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INTRINSIC SMALLNESS

JUSTIN MILLER

Abstract. Recent work in computability theory has focused on various notions of asymptotic

computability, which capture the idea of a set being “almost computable.” One potentially upsetting result

is that all four notions of asymptotic computability admit “almost computable” sets in every Turing degree

via coding tricks, contradicting the notion that “almost computable” sets should be computationally

close to the computable sets. In response, Astor introduced the notion of intrinsic density: a set has

defined intrinsic density if its image under any computable permutation has the same asymptotic density.

Furthermore, introduced various notions of intrinsic computation in which the standard coding tricks

cannot be used to embed intrinsically computable sets in every Turing degree. Our goal is to study the

sets which are intrinsically small, i.e. those that have intrinsic density zero. We begin by studying which

computable functions preserve intrinsic smallness.We also show that intrinsic smallness and hyperimmunity

are computationally independent notions of smallness, i.e. any hyperimmune degree contains a Turing-

equivalent hyperimmune set which is “as large as possible” and therefore not intrinsically small. Our

discussion concludes by relativizing the notion of intrinsic smallness and discussing intrinsic computability

as it relates to our study of intrinsic smallness.

§1. Introduction. A noteworthy phenomenon in the world of computing is that
of problems which are generally “easy” to compute but have very difficult worst case
instances. This gave rise to the notion of generic computability, studied by Kapovich
et al. [1] in the context of computing the word problems of finitely generated groups.
This notion asserts that a set is computable outside of a “small” error set where the
algorithm does not answer. The notion of smallness here is that of having asymptotic
density 0:

Definition 1.1. The partial density of A⊆ ù at n is

ñn(A) =
|A ↾ n|

n
.

That is, it is the ratio of the number of things less than n that are in A to what could
be in A. The upper (asymptotic) density of A is

ñ(A) = limsup
n→∞

ñn(A)
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INTRINSIC SMALLNESS 559

and the lower (asymptotic) density of A is

ñ(A) = liminf
n→∞

ñn(A).

If ñ(A) = ñ(A), we call this limit the (asymptotic) density of A and denote it by

ñ(A).

Recall thatWe is the domain of the e-th Turing machine ϕe .

Definition 1.2. A setA is generically computable if there is a partial computable
function ϕe such that ñ(We) = 1 and if ϕe(n) ↓, then ϕe(n) = A(n). ϕe is called a
generic description of A.

We think of generically computable sets as being computable “almost every-
where,” i.e. there is an algorithm that correctly answers questions on a set of density
1, but does not answer on a small (density 0) error set. Here the error set is the
set of n on which the description diverges. By changing the behavior of the generic
description from diverging to something else, we obtain the other three notions of
generic computability.

Definition 1.3. A set A is coarsely computable if there is a total computable
function ϕe such that ñ({n : ϕe(n) = A(n)}) = 1. ϕe is called a coarse description
of A.

For coarse computability, the description is forced to answer every question, but
is allowed to give the incorrect answer on the error set. That is, the error set is the
set of numbers on which the description and the set disagree.

Definition 1.4. A set A is densely computable if there is a partial computable
function ϕe such that ñ({n : ϕe(n) ↓= A(n)}) = 1. ϕe is called a dense description
of A.

For dense computability, the description can both answer questions incorrectly
and not answer them on the error set. More specifically, the error set is both the
places where the description diverges and the places where it disagrees with the set.

Definition 1.5. A set A is effectively densely computable if there is a total
computable function ϕe : ù → {0,1,�} such that ñ(ϕ–1e ({0,1})) = 1 and ϕe(n) ∈

{0,1} implies ϕe(n) = A(n). (� represents ϕe(n) refusing to answer whether n is in
or out of the set.)

Effective dense computability need not answer questions on the error set much
like generic computability, but it must refuse to do so outright rather than
running for infinite time. (That is, the error set, which is the inverse image of �
under the description, must be computable.) Note that there are some immediate
implications among these notions. Effective dense computability implies both
coarse computability and generic computability, and both of these imply dense
computability. For an overview of the history of these notions, refer to the first
section of [4].
One potentially unsettling feature of all four notions of asymptotic computability

is that they depend heavily on the way in which information is coded. In fact,
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560 JUSTIN MILLER

Jockusch and Schupp [8] give a simple argument that can show every Turing degree
contains a set which is effectively densely computable by “hiding” an entire set of
any degree on a small computable set such as the factorial. (As the other three
notions are implied by effective dense computability, the same is automatically true
for every notion of asymptotic computability.)

Proposition 1.6. Let X ⊆ ù. Then there is A ≡T X which is effectively densely
computable.

Proof. Given X, let A= {n! : n ∈ X}. Then A is clearly Turing equivalent to X,
and the function

f(n) =

{

� if n = k!

0 otherwise
,

witnesses that A is effectively densely computable. ⊣

Therefore, these notions of being “almost” computable are heavily dependent
upon how the set is coded: computably rearranging the elements of a set can break
the property of being “almost computable.” To combat this, Astor [2] introduced
the notion of intrinsic density, a strengthening of asymptotic density. Let Perm be
the index set of computable permutations of ù.

Definition 1.7. The absolute upper density of A⊆ ù is

P(A) = sup{ñ(ð(A)) : ð a computable permutation}

and the absolute lower density of A is

P(A) = inf{ñ(ð(A)) : ð a computable permutation}.

If P(A) = P(A), then we call this limit the intrinsic density of A and denote it by
P(A).

