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Nonlinear responses of surface waves in rigid square and nearly square tanks
partially filled with liquid subjected to obliquely horizontal, sinusoidal excitation are
investigated theoretically and experimentally. Two predominant modes of sloshing are
significantly coupled nonlinearly because their natural frequencies are nearly identical
resulting in 1:1 internal resonance. Therefore, if only one of these modes is directly
excited, the other mode is indirectly excited due to the nonlinear coupling. In the
nonlinear theoretical analysis, the modal equations of motion are derived for the
two predominant sloshing modes as well as five higher sloshing modes. The linear
viscous terms are incorporated in order to consider the damping effect of sloshing.
The expressions for the frequency response curves are determined using van der
Pol’s method. The influences of the excitation direction and the aspect ratio of
the tank cross-section on the frequency response curves are numerically examined.
Planar and swirl motions of sloshing, and Hopf bifurcations followed by amplitude
modulated motions including chaotic motions, are predicted when the excitation
frequency is close to one of the natural frequencies of the two predominant sloshing
modes. Lyapunov exponents are calculated and reveal the excitation frequency range
over which liquid chaotic motions occur. In addition, bifurcation sets are shown to
clarify the influences of the parameters on the change in the structural stability. The
theoretically predicted results are in good agreement with the measured data, thus the
theoretical analysis was experimentally validated.

Key words: bifurcation, nonlinear dynamical systems, waves/free-surface flows

1. Introduction
There are many mechanical systems that include liquid tanks such as large liquid

storage tanks, liquefied natural gas tankers and liquid fuel rockets (Ibrahim 2005;
Faltinsen & Timokha 2009). Liquid surface wave motion in these tanks is referred
to as sloshing. Large-amplitude sloshing exerts excessive hydrodynamic loads on the
tank walls and there is a higher risk of both damage to the tank and overspill
of the liquid. For example, sloshing sometimes causes severe damage to floating
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roofs and sidewalls of large oil storage tanks. Furthermore, earthquakes may cause
violent, chaotic sloshing in spent-fuel storage pools of nuclear power plants resulting
in contaminated water being spilled. This is because the frequency spectrum of
earthquakes contains a wide range of excitation frequencies. Violent sloshing occurs
if one of these frequencies is near one of the natural frequencies of sloshing modes.
The behaviour of sloshing under random excitation as observed during earthquakes
is extremely complicated, thus it is important to first study sloshing under sinusoidal
excitation as a fundamental examination of liquid sloshing dynamics.

Two-dimensional nonlinear sloshing in rectangular tanks, subjected to horizontal,
harmonic excitation along the tank length, has been investigated (see e.g. Hayama,
Aruga & Watanabe 1983; Hill 2003). Feng (1997) experimentally observed the
transition from steady-state standing waves to non-steady travelling waves and
theoretically proved that the energy exchange between two neighbouring modes
resulted in amplitude-modulated motions (AMMs) even if only one of the modes was
directly excited (Feng 1998). Three-dimensional nonlinear sloshing in a partially filled
rigid rectangular tank, subjected to a combination of pitch, horizontal and vertical
excitation, was investigated by Kimura, Takahara & Ogura (1996). They derived modal
equations of motion, calculated time histories and compared them with experimental
data and later obtained frequency response curves (Takahara & Kimura 2002). The
aspect ratio of the tank cross-section was adjusted to include the case where the
natural frequencies of the two predominant sloshing modes were equal in both papers.
Faltinsen et al. (2000) derived the multidimensional modal system for nonlinear
sloshing in a rectangular tank with finite water depth and showed that time-dependent
coordinates of the liquid elevation and velocity potential were nonlinearly coupled.
Several nonlinear studies were conducted dealing with liquid sloshing in circular
cylindrical tanks subjected to horizontal excitation (Hutton 1963; Abramson 1966;
Miles 1984; Funakoshi & Inoue 1988). Planar and swirl motions, and the transitions
from planar waves to chaotic motions were theoretically examined and compared with
the numerical simulation results and the experimental data. In circular cylindrical
tanks, the predominant modes (1, 0) and (0, 1) have an identical natural frequency
and are degenerated, though not fixed to the tank. Thus when subjected to horizontal
excitation perpendicular to the nodal diameter of the (1, 0) mode, only this mode is
excited, and the excitation direction does not affect the dynamic behaviour of sloshing.
Sloshing dynamics in square tanks at first appear to be similar to those in circular
cylindrical tanks; however, depending on the excitation direction, both (1, 0) and (0, 1)
modes may be directly excited because they are fixed to the tank. Accordingly, more
complicated behaviours of sloshing are expected to be observed in square and nearly
square tanks. The influence of the excitation direction on liquid sloshing in square and
nearly square tanks is one of the key elements that will be focused on in the present
paper because it has not been thoroughly examined in the fluid dynamics literature.

Faltinsen, Rognebakke & Timokha (2003, 2005, 2006a,b) conducted a series
of investigations of nonlinear sloshing in a square-base basin tank, subjected to
surge/sway/roll/pitch harmonic excitation. Faltinsen et al. (2003) extended the two-
dimensional modelling of Faltinsen et al. (2000) to apply to three-dimensional
nonlinear sloshing analysis and showed the theoretical frequency response curves.
Two primary modes were assumed to be dominant and three wave patterns were
observed: ‘planar’/‘diagonal’, ‘swirling’ and ‘square’-like resonant standing waves.
It was concluded that higher sloshing modes in steady-state and transient flows
influence three-dimensional sloshing dynamics. However, because of a discrepancy
caused by nonlinear amplification of higher modes due to internal resonance, Faltinsen
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et al. (2005) improved the accuracy of the theoretical analysis. Faltinsen et al.
(2006a) found that small perturbations of the aspect ratio of the tank cross-section
significantly influenced the frequency response curves. Further investigation on the
transition from steady-state waves to ‘swirling’ waves and ‘beating’, including a
discussion on chaotic waves, was performed by Faltinsen et al. (2006b). Although
the damping of higher modes was found to be difficult to model, and ‘adaptive modal
modelling’ was proposed as a possible means of including the linear damping effect,
the frequency response curves do not reflect the influence of the damping. Royon-
Lebeaud, Hopfinger & Cartellier (2007) experimentally investigated sloshing behaviour
in a square tank subjected to horizontal harmonic excitation along its length. They
observed planar, swirling, and breaking waves as well as chaotic sloshing depending
on the excitation frequency and excitation amplitude. Yoshimatsu & Funakoshi (2001)
conducted detailed analysis for a square tank subjected to horizontal excitation and
explored the influence of the excitation direction at various angles. They found that
swirl motion appeared and Hopf bifurcation occurred; however, only two sloshing
modes were considered in the nonlinear analysis. Because the response curves were
shown in terms of vibration energy generated by the two modes, it was difficult
to distinguish the response of each sloshing mode. In addition, the validity of
the theoretical results was not experimentally confirmed. Ikeda & Ibrahim (2008)
examined the same system (Yoshimatsu & Funakoshi 2001) and used potential theory
to derive the modal equations of motion, taking into consideration the nonlinearity and
damping effect of sloshing. Although they showed the theoretical frequency response
curves, there was a discrepancy between them and the experimental data, possibly
because additional higher sloshing modes were not considered in the theoretical
analysis.

