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Abstract. Is knowledge definable as justified true belief (“JTB”)? We argue that one can
legitimately answer positively or negatively, depending on whether or not one’s true belief is
justified by what we call adequate reasons. To facilitate our argument we introduce a simple
propositional logic of reason-based belief, and give an axiomatic characterization of the notion
of adequacy for reasons. We show that this logic is sufficiently flexible to accommodate various
useful features, including quantification over reasons. We use our framework to contrast two
notions of JTB: one internalist, the other externalist. We argue that Gettier cases essentially
challenge the internalist notion but not the externalist one. Our approach commits us to a form
of infallibilism about knowledge, but it also leaves us with a puzzle, namely whether knowledge
involves the possession of only adequate reasons, or leaves room for some inadequate reasons.
We favor the latter position, which reflects a milder and more realistic version of infallibilism.

§1. Introduction. Can the ordinary concept of knowledge be defined in terms of
justified true belief (“JTB”)? Since Gettier’s paper [16], the answer to this question
is widely considered negative. Gettier produced two cases intended to show that a
belief can be true, justified, and yet fall short of knowledge. The first concerns Smith,
an applicant for a job who has “strong evidence” that Jones is the man who will get
the job and also that Jones has ten coins in his pocket. Unknown to Smith, it turns
out that Smith himself has 10 coins in pocket and is actually the one selected for the
job. Smith’s belief that “the man who will get the job has ten coins in his pocket” is
therefore true and justified, but it seems inappropriate to say that this belief constitutes
knowledge. The second case is one in which Smith believes a false proposition p based
on persuasive evidence for p and infers from p some true proposition p ∨ q by picking
the true disjunct q at random. Here too, Smith justifiably believes p ∨ q, but it seems
incorrect to say that he knows p ∨ q.
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Our point of departure in this paper is the following: even though we agree with
the force of Gettier’s examples, we share with others (in particular [8, 10, 18, 26, 27,
29]) the intuition that those examples do not necessarily invalidate every analysis
of knowledge in terms of justified true belief, depending on how the notion of
justification is understood. Indeed, what Gettier’s examples show is that an agent
can have an internal justification for believing a proposition that is plausible, without
that justification being properly adequate to the truth of the proposition in question.
But if so, Gettier cases must only show that knowledge is not identical with JTB
under an internalist conception of justification. The examples do not thereby rule
out the existence of a more externalist notion of justification capable of sustaining
the equation between knowledge and JTB. Define knowledge as true belief with an
adequate justification, and it appears Gettier cases no longer have a bite. Our leading
intuition in that regard is shared with the earlier analyses of knowledge by Chisholm
in [8] and Sosa in [26, 27], who define knowledge as the possession of a nondefective
justification, and by Dretske in [10], who defines knowledge as the possession of a
conclusive reason.

Admittedly, a definition of knowledge along those lines might not provide a noncir-
cular or reductive analysis (see [33]): notions of “nondefectiveness,” “conclusiveness,”
or indeed “adequacy” may ultimately have to be understood in ways that presuppose
a prior grasp of the concept of knowledge. For example, if an adequate justification
were to mean “a justification that is suitable to make the belief count as knowledge,”
then it would appear that we define knowledge in terms of itself. We agree with this
objection, but the notion of adequacy may also turn out to not wholly depend on
epistemic notions. Adequacy, for instance, may be at least partly characterizable in
terms of truth-making, and the truth-making relation need not refer to prior epistemic
notions. Or consider the relation between a fully formalized axiomatic proof and
a mathematical statement derived in that proof: the “adequacy” of the proof as a
vehicle for mathematical truth is a purely syntactic notion, with no epistemological
concepts presupposed. These examples suggest to us that room remains for a fruitful
investigation of the concepts of knowledge, belief, and justification that acknowledges
the distinction between adequate and inadequate reasons.

The gist of our account lies in the distinction between reasons that (merely) support
belief in a proposition and reasons that are not only supportive but are also what we
call adequate. Our first goal in this paper is to give an axiomatic characterization
of both concepts, and to use them to clarify the duality found in the concept
of justified true belief. Our characterization treats adequate reasons basically as
externalist noninferential justifications, following Fumerton’s typology in [15]. They
are noninferential in the sense that we do not require agents to be able to justify their
plausibility by a further reason, and externalist in that adequacy is not necessarily a
property an agent can ascertain. Like Chisholm and Sosa in their respective treatments
of nondefective justification, or Dretske in his treatment of conclusive reasons, we
moreover treat adequate reasons as being infallible, in the sense that they can only
support true propositions. The latter property is not a definition of adequacy, however,
but only a central property, as we shall explain.

A second goal we have on that basis is more technical: it consists, in the wake of
work done in Justification Logic [2, 3], in giving an explicit treatment of reasons in
epistemic logics but with specific emphasis on the notion of an adequate reason.1 Our

1 Artemov [2, 3] uses a formal framework to track what goes wrong with specific lines of
reasoning in the examples of Gettier, Goldman, and Kripke; and Baltag, Renne and Smets
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third goal is more philosophical. As already suggested, our account commits us to a
version of infallibilism about knowledge, for an adequate reason supports only true
propositions. However, our beliefs for a proposition often are grounded in two kinds of
reasons, some of them adequate, and others inadequate. The question we are interested
in concerns whether knowledge should be defined in terms of the possession of only
adequate reasons, or whether it tolerates the inclusion of inadequate reasons. This is
what we call the problem of mixed reasons. We address this problem and defend the
view that knowledge should be made compatible with the possession of mixed reasons.

In order to articulate the distinction between two kinds of justification, in §2 we first
present the basic concepts of our account of knowledge and justification, namely the
concepts of reason, support, and of adequacy. We then introduce the Logic of Reason-
Based Belief in §3. This logic provides an explicit representation of reasons to believe a
proposition. We show that the logic is sufficiently flexible to accommodate quantifiers
over reasons, limited or full closure of reason-based belief under implication, and an
optional requirement that all beliefs be reason-based. In §4, we put this logic to work
in the analysis of Gettier cases: first to tease apart two notions of justification, one
internalist and the other externalist; and second to study the susceptibility of internal
JTB and of external JTB to Gettier-type examples. Finally, in §5 we close the paper with
a discussion of the problem of mixed reasons and with the discussion of an objection
to our account, regarding whether adequacy is even a necessary condition for the
ascription of knowledge. Technical notions and results that are not required for an
understanding of the main text are relegated to an appendix.

§2. Reasons, support, and adequacy. We distinguish between two kinds of reasons:
those that merely “support” a proposition by inclining an agent to believe in it, and
those that not only support a proposition but are also themselves “adequate.” Our
analysis of Gettier cases hinges on a precise understanding of this key distinction.
In this section we first introduce the three basic concepts that we rely on in our
epistemology beside the concept of belief, namely reasons, support, and adequacy.
Regarding belief, suffice it to say that we treat belief as an explicit endorsement by an
agent of either a proposition, or a reason providing evidence for a proposition. We say
more about our characterization of belief in §3, where we further clarify the relation
between beliefs and reasons.

2.1. Reasons. The first concept we need to clarify is the concept of a reason. As
emphasized by Armstrong in [1], “talk of a man’s reason may be to refer to a (certain
sort of) belief-state of his, or it may be to refer to the proposition believed” (p. 79). We
handle reasons primarily as state-specific objects, and only derivatively as propositions.
For us, a reason is some evidence on the basis of which we come to believe a proposition.
A reason therefore does not have the type of a proposition, although it can be associated

[4, 5] use a related framework that has additional features from Belief Revision Theory to
reason about the examples of Lehrer and Gettier. Our work here is different. First, while
inspired by the Justification Logic approach to reasoning about justifications, our setting
is in many respects simplified but at the same time includes certain novel features (see §3.5
for details). Second, our task here is different than that in [2, 3]: beyond providing a formal
diagnosis of what goes wrong in certain Gettier-type examples, we define different kinds of
JTB and discuss their relative susceptibility to such examples. This has some similarities with
the work in [4, 5]; however, our logics are much simpler and we use them as part of a different
analysis.
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to a proposition in a systematic manner.2 For example, my hearing voices outside might
be a reason to believe that there are people outside. Semantically, we shall represent
reasons by accessibility relations, thereby treating them as akin to belief-states. Given
a reason r and a world w, we write r(w) to represent the proposition determined by the
reason r in w (that is the set of accessible worlds in virtue of the relation corresponding
to r). So, each reason can be associated with a proposition at a world, but reasons
per se are not propositions.3 Reasons are related to the sort of answers produced by
rational agents when they are asked, “Why do you believe this?” or “How do you know
that?” If I am asked why I believe that Napoleon I is dead by now, I would answer
that it is because I read that he was born in the eighteenth century, and he died in the
nineteenth century. If I am asked why I believe that 2 + 2 = 4, I would respond that
my calculations confirm that, or that I accept a certain axiomatic system that I see
as consistently deriving that fact. So reasons for us are not bare propositions, like the
proposition “Napoleon died in the nineteenth century” or the proposition “ 2 + 1 = 3,”
or even bare arguments, but we take them to be related to evidential experience of some
sort.

