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Let K be an imaginary quadratic field different from Q(
√−1) and Q(

√−3). For a
positive integer N , let KN be the ray class field of K modulo NOK . By using the
congruence subgroup ±Γ1(N) of SL2(Z), we construct an extended form class group
whose operation is basically the Dirichlet composition, and explicitly show that this
group is isomorphic to the Galois group Gal(KN/K). We also present an algorithm
to find all distinct form classes and show how to multiply two form classes. As an
application, we describe Gal(Kab

N /K) in terms of these extended form class groups

for which Kab
N is the maximal abelian extension of K unramified outside prime

ideals dividing NOK .
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1. Introduction

Let K be an imaginary quadratic field of discriminant dK with ring of integers OK .
Let Q(dK) be the set of primitive positive definite binary quadratic forms Q(x, y) =
ax2 + bxy + cy2 (∈ Z[x, y]) of discriminant b2 − 4ac = dK . Define an equivalence
relation on Q(dK), called the proper equivalence, by

Q′ ∼ Q ⇐⇒ Q′
([

x
y

])
= Q

(
σ

[
x
y

])
for some σ ∈ SL2(Z).
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Then, the set C(dK) = Q(dK)/ ∼ of equivalence classes under Dirichlet composition
becomes a group, called the form class group of discriminant dK [1, theorem 3.9].

Let IK be the group of fractional ideals of K and PK be its subgroup of principal
fractional ideals. It is a classical fact that the form class group C(dK) is isomorphic
to the ideal class group CK = IK/PK as follows: For each Q ∈ Q(dK), let ωQ be
the zero of Q(x, 1) in the complex upper half-plane H.

Theorem 1.1. We have an isomorphism of groups

φ : C(dK)→ CK

form class containing Q = ax2 + bxy + cy2 �→ ideal class containing a[ωQ, 1].

Proof. See [1, theorem 7.7]. �

Remark 1.2. Note that [aωQ, 1] = [(−b +
√

dK)/2, 1] = OK . In theorem 1.1, one
can replace the integral ideal a[ωQ, 1] by the fractional ideal [ωQ, 1].

On the other hand, let HK be the Hilbert class field of K whose Galois group is
isomorphic to CK [1, theorem 8.10] or [4, theorem 9.9 in Chapter V]. The following
theorem is a consequence of the theory of complex multiplication and theorem 1.1.

Theorem 1.3. We have an isomorphism of groups

C(dK)→ Gal(HK/K)

form class containing Q �→ (j(τK) �→ j(ωQ)) ,

where j(τ) is the elliptic modular function and τK is an element of H such that
OK = [τK , 1].

Proof. See [2,3] or [8, theorem 1 in Chapter 10]. �

Now, for a finite abelian extension L of K such that L ⊇ HK , it is natural to
ask whether there is some form class group that is isomorphic to Gal(L/K). Since
Gal(HK/K) (
 C(dK)) is a quotient group of Gal(L/K), if we loosen the proper
equivalence on C(dK) induced from SL2(Z), then we would expect to get a certain
new form class group isomorphic to Gal(L/K). Here we note that L is contained
in some ray class field KN modulo NOK for a positive integer N [1, p. 149].

Proposition 1.4. Let FN be the field of meromorphic modular functions of level
N whose Fourier coefficients lie in the N th cyclotomic field. Then we have

KN = K(h(τK) |h(τ) ∈ FN is finite at τK).

Proof. See [8, corollary to theorem 2 in Chapter 10]. �

In this paper, we shall first construct a newly extended form class group CN (dK)
isomorphic to the ray class group Cl(N) modulo NOK , through the equivalence
relation induced from ±Γ1(N) (theorem 2.9). It turns out that the binary operation
on CN (dK) is essentially the Dirichlet composition on C(dK) (remark 2.10 (iv)).
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In view of theorem 1.3 and proposition 1.4 we shall further establish an
isomorphism

CN (dK) → Gal(KN/K)

form class containing

Q = ax2 + bxy + cy2 �→
(

h(τK) �→ h[ a (b−bK)/2
0 1

](ωQ) |h(τ) ∈ FN is finite at τK

)
,

where min(τK , Q) = x2 + bKx + cK ∈ Z[x] (theorem 3.10). This indicates that a
form class [ax2 + bxy + cy2] in CN (dK) has perfect information on an element
of Gal(KN/K). Of course, we shall present an algorithm in order to list all
representatives of form classes in CN (dK) (theorem 4.4) and give some examples.

Let Kab
N be the maximal abelian extension of K unramified outside prime ideals

dividing NOK . As an application, we shall construct a dense subset of Gal(Kab
N /K),

equipped with Krull topology, in terms of extended form class groups (theorem 6.4).

2. Extended form class groups as ray class groups

Throughout this paper, let K be an imaginary quadratic field of discriminant dK

other than Q(
√−1) and Q(

√−3). For a positive integer N , let QN (dK) be the set
of primitive positive definite binary quadratic forms Q(x, y) = ax2 + bxy + cy2 of
discriminant dK such that gcd(N, a) = 1, that is,

QN (dK) = {ax2 + bxy + cy2 ∈ Q(dK) | gcd(N, a) = 1}.

By ±Γ1(N) we mean the congruence subgroup of SL2(Z) given by

±Γ1(N) =
{

σ ∈ SL2(Z) |σ ≡ ±
[
1 s
0 1

]
(mod N) for some s ∈ Z

}
.

Proposition 2.1. The group ±Γ1(N) acts on the set QN (dK) on the right by

Qσ = Q

(
σ

[
x
y

])
(σ ∈ ±Γ1(N), Q ∈ QN (dK)).

Proof. Since SL2(Z) acts on Q(dK), it suffices to show that ±Γ1(N) preserves the
set QN (dK). Let Q(x, y) = ax2 + bxy + cy2 ∈ QN (dK) and σ ∈ ±Γ1(N). We then
see that

Q

(
σ

[
x
y

])
≡ Q

(
±
[
1 s
0 1

] [
x
y

])
(mod NZ[x, y]) for some s ∈ Z

≡ ax2 + (2as + b)xy + (as2 + bs + c)y2 (mod NZ[x, y]).

This shows that Q(σ
[
x
y

]
) belongs to QN (dK), as desired. �
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Definition 2.2. Define an equivalence relation ∼N on the set QN (dK) by

Q ∼N Q′ ⇐⇒ Q′
([

x
y

])
= Q

(
σ

[
x
y

])
for some σ ∈ ±Γ1(N).

Denote by CN (dK) the set of equivalence classes, namely,

CN (dK) = QN (dK)/ ∼N .