The present study investigates the nonlinear responses of sloshing in a rigid square
tank subjected to obliquely horizontal, harmonic excitation. The present work improves
the accuracy of the theoretical analysis which was conducted by Ikeda & Ibrahim
(2008). Galerkin’s method is employed to derive the modal equations of motion for
seven sloshing modes: predominant modes (1, 0) and (0, 1), higher modes (2, 0),
(0, 2), (3, 0) and (0, 3), and the additional higher mode (1, 1) which had not
been considered previously. Van der Pol’s method (Stoker 1950) is applied to the
modal equations of motion to determine the frequency response curves for sloshing.
Because the theoretical analysis is performed taking into account the damping effects
of sloshing, the response curves are superior for revealing the behaviours of nonlinear
sloshing such as planar and swirl motions and AMMs including chaotic motions. It
is also found that higher sloshing mode (1, 1) plays a significant role in improving
the accuracy of the frequency response curves. In real systems, the direction of the
external horizontal excitation is arbitrary in relation to the liquid tank and thus the
influence of the excitation direction is thoroughly investigated by showing response
curves and calculating bifurcation sets. Furthermore perfectly square tanks do not exist
in reality due to manufacturing errors, thus the influence of the aspect ratio of the tank
cross-section is also examined. Experiments were conducted to confirm the validity of
the theoretical analysis.

2. Theoretical analysis
2.1. Equations of motion

Figure 1 shows a rigid, nearly square tank with a cross-section area of width times
breadth l × w, partially filled with liquid to the level h. The Cartesian coordinate
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) Theoretical model:
(a) top view, (b) side view.

system, O-xyz, is fixed to the tank, where the xy-plane coincides with the undisturbed
liquid free surface. The tank is subjected to horizontal excitation a cosω t, where a
is excitation amplitude, ω excitation frequency, t time, and the direction of excitation
deviates from the x-axis of the tank by angle α. The translation (x0, y0) of the tank
motion can be given by

x0 = a cosα cosω t, y0 = a sinα cosω t. (2.1)

When α does not equal zero, the tank is simultaneously subjected to two kinds of
horizontal excitation x0 and y0 in the x- and y-directions, respectively. The liquid
elevation at position (x, y) is designated by η(x, y, t). In the theoretical analysis, the
liquid is assumed to be a perfect fluid; hence the velocity potential φ(x, y, z, t) can
be introduced in order to represent the liquid motion relative to the tank. P is the
fluid pressure, and ρ is the fluid density. The damping effect of sloshing will be
considered by adding the viscous damping terms to the modal equations for sloshing.
The following dimensionless quantities are introduced:

a′ = a/l, h′ = h/l, w′ = w/l, x′0 = x0/l, y′0 = y0/l, z′ = z/l, η′ = η/l, (2.2)

φ′ = φ/(l2p10), P′ = P/(ρl2p2
10), λ′ij = λijl, (2.3)

ω′ = ω/p10, p′ij = pij/p10, t′ = p10t, (2.4)

where

λij = π
√
(i/l)2+ (j/w)2, pij =

√
gλij tanh(λijh) (2.5)

where g is the acceleration due to gravity, and pij represents the natural frequency of
the (i, j) sloshing mode. Figures 2(a) and 2(b) show the shapes of (1, 0) and (0, 1)
sloshing modes, respectively. The nodal lines of these modes coincide with the y- and
x-axes, respectively. It should be noted that all primes in (2.2) to (2.4) will hereafter be
omitted for simplicity although the quantities are still dimensionless in the theoretical
analysis and results.

Laplace’s equation and Euler’s energy equation for the fluid motion are expressed in
dimensionless form, respectively, as

∂2φ

∂x2
+ ∂

2φ

∂y2
+ ∂

2φ

∂z2
= 0, (2.6)
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FIGURE 2. (Colour online) Mode shapes: (a) (1, 0) mode; (b) (0, 1) mode.

∂φ

∂t
+ 1

2

[(
∂φ

∂x

)2

+
(
∂φ

∂y

)2

+
(
∂φ

∂z

)2
]
+ z

ψ10
+ P=−ẍ0x− ÿ0y, (2.7)

where ψ10 = λ10 tanh(λ10h). The boundary conditions for the fluid velocity at the tank
walls and bottom are given as

∂φ

∂x
= 0 (at x=±1/2),

∂φ

∂y
= 0 (at y=±w/2),

∂φ

∂z
= 0 (at z=−h).

 (2.8)

In addition, the kinematic boundary condition at the liquid free surface is given as

∂φ

∂z
= ∂η
∂t
+ ∂φ
∂x

∂η

∂x
+ ∂φ
∂y

∂η

∂y
(at z= η). (2.9)

Because P = 0 at the liquid free surface, the boundary condition for (2.7) is obtained
as

∂φ

∂t
+ 1

2

[(
∂φ

∂x

)2

+
(
∂φ

∂y

)2

+
(
∂φ

∂z

)2
]
+ z

ψ10
=−ẍ0x− ÿ0y (at z= η). (2.10)

Equations (2.6) to (2.10) constitute the boundary value problem for liquid sloshing in
square and nearly square tanks. The next section will be devoted to developing the
modal equations of motion for the two predominant sloshing modes in addition to five
higher modes.

2.2. Modal equations of motion for sloshing

Galerkin’s method is used to search for the solutions of the forced oscillations for the
nonlinear system. Here φ and η are assumed in terms of the eigenfunctions which can
be obtained from the corresponding linear system, as follows:

φ(x, y, z, t)=
∞∑

i=0

∞∑
j=0

aij(t)Uij(x, y) cosh{λij(z+ h)}/ cosh(λijh), (2.11a)

η(x, y, t)=
∞∑

i=0

∞∑
j=0

bij(t)Uij(x, y), (2.11b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

13
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.133


Nonlinear liquid sloshing in a square tank subjected to horizontal excitation 309

where Uij(x, y) represent eigenfunctions and are expressed by

Uij(x, y)=


sin(λi0x) sin(λ0jy) (i= 2m+ 1, j= 2n+ 1),
sin(λi0x) cos(λ0jy) (i= 2m+ 1, j= 2n),
cos(λi0x) sin(λ0jy) (i= 2m, j= 2n+ 1),
cos(λi0x) cos(λ0jy) (i= 2m, j= 2n),

(2.12)

where m and n = 0, 1, 2, . . . . Note that λij in (2.12) represent dimensionless quantities
given by (2.3) and (2.5); aij(t) and bij(t) in (2.11a,b) are unknown functions of time.
The coordinates x and y on the right-hand sides of (2.7) and (2.10) can be expanded in
terms of the eigenfunctions of (2.12) as follows:

x=
∞∑

i=1

[ri0Ui0(x, y)], y=
∞∑

j=1

[r0jU0j(x, y)], (2.13)

where the coefficients ri0 and r0j are given as

ri0 =


2
∫ 1/2

−1/2
x sin(λi0x) dx= (−1)(i−1)/2 4

i2π
2 (i= 1, 3, 5, . . .)