2.2. Support. The second concept we deal with is what we call support between
a reason and a proposition. Syntactically, we treat the relation of support between a
reason and a proposition as primitive: we will write “ r :ϕ”. Model-theoretically, we
represent the support relation between a reason r and a proposition p by the fact that
r(w) entails p. This does not mean that we intend the relation of support to model
deductive support. Rather, we do intend it to capture a very fundamental form of
inductive support. That is, we view each reason as a basic human experience of some
kind, creating an inclination to believe a proposition. If I hear voices outside the house,
that is a supporting reason for the proposition that there are people outside the house.
In principle, that might also be a reason to think there are loudspeakers broadcasting
voices outside the house (with no actual person around). In our approach, however,
we do not allow for reasons to support contradictory propositions. If r is a supporting
reason for ϕ, then we will take r to be a supporting reason for any proposition entailed
by ϕ. Consequently, a reason for thinking that there are loudspeakers broadcasting
voices outside the house with no one around will have to be different from a reason to
think that there are actual people outside the house.

A delicate issue is whether the support relation ought to be treated as subjective
(internal to an agent’s beliefs) or as objective (external to the agent’s beliefs). That is,
could an agent believe that r supports ϕ without r actually supporting ϕ? Conversely,
could r support ϕ without the agent believing that r supports ϕ? Regarding the latter,
in our system any reason supports every logical truth, but we see it as possible for an
agent not to believe that, in particular because an agent may not automatically see the

2 We are indebted to an anonymous reviewer and to J. Dutant for urging us to clarify that
matter. In a previous version of our work, we left open the possibility for reason symbols
to directly denote propositions. Note that throughout the paper, and unless when it creates
confusion, we use the word “proposition” both for syntactic objects (closed sentences of our
language), and for the semantic objects they denote (viewed as sets of possible worlds).

3 Note also that given a sentence p, p is supposed to express the same proposition relative to
every world. In our framework a reason r may express different propositions r(w) depending
on the world w.
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truth of every logical truth or be aware of every reason. Hence, a reason may support
a proposition without an agent believing that.

The question whether an agent may believe a reason to support a proposition without
that reason supporting the proposition is more delicate. One way in which this could
happen is if reasons can be treated as mere propositions. For example, an agent who
accepts a fallacious mathematical argument may believe that true premises deductively
support a false conclusion. In that case one may say that the agent incorrectly believes
the premises to deductively support the conclusion. Again we find it better not to let
propositions be reasons per se, but to keep to reasons being evidence of a sort, related
to some experience. Take an agent who miscalculates the result of some mathematical
equation. He accepts the premise that a bat and a ball cost $1.10, that the bat costs
$1 more than the ball, and wrongly computes from that that the ball costs $0.10 (it
actually costs $0.05).4 On an objective reading of reasons, letting p1 and p2 stand for
the two premises of the argument, and q for the false conclusion that the ball costs
$0.10, we would write: B((p1 ∧ p2) : q) to express that the agent believes the premises
to deductively support the conclusion. But we find more appropriate to write instead
that B(r : (p1 ∧ p2 → q)), where r stands for the calculation made by the agent, to
represent the fact that the agent sees his calculations to support a certain deductive
relation between premises and conclusions. As a result, we treat the relation of deductive
support between bare propositions by means of the usual logical resources available in
our system, and not in terms of the colon operator.

Because we see reasons as evidence-based propositions, we might wish to endorse the
success principle B(r :ϕ) → r :ϕ. That is, the agent believing some kind of experience
to support a proposition would suffice to make the experience in question a supporting
reason for ϕ. A rational agent may therefore not necessarily be aware of all his or her
reasons, but could not be mistaken about reasons that he or she explicitly endorses.
One may object that even rational agents may be deluded about their reasons. For
example, an agent might be mistaken about her own experiences. She has a memory
of an encounter with a famous actor, but that encounter never happened, and the
memory is no real experience. When asked to justify why she believes this actor is
blond, she gives as a reason that she remembered seeing him to be blond during
that encounter. Arguably, the reason does not support the proposition in that case,
because the reason is not grounded in any true experience. Such cases invite us to
guard against the aforementioned success principle. Because of that, we will propose a
weakening of that principle, intended to secure more generality, and to not rule out such
cases.

2.3. Adequacy. What about adequacy? Adequacy is by far the most central concept
in our approach. There are various ways in which the notion can be thought of. One
option is to think of an adequate reason as a reliable reason (see [18]). On that approach,
an adequate reason is a reason that produces true beliefs most of the time. Like other
critics of reliabilism, we do not view this characterization as strong enough. A stronger
characterization might be in terms of Dretske’s notion of conclusive reason. According
to Dretske, r is a conclusive reason for p if and only if r would not be the case if p were
not the case ([10]). Another approach is in terms of Chisholm’s or Sosa’s respective

4 This example is from S. Frederick and D. Kahneman [20]. A variant is discussed by Sorensen
in [25].

https://doi.org/10.1017/S1755020319000522 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000522
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conceptions of nondefectiveness [8, 26], whereby a justification is nondefective provided
it is not the basis of any false proposition. Consistently with those views, our use of the
term “adequate” is also related to Spinoza’s understanding in Ethics, where the notions
of adequate idea (adaequata idea) and adequate knowledge (adaequata cognitio) are
meant to imply truth.5

We draw inspiration from the latter set of approaches but an important caveat about
our approach is that we do not propose to give an explicit definition of adequacy
in terms of necessary and sufficient conditions. Instead, we propose to characterize
adequacy in terms of two necessary conditions, and in terms of the interaction with
the notions of support and belief we have in our ontology. The first central condition
we impose on a reason for it to be adequate is very close to Chisholm’s, Sosa’s, or
indeed Spinoza’s respective conceptions. We say that a reason is adequate only if the
propositions it supports are true (axiom (A) below). But we also see adequacy as
putting a requirement on the support relation. In particular, we consider that if an
agent wrongly believes a reason r to support a proposition ϕ (that is, believes so
although r actually fails to support ϕ), then r cannot be adequate (axiom (AS) below).
So, an adequate reason is such that it secures not only the propositions that it actually
supports, but also such that it secures the correctness of the belief in the associated
support relation. This second requirement basically corresponds to the weakening of
the success condition evoked before, that B(r :ϕ) should always entail r :ϕ. It says
that this is so provided r is adequate.

Let us make four important remarks on our treatment of adequacy:

1. Our central requirement on adequacy ensures that ifϕ is not true, and r supports
ϕ, then r cannot be adequate. This property of adequacy therefore comes close
to Dretske’s, except that we rule out the possibility that a reason might be
adequate evidence for one proposition and inadequate for another (we discuss
that aspect in §5). That first requirement implies that reasons that do not validly
support a given conclusion are inadequate.

2. In our system B(r :ϕ) does not entail that Br, which says that an agent
does not automatically deem adequate any reason she has in support of a
proposition. For example, in the Müller–Lyer illusion, an agent who trusts her
perceptual experience that two lines differ in length has a reason in support of
the proposition that the lines are not equal. But she can have a different and
overriding reason, her measuring of the lines (reason s), telling her that the lines
do not differ in length. We would represent the case as:

B(r :p) ∧ B(s :¬p) ∧ Bs ∧ ¬Br.
3. We do not identify the adequacy of a reason with the validity or even the

soundness and validity of an argument. Consider the following example of what
Sorensen [25] calls “paralemmatic reasoning”. Our agent has 10 cents in his
pocket (premise 0). He infers from that, and from the information that the bat
and ball cost $1.10 (premise 1) and the bat costs $1 more than the ball (premise
2), that he has enough money to buy the ball (conclusion). Let us assume
he infers the conclusion really because he infers that the ball costs 10 cents.
Let us represent by p0, p1, p2 the premises of that argument, by q the correct

5 See [28] Part II, in particular def. 4, prop. 34 and prop. 41.
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conclusion that the agent has enough money to buy the ball, and by p the
incorrect lemma that the ball costs 10 cents. Let us call r the agent’s calculations.
The agent believes that r : (p0 ∧ p1 ∧ p2 → q). The argument p0 ∧ p1 ∧ p2 → q
has sound premises, and the conclusion validly follows. In effect, however, what
r supports in the agent’s mind is a more specific argument, namely the argument
that p1 ∧ p2 → p, combined with the argument that p ∧ p0 → q. Because of
our adequacy constraint, r cannot be an adequate reason here, because r
supports an incorrect argument. Sorensen in [25] writes that “paralemmas
are precise counterexamples to bare evidentialism—the view that we know a
proposition simply by virtue of having adequate evidence for it.” By adequate
evidence we take Sorensen to refer to some intrinsic property of the evidence,
holding irrespective of the agent’s beliefs. This is not our characterization
of adequacy, precisely because for us a reason can support a logically
perfect argument without being adequate. We are not bare evidentialists as a
consequence.