Now, we are in need of the following basic lemma for later use.

Lemma 2.3. Let Q(x, y) = ax2 + bxy + cy2 ∈ Q(dK) and σ =
[
r s
u v

]
∈ SL2(Z).

(i) If ω ∈ H, then

[σ(ω), 1] =
1

J (σ, ω)
[ω, 1] where J (σ, ω) = uω + v.

(ii) Let Q′ ∈ Q(dK) such that Q′
([

x
y

])
= Q

(
σ

[
x
y

])
. Then we have

ωQ = σ(ωQ′).

(iii) We have

NK/Q([ωQ, 1]) =
1
a
,

where NK/Q(·) is applied to fractional ideals of K.

Proof.

(i) It follows from the fact σ ∈ SL2(Z) that

[σ(ω), 1] =
[

rω + s

uω + v
, 1
]

=
1

uω + v
[rω + s, uω + v] =

1
J (σ, ω)

[ω, 1].

(ii)

Q

([
ωQ

1

])
= 0 = Q′

([
ωQ′

1

])
= Q

(
σ

[
ωQ′

1

])
= J (σ, ωQ′)2Q

([
σ(ωQ′)

1

])
.

Since ωQ, ωQ′ ∈ H, we conclude ωQ = σ(ωQ′).

(iii)

discK/Q([ωQ, 1]) =
∣∣∣∣(−b +

√
dK)/2a 1

(−b−√dK)/2a 1

∣∣∣∣2 =
dK

a2
.

On the other hand, since

discK/Q([ωQ, 1]) = NK/Q([ωQ, 1])2dK

[9, proposition 13 in Chapter III], we achieve

NK/Q([ωQ, 1]) =
1
a
. �
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Let Cl(N) be the ray class group modulo NOK , namely,

Cl(N) = IK(N)/PK, 1(N)

where IK(N) is the subgroup of IK consisting of fractional ideals of K prime to
NOK and PK, 1(N) is its subgroup consisting of principal fractional ideals λOK

with λ ∈ K∗ such that λ ≡∗ 1 (mod NOK) [4, pp. 136–137].

Definition 2.4. Define a map

φN : CN (dK)→ Cl(N)

[Q] �→ ray class containing [ωQ, 1].

Here, [Q] stands for the form class containing Q ∈ QN (dK).

Remark 2.5. By remark 1.2, we see that φ1 = φ, the classical isomorphism
described in theorem 1.1.

Proposition 2.6. The map φN is well defined.

Proof. First, we shall show that if Q(x, y) = ax2 + bxy + cy2 ∈ QN (dK), then
the fractional ideal [ωQ, 1] is prime to NOK . Observe that a[ωQ, 1] = [(−b +√

dK)/2, a] is an integral ideal of K with

NK/Q(a[ωQ, 1]) = a

by lemma 2.3 (iii). This, together with the fact gcd(N, a) = 1, implies that [ωQ, 1]
is prime to NOK .

Second, we shall show that if Q, Q′ ∈ QN (dK) such that [Q] = [Q′], then [ωQ, 1]
and [ωQ′ , 1] belong to the same ray class in Cl(N). Let

Q′
([

x
y

])
= a′x2 + b′xy + c′y2 = Q

(
σ

[
x
y

])
for some σ =

[
r s
u v

]
∈ ±Γ1(N).

We then derive by lemma 2.3 (i) and (ii) that

[ωQ, 1] = [σ(ωQ′), 1] =
1

uωQ′ + v
[ωQ′ , 1].

Since σ ≡ ±
[
1 s
0 1

]
(mod N) for some s ∈ Z and gcd(N, a′) = 1, we obtain

uωQ′ + v ≡∗ u
−b′ +

√
dK

2a′ + v ≡∗ ±1 (mod NOK).

This yields that [ωQ, 1] and [ωQ′ , 1] belong to the same ray class in Cl(N). �

Proposition 2.7. The map φN is injective.

https://doi.org/10.1017/prm.2018.163 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.163


700 I. S. Eum, J. K. Koo and D. H. Shin

Proof. Suppose that

φN ([Q]) = φN ([Q′]) for some Q, Q′ ∈ QN (dK),

and so

[ωQ, 1] = λ[ωQ′ , 1] for some λ ∈ K∗ such that λ ≡∗ 1 (mod NOK). (2.1)

Then, we get by theorem 1.1 that

Q′
([

x
y

])
= Q

(
σ

[
x
y

])
for some σ =

[
r s
u v

]
∈ SL2(Z).

And, it follows from lemma 2.3 (i), (ii) and (2.1) that

[ωQ′ , 1] = J (σ, ωQ′)[σ(ωQ′), 1] = (uωQ′ + v)[ωQ, 1] = λ(uωQ′ + v)[ωQ′ , 1],

and hence

λ(uωQ′ + v) ∈ O∗
K = {1,−1}.

Since λ ≡∗ 1 (mod NOK), we deduce

uωQ′ + v ≡∗ ±1 (mod NOK). (2.2)

If we let Q′(x, y) = a′x2 + b′xy + c′y2, then we have OK = [(−b′ +
√

dK)/2, 1] and

uωQ′ + v ± 1 =
1
a′

(
u
−b′ +

√
dK

2
+ a′(v ± 1)

)
.

Thus, it follows from the fact gcd(N, a′) = 1 and (2.2) that

u ≡ 0 (mod N) and v ≡ ±1 (mod N).

Moreover, since det(σ) = 1, we obtain σ ∈ ±Γ1(N). Therefore, Q and Q′ belong to
the same class in CN (dK), namely, [Q] = [Q′]. This proves the proposition. �

Proposition 2.8. The map φN is surjective.

Proof. Let C ∈ Cl(N). Take an integral ideal a in C−1, and let ξ1, ξ2 ∈ K∗ such
that

a−1 = [ξ1, ξ2] and ξ =
ξ1

ξ2
∈ H.

Since 1 ∈ a−1, one can write

1 = uξ1 + vξ2 for some u, v ∈ Z. (2.3)

We then claim gcd(N, u, v) = 1. Otherwise, d = gcd(N, u, v) > 1, and so da−1 =
[dξ1, dξ2] contains 1 by (2.3), which implies dOK ⊇ a. But, this contradicts the fact
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that a is prime to NOK . Thus we may take a matrix σ =
[
r s
ũ ṽ

]
in SL2(Z) such

that

ũ ≡ u (mod N) and ṽ ≡ v (mod N) (2.4)

by the surjectivity of SL2(Z)→ SL2(Z/NZ) [13, lemma 1.38]. If we set ω = σ(ξ),
then we derive that

[ω, 1] = [σ(ξ), 1]

=
1

ũξ + ṽ
[ξ, 1] by lemma 2.3 (i)

=
ξ2

ũξ1 + ṽξ2
[ξ1/ξ2, 1] by the fact ξ = ξ1/ξ2

=
1

ũξ1 + ṽξ2
[ξ1, ξ2]

=
1

ũξ1 + ṽξ2
a−1.