(In particular, if A has intrinsic density 0, then ñ(ð(A)) = 0 for every computable
permutation. Furthermore, P(A) = 0 is enough to ensure A has intrinsic density
zero.) Of special interest is the property of having intrinsic density 0, which has been
studied extensively by Astor [2, 3] in relation with other notions of smallness such
as immunity. We will refer to sets that have intrinsic density 0 as intrinsically small
to ease notation slightly. Technically finite sets meet this definition, but from here
on we shall use the term to refer to infinite sets as those are the interesting ones.
We wish to study intrinsically small sets in order to use them as our error sets in an
intrinsic version of asymptotic computability which we shall discuss in Section 5.
One easy observation about intrinsically small sets is that there are more

computable functions f such that ñ(f(A)) = 0 for all intrinsically small sets A than
just the computable permutations. For example, if ð is a computable permutation,
then 2 ·ð is not a computable permutation but the image of any intrinsically small
set under it still has density 0. The following definition captures the idea of classes
of functions preserving smallness.
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INTRINSIC SMALLNESS 561

Definition 1.8. For a class F of (partial) computable functions fromù toù, we
say that A⊂ ù is small for F if ñ(f(A)) = 0 for every f ∈ F .

Notice that A is intrinsically small if and only if it is small for computable
permutations. In Section 2, we shall explore which classes of functions F have
the property that every intrinsically small set is small for F . This will give rise to
a few questions, which we will study further in Section 3. In Section 4, we shall
describe and explore the relativization of intrinsic smallness.

§2. Functions and intrinsic density. We first note that not all intrinsically small
sets are small for all computable functions, nor even all total computable functions.
To do so, we use the following lemma:

Lemma 2.1. Let X be a set of natural numbers. Suppose that {Re}e∈ù is a collection
of uniformly X-computable infinite sets. Then there is an intrinsically small set A ≤
∅′⊕X such that A∩Re 6= ∅ for all e.

Proof. Note that the index set of injective partial computable functions is ∅′

computable, as the index set of noninjective partial computable functions is Σ01.
Therefore there is a ∅′-computable function f such that ϕf(e) is an enumeration of
exactly the injective partial computable functions.
Let A0 = ∅ and r0 = 0. Given As , Rs , define As+1,rs+1 as follows: Using X as

an oracle, find k the least element of Rs with k > rs+1, which exists because Rs is
infinite. LetAs+1 =As ∪{k}. We say e is suitable at stage s if [0,k]⊆ dom(ϕf(e)) and
[0,2max(ϕf(e)(As+1)]⊆ range(ϕf(e)). Notice that ∅

′ can compute whether or not e
is suitable at stage s uniformly in e and s because it can ask finitely many questions
about convergence. Now let

rs+1 =max{ϕ
–1
f(e)(i) : e < s suitable at stage s, i ≤ 2max(ϕf(e)(As+1)}+1.

Let A=
⋃

s∈ùAs . By construction, A∩Rs 6= ∅ because an element ofRs was added
at stage s+1. Now let ð= ϕf(e) be a computable permutation. Then ð is suitable at
every stage because its domain and range are ù. Now let k be the element added at
stage s+2 for some s > e. Then for every i ≤ 2max(ð(As+1)),

k > rs+1 > ð
–1(i).

Therefore ð(k) > 2max(ð(As+1)). Thus after finitely many elements, each element
of ð(A) is more than double the previous element. It follows immediately that
ñ(ð(A)) = 0. As ð was an arbitrary computable permutation, A is intrinsically
small. ⊣

We can now show that there is an intrinsically small set which is not small for
total computable functions.

Theorem 2.2. There is a set of intrinsic density 0 which is not small for total
computable functions. That is, there is an intrinsically small set A and a total
computable function f such that ñ(f(A))> 0.
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562 JUSTIN MILLER

Proof. As defined by Jockusch and Schupp [8], let Re = {n : 2e |n but 2e+1 6 |n}.
Define f : ù→ ù via f(0) = 0 and f(n) = e, where n ∈Re . (Note that this is well-
defined, as the Re ’s form a partition of ù \{0}.) f is a total computable function.
By Lemma 2.1, there is an intrinsically small set A such that Re ∩A 6= ∅ for all

e. Then f(A) is cofinite (in fact it is either ù or ù \{0}), and therefore of intrinsic
density 1. (So A catastrophically fails to have density 0 under f.) ⊣

We see from this example that the failure of injectivity allowed us to cast a wide
net in search of elements of A and then group them together to create a set of large
density. Below, we shall see that we cannot even limit this to finite inverse images
and preserve the property of being intrinsically small. In fact, we cannot even limit
this to finite inverse images with uniformly computable size.
We shall need the notion of a hyperimmune set to do this. Recall that a disjoint

strong array is a collection {Df(n)}n∈ù of finite sets coded by a total computable
function f and the canonical indexing of finite sets, where the Df(n)’s are pairwise
disjoint. A setX is hyperimmune if for every disjoint strong array f, there exists some
n with Df(n)∩X = ∅.

Theorem 2.3. There is an intrinsically small set which is not small for the collection
of all total computable functions f such that f–1({n}) is finite (and uniformly
computable) for all n. That is, there is an intrinsically small set A and a total
computable function f such that ñ(f(A)) > 0 and a total computable function g
such that g(n) = |f–1({n})| for all n.

Proof. Astor [3] proved that the Turing degrees which contain an infinite
intrinsically small set are those which are not weakly computably traceable. Kjos-
Hanssen et al. [10] characterized these degrees as those which are High or DNC.
It is well-known that there is a binary tree for which all paths are of PA

degree. Recall that the PA degrees are exactly the DNC2 degrees. Therefore, by
the hyperimmune-free basis theorem, there is a DNC2 degree that is hyperimmune-
free. (For a review of this information, see Soare [12].) This degree contains a set
A which is intrinsically small by the result of Astor. As A is hyperimmune free,
there exists a disjoint strong array g such that Dg(n)∩A 6= ∅ for all n. Without loss
of generality, we can assume that max(Dg(n)) < min(Dg(n+1)) for all n. (Given a
disjoint strong array g, we can construct a new one h as follows: Dh(0) =Dg(0), and
Dh(n+1) is the first cell of the old array whose smallest element is larger than the
largest element of Dh(n).)
Define f : ù → ù as follows: If n ∈ Dg(k) for some k, let f(n) = 2k. As f is a

disjoint strong array such that max(Dg(n)) <min(Dg(n+1)), this is computable and
well-defined. If n 6∈