4. Finally, we do not view the two conditions we impose on adequacy, namely
(A) and (AS), as sufficient conditions for a reason being adequate, but only
as necessary conditions. For us, and as our semantics will show, adequacy
is fundamentally a property of a reason and a world. Or put otherwise, the
adequacy of a reason represents the property of a world being a good case
for the reason in question (see [33]). The same reason, with the same intrinsic
properties, could turn out to be adequate in a good case and inadequate in a
different case that is bad. Being a good case is not a notion we think we can
explicitly define and exhaustively characterize. Intuitively, being a good case
(relative to a reason) means being a case at which the reason is used in a way
that is not lucky, that is safe, or that has the right fit, whatever those notions
might mean. We consider our two axioms on adequacy to capture part of that
intuition, but some of the cases we discuss (particularly Goldman cases, see
below) are arguably cases in which both of our conditions are fulfilled, but
which we do not want to characterize as adequate in the externalist sense we
think is relevant.

Our axiomatic treatment of adequacy therefore implies that the adequacy of a reason
does not lead to any false conclusion, and it also implies that the agent is not deluded
about the experience reported in the reason. But to rehearse our main point, those are
only two necessary conditions on adequacy. We view adequacy as an even stronger
property of a reason and a world, namely as the property for a world to secure that the
reason is not merely internally but also externally warranted.

§3. A simple logic of reason-based belief. Having laid out the basic ingredients in
our ontology, in this section we present a simple logic of reason-based belief. We first
present our system axiomatically and then give its underlying model theory. We then
present various extensions of the basic system, in particular to allow for quantification
over reasons, which will be needed in our analysis of justified true belief in the next
section.

3.1. Reason-based belief. Fix nonempty sets P of propositional letters and R of
reason symbols (also called “reasons”). F is the set of formulas ϕ defined by the
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Table 1. The theory RBB

Axiom Schemes

(CL) Axiom Schemes of Classical Propositional Logic
(RK) r : (ϕ → �) → (r :ϕ → r :�)
(A) r :ϕ → (r → ϕ)

(BRK) B(r : (ϕ → �)) → (B(r :ϕ) → B(r :�))
(BA) B(r :ϕ) → (Br → Bϕ)
(AS) B(r :ϕ) → (r → (r :ϕ))
(D) Bϕ → ¬B¬ϕ

Rules

ϕ→� ϕ
� (MP) ϕ

r :ϕ (RN) ϕ↔�
Bϕ↔B� (E)

following grammar:

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | (r :ϕ) | r | Bϕ
p ∈ P, r ∈ R

Other Boolean connectives are defined as abbreviations.

• r :ϕ says, “r supports ϕ”.

• r says, “r is an adequate reason.”
For the sake of clarity, we might have introduced a unary operator A in the lan-
guage, and written Ar to express “r is an adequate reason.” We choose to write
r instead ofAr to save symbols. Our logic will guarantee that every proposition
supported by an adequate reason is true (i.e., we will have r :ϕ → (r → ϕ)
for all formulas ϕ). Note that, as we define it, adequacy is not relativized to
a specific proposition. This makes our treatment of adequacy different from
Dretske’s treatment of conclusiveness. For Dretske, a reason is not conclusive
per se but conclusive for a proposition [10]. In our setting, when a reason is
adequate, it makes every proposition it supports true. Hence no reason can be
such that it is adequate relative to one proposition it supports, and inadequate
relative to another. This feature of our account may eventually prove too strong
(we return to this issue in the last section of the paper), but our proposal is to
think of adequacy as a fundamental property of truth-conduciveness.

• Bϕ says, “the agent believes ϕ.”
The formula Br is therefore read, “the agent believes r is an adequate reason.”
Sometimes it will be convenient to say that “the agent accepts reason r” to
mean that Br holds. So believing reason r is adequate and accepting reason r
will be considered to mean the same thing.

To reduce the number of parentheses while ensuring unique readability of formulas, we
adopt the convention that the colon operator binds more strongly than any Boolean
connective. For example,

r :ϕ → � denotes (r :ϕ) → �
[
and not r : (ϕ → �)

]
.

The theory RBB of reason-based belief appears in Table 1. We write � ϕ to mean
that ϕ is derivable in RBB. The negation is written � ϕ.
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Regarding the axioms and rules of RBB from Table 1, classical logic (CL) and
modus ponens (MP) say that RBB is an extension of classical propositional logic.
Kripke’s axiom (RK) says that reasons are closed under material implication, and
reason necessitation (RN) says that reasons support all derivable formulas. Adequacy
(A) says that if r supports ϕ and r is an adequate reason, then ϕ is true. Belief version
of RK (BRK) says that if the agent believes r supports a conditional, and believes
r supports the antecedent, then the agent believes r supports the consequent. Belief
version of adequacy (BA) says that if the agent believes r supports ϕ and the agent
believes that r is an adequate reason, then the agent believes ϕ. Adequate support (AS)
says that if the agent believes r to support a proposition, then r does not support the
proposition unless r is adequate. Well-known axiom from modal logic (D) says that the
agent’s beliefs are consistent: she cannot have contradictory beliefs (i.e., believe both
ϕ and ¬ϕ for some ϕ). Finally, well-known rule from minimal modal logic (E) says
that the agent’s beliefs do not distinguish between provably equivalent formulas.

As for mnemonics, (CL) is “classical logic,” (MP) is “modus ponens,” (RK)
is Kripke’s axiom (K) of modal logic (used here for reasons), (RN) is “reason
necessitation,” (A) is “adequacy,” (BRK) is “the belief version of RK,” (BA) is “the
belief version of adequacy,” (AS) is “adequate support,” (D) is a well-known axiom
from modal logic [7], and (E) is a well-known rule from minimal modal logic [7].

3.2. Semantics forRBB. We now present a semantics for our system. The semantics
is based on two main components: a neighborhood semantics for belief, intended to
make belief as weak as possible, and a Kripke semantics for reasons, this time intended
to capture the closure properties on reasons.6 We justify both desiderata in the next
section.

We construct the models of RBB in a couple of stages. We first begin with premodels,
which are structuresM = (W, [·], N,V ) having:

• a nonempty set W of “possible worlds,”
• a function [·] : R→ ℘(W ×W ) mapping each reason r ∈ R to a binary relation

[r] ⊆W ×W on the set of possible worlds,
• a “neighborhood function” N :W → ℘(℘(W )) mapping each world w to a

collection N (w) of sets of worlds (“propositions”) that the agent believes at w,
• a propositional valuation V :W → ℘(P) mapping each world w to the set
V (w) of propositional letters that are true at w.

To indicate that the components W, [·], N, and V come from premodel M, we may write
WM , [·]M ,NM , and VM (respectively). Letting w ∈W be a world, r ∈ R be a reason,
and X ⊆W be a set of reasons (i.e., a “proposition”), we introduce the following
abbreviations:

• r(w) := {v ∈W | (w, v) ∈ [r]} is the set of all worlds that are r-accessible from
w (i.e., accessible by the relation [r]).

• r◦ := {v ∈W | (v, v) ∈ [r]} is the set of all worlds that are r-accessible from
themselves. These are the worlds at which the reason r is said to be reflexive. As
we will see shortly, a reason that is reflexive at a world will be adequate at that

6 For other systems dealing with belief in terms of a neighborhood semantics, see [30] and [11,
12].
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world. So reflexivity and adequacy are equivalent notions, and hence we may
conflate the two, which ought not cause confusion.

To indicate the sets r(w) and r◦ arise from worlds in premodel M, we may write
rM (w) and rM◦ (respectively). Though not mentioned above, we do require that all
pre-models satisfy the following property:

(pr) For each x ∈ P ∩R, we have x ∈ V (w) if and only if w ∈ x(w).

This says that for propositional letters that are also reasons, the truth assignment given
to x by the valuation V agrees with the reflexivity of x. This ensures that there is no
ambiguity in the assignment of truth to propositional letters that are also reasons.7

A pointed premodel is a pair (M,w) consisting of a premodel M and a world w in M.
We writeM,w |= ϕ to say that ϕ is true at the pointed premodel (M,w), and we write
M,w 	|= ϕ for the negation. We define the satisfaction relation |= and the set

[[�]]M := {v ∈W |M,v |= �}
of worlds in the premodel M at which the formula � is satisfied as follows.

• M,w |= p means that p ∈ V (w).
• M,w |= ¬ϕ means thatM,w 	|= ϕ.
• M,w |= ϕ ∨ � means thatM,w |= ϕ orM,w |= �.
• M,w |= r :ϕ means that r(w) ⊆ [[ϕ]]M .
• M,w |= r means that w ∈ r(w).
• M,w |= Bϕ means that [[ϕ]]M ∈ N (w).

We note that |= is well-defined: for each x ∈ P ∩R, we have x ∈ V (w) if and only
w ∈ x(w) by (pr), and thereforeM,w |= x is well-defined.

We say that a premodelM = (W, [·], N, v) is a model if and only if M satisfies each
of the following additional properties:

(brk) If [[r : (ϕ → �)]]M ∈ N (w) and [[r :ϕ]]M ∈ N (w), then [[r :�]]M ∈ N (w).
This says that if the agent believes r supports the implication ϕ → � and its

antecedent ϕ, then she believes r supports the consequent � as well.
(ba) If [[r :ϕ]]M ∈ N (w) and r◦ ∈ N (w), then [[ϕ]]M ∈ N (w).

This says that if the agent believes r supports ϕ and she believes r is reflexive,
then she also believes ϕ.

