light current is choked to
occupy only half the thickness of the channel and moves with restricted speed, while
the heavy current propagates mainly with unrestricted height and speed. For a given
H ∗, χ attains the minimum: (a) at the Boussinesq ρc/ρa ≈ 1 for H ∗ � 2 and (b) on
the light-current choked branch for H ∗ < 2.

The agreement with the numerical and experimental points is in general good.
Unfortunately, only a very restricted comparison can be made. The present one-layer
model is expected to be mainly relevant to values of H ∗ larger than 1, for which
practically no data are available. As mentioned before, the most recent and accurate
data are for the full-depth case H ∗ = 1. Gröbelbauer et al. (1993) presented some
experimental data for H ∗ =6 depth ratio release geometry. However, the currents
were released by a partly lifted gate from a deep reservoir, not from a lock of part
depth. Considering the motion of the backward-moving characteristics and rarefaction
wave, we expect a significant difference between our theory and this type of experiment
concerning the heavy current. Moreover, these experiments were performed with gases
and may be affected by diffusion. Therefore these data (the × symbols in figure 2)
may not be sufficiently relevant for a clear-cut quantitative comparison. But we find
quite good quantitative agreement for 0.046 � ρc/ρa < 1.1, and qualitative consistency
for the other points.

It is interesting to note that, according to figure 2, the best support for the pre-
dictions of the model comes from parameter regimes where the momentum equation
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of the model is expected to be least valid: (a) the full-depth H ∗ = 1 high-resolution
numerical data (the triangles in figure 2); and (b) some of the deep light-current
experimental results (the × symbols in figure 2 for 0.0463 � ρc/ρa � 0.334, where
0.28 � H ∗ρc/ρa � 2.0). The agreement is remarkable. A plausible explanation is as
follows. First, the discrepancy between the data and the model can be attributed
to errors in the data. The data for H ∗ = 1 are the most accurate. We expect that
comparisons with more accurate data for larger H ∗ will show better agreement.
Second, figure 2 is concerned only with speed and height of the nose. A comparison
of additional features of the current is expected to reveal, in general, better agreement
at larger values of H ∗ (in particular for light currents which are prone to choking).
Third, it is possible that the simple balances used in our model capture the governing
physical mechanism better than suggested by the magnitude of the neglected terms
(e.g. owing to internal cancellation of effects the global deviation is smaller than the
local error). This conjecture requires further verification.

Overall, we think that a useful extension of the SW model has been achieved. The
classical Boussinesq domain is just a very narrow strip about the line ρc/ρa = 1 in the
parameter plane of figure 2.

4. Self-similar stage
After a significant propagation, the current ‘forgets’ the initial conditions, and a

self-similar behaviour is expected. Now the current is sufficiently thin (or deep) so
that a → 0 and Fr at the front becomes constant. We define

F2 =
ρc

ρa

Fr2(0) = 2
ρc

ρa

. (4.1)

In this section we use dimensionless variables. For a rectangular lock we scale
x, h, u, t by x0, h0, (|�ρ|gh0/ρc)

1/2, x0[ρc/(|�ρ|gh0)]
1/2, respectively. In general in this

scaling we can replace both x0 and h0 by L = V1/2 where V is the volume (per unit
width). The solution of (2.1), (2.4) and nose boundary conditions is now

xN (t) = At2/3, u = ẋNy, h = ẋ2
N

(
c+

1

4
y2

)
, c =

1

F2
− 1

4
, (0 � y � 1), (4.2)

where y = x/xN , the overdot denotes the time derivative, and A is a constant. These
results were also derived by Fanneløp & Jacobsen (1984) and Gratton & Vigo (1994)
but with an unspecified value of Fr(0). The similarity results are not sharp because
initial conditions are not satisfied, and t can be replaced by t + Const without
invalidating them.

Both light and heavy currents propagate with t2/3. There is, however, a difference in
the expected shape. For very light currents the small F produces c � 1, and hence the
profile is a spreading rectangle, h ≈ (2A/3)2ct−2/3, with a relatively small contribution
from the y2 term. The opposite structure, of a sharp tail-to-head difference, is expected
for the very heavy current, as follows.