⋃

k∈ùDg(k), then let f(n) be the least odd number not realized

asf(m) for somem< n. Therefore f is a total computable function with |f–1({n})|
finite and uniformally computable. (If n = 2k+1 is odd, then the inverse image is a
singleton. If n = 2k is even, thenf–1({2k}) =Dg(k).) Furthermore, asDg(n)∩A 6= ∅

for all n, f(A) contains all even numbers. Therefore ñ(f(A))≥ 1
2 . ⊣

We see that it is much more difficult for a set to be small for noninjective classes
of functions. However, both examples relied heavily upon the fact that the functions
were not injective. By switching our focus to (mostly) injective classes of functions,
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we can describe some classes of functions which any intrinsically small set is small
for. First, we provide an easy technical lemma.

Lemma 2.4. Suppose C is an infinite c.e. set. Then there exists an infinite,
computable H ⊆ C with ñ(H ) = 0.

Proof. Let {ci}i∈ù be an enumeration of C. Then let {hi}i∈ù be such that
h0 = c0 and given hn, hn+1 = cj , where j is the least index with cj > hn+2

n. ThenH
is computable because it is a c.e. set with an increasing enumeration, and it clearly
has density 0. ⊣

Theorem 2.5. Suppose that A is an intrinsically small set. Then A is small for the
class of total computable injective functions with computable range.

Proof. We argue by contrapositive: Suppose f is total computable injective
function with computable range, andA is a set with ñ(f(A))> 0. Thenwe construct
a computable permutation ð such that ñ(ð(A))> 0.
Let H ⊆ range(f) be a computable set of density 0. Now define ð : ù → ù as

follows: If f(n) 6∈ H , ð(n) = f(n). If f(n) ∈ H , let ð(n) be the least element of

H ∪ range(f) not realized in the range of ð by m < n. Then ð is a computable
permutation, and

ñn(ð(A)) =
|ð(A) ↾ n|

n
≥

|f(A) ↾ n| – |H ↾ n|

n
= ñn(f(A)) – ñn(H ).

(The inequality comes from the fact that ð and f agree on f–1(range(f) \H ).)
Therefore, we obtain

ñ(ð(A))≥ ñ(f(A)) – ñ(H ) = ñ(f(a))> 0.

Therefore ð is a computable permutation for which ñ(ð(A)) > 0, so A is not
intrinsically small. ⊣

Note that simpler proofs of Theorem 2.5 exist which do not require us to create
an error set and construct a permutation, however this proof is illustrative of the
techniques we shall use for more difficult proofs.

Corollary 2.6. If A is intrinsically small and f is a total computable injective
function with computable range, then f(A) is intrinsically small.

Proof. This follows from Theorem 2.5 by the fact that ð(f(A)) = ð ◦f(A) and
ð ◦f is a total computable injective function with computable range because f is. ⊣

Corollary 2.7. If A and B are intrinsically small, then so is A⊕B .

Proof. If f is the function sending n to 2n, and g is the function sending n
to 2n+1, then by Corollary 2.6 f(A) and g(B) are both intrinsically small. It is
easy to check that the union of two intrinsically small sets is intrinsically small, as
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the permutation of the union is the union of the images under the permutation.
Therefore, A⊕B = f(A)∪g(B) is intrinsically small. ⊣

We can improve this result. The use of H in the proof allows us to notice that we
can change a subset of density 0 in the range and not suffer any consequences for
preserving intrinsic smallness.

Definition 2.8. A (partial) functionf :ù→ù is *-injective, or almost injective,
if ñ({n : |f–1({n})|> 1}) = 0. That is, a (partial) function is almost injective if the
subset of the range where injectivity fails has density 0.

Theorem 2.9. Suppose that A is an intrinsically small set. Then A is small for the
class of total computable *-injective functions with computable range.

Proof. We again argue by contrapositive: Suppose f is total computable *-
injective function with computable range, and A is a set with ñ(f(A))> 0. Then we
construct a total computable injective function g such that ñ(g(A))> 0 and invoke
Theorem 2.5.
LetH ⊆ range(f) be infinite, computable, and have density 0. Then define g(n) =

f(n) if f(n) has not been realized in range(g) by some m < n, and to be the least
element ofH not realized in range(g) otherwise. Then g is injective, as g(n) cannot
be in range(g ↾ n) for any n by construction. Furthermore,

ñn(g(A)) =
|g(A) ↾ n|

n
≥

|f(A) ↾ n| – |H ↾ n| – |{k : |f–1({k})|> 1} ↾ n|

n

= ñn(f(A)) – ñn(H ) – ñn({k : |f
–1({k})|> 1)).

This gives

ñ(g(A))≥ ñ(f(A)) – ñ(H ) – ñ({k : |f–1(k)|> 1}= ñ(f(A))> 0. ⊣

Remark. While an intrinsically small set is small for the class of total computable
*-injective functions with computable range, the image under such functions is not
intrinsically small: Take the set A and function f from the proof of Theorem 2.3 and
let g(n)= 2f(n). Then g is *-injective because its entire image has density zero.However,
there is a computable permutation ð that maps image(g) to the nonfactorials and the
complement to the factorials. Then ð◦g(A) is all but finitely many of the nonfactorials
and is therefore density one.

To this point, we’ve seen that injectivity almost everywhere has been essential in
allowing all intrinsically small sets to be small for our class of functions. However,
up to this point we’ve also relied heavily on knowing that the range is computable:
if the range is not computable, we may potentially fill in part of the range that A
would have been sent to later. In this case, we’d need to shift where the elements of
A are sent, potentially sending the density to 0 in the process. As we’ll see below,
there are cases in which we can avoid this issue.
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Theorem 2.10. Suppose A is a set and f is a *-injective function with ñ(f(A)) =
q > 0 and ñ(range(f)) – ñ(range(f))< q. Then there is a *-injective function g with

computable range such that ñ(g(A))> 0.