(as) If [[r :ϕ]]M ∈ N (w) and w ∈ r(w), then r(w) ⊆ [[ϕ]]M .
This says that if the agent believes r supports ϕ and r is reflexive, then r does

in fact support ϕ.
(d) X ∈ N (w) impliesW – X /∈ N (w).

This says that if the agent believes X at world w, then she does not believe
the complementW – X at world w.

(brk), (ba), (as), and (d) are the model-theoretic analogs of the axioms (BRK), (BA),
(AS), and (D), respectively. A pointed model is a pair (M,w) consisting of a model M
and a world w in M.

7 By definition, the nonempty sets P and R are not necessarily disjoint. Therefore, our language
allows for the possibility that there are objects that are both propositional letters and reasons.
The choice as to which possibility to realize is up to the user, who may decide to take
P ∩R = ∅ or not as per her preference.
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Given a premodel M, to say that ϕ is valid in M, written M |= ϕ, means that
[[ϕ]]M =W . To say that ϕ is valid, written |= ϕ, means that M |= ϕ for every model
M. That is, validity is taken over the class of models (and not the larger class of pre-
models). It is shown in Theorem A.1 thatRBB is sound and complete for this semantics:
we have � ϕ if and only if |= ϕ. Unless explicitly noted otherwise, our focus in what
follows will generally be on the concept of model (and not the concept of premodel).

The following terminology will be useful for what follows: given a reason r and a
pointed model (M,w) representing the key features of a particular situation of reason-
based belief, to say

• “r is adequate at (M,w)” meansM,w |= r;
• “r is veridical for ϕ at (M,w)” meansM,w |= r :ϕ → ϕ; and
• “r is veridical at (M,w)” meansM,w |= r :ϕ → ϕ for each formula ϕ.

In using the above terminology, we may omit mention of (M,w) if it should be clear
from context which pointed model is meant. It follows by the semantics that every
adequate reason is veridical;8 however, a reason may be veridical for a proposition
without being thereby adequate. Note that being veridical is only a necessary condition
for a reason to be adequate. This means we do not take veridicality to provide an explicit
definition of adequacy, but only to put a constraint on what it is for a reason to be
adequate.

3.3. Weak belief but strong reasons. RBB posits a weak notion of belief. In
particular, as reflected in the semantics, beliefs are not necessarily closed under material
implication. That is, it is consistent to have

B(ϕ → �) ∧ Bϕ ∧ ¬B�,
which says that the agent believes an implication and the antecedent of the implication
but not the consequent.

Reasons, on the other hand, are strong. First, as just seen, they encompass all
derivable statements by (RN). Second, they are closed under implication (and hence
under (MP)) by (RK). Third, if adequate, then (A) says that they are veridical:
everything they support is true. Reasons therefore support many assertions (infinitely
many, in fact, because each reason supports each of the infinitely many theorems of
RBB by (RN)). This puts more requirements on reasons (i.e., they must do more
things), which makes them stronger.

Reasons are governed by what is essentially the normal multi-modal logic KT (with
one modal operator “r : ” for each reason r), except that the T axiom r :ϕ → ϕ
(sometimes called “veridicality”) is not guaranteed to hold unless, according to (A), we
make the additional assumption that r is adequate. This way of having a multi-modal
logic like KT but with the “modal operator” r itself a formula (whose truth implies
veridicality) is, to our knowledge, new.9

8 Proof: suppose r is adequate at (M,w). This means M,w |= r, which, by the definition of
satisfaction, means thatw ∈ r(w). Now take an arbitraryϕ. To show thatM,w |= r :ϕ → ϕ,
assumeM,w |= r :ϕ. By the definition of satisfaction, this assumption means r(w) ⊆ [[ϕ]]M .
Since w ∈ r(w), it follows that w ∈ [[ϕ]]M ; that is,M,w |= ϕ. So r is veridical at (M,w).

9 The usual way of writing our formula r :ϕ would be �rϕ. So RBB may be viewed as a multi-
modal logic with an extra formula r for each r ∈ R, aK-modality “r : ” (our variant of�r) for
each r ∈ R that respects the reflexivity schemeT if r holds (as per (A)) and interacts according
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We have chosen a theory of weak belief but strong reasons in order to keep things
as simple as possible but still address some of the major trends in the epistemological
study of knowledge as JTB. In all of the examples from epistemology we consider in
this paper, we need some way to track an agent’s logical inferences and some way to
link these inferences to what the agent believes. Our theoryRBB is a rather minimalistic
way of doing just this: reasons are used to handle the relevant inferencing, the agent
can “accept” a reason (or not) by believing it to be adequate (or not), the agent comes
to believe things supported by reasons she accepts, and the agent’s beliefs are always
consistent. This way we can encode inferencing using a reason, indicate whether the
agent accepts this inferencing, and thereby infer whether she believes some statement
based on a reason. We also allow the possibility that she believes something without a
reason, by which we mean that the set

{Bϕ} ∪ {B(r :ϕ) → ¬Br | r ∈ R}
is consistent with our theory. This assumption is metaphysically disputable, however,
and we may provide for every belief to be accompanied by a reason if we wish.

3.4. Consistency of reasons. One interesting theorem of RBB is the principle

� (Br ∧ Bs) → (B(r :ϕ) → ¬B(s :¬ϕ)) (RC)

of reason consistency. This principle says that if an agent believes reasons r and s
are adequate, then she cannot believe that r and s support contradictory assertions.
Intuitively, the derivability of (RC) follows because (BA) requires that an agent who
accepts a reason and believes that reason to support a formula must also believe that
formula, and (D) requires that an agent not have contradictory beliefs. Notice that if
we take r = s in (RC), then we obtain a statement provably equivalent to

� Br → (B(r :ϕ) → ¬B(r :¬ϕ)), (IC)

which says that a reason believed to be adequate is believed to be internally consistent.
If the agent does not believe r is an adequate reason, then she can believe that r is

internally inconsistent. Put another way, the formula

¬Br ∧ B(r :ϕ) ∧ B(r :¬ϕ)

is consistent with our theory. Similarly, if the agent believes r is an adequate reason
but does not believe s is an adequate reason, then our theory does not rule out the
possibility that she believes r and s are inconsistent. That is,

Br ∧ ¬Bs ∧ B(r :ϕ) ∧ B(s :¬ϕ)

is also consistent with our theory.

to (AS) with anED-modality B that is governed by (BRK) and (BA). Note that (AS) provides
some interesting interaction between the various modal operators. According to our intended
semantics (§3.2), we interpret modal operators using a possible worlds semantics (with a
neighborhood function for B), and the intended interpretation of the formula r is that the
binary accessibility relation corresponding to the modal operator “r : ” is reflexive. Certain
hybrid logics [6] can express reflexivity of modal operators: the formula ↓x.¬�r¬x says that
the accessibility relation corresponding to �r is reflexive. However, hybrid logics generally
include additional features permitting greater expressivity than we need.
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Finally, since the theory RBB is consistent (and hence does not prove both ϕ and
¬ϕ for some formula ϕ),10 any adequate reason is internally consistent. That is,

� r :ϕ → (r → ¬(r :¬ϕ)), (AIC)

which says that a reason r that supports ϕ and is adequate cannot also support ¬ϕ. It
follows from (AIC) that any internally inconsistent reason is not adequate.

3.5. Logical closure and combination of reasons. If � is a logical consequence of ϕ,
meaning � ϕ → �, then our theory says that r is a reason to believe the consequent �
whenever r supports the antecedent ϕ. That is,

� ϕ → � implies � r :ϕ → r :�. (RCLC)

The proof: from ϕ → �, we obtain r : (ϕ → �) by (RN). This is the antecedent of an
instance of (RK), so the consequent r :ϕ → r :� of this instance is derivable by an
application of (MP). This completes the proof. In examining this proof, we see that
(RCLC) is a consequence of the stronger logical principle encompassed by our axiom

r : (ϕ → �) → (r :ϕ → r :�), (RK)

which says that reasons are closed under material implication.
The principle (RCLC) says that reasons are closed under logical consequence. It is

unclear whether this is a desirable principle. For example, it may make more sense to
say that if � is a logical consequence of ϕ and r supports ϕ, then it is not r itself that
supports the consequence�. Instead, what is wanted is some more complicated reason
r′ that not only references r but also provides some reason s as to why � obtains from
ϕ. That is, we might seek a principle like this:

s : (ϕ → �) → (r :ϕ → (s · r) :�). (App)

This is the principle of Application from justification logic (JL) [3]. It says: if s supports
the implicationϕ → � and r supports the antecedentϕ, then a new object s · r obtained
by combining s and r supports the consequent �. In essence, the more complex reason
s · r keeps track of everything we would need to check to see that� indeed obtains: the
initial reason r for the antecedent ϕ and a reason s for the implication ϕ → �. Further,
the syntactic structure of s · r, with s to the left and r to the right, tells us what kind of a
reason we have: based on the form of (App), it is suggested that s is some implication, r
is the antecedent of that implication, and s · r is a reason for the consequent. In essence,
we are describing specific witnesses for an instance of the rule (MP) of modus ponens:

ϕ → � ϕ

�
(MP) is encoded by

s r

s · r .