2
∫ 1/2

−1/2
x cos(λi0x) dx= 0 (i= 0, 2, 4, . . .),

r0j =


2
w

∫ w/2

−w/2
y sin(λ0jy) dy= (−1)(j−1)/2 4w

i2π
2 (j= 1, 3, 5, . . .)

2
w

∫ w/2

−w/2
y cos(λ0jy) dy= 0 (j= 0, 2, 4, . . .).


(2.14)

ε is introduced as a bookkeeping parameter to determine the approximate solutions
when sloshing modes (1, 0) and (0, 1) predominantly appear. Therefore, the orders of
aij(t) and bij(t) in (2.11a,b), x0 and y0 in (2.10), and the system parameters, ζij and a,
are assumed as follows:

a10, a01, b10, ζij ≈ O(ε1/3), (2.15a)

a20, a02, a30, a03, a11, b20, b02, b30, b03, b11 ≈ O(ε2/3), (2.15b)
ai0, a0j, aij, bi0, b0j, bij, x0, y0, a≈ O(ε3/3) (i > 4, j > 4). (2.15c)

Equations (2.15) partially follow Moiseev’s ordering (Moiseev 1958) where (1, 0) and
(0, 1) modes are of O(ε1/3), (2, 0), (1, 1) and (0, 2) modes are of O(ε2/3), and (3, 0),
(2, 1), (1, 2) and (0, 3) are of O(ε3/3). However, the orders of (3, 0) and (0, 3) modes
are amplified to O(ε2/3), and modes (1, 2) and (2, 1) are not considered. Furthermore,
the damping ratios ζij are assumed to be of O(ε1/3) so that modal equations for
all modes include the damping effect. This ordering is preferred to obtain accurate
theoretical results that agree with the corresponding experimental data as shown by
Ikeda & Nakagawa (1997).

Equations (2.9) and (2.10) are expanded into Taylor’s series about η = 0, and
(2.11a,b) are substituted into the two resulting equations. By equating the coefficients
of sin(λ10x), sin(λ01y), cos(λ20x), cos(λ02y), sin(λ30x), sin(λ03y) and sin(λ10x) sin(λ01y)
on both sides of these two equations within the accuracy of O(ε), and eliminating
aij from the resulting equations, one can obtain the modal equations of motion for
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sloshing:

b̈10 + 2ζ10ḃ10 + b10 + H1(b10, b01, b20, b11)= ψ10r10aω2 cosα cosω t,
b̈01 + 2ζ01ω01ḃ01 + ω2

01b01 + H2(b10, b01, b02, b11)= ψ01r01aω2 sinα cosω t,
b̈20 + 2ζ20ω20ḃ20 + ω2

20b20 + H3(b10, b01, b30)= 0,
b̈02 + 2ζ02ω02ḃ02 + ω2

02b02 + H4(b10, b01, b03)= 0,
b̈30 + 2ζ30ω30ḃ30 + ω2

30b30 + H5(b10, b01, b20)= ψ30r30aω2 cosα cosω t,
b̈03 + 2ζ03ω03ḃ03 + ω2

03b03 + H6(b10, b01, b02)= ψ03r03aω2 sinα cosω t,
b̈11 + 2ζ11ω11ḃ11 + ω2

11b11 + H7(b10, b01)= 0,


(2.16)

where ω2
ij = ψij/ψ10 and ψij = λij tanh(λijh). Note that linear viscous damping terms

2ζijωijḃij are incorporated in (2.16) to consider the damping effect of sloshing. If
Moiseev’s ordering is used, the damping terms are not included in the modal equations
for (3, 0) and (0, 3) modes. The nonlinear terms Hm (m = 1, 2, . . . , 7) in (2.16) are
given in the Appendix. Because the nonlinear terms of b10 and b01 are included in
H1 and H2, the predominant modes (1, 0) and (0, 1) are nonlinearly coupled and
form an autoparametric system. Higher mode (1, 1) is nonlinearly coupled with both
predominant modes and is thus expected to play a significant role in nonlinear sloshing
dynamics. Higher modes (2, 0) and (0, 2) are nonlinearly coupled with (1, 0) and
(0, 1) modes, respectively. Note that higher modes (3, 0) and (0, 3) are nonlinearly
coupled with (2, 0) and (0, 2) modes, respectively, but do not directly influence the
predominant modes. Additionally, higher modes (1, 2) and (2, 1) could be considered,
but are also not nonlinearly coupled with the two predominant modes and have thus
been omitted in the present analysis.

2.3. Frequency response curves
Van der Pol’s method (Stoker 1950) is employed to determine the frequency response
curves for liquid sloshing. According to the fast Fourier transform (FFT) results of the
time histories obtained by numerically integrating (2.16), the solution of the harmonic
oscillation near the excitation frequency ω ∼= p10

∼= p01 can be assumed in the following
expression:

b10 = u1 cosωt − v1 sinωt + e1 cos 3ωt − f1 sin 3ωt,
b01 = u2 cosωt − v2 sinωt + e2 cos 3ωt − f2 sin 3ωt,
b20 = e3 cos 2ωt − f3 sin 2ωt + R20,

b02 = e4 cos 2ωt − f4 sin 2ωt + R02,

b30 = e5 cosωt − f5 sinωt + e6 cos 3ωt − f6 sin 3ωt,
b03 = e7 cosωt − f7 sinωt + e8 cos 3ωt − f8 sin 3ωt,
b11 = e9 cos 2ωt − f9 sin 2ωt + R11.


(2.17)

The terms of the frequency 2ω are included in b11 of (2.17) because they become
significantly large for low liquid levels. The amplitudes and phase angles of (1, 0) and
(0, 1) modes for the primary harmonic oscillation can be given by

A10 =
√

u2
1 + v2

1, A01 =
√

u2
2 + v2

2, φ10 = tan−1(v1/u1), φ01 = tan−1(v2/u2). (2.18)

The amplitudes ui, vi, ej and fj (i = 1, 2; j = 1, 2, . . . , 9) and the constant terms R20,
R02 and R11 in (2.17) are assumed to vary slowly over time and hence they are
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assumed to have the following orders:

ui, vi, ζij = O(ε1/3), ej, fj,R20,R02,R11 = O(ε2/3),

u̇i, v̇i = O(ε3/3), ėj, ḟj, Ṙ20, Ṙ02, Ṙ11 = O(ε4/3),

üi, v̈i = O(ε5/3), ëj, f̈j, R̈20, R̈02, R̈11 = O(ε2).