Proof. As range(f) is c.e., there is a computable subset H of range(f) with
ñ(H )> ñ(range(f)) – q by Downey et al. [6]. In particular,

ñ(range(f)\H )≤ ñ(range(f)) – ñ(H )< q.

Define g :ù→ù via g(n) =f(n) if f(n) ∈H , and g(n) = 0 otherwise. Notice that
g is *-injective, as

{n : |g–1({n})|> 1} ⊆ {n : |f–1({n}|> 1}∪{0}.

Furthermore, range(g) =H ∪{0} is computable. Lastly, notice that

ñn(g(A)) =
|g(A) ↾ n|

n
≥

|f(A) ↾ n| – |{k < n : k 6∈H and k ∈ f(A)|

n

≥
|f(A) ↾ n| – |(range(f)\H ) ↾ n|

n
= ñn(f(A)) – ñn(range(f)\H ).

By the above fact that ñ(range(f)\H )≤ ñ(range(f)) – ñ(H )< q,

ñ(g(A))> ñ(f(A)) – q = q – q = 0

That is, ñ(g(A))> 0. ⊣

Corollary 2.11. Suppose that A is an intrinsically small set. Then A is small for
the class of total computable *-injective functions whose range has defined density.

Proof. We again argue by contrapositive: Suppose f is total computable *-
injective function whose range has defined density, and A is a set with ñ(f(A))> 0.
Then by Theorem 2.10, as ñ(range(f)) – ñ(range(f)) = 0, there is a *-injective

function g with computable range such that ñ(g(A)) > 0. The result follows by
Theorem 2.9. ⊣

By the remark following the proof of Theorem 2.9, we see that the image of an
intrinsically small set under a total computable *-injective function whose range
has defined density need not be intrinsically small. However if we restrict ourselves
to injective functions, can we recover the analogue of Corollary 2.6? The same
argument does not work, as the image of a c.e. set with defined density under a
computable permutation need not have defined density.

Question2.1. IfA is intrinsically small and f is a total computable injective function
whose range has defined density, then is f(A) intrinsically small?

Additionally, the natural follow-up question to Corollary 2.11 remains open. This
question is closely related to Question 2.1.
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Question 2.2. Suppose that A is an intrinsically small set. Is A small for the class
of total computable *-injective functions? Total computable injective functions?

Notice that if the answer here is yes, then the analogue of Corollary 2.6
for computable injective functions follows immediately from the same argument.
Therefore a positive answer yields a positive answer to Question 2.1, and a negative
answer to Question 2.1 yields a negative answer to Question 2.2. The opposite
direction also seems closely related, but any implications are not immediately
obvious.
Theorems 2.9 and 2.10 help to characterize what must happen in the scenario

where the answer to Question 2.2 is no: The upper and lower density of the range
are relatively far apart, allowing small elements off(A) to showupat late stages after
any computable process “thinks” range(f) is done enumerating small elements.
Corollary 2.11 can already be used in conjunction with known results. For

example, Jockusch (correspondence with Astor) showed that r-maximal sets have
intrinsic density (and therefore density) 1, so the image of any intrinsically small set
under a computable injective function whose range is maximal is small.

§3. Hyperimmunity and intrinsic smallness. It is important to note that when
studying whether or not certain properties relate to intrinsic smallness, we shall
study the sets themselves rather than their degrees: coding tricks can show that
every Turing degree contains a set with undefined density. In the c.e. degrees, this
set can be taken to be c.e.

Lemma 3.1. Every Turing degree contains a set W with ñ(W ) = 0 and ñ(W ) = 1.

Proof. GivenC, letD = {n! : n ∈C} andW =D∪
⋃

n∈ù((2n)!,(2n+1)!). Then
W ≡T D ≡T C , and ñ(W ) = 0 because

ñ(2n+2)!(W ) =
|W ↾ (2n+2)! |

(2n+2)!
≤
(2n+1)!

(2n+2)!
=

1

2n+2
.

Conversely, ñ(W ) = 1 as

ñ(2n+1)!(W ) =
|W ↾ (2n+1)! |

(2n+1)!
≥
(2n+1)!– (2n)!

(2n+1)!
= 1 –

1

2n+1
.

Clearly if C is c.e., then so isW. ⊣

We shall see below that additional properties on the starting setC can be recovered
inW by modifying the construction.
We now turn our attention to hyperimmune sets, a competing notion of smallness.

Astor [2] studied the connection between varying notions of immunity and intrinsic
density thoroughly. In particular, it is known that hyperimmune sets have intrinsic
lower density 0, and therefore that hypersimple sets have intrinsic upper density 1.
(Hypersimple sets are c.e. sets whose complement is hyperimmune. Recall that
hyperimmune sets are infinite by definition, so hypersimple sets are co-infinite.) One
question left open in [2] (later answered byAstor in [3] using a degree argument) was
whether or not a hypersimple set could have lower density 0, or at least non-1 lower
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Figure 3.1. Visualization of the construction of H in Theorem 3.2.

density. The answer is yes, showing that hypersimple sets need not have defined
density. We give a constructive proof, showing that every hypersimple set yields
a Turing equivalent hypersimple set which has lower density 0. (That is, every
hypersimple set has an equivalent hypersimple set which is “as small as possible.”)

Theorem 3.2. Let C be a hypersimple set. Then there is a hypersimple setW ≡T C
with ñ(W ) = 0.