(App) is a more nuanced version of (RK): if we have r : (ϕ → �) and r :ϕ, then we
do not obtain r :� straightaway using (App). Instead, we must construct the reason
r · r in support of �. The single instance of “ · ” in the syntactic structure of the
latter reason reflects our use of one derivational step (i.e., one instance of (MP)) to
obtain �.

To do away with (RCLC), we must do away with (RK) and modify (RN). In
particular, let R0 be a nonempty set of “basic” reasons, define R to be the smallest
extension of R0 satisfying the property that s, t ∈ R implies s · t ∈ R, replace scheme

10 Consistency of RBB follows by soundness (Theorem A.1).
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(RK) by scheme (App), and restrict (RN) by requiring that r ∈ R0. (It is assumed
that all other schemes and rules can use reasons coming from the full set R.) Call the
resulting theory RBB+(App). In RBB+(App), it is consistent to have

r : (ϕ → �) ∧ r :ϕ ∧ ¬(r :�), (1)

which says that r is not closed under implication. As a result, it can be shown
that (RCLC) no longer obtains. But note that (RK) and (RCLC) do not fail in
RBB+(App) because logical or materially implied consequences of assertions are no
longer “accessible” by some reason. Indeed, in the situation (1) under the theory
RBB+(App), the logical consequence � of ϕ is still “accessible” by the reason r · r.
However, this reason r · r is more “complex” than the original reason r (in terms of
the number of instances of the (MP)-encoding Application operator “ · ” that appear
inside it). In general, distant consequences that would require many repetitions of
(App) are still accessible; it is just that the reasons that access these consequences may
be very “complex.”

Justification logic (JL) [3] is the study of logics of reason-based belief (with reasons
thought of as “justifications”). Defining JL0 to be the fragment of RBB+(App)
obtained by omitting all belief formulas and belief axioms from the theory, JLs may
be thought of as extensions of JL0.11 Many JLs permit other kinds of combinations
of reasons than what we saw with (App). Our logic RBB is closely related to the JL
tradition, though we conspicuously omit (App), retain (RK) (and thereby endorse
(RCLC)), leave (RN) without the additional restriction, and maintain a set R of
primitive reasons that cannot be combined to form more complex reasons. In so
doing, we lose the ability to have the syntactic structure of reasons reflect the structure
of derivations in the theory, and thereby forgo a more nuanced tracking of the
interaction between logical consequence and the complexity of reasons. We accept
these consequences in the interest of developing a system that is simple and yet still
of use to the formal epistemologist. Nevertheless, we recognize that a reader may be
interested to see a thorough study of more sophisticated extensions of our theory that
allow for the combination of reasons along the lines of (App) (and perhaps for other
features as well). We advise such a reader to consult the JL literature directly [3].

Since our theory does not allow the agent to combine reasons in the sense of (App)
and beliefs are not closed under implication, it is consistent for us to have a situation
wherein the agent has the requisite information to draw a belief but simply does not
draw it. For example, assuming s 	= r, it is consistent to have

Bs ∧ Br ∧ B(s : (ϕ → �)) ∧ B(r :ϕ) ∧ ¬B�, (2)

which says that the agent believes s is adequate and believes s supports an implication
(and hence believes the implication by (BA)), believes r is adequate and believes r
supports the antecedent of the implication (and hence believes the antecedent by
(BA)), and yet the agent does not believe the consequent (even though the believes the
implication and its antecedent). The problem is that her beliefs are not closed under
(MP). This is so despite the fact that, by (RCLC) and (RB), beliefs coming from the

11 Actually, Justification Logics are extensions of a fragment of RBB+(App) that places further
restrictions on the rule (RN), but we set aside further discussion of this issue here.
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same reason are closed under (MP):

� (Bt ∧ B(t : (ϕ → �)) ∧ B(t :ϕ)) → B�.

So long as the implication and its antecedent come from separate beliefs as in (2), the
agent need not believe the consequent.

The consistency of (2) is a consequence of our design: we use reason operators to
encode inferencing, and we use belief operators to encode the particular inferencing
and the individual assertions that the agent accepts (in terms of her affirmed beliefs).
As such, the situation (2) is one in which the agent has not yet performed sufficient
inferencing to accept the conclusion �, even though she is very close (after all, she
has done enough to accept the implication ϕ → � and its antecedent ϕ). In essence,
this lack of closure allows us to place one kind of constraint on the agent’s inferencing
powers. If desired, one can place even more severe constraints as in [5]; however, this
seems to require more syntax and additional axioms. One can also go the other way
and lift these constraints entirely; in §3.6 we will suggest one natural way to do this in
our setting. But for now we retain what we hope is a “happy medium” in the form of
our theory RBB.

3.6. Implication-closed and purely reason-based beliefs. We saw in (2) that reason-
based beliefs in RBB need not be closed under implication if the source reasons are
different. If we would like to ensure that reason-based beliefs are always closed under
implication, even if the beliefs come from separate reasons, then a simple solution is to
introduce a “master reason” � that encodes the combined information of all reasons
the agent accepts. This requires us to expand our reason set R to include a new symbol
� not already present and then add the following additional schemes to RBB:

(MA) � → (Br → r)
(MB) B�

(MR) B(r :ϕ) → (Br → B(� :ϕ))

(MA) says that every accepted reason is adequate if the master reason is adequate, (MB)
says that the agent always accepts the master reason, and (MR) says that anything the
agent believes is supported by an accepted reason the agent will also believe to be
supported by the master reason. Adding these principles makes it so that � is the sum
of the agent’s evidence. Calling RBB� the theory obtained from RBB by expanding the
set R of reasons to include a new symbol � and adding (MA), (MB), and (MR), it
follows that

RBB� � (Bs ∧ Br ∧ B(s : (ϕ → �)) ∧ B(r :ϕ)) → B�. (RCL2)

Indeed, if the agent accepts s, believes s supports an implication, accepts r, and
believes r supports the antecedent of the implication, then it follows by (MR) that
the agent believes � supports the implication and its antecedent. Applying (BRK), it
follows that the agent believes � supports the consequent. But the agent also accepts �
by (MB), so it follows by an application of (BA) that the agent believes the consequent.
It is in this sense that the agent “combines” the information conveyed by reasons the
agent accepts into the master reason �.

While we have shown that the RBB�-agent may combine the information from two
reasons to derive her beliefs, there is no need to restrict the number of reasons to two.
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Indeed, according to (MB), the agent implicitly combines into � the information from
every reason she believes to be adequate, no matter how many of these there may be.

In RBB� , the master reason � serves as a witness for an existential quantifier over the
believed support of accepted reasons.12 In particular, (MR) tells us that if there exists
an accepted reason r that the agent believes supports ϕ, then the agent believes that �
supports ϕ. Hence by (MB), if there exists such an r, then the agent believes � supports
ϕ and is itself accepted. If we were to add quantifiers to the language (something we
do later in §3.7), we could express this as:

(∃r)(Br ∧ B(r :ϕ)) → (B� ∧ B(� :ϕ)).

That is, if there exists an accepted reason that the agent believes supports ϕ, then � is
a witness to the existential quantifier.

Both RBB� and the basic theory RBB allow for the possibility that the agent believes
a formula ϕ without any supporting reasons (i.e., she does not believe to be adequate
any reason that she believes supports ϕ). This is the same as saying that the set

{Bϕ} ∪ {B(r :ϕ) → ¬Br | r ∈ R}
is consistent with both RBB� and RBB. If this situation is undesirable, then a simple
remedy is to extend the theory RBB� by adding a principle that says all beliefs are
believed to be supported by the master reason:

(MT) Bϕ → B(� :ϕ).

With (MT) in place, the agent believes only those things she believes are supported by
� and hence, by (MR), she believes only those things she believes are supported by
some reason. In short, every belief is “reason-based.” Defining RBB+

� to be the theory
obtained from RBB� by adding (MT), it follows by (MT), (RB), and (MB) that

RBB+
� � Bϕ ↔ B(� :ϕ),

which says that the agent believes something just in case it is supported by the master
reason. But then belief can be conflated with the master reason. As a result, we have
by (RCLC) that the beliefs of the RBB+

� -agent are always closed under (MP). Belief in
RBB+

� is therefore governed by the normal modal logic KD.
Semantics for RBB� and for RBB+

� may be found in §A.1. It is shown in Theorem A.2
that each of RBB� and RBB+

� is sound and complete for its semantics.

3.7. Quantification over reasons. We have observed that the theory RBB does not
require that every belief arise from a reason: it is consistent with RBB for the agent
to believe ϕ and yet have no accepted reason r she believes supports ϕ. If we were
to introduce quantifiers over reasons into our language, then we could express this
situation by saying that the following formula is consistent:

Bϕ ∧ (∀r)(B(r :ϕ) → ¬Br).
Another example: we might like to say that r is the unique accepted reason the agent
believes supports ϕ:

B(r :ϕ) ∧ Br ∧ (∀s)((s 	= r ∧ B(s :ϕ)) → ¬Bs).