 (2.19)

Substituting (2.17) into (2.16), and equating the coefficients of the terms of the
frequencies ω, 2ω, 3ω and the constant terms within the accuracy of O(ε) according to
the orders listed in (2.19), gives

u̇1 = G1(ui, vi, ej, fj,R20,R11),

v̇1 = G2(ui, vi, ej, fj,R20,R11),

u̇2 = G3(ui, vi, ej, fj,R02,R11),

v̇2 = G4(ui, vi, ej, fj,R02,R11),

Gk(ui, vi, ej, fj,R20,R02,R11)= 0,


(2.20)

where Gn (n = 1, 2, . . . , 25) represent the nonlinear terms consisting of the variables
shown in the parentheses. Gk (k = 5, 6, . . . , 25) are linear polynomials in terms of
ej, fj,R20, R02 and R11. The complete expressions of Gn are omitted here. The analytical
steady-state solutions of (2.20) can be numerically calculated by applying Brent’s
method for the nonlinear, simultaneous equations obtained by setting u̇i and v̇i in
(2.20) to zero. In addition, a stability analysis for the steady-state solutions can be
conducted by introducing small deviations from them, following the same procedure
as Ikeda & Nakagawa (1997). Theoretical response curves can then be plotted using
(2.18) to estimate the response amplitudes and phase angles.

3. Numerical results
In the following numerical calculations, the values of the system parameters are

given in such a way that the natural frequencies of (1, 0) and (0, 1) modes are equal
or nearly equal to the excitation frequency ω, i.e. p10

∼= p01
∼= ω ∼= 1. This condition

implies 1:1 internal resonance as well as external primary resonance.

3.1. Frequency response curves
Figure 3(a) shows the amplitude–frequency responses for A10 and A01 of (1, 0) and
(0, 1) sloshing modes when the excitation direction is parallel to the tank length.
The values of the system parameters are h = 0.6, w = 1.0, ζij = 0.013, a = 0.0075,
and α = 0◦ and the tank is square so the natural frequencies of (1, 0) and (0, 1)
modes are equal to 1.0. The solid and broken lines represent the stable and unstable
steady-state solutions, respectively. The symbol ‘•’ represents the constant amplitude
of the frequency component ω which is calculated using the FFT analysis of the
time histories obtained from the numerical simulation of (2.16). The vertical thin line
represents the magnitude of the modulated amplitudes of the AMMs obtained from
the numerical simulation. It is found that the theoretical response curves are in good
agreement with the simulation results. When α = 0◦, only (1, 0) mode is directly
excited and branch A1Q1P1C1D1 is typical of a soft nonlinear Duffing oscillator
similar to rectangular tank results (Hayama et al. 1983; Faltinsen et al. 2000). Branch
A2Q2P2C2D2 of (0, 1) mode, which is stable with zero amplitude for rectangular
tanks, consists of both stable and unstable solutions. Furthermore, new branch
B2E2F2I2C2 emerges and the corresponding branch B1E1F1I1C1 appears, and branches
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FIGURE 3. Frequency response curves of sloshing modes (1, 0) and (0, 1) for h = 0.6,
w = 1.0, ζij = 0.013, a = 0.0075 and α = 0◦: (a) modal amplitudes A10 and A01; (b) modal
phase angles φ10 and φ01.

PiCi (i = 1, 2) are unstable. This is because the (0, 1) mode is also simultaneously
excited due to the nonlinear coupling. For the purpose of this paper, this effect will be
known as the ‘autoparametric interaction’, and appears over the excitation frequency
range BiCi. Further investigating branches BiEiFiCi, it is found that branches EiGi,
HiFi and IiCi are stable and branches GiHi and FiIi are unstable. When the initial
conditions are chosen from the steady-state solutions of unstable branches GiHi in the
numerical simulations, AMMs are observed. Therefore, it is found that points Gi and
Hi are Hopf bifurcation points. There is a small gap near points Gi where AMMs
do not appear because the amplitudes jump to the stable branches AiQi. Furthermore,
it should be noted that when the excitation frequency increases, stable branch A2Q2

overlaps unstable branch Q2P2C2, and a jump phenomenon occurs at point Q2, not
at pitchfork bifurcation point B2 as reported by Ikeda (2003). Figure 3(b) shows the
frequency response curves for phase angles φ10 and φ01 of (1, 0) and (0, 1) modes,
which correspond to the amplitude curves of figure 3(a). The symbol ‘•’ represents
the constant phase angle of the frequency component ω which is calculated by an FFT
analysis of the time histories. Branch A1Q1P1C1D1 is similar to the phase response
curve of the Duffing system. The corresponding branch does not exist for φ01, because
the amplitude of mode (0, 1) is zero and hence its phase angle cannot be defined.
Branch B1E1F1I1C1 appears in φ10, whereas an additional branch B′2E′2F′2I′2C′2 also
appears at a distance of π from branch B2E2F2I2C2 in φ01 in figure 3(b). The vertical
thin line represents the magnitude of the modulated phase angles of the AMMs. They
are plotted only for branches GiHi. It is found that the theoretical response curves are
also in good agreement with the simulation results.

In order to thoroughly understand the sloshing behaviour shown in figures 3(a)
and 3(b), time histories, orbits of the liquid surface (Lissajous curves), and Poincaré
maps are shown in figure 4. Here ηx and ηy represent the liquid surface elevations
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FIGURE 4. For caption see next page.

at the tank walls shown by the symbol ‘ ’ in figure 1 and are calculated using
(2.11b) and (2.16). The coordinates of ‘ ’ are located above the x- and y-axes at
(x, y) = (1/2, 0) and (x, y) = (0,w/2). Although ηx includes the components of (1, 0)
and higher modes, ηx is almost the same as b10 because the nodal line of sloshing
mode (1, 0) coincides with the y-axis. The same is true for ηy in terms of (0, 1) mode.
The time histories of the phase angles φ10 and φ01 are also shown in figure 4. The time
history of φ10 (or φ01) can be calculated using the instant values of b10 and ḃ10 (or b01

and ḃ01) during the numerical integration of (2.16) as follows:

φ10 = tan−1

{
−b10 sinω t − (ḃ10/ω) cosω t

b10 cosω t − (ḃ10/ω) sinω t

}
,

φ01 = tan−1

{
−b01 sinω t − (ḃ01/ω) cosω t

b01 cosω t − (ḃ01/ω) sinω t

}
.