Proof. As C is hypersimple, it has intrinsic upper density (and therefore upper
density) 1. We cannot use the strategy from Lemma 3.1 directly, as the resulting
set will not even be immune, let alone hyperimmune. To avoid this problem,
we shall leave intervals of C intact and introduce gaps between the intervals in
noncomputable fashion. Informally, we first wish to shift portions of C over to
make large gaps, ensuring that the resulting set has lower density 0. We then leave
an even larger interval of C intact (albeit shifted over finitely much) to ensure that
the upper density is 1. (See Figure 3.1.) Formally, we shall define c.e. sets Hi and
gaps [ui,ui +mi ] inductively. LetH0 = C . EnumerateH0 until there is a stage s and
a number n such that we see ñn(H0) >

1
2 , which exists because C =H0 has upper

density 1. Then let u0 = n and letm0 be the least natural number such that
u0

u0+m0
< 12 .

GivenHe and [ue,ue+me ], defineHe+1 and [ue+1,ue+1+me+1] as follows: Define
He+1 = (He ↾ ue)∪ (H

≥ue
e +me). (For convenience, here X

≥k denotes {n ∈ X :
n ≥ k}, and X +m = {n+m : n ∈ X}.) Enumerate He+1 until there is a stage s
and a number n > ue +me such that ñn(He+1,s) > 1 –

1
e+2 . Then set ue+1 = n and

me+1 to be the least natural number such that
ue+1

ue+1+me+1
< 1
e+2 . Finally, let H be

the set with characteristic function H (m) = limn→∞Hn(m). Note, first off, that
⋃

e∈ù[ue,ue +me] is a c.e. set with increasing enumeration, and hence computable.
Furthermore, note that H itself is c.e., as limn→∞Hn(m) = Hs(m) for any s with
us >m. ñ(H ) = 0 as desired, as ñui+mi (H )<

1
i+2 for all i.

H itself will not work as the desiredW : The complement contains the computable
subset

⋃

e∈ù[ue,ue+me], so it is not even immune, let alone hyperimmune.Therefore,
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letW =H ∪
⋃

n∈C [un,un+mn]: that is, enumerate the nth gap intoW whenever n
enters C. ThenW is c.e., and we claim that it is hypersimple.
Recall that the principal function pA : ù→ A of a set A = {a0 < a1 < a2 < ···}

is the function such that pA(n) = an. Also recall that a set is hyperimmune if and
only if its principal function is not computably bounded. Suppose that W is not
hyperimmune. Then it is bounded by some total computable function f. However,
the total computable function g defined via g(n) = f(n+Σi≤nmi) must bound C :
The elements ofW are the elements of C shifted up along with the corresponding
gaps. The nth element of C is smaller than the nth nongap element of W (as the
nth nongap element ofW is the nth element of C shifted up by the gaps below it),
which is at most the n+Σi≤nmi th element ofM because a gap inW corresponds
to an element of C below the gap.
Thus we have shown that W is a hypersimple set. It is Turing equivalent to

C because
⋃

e∈ù[ue,ue +me] is computable: W can compute C by ignoring the
intervals, and C can clearly compute H and henceW. ⊣

By usingC as an oracle rather than an enumeration ofC, it is clear that this result
also applies to co-hyperimmune sets in general, not just hypersimple sets.
Perhaps the most useful characterization of the hyperimmune sets is that a set is

hyperimmune if and only if its principle function is not computably bounded. Recall
that the principle function pX of an infinite set X = {x0 < x1 < x2 < x3 < ···} is
the function such that pX (n) = xn. While Theorem 3.2 shows that hyperimmunity
and intrinsic smallness are unrelated notions of smallness, we would like to know
whether it is possible to provide a simple characterization of intrinsic smallness using
principal functions. Perhaps the most natural candidate is that of weak computable
traceability from [3], which does provide us with a useful test for intrinsic smallness:

Lemma 3.3. Suppose that A is not intrinsically small. Then the principle function
pA(n) of A is weakly computably traced, i.e. there are computable functions g and h
with |Dg(n)| ≤ h(n) for all n and pA(n) ∈Dg(n) for infinitely many n.

Proof. As A is not intrinsically small, there is a computable permutation ð
such that ñ(ð(A)) = q > 0. Define functions h = ën(n! ) and g such that Dg(n) =

ð–1([0,n! )). Then we claim that g and h witness that pA is weakly computably
traced.
To get a contradiction, suppose this is not the case. Then pA(k) ∈ Dg(k) =

ð–1([0,k! )) for only finitely many k. In particular, ð(n) ≥ n! for all but finitely
many n ∈ A. This clearly implies that ñ(ð(A)) = 0, however, as ñn(ð(A)) ≤

s+m+1
m!

where s is the number of k for which pA(k) ∈ ð
–1([0,k! )) and m is the largest

number with m!≤ n. As s+m+1
m! approaches 0 in the limit, this contradicts the

fact that ñ(ð(A)) = q > 0, so g and h must witness that pA is weakly computably
traced. ⊣

The contrapositive of Lemma 3.3 tells us that if the principle function of A is not
weakly computably traced, then A is intrinsically small. Unfortunately, Theorem
2.3 tells us that we cannot hope to reverse this in general. However, notice that
the proof in fact proves a stronger statement: If A is not intrinsically small, then it
is weakly computably traced with witness h = ën(n! ). That is, if pA is not weakly
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computably traced by h, then A is intrinsically small. If this can be reversed, that
would characterize the intrinsically small sets.

Question 3.1. Is it the case that if A is intrinsically small, then pA is not weakly
computably traced by h = ën(n! )? If it is not the case, is there an intrinsically small
set which does not dominate h? (I.e. pA(n)≤ n! infinitely often?)

Of course there are computably dominated intrinsically small sets by Theorem 2.3,
however it is not clear if there are any “nice” computable functions (i.e. something
naturally occurring in arithmetic or combinatorics) which dominate an intrinsically
small set, or even which are not dominated by the principal function of one. Our
usual strategy for constructing intrinsically small sets is no help, as it requires
arbitrarily large witnesses.