12 Said precisely: � is a Skolem constant for the existential quantifier over the believed support
of accepted reasons. See [31] or any book on mathematical logic for details.

https://doi.org/10.1017/S1755020319000522 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000522


KNOWLEDGE, JUSTIFICATION, AND ADEQUATE REASONS 703

Table 2. The theory QRBB consists of RBB augmented with the above axioms and rule

Additional Axiom Schemes

(UD) (∀r)(ϕ → �) → (ϕ → (∀r)�), where r is not free in ϕ
(UI) (∀r)ϕ → ϕ[s/r], where s is free for r in ϕ
(EP) r = r
(EN) ¬(r = s), where r and s are syntactically different

Additional Rule

ϕ
(∀r)ϕ (Gen)

To allow such expressions as formulas, we extend our set of formulas F to the larger
set F ∀ consisting of all formulas ϕ that may be formed by the following grammar:

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | (r :ϕ) | r | Bϕ | r = r | (∀r)ϕ
p ∈ P, r ∈ R

We adopt usual Boolean connective abbreviations along with the following:

r 	= s := ¬(r = s)

(∃r)ϕ := ¬(∀r)¬ϕ
(∀r 	= s)ϕ := (∀r)(r 	= s → ϕ)

(∃r 	= s)ϕ := (∃r)(r 	= s ∧ ϕ)

Note that in this language, an element r ∈ R can act both as a reason (as in the
formula r :p) and as a quantifier variable (as in the formula (∀r)(r :p)). Therefore,
reasons may appear either bound or free in formulas, with the notion of bound and
free defined in the usual way. For reasons s and r and a formula ϕ, we say that s is free
for r in ϕ to mean that r has no free occurrence in ϕ within the scope of a quantifier
(∀s). Put another way, if s is free for r in ϕ, then in the formula

ϕ[s/r]

obtained by substituting all free occurrences of r inϕ by s, no newly replaced occurrence
is bound. Examples: s is free for r in (∀t)(t 	= r) but not in (∀s)(s 	= r).

The theory QRBB of quantified reason-based belief is defined by adding to the
axiomatization of RBB the axioms and rules in Table 2. (UD), (UI), and (Gen) are
standard principles of first-order quantification. (EP) and (EN) say that two reasons
are considered to be the same if and only if they are syntactically identical.

It is shown in Corollary A.11 that for eachϕ ∈ F not containing quantifiers, we have
QRBB � ϕ if and only if RBB � ϕ. It is therefore unproblematic for us to simply write
� ϕ to say that ϕ is provable.

We can extend QRBB to the theory QRBB� obtained by extending R to include a
new master reason � and adding the schemes (MA), (MB), and (MR) for �. We can
further extend QRBB� to the theory QRBB+

� obtained by adding the additional scheme
(MT) to guarantee all beliefs are reason-based.

Semantics for QRBB, for QRBB� , and for QRBB+
� may be found in §A.2. It is shown

in Theorems A.5 and A.12 that each of QRBB, QRBB� , and QRBB+
� is sound and

complete for its semantics. However, for the completeness results, there is one caveat:
our proofs require that the set R of reasons be at least countably infinite.
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§4. Justified true belief and knowledge. We use our logical framework to tease
apart two notions of JTB. The first is an internalist notion, which Gettier showed
was insufficient for knowledge [16]. The second is an externalist notion that we
argue is immune to Gettier scenarios. More generally, we show that our framework
can distinguish three “types” of reasons: those that are nonveridical (and hence
inadequate), those that are veridical for the proposition they support, but inadequate,
and those that are adequate (and hence veridical). Gettier’s second case has reasons
of the first type: nonveridical. The “fake barn county” case has reasons of the second
type: veridical for the proposition they support, but inadequate. Other cases (such as
“normal barn county,” or “good cases” more broadly, see [33]) have reasons of the
third type: adequate.

4.1. Two notions of justification. In our theory, there are (at least) two natural ways
to define JTB:

• JTBer (ϕ) := B(r :ϕ) ∧ Br ∧ r, and
• JTBir(ϕ) := B(r :ϕ) ∧ Br ∧ ϕ.

Both imply that the agent has a true belief that ϕ. However, JTBer (ϕ) suggests that
the agent has a true belief justified by an adequate reason, whereas JTBir(ϕ) suggests
that the agent only has a true belief justified by a prima facie reason (that may not be
adequate). JTBer is thus externalist, while JTBir is internalist.

Gettier’s achievement was to deny that JTBir(ϕ) is the same as knowledge ofϕ. Thus,
if we assume that

B(r :p) ∧ Br ∧ B(r : (p → p ∨ q)) ∧ (¬p ∧ q), (G2)

then we have Gettier’s second case. This is the case where the agent named Smith has
a reason to believe p (“Jones owns a Ford”) and “realizes” that p ∨ q (“Jones owns a
Ford or Brown is in Barcelona”) follows from p on that basis; however, unknown to
Smith, p is false and q is true, hence p ∨ q is premised on a false lemma. Let us call r
the reason Smith has to believe p. We can safely assume that r does indeed support p in
that case (r :p) (i.e., the past evidence adduced by the agent does correspond to a real
experience of his) and we leave this premise implicit in (G2) above, since delusion is not
the problem in this case. Since p is false, and r :p by assumption, r cannot be adequate,
by (A). However, since r supports p, we have by (RCLC) that r supports p ∨ q. Smith is
said by Gettier to realize that p entails p ∨ q on the basis of his reason, and by (BRK)
it follows that B(r : (p ∨ q)). Moreover, Smith has no reason supporting q that she
believes is adequate (indeed, in the scenario, “Brown is in Barcelona” is consciously
picked at random by Smith). So we are in a situation where Smith has an internally
justified true belief that p (JTBirp), and also an internally justified true belief that
p ∨ q (JTBir(p ∨ q)), but he fails to have an externally justified true belief of either
proposition (¬JTBerp, and ¬JTBer (p ∨ q)).

In contrast, if we assume that JTBer (p), which is

B(r :p) ∧ Br ∧ r, (G2
′
)

this time r is adequate. Since r supports p, it also supports p ∨ q by (RCLC). By (A)
both p and p ∨ q are true. Since the agent believes r is an adequate reason supporting
p (and therefore also supporting p ∨ q), she believes both p and p ∨ q, and in this case
her belief is based on an adequate (and hence veridical) reason.
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In general, it is easy to see that JTBer (ϕ) satisfies:

• � JTBer (ϕ → �) → (JTBer (ϕ) → JTBer (�)),
which says that external JTB based on a reason r is closed under implication;

• � JTBer (ϕ) → ϕ,
which says that external JTB is veridical; and

• � JTBer (ϕ) → (r :� → �),
which says that if an agent has an external JTB based on reason r, then r cannot
support any false assertions (so-called “false lemmas”).

To compare with internal JTB, one can show that JTBir(ϕ) satisfies:

• � JTBir(ϕ → �) → (JTBir(ϕ) → JTBir(�)),
which says that internal JTB based on a reason r is closed under implication;

• � JTBir(ϕ) → ϕ,
which says that internal JTB is veridical; and

• � JTBir(ϕ) → (r :� → �),
which says that if an agent has an internal JTB based on reason r, then r might
support false assertions (so-called “false lemmas”).

The differences between JTBer and JTBir are in the last property. So we see that the
main difference between external and internal JTB is in the adequacy of the reason on
which the JTB is based.

Using our quantified language, we adopt the following abbreviations:

JTBe(ϕ) := (∃r)JTBer (ϕ) and JTBi(ϕ) := (∃r)JTBir(ϕ).

JTBe(ϕ) says that the agent has an external JTB for ϕ (based on some reason), and
JTBi(ϕ) says the same but for internal JTB.

4.2. Is knowledge JTBe? JTBi falls prey to Gettier’s examples because the
supporting reason need not be veridical (i.e., it admits “false lemmas”). JTBe , however,
requires an adequate supporting reason, and hence this reason is necessarily veridical
(i.e., it admits “no false lemmas”). This suggests we examine the equation

Kϕ := JTBe(ϕ), (KJTBe)

which defines knowledge as external JTB. What should we think of this equation?
Consider the “fake barn county” situation [17]: the agent is in a county that has

numerous fake barns that look exactly like real barns. Not knowing she is in this county,
she sees what she thinks is a barn and concludes that it is indeed a barn. It turns out
she is correct because, by chance, she happens to be looking at the only real barn in
the entire county. Obviously, she has an internal JTB that she sees a barn, though
most philosophers argue that she does not know she sees a barn.13 But does she have
an external JTB in this case? One reason to answer affirmatively: the agent’s reason is
veridical, unlike in Gettier’s original examples.

13 Intuitions about knowledge ascription in fake barn cases are notoriously less stable among
philosophers than they are in the original Gettier cases (see [13, 21, 29]). Here we are
considering a situation in which the belief seems simply “too lucky” to count as knowledge.
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However, veridicality does not imply adequacy. Take r and p so that

r is read, “the agent sees what looks to her like a barn,” and

p is read, “what the agent sees is a barn.”