Here, we note that

ũξ1 + ṽξ2 − 1 = ũξ1 + ṽξ2 − (uξ1 + vξ2) by (2.3)

= (ũ− u)ξ1 + (ṽ − v)ξ2

∈ Na−1 by (2.4),

from which we see that

ũξ1 + ṽξ2 ≡∗ 1 (mod NOK).

Therefore, [ω, 1] and a−1 belong to the same ray class C. Thus, if we let Q be the
element of QN (dK) satisfying ωQ = ω, then we conclude

φN ([Q]) = C.

�

Theorem 2.9. The set CN (dK) can be regarded as an abelian group isomorphic to
the ray class group Cl(N).

Proof. Define a binary operation · on CN (dK) by

[Q] · [Q′] = φ−1
N (φN ([Q])φN ([Q′])),

where φN ([Q])φN ([Q′]) is the product of ray classes in Cl(N). This binary operation
makes CN (dK) an abelian group isomorphic to Cl(N). We shall describe the group
operation on CN (dK) explicitly in the following remark 2.10 (iv). �
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Figure 1. A commutative diagram of class groups

Remark 2.10.

(i) If M is a positive divisor of N , then we have by definition 2.4 a commutative
diagram of homomorphisms (figure 1):

(ii) Let τK be the element of H induced by the principal form

{
x2 + xy + 1−dK

4 y2 if dK ≡ 1 (mod 4),
x2 − dK

4 y2 if dK ≡ 0 (mod 4).

Since [τK , 1] = OK , the principal form gives rise to the identity element of
CN (dK).

(iii) For a quadratic form Q(x, y) = ax2 + bxy + cy2 ∈ QN (dK), we want to find
its inverse [Q]−1 in CN (dK). Let c = aϕ(N)[ωQ, 1], where ϕ is the Euler
function. Then, c is an integral ideal of K which belongs to the same ray
class as [ωQ, 1] because aϕ(N) ≡ 1 (mod N). Since cc = NK/Q(c)OK and
NK/Q([ωQ, 1]) = 1/a by lemma 2.3 (iii), we get

c−1 =
1

NK/Q(c)
c =

1
aϕ(N)−1

[−ωQ, 1];

and hence we obtain

1 =
1

aϕ(N)−1
(0 · (−ωQ) + aϕ(N)−1 · 1).

Take an element σ =
[
r s
ũ ṽ

]
in SL2(Z) such that

ũ ≡ 0 (mod N) and ṽ ≡ aϕ(N)−1 (mod N).

Now, if we let Q′ ∈ QN (dK) satisfying ωQ′ = σ(−ωQ), then we achieve by the
proof of proposition 2.8 that Q′ and c−1 give the same ray class. Therefore,
[Q′] is the inverse of [Q] in CN (dK).

(iv) Let Q1(x, y)= a1x
2 + b1xy + c1y

2, Q2(x, y) = a2x
2 + b2xy + c2y

2 ∈ QN (dK).
We will describe an algorithm how to find [Q1] · [Q2] explicitly. One may take
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a matrix ρ in SL2(Z) so that Q3(x, y) = a3x
2 + b3xy + c3y

2 defined by

Q3

([
x
y

])
= Q2

(
ρ

[
x
y

])
(2.5)

satisfies gcd(a1, a3, (b1 + b3)/2) = 1 [1, lemmas 2.3 and 2.25]. We then obtain

[ωQ1 , 1][ωQ3 , 1] =
[−B +

√
dK

2a1a3
, 1
]

, (2.6)

where B is an integer for which

B ≡ b1 (mod 2a1), B ≡ b3 (mod 2a3) and B2 ≡ dK (mod 4a1a3)

[1, lemma 3.2 and (7.13)]. (This ideal multiplication gives us the Dirichlet
composition on C1(dK) = C(dK) by theorem 2.9.) On the other hand, we
know by definition 2.4 that φN ([Q1])φN ([Q2]) is the ray class containing the
fractional ideal

c = [ωQ1 , 1][ωQ2 , 1].

Thus, we get that

c = [ωQ1 , 1][ρ(ωQ3), 1] by (2.5) and lemma 2.3 (ii)

=
1

J (ρ, ωQ3)
[ωQ1 , 1][ωQ3 , 1] by lemma 2.3 (i)

=
1

J (ρ, ωQ3)

[−B +
√

dK

2a1a3
, 1
]

by (2.6).

By the fact cc = NK/Q(c)OK and lemma 2.3 (iii) we see that

a = c−1 =
1

NK/Q(c)
c = a1a2c = [−a1ωQ1 , a1][−a2ωQ2 , a2]

is an integral ideal in the ray class (φN ([Q1])φ([Q2]))−1. Now, by using the
argument in the proof of proposition 2.8 one can have Q4 ∈ QN (dK) so
that φN ([Q4]) is the ray class containing a−1 = c. Therefore, we achieve by
theorem 2.9 that

[Q4] = [Q1] · [Q2].

3. Extended form class groups as Galois groups

Let KN be the ray class field of K modulo NOK , that is, KN is the unique abelian
extension of K whose Galois group Gal(KN/K) corresponds to Cl(N) via the
Artin map for modulus NOK . In this section, we shall establish an isomorphism of
CN (dK) onto Gal(KN/K) in a concrete way.
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Let FN be the field of meromorphic modular functions of level N with Fourier
coefficients in Q(ζN ), where ζN = e2πi/N . It is well known that FN is a Galois
extension of F1 with

Gal(FN/F1) 
 GL2(Z/NZ)/{±I2}
[13, theorem 6.6]. In particular, the subgroup SL2(Z/NZ)/{±I2} of GL2(Z/NZ)/
{±I2} acts on the field FN as follows: Let h(τ) ∈ FN and α ∈ SL2(Z/NZ)/{±I2}.
Then we have

h(τ)α = h(α̃(τ)),

where α̃ is any matrix in SL2(Z) that reduces to α via SL2(Z)→
SL2(Z/NZ)/{±I2}.

Definition 3.1. We call a family

{hα(τ)}α∈GL2(Z/NZ)/{±I2}

of functions in FN a Fricke family of level N if

hα(τ)β = hαβ(τ) for all α, β ∈ GL2(Z/NZ)/{±I2}.