§4. Relative intrinsic smallness. The definition of intrinsic density, and by
extension the definition of intrinsic smallness, admits a natural relativization:

Definition 4.1. The X -absolute upper density of A⊆ ù is

PX (A) = sup{ñ(ð(A)) : ð an X computable permutation}

and the absolute lower density of A is

PX (A) = inf{ñ(ð(A)) : ð an X computable permutation}.

If PX (A) = PX (A), then we call this limit the X -intrinsic density of A and denote it
by PX (A).

It is easy to see that no infinite, co-infinite set A is A-intrinsically small, or in fact
has A-intrinsic density. (One way to observe this is to note that the permutation
taking A to the setW in deg(A) from Lemma 3.1 is A-computable.) Furthermore,
given a setA, the set of Turing degrees for whichA is not intrinsically small is closed
upwards and contains the cone above A. One may ask if a set is intrinsically small,
is it the case that this set is exactly the cone above A? The answer is no.

Lemma 4.2. There is an intrinsically small set A and a permutation ð 6≥T A such
that ñ(ð(A))> 0.

Proof. Let B andC be Turing incomparable intrinsically small sets. (These exist
given the result of Astor that the degrees containing intrinsically small sets are the
degrees which are high or DNC.) Then by Corollary 2.7, A= B⊕C is intrinsically
small. Now let ð be the B-computable permutation mapping {2n : n ∈ B} to the
nonfactorials and the complement to the factorials. Then ð(B ⊕C ) contains the
nonfactorials, and therefore has density 1. ⊣

As a corollary, we see that given an intrinsically small setA, the set ofX for which
A isX -intrinsically small need not be the degrees strictly belowA: As B andC in the
above proof are Turing incomparable, B ⊕C is strictly Turing above B, but is not
intrinsically small relative to B. However, it is clear that given a set A, the collection
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of Turing degrees of X withAX -intrinsically small is closed downwards. Must it be
a Turing ideal? The following lemma shows the answer is no.

Lemma 4.3. There is an intrinsically small set A and setsB,C withAB-intrinsically
small and C-intrinsically small but not B⊕C -intrinsically small. That is, the set of X
for which A is X-intrinsically small is not a Turing ideal.

Proof. By the Sacks Splitting Theorem [11], there are low sets B and C such
that B ⊕C ≡T ∅′. Therefore a modification of Lemma 2.1 allows us to obtain a
set A ≤ ∅′ which is both B-intrinsically small and C-intrinsically small. (As B and
C are low, B ′ ≡T C

′ ≡T ∅′, so ∅′ can enumerate the partial B and C computable
injective functions and determine suitability for them.)However,A cannot beB⊕C -
intrinsically small because A≤T ∅′ ≡T B⊕C . ⊣

Note that although the set of X for which A is X -intrinsically small need not be
a Turing ideal, Definition 4.1 still makes sense if one considers all I-computable
permutations in a Turing ideal I rather than computable in a set X.
The following lemma allows us to describe the degrees of X -intrinsically small

sets for certain X.

Lemma 4.4. Let X be an arithmetical set. Then the Turing degrees which contain
an X-intrinsically small set A are the X-high or X-DNC degrees.

Proof. We merely need to check that the proof of Corollary 2.7 from Astor
[3] relativizes. It is straightforward to check that the proof given by Downey and
Hirschfeldt [5] of the result ofKjos-Hanssen et al. [10] relativizes: a setA isX -weakly
computably traceable if and only if it is X -high or X -DNC.
Using this, the rest of the proof of [3] Theorem 2.4 relativizes, and therefore [3]

Corollary 2.5 does as well. [3] Theorem 2.6 also relativizes, which is straightforward
to check. To obtain [3] Corollary 2.7, Astor employs the following result of Jockusch
[7]:Given somepropertyPof some sets of natural numbers, if there is an arithmetical
set exhibiting P and P is closed under taking subsets, then the collection of Turing
degrees which contain a set exhibiting P is closed upwards. The relativized form
of Lemma 2.1 above yields an X ′-computable X -intrinsically small set A. As X is
arithmetical, A is arithmetical, so we may apply the result of Jockusch to obtain the
relativized form of [3] Corollary 2.7. ⊣

There is an obvious gap in Lemma 4.4. Specifically, can the arithmetical
requirement on X be dropped? There are certainly sets X for which there are
no arithmetical X -intrinsically small sets A: If X = ∅(ù), then X computes every
arithmetical set and therefore there cannot be an arithmetical X -intrinsically small
set.An important note here is that the relativizationof [3]Corollary 2.5 andTheorem
2.6 did not rely on the fact that X was arithmetical, so we already know that
X -weakly computably traced sets are not X -intrinsically small and that any non-
X -weakly computably traced set computes an X -intrinsically small set for even
nonarithmetical X.

Question 4.1. For which nonarithmetical sets X are the degrees containing an X-
intrinsically small set those which are X-high or X-DNC? For which nonarithmetical
X are they upwards closed?
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A natural question arises from the appearance of ∅(ù): We say a set A is
arithmetically intrinsically small if it is X -intrinsically small for every arithmetical
set X. Is there an arithmetically intrinsically small set which is not ∅(ù)-intrinsically
small? It turns out that the answer is yes, as ∅(ù) can uniformly compute all of
the arithmetical permutations. Therefore a modification of Lemma 2.1 allows us to
construct a ∅(ù)-computable set which is arithmetically intrinsically small.

§5. Intrinsic computability. Having studied intrinsically small sets, we now turn
our attention to their use as error sets in “almost computable” settings. Astor
[2] first described four possible variations of “intrinsic” generic computability,
that is “intrinsic” generic descriptions of A which ensure the existence of generic
descriptions of ϕe(A) for all e ∈ Perm. The four notions differ by how uniformly
we can obtain a generic description for a given permutation. We provide the
generalizations of each of these notions to the remaining three notions of
asymptotic computability mentioned in Section 1, which gives us a total of sixteen
separate notions. Throughout this section x will denote an arbitrary element of
{effective dense, generic, coarse, dense}. We shall begin by describing the strongest
of the four notions, which is the most overtly related to our study of intrinsically
small sets.