Our agent is in the situation:

B(r :p) ∧ Br ∧ p. (Barn)

That is, the agent believes that her seeing what looks like a barn supports the assertion
that what she sees is a barn, she believes r is adequate to guarantee the truth of what it
supports, and the agent does actually see a barn. But is r in fact adequate? If we say it is,
then we run into the following problem: had the agent picked a different barn-looking
structure that turned out to be a fake, we would have

B(r :p) ∧ Br ∧ ¬p, (Barn
′
)

from which it would follow by (AS) and the assumed adequacy of r that p holds (i.e.,
we have (r :p) ∧ p), but this contradicts the assumed adequacy of r (since in fact ¬p).
This suggests to us that r is not necessarily adequate; that is, each of (Barn) ∧ r and
(Barn) ∧ ¬r is consistent with our intuitions about the “fake barn county” example.
Conclusion: the agent need not have external JTB in this case.

We take it that the “fake barn county” example seeks to challenge the agent’s acumen
in determining when it is safe to reason according to the principle

(what I see looks like anX ) → (what I see is anX ), (WSWG)

which has the colloquial reading “what I see is what I get.”14 Since adequacy implies
veridicality, one could use our notion of adequacy to indicate that the agent’s use
of (WSWG) is licensed. In particular, if we assume that (Barn) ∧ r, then we might
construe this as a case in which the agent is in “normal barn county” (where there are
no fake barns) and so her use of (WSWG) is licensed: r is an externally valid reason
for the agent to infer that she sees a barn, so the agent knows that she sees a barn. In
contrast, if we assume that (Barn) ∧¬r, then we might construe this as a case in which
the agent is back in “fake barn county” and not licensed to draw the conclusion: r is
not an externally valid reason for her to infer that she sees a barn, so she does not
know that she sees a barn.

So let us assume that our definition (KJTBe) of knowledge as external JTB is correct.
Is it then possible to define knowledge (i.e., external JTB) in terms of internal JTB plus
some other condition? Indeed it is:

� JTBe(ϕ) ↔ (∃r)(r ∧ JTBir(ϕ)).

In words: to have external justification it is necessary and sufficient to have an adequate
justification that serves as the basis for an internal JTB. Zagzebski’s criticism of a JTB-
based analysis of knowledge [34] might apply here: we either must sever the link between
truth and justification (thereby going so far as to concede that there is knowledge in
Gettier cases) or else assert that “there is no degree of independence at all between
truth and justification” (in order to avoid Gettier problems). Zagzebski’s position is
that neither horn of her dilemma is satisfactory, and so the proper way to avoid the
dilemma is to reject the possibility of analyzing knowledge in terms of JTB plus some

14 This diagnosis was suggested to the third author by Alexandru Baltag (private communica-
tion).
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extra component (i.e., reject the “knowledge is JTB + x” approach all together); see
also [33]. We accept that our approach is close to endorsing the second horn of
Zagzebski’s dilemma. However, by distinguishing adequacy from veridicality, we can
still maintain a notion of independence between truth and justification. In particular,
pace Zagzebski, our semantic analysis distinguishes between “adequate belief” (i.e.,
JTBe) and “lucky true belief” (i.e., JTBi).

§5. Infallibilism and the problem of mixed reasons Our analysis commits us to an
infallibilist view of knowledge. Dutant in [11, 12] defines method infallibilism as for an
agent to know that p if the agent believes that p on the basis of a method that could
only yield true beliefs. Our notion of knowledge in terms of external JTB achieves
the same result: for an agent to know p is to believe p on the basis of an adequate
reason r, hence to believe p on the basis of a reason that could only support true
propositions.15 In this section we propose to discuss two specific issues concerning our
definition of knowledge in terms of JTBe . Both issues raise the problem of whether a
definition of knowledge as JTBe might be either too weak, or too strong, depending on
the case.

5.1. Knowledge from mixed reasons? Let us start with the worry that our account
might be too weak. The JTBe analysis of knowledge raises the issue of the force of the
quantifier on the right side of the equivalence. To appreciate the problem, it is worth
reminding ourselves of one of the first responses to Gettier’s examples: the so-called “no
false lemmas” (hereafter “NFL”) requirement (see [9, 19, 26]). The NFL requirement
is meant to rule out situations like Gettier’s second case, wherein the agent starts from
a mistaken belief that p to obtain a correct belief that p ∨ q. Thinking of the reasoning
sequence of beliefs 〈p, p ∨ q〉 as a “proof,” the initial “lemma” (i.e., assumption) p is
false, but then a perfectly legitimate inference step to a logical consequence p ∨ q ends
up on a formula that just so happens to be true.

In our framework, the obvious counterpart to the NFL requirement is the “no
inadequate lemmas” (henceforth “NIL”) requirement:

NIL(ϕ) := (∀s)(JTBis(ϕ) → s).
This says that every reason that supports an internal JTB of ϕ is adequate. Since
adequate reasons support only true formulas (by axiom scheme (A)), the NIL
requirement guarantees that no false “lemma” (i.e., formula) intrudes on a reason
justifying a potential internal JTB of ϕ. This gives rise to the following notion of JTB
with no inadequate lemmas:

JTB+NIL(ϕ) := JTBi(ϕ) ∧ NIL(ϕ).

This notion of JTB is logically stronger than external JTB: JTBe(ϕ) only requires that
there be one adequate reason supporting an internal JTB of ϕ, whereas JTB+NIL
requires adequacy of every reason supporting an internal JTB of ϕ. Thus

� JTB+NIL(ϕ) → JTBe(ϕ)

but not the other way around.

15 See Neta’s [24], and Dutant’s [11, 12] for an in-depth discussion of infallibilism. We leave
a comparison of our approach with Neta’s and Dutant’s respective approaches for another
occasion.
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These considerations raise a potential worry for the JTBe analysis of knowledge:
what happens when the agent rests her beliefs in a proposition (such as p ∨ q) on
multiple sources? For example,16 suppose our agent, who has excellent eyesight, sees
someone in the distance but cannot quite make out who it is. Nevertheless, based on
what she can see (represented by reason s), she correctly believes that the person in
the distance is either Tweedle Dee or Tweedle Dum (represented respectively by p ∨ q).
Further, she has another reason r to believe that the person is Tweedle Dee (i.e., p).
For example, a friend might have told her that Tweedle Dum is on vacation in some
faraway country. Now, unknown to our agent, the person in the distance is actually
Tweedle Dum. Put formally:

B(s : (p ∨ q)) ∧ ¬B(s :p) ∧ ¬B(s : q) ∧ B(r :p) ∧
Bs ∧ Br ∧ s ∧ ¬r ∧ (¬p ∧ q). (TDTD)

That is, the agent believes s supports the disjunction (that the person is Dee or Dum)
but no disjunct, she believes r supports the claim it is Dee, she believes s and r to be
adequate, s is adequate (by hypothesis, because the agent’s eyesight is excellent, and
it could not possibly be someone other than Dee or Dum), r is inadequate (since the
friend’s information is not reliable), and the person is actually not Dee but Dum. Now
suppose we add to (TDTD) the assumption

(∀t)((t 	= s ∧ t 	= r) → ¬Bt) (NoR)

that the agent believes no other reasons to be adequate. It can be shown that

� [(TDTD) ∧ (NoR)]] → JTBe(p ∨ q) but
� [(TDTD) ∧ (NoR)] → JTB+NIL(p ∨ q).

In words: the agent has external JTB thatp ∨ q (because the adequate reason s supports
the disjunction); however, she does not have JTB with NIL of p ∨ q (because the
inadequate reason r supports the disjunction). But is it a mistake to equate knowledge
with JTBe instead of with JTB+NIL?

One reaction is to deny that there is knowledge when the universal condition is
not satisfied. For an example supporting this reaction, suppose the agent proves that
a certain Mersenne number m = 2n – 1 is prime. Later, she bolsters her belief in the
primality of m by coming to believe (incorrectly) that all Mersenne numbers are prime
(i.e., all numbers of the form 2k – 1 are prime, which is false). Can the agent still be
said to know that m is prime? On one account, it seems not. Such situations of mixed
reasons, where an agent has both adequate and inadequate reasons supporting the
same proposition, arguably occur often in everyday life.

We are inclined to the opposite view: in a situation of mixed reasons, the agent can
still have knowledge. Returning to the primality example, if the agent learns that not all
Mersenne numbers are prime, then she will still believe that m is prime on the basis of
her adequate “backup” reason (that she proved m is prime). So she could still be said

16 The example was suggested to the first author by Timothy Williamson (private communica-
tion). See [13].
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to know that m is prime.17 The Dee/Dum case is arguably similar: if the agent were to
learn that r is unreliable, then she would still have an external JTB of the disjunction
based on the “backup” reason s.

Perhaps the most difficult challenge to the claim that (KJTBe) is correct even in the
case of mixed reasons comes when the quantity of inadequate reasons vastly exceeds the
quantity of adequate reasons. For example, suppose our agent has an adequate reason s
(based on an assertion in some recent official document) that one of the 20 members of
the faculty of department D is a logician; further, suppose she has inadequate reasons
r1, ... , r19 (based on a mistaken understanding of which specialties imply competence
in logic) that the first 19 names listed on the department D faculty roster are logicians.
We might be hard-pressed to say that our agent knows that department D has a logician
on staff.