Remark 3.2. In their work on modular units and elliptic units, Kubert and Lang
first introduced the notion of a Fricke family [7]. Recently, Jung, Koo and Shin
sharpened and modified the original definition and apply it to generate modular
function fields and ray class fields of imaginary quadratic fields [5].

Remark 3.3. For a Fricke family {hα(τ)}α, let h(τ) = hI2(τ). Then we get

h(τ)α = hI2(τ)α = hI2α(τ) = hα(τ) (α ∈ GL2(Z/NZ)/{±I2}).
This shows that {hα(τ)}α is a family of Galois conjugates of h(τ) = hI2(τ) under
Gal(FN/F1).

For a class C ∈ Cl(N) take an integral ideal a in C−1, and let ξ1, ξ2 ∈ K∗ such
that

a−1 = [ξ1, ξ2] and ξ =
ξ1

ξ2
∈ H.

Let τK be the element of H stated in remark 2.10 (ii). Since OK ⊆ a−1 and ξ ∈ H,
one can write [

τK

1

]
=
[
r s
u v

] [
ξ1

ξ2

]
for some A =

[
r s
u v

]
∈M+

2 (Z). (3.1)

Here, M+
2 (Z) is the set of 2× 2 matrices over Z with positive determinants. It then

follows that [
τK τK

1 1

]
=
[
r s
u v

] [
ξ1 ξ1

ξ2 ξ2

]
.
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Taking determinant and squaring, we obtain

dK = det(A)2discK/Q(a−1) = det(A)2NK/Q(a)−2dK

[9, proposition 13 in Chapter III]. Thus, we deduce det(A) = NK/Q(a) which is
prime to N .

Definition 3.4. Let {hα(τ)}α be a Fricke family of level N , and let C ∈ Cl(N).
Following the above notations, we define

h(C) = hA(ξ).

Here, we regard A as an element of GL2(Z/NZ)/{±I2}.

Proposition 3.5. The value h(C) depends only on the ray class C, not on the
choices of a and ξ1, ξ2.

Proof. First, let a′ be another integral ideal in C−1. Then we have

a′ = λa for some λ ∈ K∗ such that λ ≡∗ 1 (mod NOK),

and so

a′−1 = λ−1a−1 = [λ−1ξ1, λ−1ξ2] and
λ−1ξ1

λ−1ξ2
=

ξ1

ξ2
= ξ ∈ H.

We see from the fact a, a′ = λa ⊆ OK that

(λ− 1)a ⊆ OK .

Moreover, since λ ≡∗ 1 (mod NOK) and a is prime to NOK , we obtain

(λ− 1)a ⊆ NOK ,

and hence

(λ− 1)OK ⊆ Na−1.

Thus we obtain by the fact OK = [τK , 1] that

(λ− 1)τK = N(aξ1 + bξ2) and λ− 1 = N(cξ1 + dξ2) for some a, b, c, d ∈ Z.
(3.2)

On the other hand, since λOK ⊆ λa′−1 = a−1 = [ξ1, ξ2], we may write[
λτK

λ

]
=
[
r′ s′

u′ v′

] [
ξ1

ξ2

]
for some

[
r′ s′

u′ v′

]
∈M+

2 (Z). (3.3)

One can then derive by (3.1), (3.2) and (3.3) that

N

[
a b
c d

] [
ξ1

ξ2

]
=
[
r′ s′

u′ v′

] [
ξ1

ξ2

]
−
[
r s
u v

] [
ξ1

ξ2

]
,

https://doi.org/10.1017/prm.2018.163 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.163


706 I. S. Eum, J. K. Koo and D. H. Shin

which yields [
r′ s′

u′ v′

]
≡
[
r s
u v

]
(mod N).

Second, let ξ′1, ξ′2 ∈ K∗ such that

a−1 = [ξ1, ξ2] = [ξ′1, ξ′2] and ξ′ =
ξ′1
ξ′2
∈ H.

We then express[
τK

1

]
= A′

[
ξ′1
ξ′2

]
and

[
ξ′1
ξ′2

]
= B

[
ξ1

ξ2

]
for some A′ ∈M+

2 (Z) and B ∈ SL2(Z),

and so by (3.1) we deduce

A′
[
ξ′1
ξ′2

]
= A

[
ξ1

ξ2

]
= AB−1

[
ξ′1
ξ′2

]
.

Hence we achieve

ξ′ = B(ξ) and A′ = AB−1.

Therefore we get that

hA′(ξ′) = hAB−1(B(ξ)) = hAB−1(τ)B |τ=ξ = hAB−1B(τ)|τ=ξ = hA(ξ),

which proves the proposition. �

Remark 3.6.

(i) If C0 denotes the identity class in Cl(N), namely, C0 is the ray class containing
OK = [τK , 1], then

h(C0) = hI2(τK).

(ii) The invariant h(C) is an analogue of the Siegel-Ramachandra invariant given
in [7, p. 235] and [11].

Let

Ẑ =
∏

p : primes

Zp and Q̂ = Q⊗Z Ẑ.

We can decompose GL2(Q̂) as

GL2(Q̂) = GL2(Ẑ)GL+
2 (Q) = GL+

2 (Q)GL2(Ẑ), (3.4)

where

GL+
2 (Q) = {γ ∈ GL2(Q) | det(γ) > 0}
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[1, theorem 15.9 (i)] or [8, theorem 1 in Chapter 7]. Furthermore, we have

GL2(Q̂) 

∏

p : primes

′
GL2(Qp), (3.5)

where ′ denotes the restricted product, that is, for almost all p the p-component of
an element of

∏
p GL2(Qp) lies in GL2(Zp) [1, Exercise 15.4]. Let

F =
∞⋃

M=1

FM .

Then, we have a surjective homomorphism

σF : GL2(Q̂)→ Aut(F)

with Ker(σF ) = Q∗ [8, theorems 4 and 6 in Chapter 7] or [13, theorem 6.23]. More
precisely, let h(τ) ∈ FN and γ ∈ GL2(Q̂), and so γ = αβ with α = (αp)p ∈ GL2(Ẑ)
and β ∈ GL+

2 (Q) by (3.4) and (3.5). By using the Chinese remainder theorem, one
can find a unique matrix α̃ in GL2(Z/NZ) satisfying α̃ ≡ αp (mod N) for all primes
p such that p |N . We then obtain

h(τ)σF (γ) = hα̃(β(τ)) (3.6)

[8, theorem 2 in Chapter 7 and p. 79].
For ω ∈ K ∩H, we have an embedding

qω : K∗ → GL+
2 (Q)

defined by

ξ

[
ω
1

]
= qω(ξ)

[
ω
1

]
(ξ ∈ K∗).