 (3.1)

Because the orders of the higher-frequency components included in b10 and ḃ10 are
negligible, (3.1) is a reasonable approximation. Lissajous curves are also shown on
the (b10, b01) plane to examine the motion of the liquid surface. Figures 4(a) and
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FIGURE 4. (cntd). Stationary time histories of the liquid surface elevations ηx and ηy, modal
amplitudes b10 and b01, phase angles φ10 and φ01, orbits of the liquid surface (Lissajous
curves), and Poincaré maps for figures 3(a) and 3(b): (a) counterclockwise swirl at ω = 1.02;
(b) clockwise swirl at ω = 1.02; (c) AMMs at ω = 0.975; (d) AMMs at ω = 0.963; (e)
chaotic vibrations at ω = 0.953; (f ) AMMs at ω = 0.950; (g) nearly diagonal mode at
ω = 0.930.

4(b) show the time histories at ω = 1.02 when the initial conditions are chosen from
branches H2F2 and H′2F′2 of figures 3(a) and 3(b), respectively. The amplitudes of b10

and b01 are constant. However, the phase angles φ10 and φ01 fluctuate slightly, because
higher-frequency components are included in b10 and ḃ10 (or b01 and ḃ01). φ10

∼=−π/2
and φ01

∼= −π in figure 4(a), whereas φ10
∼= −π/2 and φ01

∼= 0 in figure 4(b). It is
also found from the Lissajous curves that the liquid surface swirls counterclockwise
in figure 4(a) but clockwise in figure 4(b). Figure 4(c–f ) show the time histories,
orbits and Poincaré maps of the AMMs at ω = 0.975, 0.963, 0.953 and 0.950 on
branches GiHi of figures 3(a) and 3(b). The orbits in figure 4(c–f ) are drawn for the
time interval t = 6000–6500. Poincaré maps are plotted on the (b10, ḃ10) and (b01, ḃ01)

planes for sufficiently long periods of time. The time histories of the phase angle
φ10 are modulated between zero and −π in figure 4(c–f ). On the other hand, the
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FIGURE 5. (Colour online) Lyapunov exponents corresponding to figure 3(a). —— Largest,
– – – 2nd largest, and - - - - 3rd largest.

time histories of the phase angle φ01 are modulated between zero and −π in figures
4(c) and 4(d) but change from −π to π in figures 4(e) and 4(f ). It should also be
noted that the envelopes of b10 and b01 and their phase angles change periodically in
figure 4(c,d,f ), whereas they change irregularly in figure 4(e) and are thus chaotic. As
the excitation frequency decreases, Poincaré maps exhibit a single-loop (i.e. period-
one modulation) in figure 4(c), then a double-loop (i.e. period-two modulation) in
figure 4(d), then chaotic attractors in figure 4(e), and finally complicated loops in
figure 4(f ). Figure 4(g) shows the time histories at ω = 0.930 for branches EiGi. The
amplitudes and phase angles of b10 and b01 are slightly different from each other.
It is found from the Lissajous curve that the liquid surface swirls counterclockwise.
Compared with figure 4(a), the Lissajous curve shape is almost a straight line at 45◦

from the b10-axis in figure 4(g). This implies that the nodal line of sloshing is located
close to the diagonal line of the tank cross-section. Here, this type of sloshing is
referred to as the ‘diagonal mode’.

Figure 5 shows the three largest Lyapunov exponents which are calculated using
the method of Wolf et al. (1985). The calculation is conducted in such a way that
the excitation frequency gradually decreases from ω = 1.0 along branches FiHiGiEi

in figures 3(a) and 3(b). The positions marked ‘c’–‘f ’ correspond to the excitation
frequencies in figure 4(c–f ), respectively. Point ‘H’ represents a Hopf bifurcation
point, after which periodic AMMs appear at points ‘c’, ‘d’ and ‘f ’ where the largest
Lyapunov exponent at each point is zero. The largest Lyapunov exponent is positive at
point ‘e,’ so it proves that a chaotic motion appears in figure 4(e). As the excitation
frequency decreases, a jump phenomenon occurs at point ‘J’ where the amplitude
jumps from AMMs to stable branches AiQi; thus the largest Lyapunov exponent
becomes negative after point ‘J ’.

Figure 6 shows a sequence of three-dimensional distribution charts of the maximum
liquid surface elevations ηmax for ω = 1.02, 0.963, 0.953 and 0.930. The purpose of
this sequence is to assess the risk of liquid overspill. The values of the parameters
are the same as in figure 3(a). Figure 6(a) corresponds to the case of figure 4(a) at
ω = 1.02. Even though the amplitudes of b10 and b01 are comparatively large, ηmax is
comparatively low because there is a phase difference of about π/2 between b10 and
b01. Thus the risk of liquid overspill is low. Figures 6(b) and 6(c) correspond to the
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FIGURE 6. (Colour online) Distribution charts of the maximum liquid surface elevation ηmax
for figure 3(a): (a) ω = 1.02; (b) ω = 0.963; (c) ω = 0.953; and (d) ω = 0.930.

cases of periodic and chaotic AMMs as shown in figures 4(d) and 4(e), respectively.
The liquid elevations in figure 6(c) are higher at the corners of the tank than those in
figure 6(b). Figure 6(d) corresponds to the case of figure 4(g) and the liquid elevations
become significantly large at two opposite corners because b10 and b01 oscillate in
phase. From these charts, chaotic motions in figure 6(c) increase the risk of overspill
at all four tank corners, while the diagonal mode in figure 6(d) increases it at two
opposite corners.

3.2. Influence of the excitation direction
In real systems, liquid tanks are not always excited in a definite, horizontal direction.
Therefore, it is important to investigate the influence of the excitation direction on
nonlinear liquid sloshing. Figures 7(a)–7(c) show the amplitude–frequency response
curves for different values of the excitation direction, α = 5◦, 30◦ and 45◦. The
values of the other parameters are the same as in figure 3(a). Note that when
α 6= 0◦, the tank is subjected to both a cosα cosωt and a sinα cosωt in the x- and
y-directions, respectively. Therefore, (1, 0) and (0, 1) modes are not only coupled
autoparametrically, but also are both directly excited by the external excitation.