Definition 5.1. A⊆ù is intrinsically x-ly computable if there is an x description
of A with an intrinsically small error set.

Astor originally defined this notion as strongly intrinsically x-ly computable,
however we shorten the definition for the sake of readability.
This is the most natural intrinsic variant of asymptotic computability, as it is

obtained by simply requiring the error set to meet a stronger smallness condition.
As we shall see, the other three notions introduced in [3] are not obtained by
simply modifying the error set, but rather by introducing new restrictions on the
computation.
We should verify that the intrinsically x-ly computable sets are not just the

computable sets: clearly the computable sets meet this definition for any x, but
are there noncomputable examples? It turns out that for the strongest notion,
intrinsically effectively densely computable sets, this is not the case:

Lemma 5.2. Suppose that A is intrinsically effectively densely computable. Then A
is computable.

Proof. By definition, ifA is intrinsically effectively densely computable, then the
error set is an intrinsically small computable set. However, no infinite computable
set can be intrinsically small, as there is a computable permutation that maps it
to the nonfactorials and its complement to the factorials. Therefore, the error set
must be finite. As A differs from a computable set by only finitely much, it must be
computable. ⊣

Fortunately, the other three do admit noncomputable examples. For generic
computability, as mentioned in [3], any c.e. set with intrinsic density 1, such as
a maximal set, is intrinsically generically computable. Similarly, any set of intrinsic

https://doi.org/10.1017/jsl.2020.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.39


572 JUSTIN MILLER

density 1 or 0 is intrinsically coarsely computable. Notice that any intrinsically
generically computable set with defined intrinsic density must have intrinsic density
0 or 1 and thus be intrinsically coarsely computable: Let ϕe be an intrinsic generic
description of A. If {n : ϕe(n) ↓= 1} is finite, then A has intrinsic density 0 because
A= {n :ϕe(n) ↓=1}∪(A∩We) is a unionof a finite setwith an intrinsically small set.
If this set is not finite, then it is an infinite c.e. subset of A. Therefore the absolute
upper density of A is 1 because every infinite c.e. set has a computable subset,
which can be mapped to the nonfactorials by a computable permutation. As A has
defined intrinsic density and its absolute upper density is 1, it must have intrinsic
density 1. In both cases,A is intrinsically coarsely computable. The following lemma
shows that the intrinsically generically computable sets and the intrinsically coarsely
computable sets are not the same, however.

Lemma 5.3. There is a intrinsically coarsely computable set which is not intrinsically
generically computable.

Proof. By Lemma 2.1, there is an intrinsically small set A such that for each
infinite c.e. setWe there exists ae ∈A∩We with ae < as for e < s . That is, there is a
unique designated element ae of A for each infinite c.e. setWe . ∅

′ cannot determine
if a c.e. set is infinite, but it can ask if there is a large enough element of We to
continue the construction and put that into A if it exists. This may designate some
elements for finite c.e. sets, but this is acceptable.
Now define B ⊆ A by agreeing with A away from the ae ’s and diagonalizing

against the eth turing machine using B(ae), i.e. B(ae) = 1 – ϕe(ae). (Note that
ϕe(ae) ↓ because ae ∈ We .) Then B ⊆ A has intrinsic density 0 and cannot be
intrinsically generically computable because it disagrees with every turing machine
with infinite domain at least once. ⊣

The reverse separation remains open: it is easy to ensure that a given Turing
function is not an intrinsic generic description by simply finding one place where it
is wrong. However, to ensure that a given Turing function is not an intrinsic coarse
description, we must force it to disagree on an infinite set which is not intrinsically
small, which is more difficult. The natural strategy is to take an intrinsic generic
descriptionWi , say a maximal set, and attempt to change it to diagonalize against
the total functions in such a way that the description is still c.e. and its complement
is still intrinsically small. The issue arises from our not being able to enumerate all of
the total functions using computable indices: there is an enumeration of c.e. indices
which contains exactly the computable sets (given an index e, enumerateWe so long
as the enumeration is increasing, but do not enumerate smaller elements), but there
is no way to distinguish the infinite sets from the finite ones. If we know a given
c.e. index e yields an infinite computable set, it is easy to wait for convergence of
ϕe and diagonalize against it on an infinite computable subset ofWi , forcing ϕe to
not be a n intrinsic coarse description. However ifWe is in fact finite, then we will
never see convergence, and failing to converge for the indices of finite sets will make
the complement of our new enumeration no longer intrinsically small. If we give up
waiting for convergence after some length of time, then there is no guarantee that
an infinite computable set will ever enumerate quickly enough to be diagonalized
against.
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Question 5.1. Is there an intrinsically generically computable set which is not
intrinsically coarsely computable?

One potentially useful result for this question is the result of Arslanov [1] that the
only c.e. DNC degree is ∅′. As mentioned above, we know from [3] that the degrees
which contain an intrinsically small set are those which are high or DNC. As the
domain of an intrinsic generic description is c.e. and can compute an intrinsically
small set (its complement), its degree must be high or DNC, and therefore high.
Fortunately, the answer to this question resolves the remaining implications

involving intrinsically densely computable sets:

Lemma 5.4. The intrinsically densely computable sets are exactly the intrinsically
coarsely computable sets if every intrinsically generically computable set is intrinsically
computable, and the intrinsically densely computable sets strictly contain all of the
intrinsically generically computable sets and intrinsically coarsely computable sets if
this is not the case.