By continuity one can extend qω to an embedding

qω, p : K∗
p = (K ⊗Z Zp)∗ → GL2(Qp)

for each prime p, and hence to an embedding of idele groups

qω : K̂∗ = (K ⊗Z Ẑ)∗ → GL2(Q̂)

[8, p. 149]. Let Kab be the maximal abelian extension of K.

Proposition 3.7 Shimura’s reciprocity law. Let s be a finite idele of K and
(s−1, K) be the Artin symbol for s−1 on Kab. Let ω ∈ K ∩H and h(τ) ∈ F which
is finite at ω. Then, h(ω) lies in Kab and satisfies

h(ω)(s
−1, K) = h(τ)σF (qω(s))|τ=ω.

Proof. See [8, theorem 1 in Chapter 11] or [13, theorem 6.31 (i)]. �

https://doi.org/10.1017/prm.2018.163 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.163


708 I. S. Eum, J. K. Koo and D. H. Shin

Remark 3.8. The group of finite ideles of K is defined by

Ifin
K =

∏
p

′
K∗

p where p runs over all prime ideals of OK

=

{
s = (sp) ∈

∏
p

K∗
p | sp ∈ O∗

Kp
for all but finitely many p

}
.

Then, the class field theory of K is summarized by the exact sequence

1 −→ K∗ −→ Ifin
K

( ·, K)−→ Gal(Kab/K) −→ 1

where K∗ maps into Ifin
K through the diagonal embedding ν �→ (ν, ν, ν, . . .) and

( ·, K) is the Artin map [10, Chapter IV]. If we let

OK, p = OK ⊗Z Zp for each prime p,

then we have

OK, p 

∏
p | p
OKp and K̂∗ 
 Ifin

K

[12, Chapter II]. Thus we may identify Ifin
K with K̂∗ for the class field theory of K.

Theorem 3.9. Let {hα(τ)}α be a Fricke family of level N , and let C ∈ Cl(N). If
h(C) is finite, then it belongs to KN and satisfies

h(C)σN (C′−1) = h(CC ′) for all C ′ ∈ Cl(N)

where σN : Cl(N)→ Gal(KN/K) is the Artin map for modulus NOK .

Proof. Let a and a′ be integral ideals in C−1 and C ′−1, respectively. Take
ξ1, ξ2, ξ′′1 , ξ′′2 ∈ K∗ so that

a−1 = [ξ1, ξ2] with ξ =
ξ1

ξ2
∈ H,

and

(aa′)−1 = [ξ′′1 , ξ′′2 ] with ξ′′ =
ξ′′1
ξ′′2
∈ H.

Since OK ⊆ a−1 ⊆ (aa′)−1, we may write[
τK

1

]
= A

[
ξ1

ξ2

]
for some A ∈M+

2 (Z) (3.7)

and [
ξ1

ξ2

]
= B

[
ξ′′1
ξ′′2

]
for some B ∈M+

2 (Z). (3.8)
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Let s be an element of K̂∗ such that for every prime p{
sp = 1 if p |N,
spOK, p = a′p if p � N.

(3.9)

Since a′ is prime to NOK , we get

s−1
p OK, p = a′−1

p for all primes p. (3.10)

Observe that for every prime p

qξ, p(s−1
p )

[
ξ1

ξ2

]
= ξ2qξ, p(s−1

p )
[
ξ
1

]
= ξ2s

−1
p

[
ξ
1

]
= s−1

p

[
ξ1

ξ2

]
.

Thus,

B−1

[
ξ1

ξ2

]
and qξ, p(s−1

p )
[
ξ1

ξ2

]
are bases for the Zp-module (aa′)−1

p by (3.8) and (3.10). So, there exists up ∈
GL2(Zp) such that

qξ, p(s−1
p ) = upB

−1. (3.11)

If we let

u = (up)p ∈
∏

p: primes

GL2(Zp),

then we obtain

qξ(s−1) = uB−1. (3.12)

Now, we derive that

h(C)(s, K) = hA(ξ)(s, K) by definition 3.4

= hA(τ)σF (qξ(s−1))|τ=ξ by proposition 3.7

= hA(τ)σF (uB−1)|τ=ξ by (3.12)

= hAu(B−1(τ))|τ=ξ by (3.6),

where u is regarded as an element of

GL2(Z/NZ)/{±I2}
= hAB(B−1(τ))|τ=ξ because for every prime divisor p of N

we have sp = 1 by (3.9), and so

upB
−1 = I2 by (3.11)

= hAB(B−1(ξ))

= hAB(ξ′′) by (3.8)

= h(CC ′) since
[
τK

1

]
= AB

[
ξ′′1
ξ′′2

]
by (3.7) and (3.8).
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In particular, if C ′ = C−1, then we see that

h(C) = h(CC ′)(s
−1, K) = h(C0)(s

−1, K) = hI2(τK)(s
−1, K)

by remark 3.6 (i). This implies that h(C) belongs to KN because hI2(τK) lies in
KN by proposition 1.4. Since ordp sp = ordp a′ for all primes p such that p � N and
prime ideals p of K lying above p by (3.9), we achieve

(s, K)|KN
= σN (C ′−1).

Therefore, we conclude

h(C)σN (C′−1) = h(CC ′).

�

Let min(τK , Q) = x2 + bKx + cK ∈ Z[x], and so

τK =
−bK +

√
dK

2
.

Theorem 3.10. We have an isomorphism of groups

CN (dK) → Gal(KN/K)

[ax2 + bxy + cy2] �→
(

h(τK) �→ h[ a (b−bK)/2
0 1

] (−b+
√

dK
2a

)
|h(τ) ∈ FN is finite at τK

)
.

Proof. Let Q(x, y) = ax2 + bxy + cy2 ∈ QN (dK). Then, C = φN ([Q]) is the ray
class containing the fractional ideal c = [ωQ, 1]. Since

c−1 =
1

NK/Q(c)
c =

1
a
[−ωQ, 1]

by lemma 2.3 (iii), a = aϕ(N)c−1 is an integral ideal in C−1. It then follows that

a−1 =
1

aϕ(N)
c =

1
aϕ(N)

[ωQ, 1]

and [
τK

1

]
=
[
aϕ(N)+1 aϕ(N)(b− bK)/2

0 aϕ(N)

] [
ωQ/aϕ(N)

1/aϕ(N)

]
.

Since aϕ(N) ≡ 1 (mod N), we have

h(C) = h[ a (b−bK)/2
0 1

](ωQ).