Figure 7(a) shows the amplitude response curves for α = 5◦. The amplitudes at
points A2, B2, C2, D2, P2 and Q2 are not zero, because (0, 1) mode is also directly
excited by a sinα cosωt. A new loop-branch P2B2e2f2P2 emerges apart from branch
A2Q2E2F2C2D2. Points Bi and Ci are saddle-node bifurcation points as opposed to the
pitchfork bifurcation points in figure 3(a). Although vertical thin lines for the AMMs
are drawn only for the branches GiHi, AMMs also appear at intervals gihi. Figure 7(b)
shows the amplitude response curves for α = 30◦. As the value of α increases, points
Pi shift to the right and in contrast, points Ei shift to the left. Because points Fi

and fi, appear at nearly the same excitation frequencies, the lengths of branches Pifi
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FIGURE 7. Amplitude–frequency response curves of sloshing modes (1, 0) and (0, 1) for
h= 0.6, w= 1.0, a= 0.0075, and ζij = 0.013: (a) α = 5◦; (b) α = 30◦; and (c) α = 45◦.

shorten, whereas the lengths of branches EiFi elongate. Saddle-node bifurcation points
Bi and points ei do not appear. When α = 45◦ in figure 7(c), the shapes of the
amplitude response curves of (1, 0) and (0, 1) modes are identical, because they are
both excited equally by a cosωt/

√
2. However, branch G1H1F1C1 for A10 corresponds

to branch G2H2F2C2 for A01 and therefore (1, 0) and (0, 1) modes oscillate at different
amplitudes. RiCi are unstable branches with pitchfork bifurcation points Ri and Ci.
From these points, branches RiGiHiFiCi and RiPihifiCi emerge and the autoparametric
interaction occurs in branches RiCi. AMMs appear near points Hi on branches GiHi,
but they do not appear near points Gi because the amplitudes jump to the stable
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FIGURE 8. Stationary time histories of the liquid surface elevations ηx and ηy, modal
amplitudes b10 and b01, phase angles φ10 and φ01, orbits of the liquid surface (Lissajous
curves), and Poincaré maps for figure 7(c): (a) AMMs at ω = 0.970; (b) diagonal mode at
ω = 0.900.

branches EiRi. When 45◦ < α < 90◦, the response curves of (1, 0) and (0, 1) modes
are inverted. For example, for α = 60◦, the frequency response curves for the (1, 0)
and (0, 1) modes are the same as those for (0, 1) and (1, 0) modes for α = 30◦,
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FIGURE 9. (Colour online) Distribution charts of the maximum liquid surface elevation ηmax
for figure 7(c): (a) ω = 0.970; (b) ω = 0.900.

respectively. When α exceeds 90◦, the response curves of (1, 0) and (0, 1) modes are
identical to the corresponding response curves for 0◦ < α < 90◦, respectively.

In order to understand the results of figure 7(c) in more detail, the corresponding
time histories are shown in figure 8. The time histories in figure 8(a) exhibit periodic
AMMs in both amplitudes and phase angles of (1, 0) and (0, 1) modes at ω = 0.97.
Poincaré maps on the (b10, ḃ10) and (b01, ḃ01) planes exhibit complicated loops, and
the envelopes of the time histories of b10 and b01 are periodic. Although the shapes of
these two loops are identical, the individual points are not. At ω = 0.90 in figure 8(b),
the time histories of (1, 0) and (0, 1) modes are identical, and therefore the Lissajous
curve is a straight line inclined at 45◦ to the b10-axis. This implies that the nodal line
of liquid sloshing coincides with the diagonal line of the tank cross-section and the
diagonal mode occurs.

Figures 9(a) and 9(b) show the three-dimensional distribution charts of the
maximum liquid surface elevations ηmax at ω = 0.97 and 0.90 corresponding to figures
8(a) and 8(b), respectively. Figure 9(a) is similar to figure 6(b), and AMMs appear. In
figure 9(b), the distribution of ηmax is both steeper and higher near the two opposite
corners compared with figure 6(d), and the risk of overspill becomes higher.

Bifurcation sets are calculated using the software AUTO (Doedel et al. 1997) to
examine the influence of the excitation direction in more detail. Figure 10 shows the
bifurcation sets on the (ω, α) plane, when the values of the system parameters are the
same as in figure 3(a). Each bifurcation set is named corresponding to the bifurcation
point which occurs in the frequency response curves. The solid and broken lines
represent saddle-node and Hopf bifurcation sets, respectively. The four cases presented
in figures 3(a) and 7(a–c) are included so that their system behaviours can be easily
compared and evaluated. The positions of saddle-node bifurcation sets ‘F’, ‘f ’ and ‘Q’
as well as Hopf bifurcation sets ‘H ’ and ‘h’ are almost independent of the value of
α. As α increases, saddle-node bifurcation sets ‘P’ and ‘E’ shift to the right and left,
respectively, thus the range ‘Pf ’ decreases while the range ‘EF’ increases. Point ‘E’ at
α = 0◦ bifurcates to sets ‘E’ and ‘e’, and point G at α = 0◦ bifurcates to sets ‘G’ and
‘g’. Set ‘e’ encounters set ‘B’ near α = 12◦ and then disappears. Set ‘B’ connects with
set ‘g’ near α = 16◦ and then they both disappear. Hopf bifurcation set ‘G’ bifurcates
near α = 33◦ to sets ‘G’ and ‘R’. Saddle-node sets ‘R’ and ‘C’ change to pitchfork
bifurcation points at α = 45◦. As previously mentioned, the autoparametric interaction
emerges from points ‘B’ and ‘C’ at α = 0◦, whereas it emerges from points ‘R’ and
‘C’ at α = 45◦. Additionally, 45◦ acts as an axis of symmetry for the bifurcation
sets, thus all sets appear as a mirror image for values 45◦ to 90◦. Furthermore all
bifurcation sets for 0◦ < α < 90◦ repeat every 90◦.
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a = 0.0075, including the cases of figures 3 and 7(a–c). —— Saddle-node bifurcation set;
— — — Hopf bifurcation set.

3.3. Influence of the aspect ratio of the tank cross-section
In §§ 3.1 and 3.2, the tank has a square cross-section, and hence the natural
frequencies of (1, 0) and (0, 1) modes equal 1.0. In this section, the influence of
the aspect ratio of the tank cross-section is examined to investigate the effect of the
imperfections in the manufacturing process of square tanks.