First, we note that c decreases when F increases. For ρc/ρa > 2 we obtain F2 > 4,
and hence in this case h predicted by (4.2) is negative for y <y1 where

y1 =

(
1 − 4

F2

)1/2

=

(
1 − 2

ρa

ρc

)1/2

. (4.3)

This result has been reported by Fanneløp & Jacobsen (1984) and Gratton & Vigo
(1994) for a self-similar current with an unspecified Fr(0) (here we use the specific
(4.1)). These previous studies suggested that the negative h of the similarity result
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Figure 3. Propagation of (a) light ρc/ρa = 0.25 and (b) heavy ρc/ρa = 4 currents released
from a rectangular lock with H ∗ = 4. Finite-difference solution of the SW equations.

means that the heavy current leaves behind a bare patch on the bottom, or an empty
spot, in the region x <y1At2/3, approximately. However, the evolution of this peculiar
shape for a realistic current released from behind a lock needs clarification. We
observe that the region where the classic similarity result (4.2) yields a negative h is
covered by a thin horizontal tail of the current. This corresponds to another branch
of the long-time exact solutions of the SW equations (2.1) and (2.4), namely

h(x, t) =
C

t
, u(x, t) =

1

t
x, (4.4)

where C is a constant of order unity. The dam-break results indicate that this solution
develops for small x during the transition from slumping to similarity phases. For
a heavy current this inner solution spreads out and prevails for large times because
it is able to coexist with the fast-moving nose. The self-similar profile for ρc/ρa > 2
combines the horizontal tail (4.4) for 0 � y <ym, and the prominent head (4.2) for
ym � y < 1, where ym ≈ y1. This structure, and the evolution of different shapes for the
heavy and light currents, is confirmed by the numerical solutions of the SW equations
(using 200 grid points for 0 � y � 1) displayed in figure 3. The volume of the fluid in the
tail decays like t−1/3, which justifies the simplification of a bare bottom left behind a
very heavy current. We think that the appearance of such a structure may be verifiable
in experiments (but viscous effects may eventually slow down the decay of the tail).

Finally, the constant A follows from the volume conservation in the y domain
[yj , 1] where yj = 0 for ρc/ρa � 2, or y1 for a heavier current. This yields

A =
[

4
9

(
c(1 − yj ) + 1

12

(
1 − y3

j

))]−1/3
. (4.5)

5. Concluding remarks
We have presented a compact shallow-water model for the high-Reynolds-number

gravity current which covers a quite wide range of density ratio of current to ambient
fluids, ρc/ρa , and of the depth ratio H ∗, and contains no adjustable constants. We
derived simple expressions for the asymptotic trends of the current concerning the
initial propagation of very heavy and very light currents, and in shallow and very
deep ambients. Self-similar solutions for large times are also presented and confirmed.
The main advantage of the model is the mathematical simplicity.

The main deficiency is that the validity is largely untested. The theoretical predic-
tions are in good agreement with available experimental and numerical simulations
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data. The comparisons cover, unfortunately, a very restricted parameter range owing
to lack of data. The plausible limitation of the model is H ∗(ρc/ρa) > 2, but this has
not been confirmed by the comparisons, and some valuable results were obtained for
smaller values of this parameter. We noted that the best agreements were obtained for
parameter regimes outside that limit, in which the model is expected to be least valid.
Extended comparisons and clarifications, in particular by high-resolution numerical
studies such as performed by Etienne et al. (2005) and Birman et al. (2005) for the
H ∗ = 1 case, would be useful. The present model is able to predict (approximately) the
speed and height of the nose in chocked circumstances, but does not provide the full
details of the interface in these cases. The remedy could be the two-layer matching
presented by Lowe et al. (2005).

The behaviour of the non-Boussinesq current in the transition from the slumping to
the self-similar situation requires the numerical solution of the hyperbolic system of
equations for h and u. The methodology used for the Boussinesq cases (see for example
Bonnecaze, Huppert & Lister 1993; Ungarish & Zemach 2005) can be extended to the
present problem. Real gravity currents are influenced by numerous effects which were
neglected in the present theory, such as viscosity, diffusion, entrainment, instabilities
and surface tension, which future investigations could address.

In spite of these limitations and uncertainties, the suggested theory is a useful
tool for understanding and modelling the gravity current. As Boussinesq and non-
Boussinesq light and heavy currents can be now treated in a unified form by a
single simple formulation, the investigation of non-Boussinesq cases is expected to be
promoted. The present model could be extended to more complex circumstances, in
particular to axisymmetric and rotating configurations.
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