Now, by composing the two isomorphisms

CN (dK)→ Cl(N)

[ax2 + bxy + cy2] �→ ray class containing [(−b +
√

dK)/2a, 1]
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given in theorem 2.9 and

Cl(N)→ Gal(KN/K)

C �→
(
h(τK) = h(C0) �→ h(C0)σN (C−1) = h(C) |h(τ) ∈ FN is finite at τK

)
obtained by theorem 3.9, we establish the theorem. �

4. Explicit construction of extended form class groups

In this section, we shall explain how to find representatives of forms classes in
CN (dK).

Lemma 4.1. Let Q(x, y) = ax2 + bxy + cy2 ∈ QN (dK) and u, v ∈ Z. Then, the
fractional ideal (uωQ + v)OK is prime to NOK if and only if Q(v,−u) is prime
to N .

Proof. We deduce from the fact gcd(N, a) = 1 that

(uωQ + v)OK is prime to NOK

⇐⇒ the integral ideal a(uωQ + v)OK is prime to NOK

⇐⇒ NK/Q(a(uωQ + v)) is prime to N.

Hence, we obtain that

NK/Q(a(uωQ + v)) = a2(uωQ + v)(uωQ + v)

= a2(u2ωQωQ + uv(ωQ + ωQ) + v2)

= a2(u2(c/a) + uv(−b/a) + v2)

= a(cu2 − buv + av2)

= aQ(v,−u).

This proves the lemma. �

Let PK(N) be the subgroup of IK(N) consisting of principal fractional ideals
prime to NOK .

Lemma 4.2. Let Q(x, y) = ax2 + bxy + cy2 ∈ QN (dK) and C ∈ PK(N)/PK,1(N) ⊆
Cl(N). Then we have

C = [(uωQ + v)OK ] for some u, v ∈ Z such that gcd(N, Q(v,−u)) = 1.

Proof. Take an integral ideal c in C. Since OK = [aωQ, 1] by remark 1.2, we get

c = (taωQ + v)OK for some t, v ∈ Z.

Set u = ta. Then, the lemma follows from lemma 4.1. �
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Define an equivalence relation ≡N on Z2 by[
r
s

]
≡N

[
u
v

]
⇐⇒

[
r
s

]
≡ ±

[
u
v

]
(mod N).

Lemma 4.3. Let Q(x, y) = ax2 + bxy + cy2 ∈ QN (dK), and let
[
r
s

]
,

[
u
v

]
∈ Z2 such

that gcd(N, Q(s,−r)) = gcd(N, Q(v,−u)) = 1. Then, (rωQ + s)OK and (uωQ +
v)OK represent the same ray class in Cl(N) if and only if[

r
s

]
≡N

[
u
v

]
.

Proof. By lemma 4.1, both (rωQ + s)OK and (uωQ + v)OK are prime to NOK .
Then we see that

(rωQ + s)OK and (uωQ + v)OK represent the same ray class in Cl(N)

⇐⇒
(

rωQ + s

uωQ + v

)
OK ∈ PK, 1(N)

⇐⇒ rωQ + s

uωQ + v
≡∗ ±1 (mod NOK) because O∗

K = {1,−1}

⇐⇒ a(rωQ + s) ≡∗ ±a(uωQ + v) (mod NOK)

⇐⇒ (r ± u)(aωQ) + (s± v)a ∈ NOK since aωQ ∈ OK

⇐⇒ r ± u ≡ (s± v)a ≡ 0 (mod N) due to NOK = [NaωQ, N ]

⇐⇒
[
r
s

]
≡ ±

[
u
v

]
(mod N) by the fact gcd(N, a) = 1

⇐⇒
[
r
s

]
≡N

[
u
v

]
. �

Theorem 4.4. One can find all distinct elements of CN (dK) through the following
steps.

Step 1. Find all reduced forms Q1, Q2, . . . , Qh in Q(dK).

Step 2. Take a matrix σi in SL2(Z) for which

Q′
i

([
x
y

])
= Qi

(
σi

[
x
y

])
(i = 1, 2, . . . , h)

belongs to QN (dK)

Step 3. For each pair of i = 1, 2, . . . , h and
[[

u
v

]]
∈ Z2/ ≡N such that

gcd(N, Q′
i(v,−u)) = 1, take a matrix ρi, [[ u

v ]] =
[
r s
ũ ṽ

]
in SL2(Z) satisfying

ũ ≡ u (mod N) and ṽ ≡ v (mod N).
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Step 4. Let Q̃i, [[ u
v ]] = Q′

i

(
ρ−1

i, [[ u
v ]]

[
x
y

])
. Then we obtain

CN (dK) =
{[

Q̃i, [[u
v ]]
]
| i = 1, 2, . . . , h and

[[
u
v

]]
∈ Z2/ ≡N such that

gcd(N, Q′
i(v,−u)) = 1

}
.

Proof. Note first that

C(dK) 
 Gal(KN/K)/Gal(KN/HK) and PK(N)/PK, 1(N) 
 Gal(KN/HK).
(4.1)

One can readily find reduced forms Q1, Q2, . . . , Qh in Q(dK) which represent all
classes in C(dK) [1, theorem 2.8]. Furthermore, one can take σi ∈ SL2(Z) for which

Q′
i

([
x
y

])
= Qi

(
σi

[
x
y

])
(i = 1, 2, . . . , h)

belongs to QN (dK) [1, lemmas 2.3 and 2.25]. Then,{[
[ωQ′

i
, 1]
] ∈ Cl(N) | i = 1, 2, . . . , h

}
is a subset of Cl(N) whose image under Cl(N)→ Cl(1) is all of Cl(1). Furthermore,
for each i = 1, 2, . . . , h, we obtain by lemmas 4.1, 4.2 and 4.3 that

PK(N)/PK, 1(N) =
{[

(uωQ′
i
+ v)OK

] | [[u
v

]]
∈ Z2/ ≡N such that

gcd(N, Q′
i(v,−u)) = 1

}
. (4.2)

Now, let C ∈ Cl(N). By (4.1) and (4.2), there is one and only one pair of i ∈
{1, 2, . . . , h} and

[[
u
v

]]
∈ Z2/ ≡N with gcd(N, Q′

i(v,−u)) = 1 so that

C =

[
1

uωQ′
i
+ v

[ωQ′
i
, 1]

]
.

Take a matrix ρi, [[ u
v ]] =

[
r s
ũ ṽ

]
in SL2(Z) satisfying

ũ ≡ u (mod N) and ṽ ≡ v (mod N).