Figures 11(a) and 11(b) show the amplitude–frequency response curves when the
values of the system parameters are the same as in figure 3(a) including α = 0◦, except
for w. In figure 11(a), w is decreased from 1.0 to 0.95, and the natural frequencies
of sloshing modes are p10 = 1.0 and p01 = 1.030. Compared with figure 3(a), Hopf
bifurcation points Gi and Hi do not appear. The excitation frequency range at which
the autoparametric interaction occurs increases because p01 changes from 1.0 to 1.030
and points Ci shift to the right. When w is decreased, pitchfork bifurcation points
Bi gradually approach and eventually meet points Pi. Points Ei also shift to the left,
hence branches EiFi become longer than those in figure 3(a). Figure 11(b) shows
the amplitude response curves when the value of w is increased to 1.05. The natural
frequencies of sloshing are p10 = 1.0 and p01 = 0.972. Pitchfork bifurcation points
Bi approach points Qi, and points Ci shift to the left. Therefore, the excitation
frequency range of the autoparametric interaction shrinks, compared with figure 3(a).
Hopf bifurcation points do not appear. Figures 11(c) and 11(d) show the influence
of the tank aspect ratio on the frequency response curves when α = 45◦ and the
same parameters as figure 7(c). In figure 11(c), the tank breadth w is slightly
increased to 1.001, therefore the tank is no longer a perfect square. The natural
frequencies of sloshing are p10 = 1.0 and p01 = 0.999. Pitchfork bifurcation points
Ri and Ci in figure 7(c) become saddle-node bifurcation points. Furthermore, saddle-
node bifurcation points Ri are followed by a perturbed pitchfork bifurcation. Branches
PihifiPi form closed loops and are isolated from all other branches. In figure 11(d),
when w is further increased to 1.05, loop-branches PihifiPi shrink. Because saddle-
node bifurcation points Ri do not appear and Hopf bifurcation points Gi shift to the
left, AMMs appear on GiHi over a wider excitation frequency range than the cases of
figures 7(c) and 11(c). Compared to figure 11(b), which has the same values of the
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FIGURE 11. Amplitude–frequency response curves for sloshing modes (1, 0) and (0, 1)
for h = 0.6, ζij = 0.013, a = 0.0075, and different tank breadths and excitation directions:
(a) w = 0.95 and α = 0◦ (p10 = 1.0, p01 = 1.030); (b) w = 1.05 and α = 0◦ (p10 =
1.0, p01 = 0.972); (c) w = 1.001 and α = 45◦ (p10 = 1.0, p01 = 0.999); (d) w = 1.05 and
α = 45◦ (p10 = 1.0, p01 = 0.972).

system parameters but different excitation direction, it can be seen that a change in α
has a greater influence on the response curves of the system than a change in w.

The influence of the liquid level on the amplitude–frequency response curves was
also investigated, and the results agreed with those previously reported (Ibrahim 2005;
Faltinsen & Timokha 2009). It was confirmed that there is a critical liquid depth at
which the response curves for liquid sloshing switch from soft- to hard-spring types.
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FIGURE 12. (Colour online) Experimental setup: (a) schematic diagram; (b) photo.

4. Experimental results
A series of experiments were conducted with the purpose of validating the

theoretical results. Figure 12(a) shows a schematic diagram of the experimental
apparatus, and its photo is shown in figure 12(b). A square tank was mounted
on the slide guide which was horizontally driven in one direction by sinusoidal
excitation with a constant amplitude using an electromagnetic exciter and its controller.
The excitation angle α was adjustable by rotating the tank. The dimensions of
the tank were h = 60 mm, l = 100 mm and w = 100 mm. Curve fitting was used
to match the theoretical results to the experimental data, thus identifying the
damping ratios ζij = 0.015. These ratios were similar both to the measured value
of ζ10 = 0.0128 obtained by the logarithmic decrement and the theoretical values based
on Keulegan theory (Faltinsen et al. 2006b; Faltinsen & Timokha 2009) calculated as
ζ10 = ζ01 = 0.0138, ζ20 = ζ02 = 0.0167 and ζ30 = ζ03 = 0.0185. Because the damping
ratios of higher modes are about the same as the predominant mode, ζij = 0.015 are
used for all modes. Tap water with a small amount of white watercolour was used as a
test liquid. Excitation amplitudes of the exciter head were slightly different depending
on the following three experimental conditions as shown in figures 13, 15(a) and
15(b). Laser sensors S1 and S2 were set above the x- and y-axes, namely the nodal
lines of (0, 1) and (1, 0) sloshing modes, to detect the liquid elevations ηx and ηy

at positions (x, y) = (40 mm, 0) and (0, 40 mm), respectively. The measured natural
frequencies p10 and p01 of sloshing were both 2.730 Hz which was nearly identical to
the theoretical value given by (2.5).

Figure 13 shows the comparison between the amplitude response curves of the
experimental and theoretical results for ηx and ηy, respectively, when a = 0.727 mm
and α = 0◦. The corresponding analytical amplitudes A10 and A01 for (1, 0) and (0, 1)
sloshing modes are plotted, respectively. They are drawn in solid and broken lines
which are calculated by (2.18) and (2.20). Symbol © represents the experimental
data with constant amplitude. Symbols and represent counterclockwise and
clockwise swirl motions, respectively. Red circles represent the experimental data
of the maximum modulated amplitude when AMMs appeared. As the excitation
frequency f [=ω/(2π)] was increased from 2.40 Hz, a jump phenomenon occurred at
f = 2.63 Hz. AMMs then appeared at the excitation frequency range corresponding
to branches GiHi. Counterclockwise or clockwise swirl motions were observed

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

13
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.133


Nonlinear liquid sloshing in a square tank subjected to horizontal excitation 323

A
m

pl
itu

de
 o

f 
(m

m
)

Theory

Experiments

A1

E1

P1

B1

H1

G1

D1
C1

 f (Hz)

A
m

pl
itu

de
 o

f 
(m

m
)

A2

B2

E2 H2

Q2

G2

D2C2

y

(a)

(b)

2.4 2.6 2.8 3.0

0

10

20

30

2.4 2.6 2.8 3.0

0

10

20

30

Const.
Swirl
AMM

Stable
Unstable

FIGURE 13. (Colour online) Measured and predicted amplitude–frequency responses of
liquid free surface at the positions of sensors S1 and S2, as shown in figure 12(a), for
h= 60 mm, l= 100 mm, w= 100 mm, ζij = 0.015, a= 0.727 mm and α = 0◦.

during 2.69–2.79 Hz depending on the initial conditions. When f was decreased
from 3.00 Hz, the experimental data corresponding to branches GiEi were observed.
It is found that the theoretical results were qualitatively in good agreement with the
experimental data.

Figure 14 shows the stationary time histories of ηx and ηy measured at the discrete
excitation frequencies, f = 2.77, 2.65, 2.63 and 2.58 Hz in figure 13. Figures 14(a)
and 14(b) show constant amplitudes at f = 2.77 Hz; in which the former exhibits
a counterclockwise swirl and the latter, a clockwise swirl. These are similar to the
results predicted in figures 4(a) and 4(b). AMMs with periodic envelopes appeared at
f = 2.65 Hz in figure 14(c), and their wave forms are similar to those in figure 4(d).
Chaotic motions with irregular envelopes appeared at f = 2.63 Hz in figure 14(d), and
their wave forms are similar to those in figure 4(e). Sloshing with constant amplitudes
was observed at f = 2.58 Hz in figure 14(e) and it was found that the time histories
of ηx and ηy are in phase; hence the liquid surface oscillated on both sides of the
diagonal line of the tank cross-section. This phenomenon, the diagonal mode, was also
predicted in figure 4(g).