Proof. By Lemma 5.3 there is a set B which is intrinsically coarsely computable
but not intrinsically generically computable. Let A be a set which is intrinsically
generically computable but not intrinsically coarsely computable. An application of
Corollary 2.7 tells us thatA⊕B is intrinsically densely computable, but it is clear that
it cannot be intrinsically coarsely computable or intrinsically generically computable
because any intrinsic coarse/generic description ofA⊕B would necessarily yield an
intrinsic coarse/generic description of A/B.
Now suppose that every intrinsically generically computable set is intrinsically

coarsely computable, and let A be intrinsically densely computable with witness ϕe .
Then the set B defined via the characteristic function

÷B(n) =

{

ϕe(n) n ∈We

0 n ∈We
,

is intrinsically generically computable with witness ϕe . Therefore it is intrinsically
coarsely computable via some total witness ϕi . Therefore ϕi witnesses that A is
intrinsically coarsely computable as well because the error set is contained within
the union of two intrinsically small sets (the complement ofWe and the error set of
ϕi on B) and thus is intrinsically small. ⊣

The remaining three generalizations of asymptotic computation to the intrinsic
setting use a separate idea: Rather than having an intrinsically small error set
that ensures the existence of descriptions, we simply assert that descriptions
must exist for any computable permutation. Varying the level of uniformity
for these descriptions is how we reach three separate notions (Recall that x ∈
{effective dense, generic, coarse, dense}):

Definition 5.5.

• A is weakly intrinsically x-ly computable if ϕe(A) is x-ly computable for every
e ∈ Perm.
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• A is uniformly x-ly computable if there is a computable function f(e,n) such
that ën(f(e,n)) is a(n) x description of ϕe(A) when e ∈ Perm.

• A⊆ù is oracle x-ly computable if there is a Turing functional Φi such that Φ
X
i

is a(n) x description of ϕe(A) whenever e ∈ Perm and X = graph(ϕe).

As in the case of the intrinsically x-computable sets, Astor’s original definitions
were “uniformly intrinsically x-ly computable” and “oracle intrinsically x-ly
computable,” however we shorten these definitions for readability.
It is immediate that all of the straightforward implications from asymptotic

computability apply here in each of the three cases, i.e. uniformly coarsely
computable sets are uniformly densely computable and so on. Furthermore, it is
easy to see that for all x ∈ {effective dense, generic, coarse, dense}, intrinsically x-
ly computable sets are uniformly and oracle x-ly computable, which both in turn
are weakly x-ly computable. Furthermore, albeit slightly less trivial, is the fact
that oracle x-ly computable sets are uniformly x-ly computable: Given a Turing
functional Φi which witnesses that A is oracle x-ly computable, define the partial

computable functionf(e,n) viaf(e,n) =Φgraph(ϕe )i (n). Then the definition of oracle
x-ly computable ensures that this function f witnesses uniformly x-ly computable.
This means that for a fixed x, the four notions form a chain.
As noted in [2], it is unclear at first if these notions are all distinct (i.e. whether

or not the chain collapses), even when restricting ourselves just to the generic case.
Below we shall see that they are not distinct here, although the argument will not
generalize to the coarse and dense settings. However, a slight modification of it shall
provide a similar but not identical result for the effective dense setting.

Theorem 5.6. Suppose that A is oracle generically computable. Then A is
intrinsically generically computable.

Proof. Let Φi witness that A is oracle generically computable. Then define the
partial computable function f as follows: Note that the set of finite binary strings
ó which are initial segments of graphs of injective functions is computable. For ó
in this set, let fó denote the partial injective function with finite range such that
graph(fó) is the infinite binary string obtained by adding infinitely many 0s to ó.
Compute f(n) by searching for such a ó with n ∈ range(fó) and Φ

ó
i (fó(n)) ↓. If

one is found, define f(n) = Φói (fó(n)) for the first such ó. Otherwise, f(n) ↑.
First, note that f(n) ↓ implies f(n) = A(n): If f(n) ↓, then there is some ó such

that Φói (fó(n)) ↓. As ó is an initial segment of the graph of an injective function,
ó can be extended to X where X is the graph of some computable permutation
ϕe . Then as Φi witnesses that A is oracle generically computable, Φ

X
i is a generic

description of ϕe(A), so Φ
X
i (ϕe(n)) ↓ implies

ΦXi (ϕe(n)) = ϕe(A)(ϕe(n)) =A(n).

In particular,

A(n) = ΦXi (ϕe(n)) = Φ
ó
i (fó(n)) = f(n)

by the finite use principle.
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Therefore, it remains to show that the domain of f has intrinsic density 1.

Notice that if ϕe is a permutation, then ϕe(dom(f)) contains dom(Φ
graph(ϕe )
i ),

as if Φgraph(ϕe )i (k) ↓, there is an initial segment ó of graph(ϕe) with k ∈
range(fó) that witnesses convergence, and therefore witnesses f(ϕ

–1
e (k)) ↓.

However, ñ(dom(Φgraph(ϕe )i )) = 1 as Φgraph(ϕe )i is a generic description of ϕe(A)

and therefore has density 1. Thus dom(f) has density 1 under every computable
permutation and thus has intrinsic density 1 as desired. ⊣

Corollary 5.7. Suppose that A is oracle effective densely computable. Then A is
intrinsically generically computable.

Proof. Construct the description f ofA as in the proof of Theorem 5.6, however
instead of searching for convergence, search for convergence to either 0 or 1. ⊣

As mentioned above, this argument does not in general apply to oracle coarsely
computable sets and oracle densely computable sets. The issue lies in the fact that
coarse and dense computation allows for mistakes, so we cannot ensure that any
convergent computation is correct.
The remaining implications remain open other than the previously observed

chains. The difficulty in separating these notions lies in the fact that the constructed
sets cannot be described by building one error set, but rather have a different error
set for each computable permutation. More importantly, these countably many
computable requirements are heavily interlocked: Consider attempting to construct
a weakly intrinsically generically computable set which is not weakly intrinsically
coarsely computable. As an example, wemay try to define an error set for the identity
permutation. However, this defines themembership of the constructed set on a given
c.e. setWe . If we wish to diagonalize for a given computable permutation ð, we may
find that ð(We) has density 1, in which case we can’t respectWe and also diagonalize
on a set of positive density.
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