Since

J (ρi, [[u
v ]], ωQ′

i
)

uωQ′
i
+ v

≡∗ 1 (mod NOK),

https://doi.org/10.1017/prm.2018.163 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.163


714 I. S. Eum, J. K. Koo and D. H. Shin

we get by lemma 2.3 (i) that

C =

[
1

J (ρi, [[u
v ]], ωQ′

i
)
[ωQ′

i
, 1]

]
=
[
[ρi, [[u

v ]](ωQ′
i
), 1]

]
.

Therefore we obtain

C = φN ([Q̃]) = φN

([
Q′

i

(
ρ−1

i, [[u
v ]]

[
x
y

])])
.

This completes the proof. �

Example 4.5. Let K = Q(
√−2) and N = 3. There is only one reduced form

Q1 = x2 + 2y2

of discriminant dK = −8. Set Q′
1 = Q1. By theorem 4.4 one can find

C3(−8) =

{
Q′

1

([
1 0
0 1

]−1 [
x
y

])
, Q′

1

([
0 −1
1 0

]−1 [
x
y

])}
= {[x2 + 2y2], [2x2 + y2]},

and hence C3(−8) 
 Z/2Z.

Example 4.6. Let K = Q(
√−5) and N = 2. Then there are two reduced forms of

discriminant dK = −20, namely,

Q1 = x2 + 5y2 and Q2 = 2x2 + 2xy + 3y2.

Let

Q′
1 = Q1 and Q′

2 = Q2

([
0 −1
1 0

] [
x
y

])
= 3x2 − 2xy + 2y2.

By theorem 4.4 we have

C2(−20) =

{
Q1, 1 = Q′

1

([
1 0
0 1

]−1 [
x
y

])
, Q1, 2 = Q′

1

([
0 −1
1 0

]−1 [
x
y

])
,

Q2, 1 = Q′
2

([
1 0
0 1

]−1 [
x
y

])
, Q2, 2 = Q′

2

([
1 0
1 1

]−1 [
x
y

])}
= {[x2 + 5y2], [5x2 + y2], [3x2 − 2xy + 2y2], [7x2 − 6xy + 2y2]}.

Note that

Q = Q2, 2

([
1 0
2 1

] [
x
y

])
= 3x2 + 2xy + 2y2 ∼2 Q2, 2.

We then see by using the argument in remark 2.10 (iii) that

[Q2, 2]−1 = [Q]−1 = [Q2, 1] �= [Q2, 2].

This implies that

C2(−20) 
 Z/4Z.
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Example 4.7. Let K = Q(
√−5) and N = 6. Let Q1 and Q2 be reduced forms of

discriminant dK = −20 stated in example 4.6. In this case, we let

Q′
1 = Q1 and Q′

2 = Q2

([
1 −1
1 0

] [
x
y

])
= 7x2 − 6xy + 2y2.

By theorem 4.4 we obtain

C6(−20) =

{
Q′

1

([
1 0
0 1

]−1 [
x
y

])
, Q′

1

([
0 −1
1 0

]−1 [
x
y

])
,

Q′
1

([
1 1
2 3

]−1 [
x
y

])
, Q′

1

([−1 −1
3 2

]−1 [
x
y

])
,

Q′
2

([
1 0
0 1

]−1 [
x
y

])
, Q′

2

([
0 −1
1 3

]−1 [
x
y

])
,

Q′
2

([
1 1
2 3

]−1 [
x
y

])
, Q′

2

([
1 0
3 1

]−1 [
x
y

])}
= {[x2 + 5y2], [5x2 + y2], [29x2 − 26xy + 6y2], [49x2 + 34xy + 6y2],

[7x2 − 6xy + 2y2], [83x2 + 48xy + 7y2], [107x2 − 80xy + 15y2],

[43x2 − 18xy + 2y2]}.

5. Form class groups for ring class fields

In this section, we shall slightly modify theorems 2.9, 3.10 and 4.4 to construct
form class groups isomorphic to ring class groups of K.

Let O = [NτK , 1] be the order of conductor N in K. Let C(O) be the O-ideal
class group

C(O) = I(O)/P (O),

where I(O) is the group of proper fractional O-ideals and P (O) is its subgroup of
principal O-ideals [1, p. 123]. Since C(O) is isomorphic to IK(N)/PK, Z(N), where

PK, Z(N) = {λOK |λ ∈ K∗ such that λ ≡∗ m (mod NOK) for some m ∈ Z with

gcd(N, m) = 1}

[1, proposition 7.22], there is a unique abelian extension HO of K for which

Gal(HO/K) 
 IK(N)/PK, Z(N) 
 C(O) (5.1)

via the Artin map for modulus NOK . We call this extension HO of K the ring
class field of order O. Let F0, N (Q) be the field of meromorphic modular functions
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Figure 2. Form class groups and Galois groups

for the congruence subgroup

Γ0(N) =
{[

r s
u v

]
∈ SL2(Z) |u ≡ 0 (mod N)

}
with rational Fourier coefficients. Then we have

HO = K (h(τK) |h(τ) ∈ F0, N (Q) is finite at τK) (5.2)

[6, theorem 3.4].
Define an equivalence relation ∼0, N on QN (dK) by

Q ∼0, N Q′ ⇐⇒ Q′
([

x
y

])
= Q

(
σ

[
x
y

])
for some σ ∈ Γ0(N).

Furthermore, we define an equivalence relation ≡Z, N on Z2 by[
r
s

]
≡Z, N

[
u
v

]
⇐⇒

[
r
s

]
≡ m

[
u
v

]
(mod N) for some

m ∈ Z such that gcd(N, m) = 1.

Theorem 5.1. Consider the set of equivalence classes

CO(dK) = QN (dK)/ ∼0, N .

(i) We can regard CO(dK) as a group isomorphic to C(O).

(ii) We have an isomorphism of groups

CO(dK)→ Gal(HO/K)

[ax2 + bxy + cy2] �→ (h(τK) �→ h(ωQ) |h(τ) ∈ F0, N (Q) is finite at τK) .

(iii) We can find all distinct element of CO(dK) through the four steps given in
theorem 4.4 by using the equivalence relation ≡Z, N on Z2 instead of ≡N .

Proof. The result follows from theorems 2.9, 3.10, 4.4, (5.1), (5.2) and the following
commutative diagram (figure 2):

We omit the details. �
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Example 5.2. Let K = Q(
√−23) with dK = −23 and O be the order of conductor

N = 10 in K. By using theorem 5.1 (iii) one can find

CO(−23) = {[23x2 − 23xy + 6y2], [27x2 − 25xy + 6y2], [39x2 − 35xy + 8y2],

[59x2 − 53xy + 12y2], [87x2 − 79xy + 18y2], [x2 + xy + 6y2],

[3x2 − 5xy + 4y2], [31x2 − 15xy + 2y2], [131x2 − 97xy + 18y2],

[303x2 − 251xy + 52y2], [547x2 − 477xy + 104y2], [9x2 + 11xy + 4y2],

[3x2 − 7xy + 6y2], [39x2 − 17xy + 2y2], [179x2 − 131xy + 24y2],

[423x2 − 349xy + 72y2], [771x2 − 671xy + 146y2], [13x2 + 17xy + 6y2]}.