Figure 15(a) shows the comparison between the experimental and theoretical
results, when a = 0.726 mm and α = 30◦. When f was increased from 2.40 Hz,
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FIGURE 14. Stationary time histories of ηx and ηy measured at the different values
of excitation frequencies in figure 13: (a) counterclockwise swirl at f = 2.77 Hz; (b)
clockwise swirl at f = 2.77 Hz; (c) AMMs at f = 2.65 Hz; (d) chaotic surface oscillations
at f = 2.63 Hz; and (e) diagonal mode at f = 2.58 Hz.

a jump phenomenon occurred at f = 2.63 Hz. AMMs appeared in the range of
f = 2.63–2.70 Hz which corresponds to the intervals GiHi. When f increased
further, swirling waves were observed depending on the initial condition in the
range of f = 2.71–2.80 Hz. When f decreased from 3.00 Hz, the experimental data
corresponding to branches GiEi were observed. These experimental results were
predicted in figure 7(b). Figure 15(b) shows the comparison between the experimental
and theoretical results when a = 0.717 mm and α = 45◦. When f was increased from
2.40 Hz, a jump phenomenon occurred at f = 2.63 Hz and (1, 0) and (0, 1) modes
appeared at almost the same amplitudes corresponding to branches EiRi. When f was
increased further, AMMs appeared for f = 2.66–2.69 Hz, shown by the symbol in
the interval Pihi. Constant amplitudes were observed corresponding to branches hiCi

and the liquid surface swirled clockwise. When f was decreased from f = 3.00 Hz,
experimental data were recorded corresponding to branches CiHi and the liquid surface
swirled counterclockwise. As predicted in figure 7(c), it should be noted that two
patterns were observed for each predominant mode in experiments; one corresponded
to branches Cihi, and the other to branches CiHi. Thus (1, 0) and (0, 1) modes
oscillated at different amplitudes. AMMs appeared again during f = 2.65–2.69 Hz.
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FIGURE 15. (Colour online) Measured and predicted amplitude–frequency responses of
liquid free surface for the same parameters as figure 13 but different values of excitation
amplitude and direction: (a) a = 0.726 mm, and α = 30◦ corresponding to figure 7(b); (b)
a= 0.717 mm, and α = 45◦ corresponding to figure 7(c).

When f was decreased further, (1, 0) and (0, 1) modes oscillated in phase at almost the
same amplitudes for f = 2.51–2.62 Hz which correspond to branches EiRi.

It is found that depending on the excitation frequency, planar, clockwise or
counterclockwise swirl motions, or sloshing with a nodal line along the diagonal
line of the tank cross-section appears. Hopf bifurcations occur, and AMMs including
chaotic motions may also appear. According to the comparison between the theoretical
results and experimental data for the three experimental conditions mentioned above,
the theoretical results quantitatively agreed with the experimental data. Therefore, it
can be concluded that the validity of the theoretical analysis was confirmed.

5. Conclusion
In this paper, the dynamic behaviour of nonlinear liquid sloshing in rigid square

and nearly square tanks, subjected to obliquely horizontal, sinusoidal excitation,
was theoretically and experimentally investigated. Because the theoretical analysis
is precise in that the damping effect of sloshing is considered, the theoretical
frequency response curves contain both stable and unstable steady-state solutions.
These curves for amplitudes and phase angles can clearly explain the phenomena
of nonlinear sloshing dynamics in real systems. Furthermore, this method has been
applied when investigating the direction of horizontal excitation relative to the tank
and has generated novel results. The results of the influence of deviations from a
perfect square cross-section were also clearly shown. The detailed results can be
summarized as follows.
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(a) For high liquid levels, when the excitation direction α = 0◦, only (1, 0) sloshing
mode is directly excited. However, (0, 1) sloshing mode can appear in a limited
excitation frequency range due to the autoparametric interaction. When both
modes appear simultaneously at this range, the following behaviours of liquid
sloshing may occur: (i) both modes oscillate in phase at constant amplitudes
similar to the ‘diagonal mode’; (ii) either clockwise or counterclockwise swirl
motion may be observed; and (iii) Hopf bifurcations occur, followed by amplitude-
modulated motions including chaotic motions.

(b) When α 6= 0◦, (1, 0) and (0, 1) modes are nonlinearly coupled and both are
directly excited. The responses become more complicated than the case of α = 0◦

and isolated loop-branches appear on the response curves. For the particular case
of α = 45◦, the response curves for (1, 0) and (0, 1) modes have identical shapes,
because these modes are excited equally by a cosωt/

√
2. Innovative results are

detailed and include a specific excitation frequency range in which two branches
are generated on the frequency response curves for either predominant mode
and they oscillate at different amplitudes due to the autoparametric interaction.
Furthermore, either counterclockwise or clockwise swirl motions were observed in
this excitation frequency range depending on the initial conditions.

(c) When (1, 0) and (0, 1) modes oscillate in phase along the nodal line of the
tank cross-section, the diagonal mode occurs causing high liquid elevations at
two opposite corners of the tank. Therefore, the risk of overspill is significantly
increased. Furthermore, chaotic motions cause high liquid elevations at all four
tank corners, thus overspill risks are increased.

(d) Slight deviations of the tank aspect ratio significantly affect the response curves
due to the difference between the natural frequencies of (1, 0) and (0, 1) modes.
Furthermore, when α = 45◦, a slight change of the tank aspect ratio causes a
perturbed pitchfork bifurcation instead of a pitchfork bifurcation to occur.

(e) In experiments, the theoretical results were quantitatively in good agreement with
the experimental data. Therefore, the validity of the theoretical analysis was
confirmed.

For further works examining nonlinear sloshing behaviour, the aspect ratio of the
tank cross-section could be changed so that the natural frequencies of (1, 0) and (0, 1)
modes satisfy different internal resonance conditions, such as p10:p01 = 1:2 and 1:3. In
such cases, similar, different, or more complicated phenomena may occur.

Appendix. The nonlinear terms Hm in (2.16)

H1= S1ḃ10ḃ20 + S2ḃ01ḃ11 + S3ḃ2
10b10 + S4ḃ2

01b10 + S5ḃ10ḃ01b01 + S6b10b20

+ S7b01b11 + S8b3
10 + S9b2

01b10,

H2= S10ḃ01ḃ02 + S11ḃ10ḃ11 + S12ḃ2
01b01 + S13ḃ2

10b01 + S14ḃ10ḃ01b10,

+ S15b01b02 + S16b10b11 + S17b3
01 + S18b2

10b01

H3= S19ḃ2
10 + S20ḃ10ḃ30 + S21b2

10 + S22b10b30,

H4= S23ḃ2
01 + S24ḃ01ḃ03 + S25b2

01 + S26b01b03,

H5= S27ḃ10ḃ20 + S28ḃ2
10b10 + S29b10b20 + S30b3

10,

H6= S31ḃ01ḃ02 + S32ḃ2
01b01 + S33b01b02 + S34b3

01,

H7= S35ḃ10ḃ01 + S36b10b01,


(A 1)
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where the symbols Sn (n = 1, 2, . . . , 36) are constants defined from the system
parameters and their complete expressions are omitted here.
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