6. The maximal abelian extension unramified outside prime ideals
dividing NOK

Let Kab
N be the maximal abelian extension of K unramified outside prime ideals

dividing NOK . If N = 1, then Kab
N is nothing but the Hilbert class field HK of K.

So, we assume N � 2. As an application, we shall describe Gal(Kab
N /K) in view

of extended form class groups. Here we shall regard Gal(Kab
N /K) as a topological

group equipped with Krull topology: for each ρ ∈ Gal(Kab
N /K), we take the cosets

ρGal(Kab
N /F )

as a basis of open neighbourhoods of ρ, where F runs through all finite (abelian)
subextensions of Kab

N /K [10, § I.1].
If L is a finite abelian extension of K unramified outside prime ideals dividing

NOK , then its conductor also divides N �OK for some � � 1. Thus L is contained
in the ray class field KN� [13, p. 116], and hence we get

Kab
N =

⋃
��1

KN� .

Furthermore, since

KN ⊆ KN2 ⊆ · · · ⊆ KN� ⊆ · · · ,
we obtain the isomorphisms

Gal(Kab
N /K) 
 lim←−

�

Gal(KN�/K) 
 lim←−
�

CN�(dK) (6.1)

of topological groups by theorem 3.10 [14, §2 in Appendix]. Here, the inverse system
{CN�(dK)}� is given by the natural surjections CNn(dK)← CNm(dK) (1 � n � m).
And we observe

QN�(dK) = QN (dK) for all � � 1.

For each Q ∈ QN (dK) and � � 1, denote by

[Q]N� = the form class containing Q in CN�(dK).
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Then we have

lim←−
�

CN�(dK) =

{
([Q1]N , [Q2]N2 , . . . , [Q�]N� , . . .) ∈

∏
�

CN�(dK)
∣∣∣∣

[Q�+1]N� = [Q�]N� for all � � 1} .

Now, define an equivalence relation ∼N∞ on the set QN (dK) by

Q ∼N∞ Q′ ⇐⇒ Q ∼N� Q′ for all � � 1.

For each Q ∈ QN (dK), let [Q]N∞ be the form class containing Q in QN (dK)/ ∼N∞ .
We also define a map

ι : QN (dK)/ ∼N∞ → lim←−
�

CN�(dK)

[Q]N∞ �→ ([Q]N , [Q]N2 , . . . , [Q]N� , . . .).

Then it is straightforward that ι is well defined and injective.

Lemma 6.1. We derive

lim←−
�

CN�(dK) = ι(QN (dK)/ ∼N∞).

Proof. Let ([Q1]N , [Q2]N2 , . . . , [Q�]N� , . . .) ∈ lim←−
�

CN�(dK) be given. For every � �

1, we see that

ι([Q�]N∞) = ([Q�]N , [Q�]N2 , . . . , [Q�]N� , [Q�]N�+1 , . . .)

= ([Q1]N , [Q2]N2 , . . . , [Q�]N� , [Q�]N�+1 , . . .).

Considering the Krull topology on Gal(Kab
N /K) we conclude that ι(QN (dK)/ ∼N∞)

is a dense subset of lim←−�
CN�(dK). �

For T =
[
1 1
0 1

]
, let us define a new equivalence relation ∼T on QN (dK) by

Q ∼T Q′ ⇐⇒ Q′
([

x
y

])
= Q

(
σ

[
x
y

])
for some σ ∈ 〈−I2, T 〉.

Lemma 6.2. Two equivalence relations ∼N∞ and ∼T are the same.

Proof. Let Q(x, y) = ax2 + bxy + cy2 and Q′(x, y) = a′x2 + b′xy + c′y2 be two ele-
ments of QN (dK). Since 〈−I2, T 〉 is contained in ±Γ1(N �) for all � � 1, it is
immediate that if Q ∼T Q′, then Q ∼N∞ Q′.
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Conversely, assume that Q ∼N∞ Q′. Then, for each � � 1, there is σ� ∈ ±Γ1(N �)
such that

Q′
([

x
y

])
= Q

(
σ�

[
x
y

])
.

Hence it follows from

Q

(
σ1

[
x
y

])
= Q

(
σ�

[
x
y

])
that

Q

(
σ1σ

−1
�

[
x
y

])
= Q

([
x
y

])
,

which yields that σ1σ
−1
� belongs to the stabilizer subgroup Stab(Q) (⊆ SL2(Z)) of

Q. Since we are assuming K �= Q(
√−1), Q(

√−3), Stab(Q) = {I2,−I2}; and hence
σ1 = σ� or σ1 = −σ�. Owing to the assumption N � 2 we achieve

σ1 ∈
⋂
��1

±Γ1(N �) = 〈−I2, T 〉.

Therefore, we conclude Q ∼T Q′. �

Lemma 6.3. Let Q(x, y) = ax2 + bxy + cy2 and Q′(x, y) = a′x2 + b′xy + c′y2 be
two elements of QN (dK). Then,

Q ∼T Q′ ⇐⇒ a = a′ and a divides
b− b′

2
.

Proof. Observe that b and b′ have the same parity by the discriminant condition

b2 − 4ac = b′2 − 4a′c′ = dK . (6.2)

We then see that

Q ∼T Q′ ⇐⇒ Q′
([

x
y

])
= Q

([
1 s
0 1

] [
x
y

])
for some s ∈ Z

⇐⇒ a′x2 + b′xy + c′y2 = ax2 + (2ax + b)xy + (a2s + bs + c)y2

for some s ∈ Z

⇐⇒ a′ = a and b′ = 2as + b for some s ∈ Z by (6.2)

⇐⇒ a = a′ and a divides (b− b′)/2. �

Theorem 6.4. The set QN (dK)/ ∼T can be viewed as a dense subset of
Gal(Kab

N /K).
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Proof. Let

φ : lim←−
�

CN�(dK)→ Gal(Kab
N /K)

be the isomorphism obtained in (6.1). Then we get by lemmas 6.1 and 6.2

Gal(Kab
N /K) = (φ ◦ ι)(QN (dK)/ ∼T ).

Moreover, lemma 6.3 enables us to distinguish different classes in QN (dK)/ ∼T

from one another. �
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