Perhaps this suggests that the agent in a case of mixed reasons can only be said
to know the proposition if she also knows that her reasons are adequate. We resist
this move, basically because we accept that an agent may have an adequate reason
without necessarily knowing that that reason is adequate (more on this below in the
conclusion). Therefore, if we assume for the sake of argument that our agent values
all reasons equally, then a tiny island of adequacy within an ocean of inadequacy is
sufficient for the defender of mixed-reason knowledge. This grants that the agent’s
reasons are in some sense confused or that an agent who has only adequate reasons
(and hence satisfies JTB+NIL) seems to “know better” than the agent with mixed
reasons. But if one agent “knows better,” it does not follow that the other does not
know at all.

In our view, an account of knowledge that would not allow for mixed reasons would
in fact be too demanding. We consider it a virtue of our account that it allows for
mixed reasons, precisely because we think it gives us a more realistic picture of the
process of acquiring and managing reasons. We say that an agent knows a proposition
if he believes that proposition based on at least one adequate reason. But knowing
is more than passively believing propositions on the basis of reasons. It obviously
also involves comparing and relating reasons. Consider an agent who believes the true
proposition p on the basis of r and r′, but who eventually realizes that r′ supports a
false proposition. The agent ought to revise her belief in r′, and also to reconsider her
reasons for p. Hence, while our account of knowledge commits us to what Dutant calls
method infallibilism, it does make room for errors and revisions in how reasons are
acquired. It contains, in that sense, a measure of fallibilism.

5.2. Knowledge from inadequate reasons? Although our account of knowledge
allows for mixed reasons, a converse objection is that it may turn out to be too
strong relative to ordinary knowledge ascriptions. The problem in this case is even
more radical, and concerns whether one can have knowledge on the basis of a single,
inadequate reason.

Here is an example:18 based on his seeing Jones driving a Ford in the past (let us call
that reason r), Smith comes to wrongly believe that Jones owns a Ford. Let us modify

17 These ideas are related to the defeasibility theory of knowledge [22, 23].
18 We are indebted to Elia Zardini for raising the objection, and for the first example.
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the scenario and suppose that Jones does in fact own a car (say, a Mazda). Based on
his seeing Jones drive a Ford in the past, Smith also comes to believe that Jones owns
a car. Could it not happen, intuitively, that although Smith fails to have knowledge
on the basis of r that Jones owns a Ford (p), he nevertheless has knowledge on the
basis of r that Smith owns a car (q)? In our system, this is not possible, for by (A), if
r is adequate for q, then r must be adequate for any other proposition that r supports,
hence for p as well. Dretske’s treatment of conclusive reasons would be able to address
this problem: a reason r can be conclusive for q without being conclusive for p, even
when p entails q. Our approach does not have this flexibility.19

The question, more generally, is whether the same reason can adequately justify
one to believe q without adequately justifying one to believe a stronger proposition p.
Similar cases have been discussed by Warfield [32], Fitelson [14], and Sorensen [25].
Warfield argues that I may know that I am not late for the meeting if I believe that it is
currently 2:58pm, when in fact it is 2:56pm, assuming the meeting is at 7pm. On our
account, my reason to believe that it is currently less than 7pm is inadequate, simply
because it also supports the false proposition that it is 2:58pm. This is a case in which
I have JTBi that it is less than 7pm, without having JTBe that it is less than 7pm. For
anyone whose intuition is that I do hold knowledge that it is is less than 7pm on the
basis of my observing “2:58pm” on the watch, our equation between knowledge and
JTBe is too strong in this case.

One option in the face of such examples is to bite the bullet and to resist the intuition
that I know I am not late for the meeting, or that I know that Jones owns a car. But
we think this is not the right response. My evidence “2:58pm” is obviously wrong
regarding the actual time, but still close enough to the actual time to be relevantly used.
The case would be different, it seems to us, if the agent’s watch indicated 6pm when it
is 2:56pm, or even 9am. For the latter cases, our intuition is that I merely have a luckily
true belief. More generally, we think the problem concerns how much approximation
is tolerated in forming beliefs based on one’s evidence. If, when I see “2.58pm” (r) on
my watch, I form the belief “it is around 2:58pm” (p), and from that proposition I
infer “it is less than 7pm” (q), then my reason r now is veridical for both p and q. A
way out, therefore, might be to relativize the adequacy of a reason to the selection of
an appropriate domain of propositions supported by that reason.

This nevertheless puts pressure on us to clarify the relation of support between a
reason and a proposition. In our statement of the axiom (A), we include no restriction
on the support relation. We think it is better to be normative, and not to include
any such restriction in the definition of knowledge in terms of JTBe . On the other
hand, we are ready to accept that in actual ascriptions of knowledge, the definition
of adequate evidence is relativized to various domains of propositions. Consider the
Warfield example again: this is not a perfect case of knowledge. This still counts as

19 One option we do not explore here: change adequacy from a unary property on reasons to
a binary property on reasons and propositions. Thus instead of having “r” for adequacy of
reason r with respect to all propositions it supports, we would have “ A(r, p)” for adequacy
of r with respect to proposition p. We would have to adjust other axioms: (A) would be
r :ϕ → (A(r, ϕ) → ϕ), (BA) would be B(r :ϕ) → (B(A(r, ϕ)) → Bϕ), and (AS) would be
B(r :ϕ) → (A(r, ϕ) → (r :ϕ)). This would also require a change to the semantics that would
make us much more in-line with the syntactic dependencies connecting reasons with specific
formulas, which is familiar from JL [3]. This approach would add flexibility at the cost of
simplicity.
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evidence that comes close to adequate, though not perfectly adequate. But it is adequate
given the relevant domain of propositions. Our account, therefore, does not rule out the
familiar mechanisms of contextualization at play in ordinary knowledge ascriptions,
despite being fundamentally more normative.

§6. Conclusion Is knowledge the same thing as JTB? We wrote this paper based
on a persistent feeling that both answers are defensible. For the negative: Gettier’s
examples show that plausible reasons may be inadequate. For the positive: a JTB
based on an adequate reason seems to rule out the possibility of Gettier cases and can
arguably be construed as a form of knowledge.

We have shown that our framework is sufficient to address reason-based belief and
that it can be applied to important notions in epistemology. However, we have neglected
to provide a further analysis of “adequacy of a reason” into more primitive concepts.
While this notion was used as a primitive in this paper, an in-depth study of this
notion may be required in a full philosophical analysis of the concept of knowledge.
Regardless, we think that our three-part hierarchy of reasons (nonveridical, veridical
for a proposition but inadequate, and adequate) is itself sufficiently fruitful to legitimate
our approach. Our account, as we have explained, fundamentally commits us to a form
of infallibilism in the definition of knowledge. But our treatment of mixed reasons also
makes room for the possibility of errors, since inadequate reasons typically coexist with
adequate reasons. We can therefore distinguish two levels in our account of knowledge:
the level of atomic reasons (and of their support to various propositions), and the level
of the network of reasons that an agent needs to compare and manage. A discussion of
that second level lies beyond the scope of this paper, but it deserves to be considered,
because our externalist account of the notion of adequacy remains compatible with a
more internalist perspective on knowledge.

A related question on which we propose to end is the following: how does an agent
know whether a reason is adequate? According to (KJTBe), the agent knows p if and
only if there exists an adequate reason r that the agent believes is adequate and supports
p. Therefore, the agent knows r is adequate if and only if there exists an adequate reason
s that she believes is adequate and supports r (i.e., s ∧ Bs ∧ B(s : r)).20 Our framework
therefore admits the possibility that the agent may know p based on an adequate reason
r without knowing that r is itself adequate. In this, our framework supports the main
contention of an externalist account of knowledge: one may know p without knowing
that one knows p (see [10, 33]).21 We think this is right for the externalist, though we
emphasize that our theory is in principle neutral regarding the existence of reasons
justifying the adequacy of other reasons.

20 Note that we may have s = r. In particular, it is consistent with our theory for reasons to
be self-supporting (i.e., r : r). It is also consistent with our theory for reasons to be non-self-
supporting (i.e., ¬(r : r)). Since our theory permits either option, it is up to the user of our
theory to choose which way to go as per her preference. We also note that it is consistent
for r to be self-rejecting (i.e., r :¬r), and it is consistent for r to be non–self-rejecting (i.e.,
¬(r :¬r)).

21 The internalist who objects to this need not despair: though we do not do so here, it is
possible to extend our framework so that knowledge is internalizable; see [3] (and the “proof
checker” operator) for details.
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§A. Appendix: Technical results

A.1. Appendix: Semantics for RBB� and RBB+
� The models for RBB can be

construed as models for RBB� if we require the following additional properties:

(ma) w ∈ �(w) and r◦ ∈ N (w) together imply that w ∈ r(w).
which says that if � is reflexive, then each reason r believed to be reflexive is
in fact reflexive;

(mb) �◦ ∈ N (w),
which says that the agent believes � is reflexive; and

(mr) [[r :ϕ]] ∈ N (w) and r◦ ∈ N (w) together imply that [[� :ϕ]] ∈ N (w),
which says that the agent believes � supports ϕ whenever she believes r
supports ϕ and she believes r is reflexive.

We write the satisfaction relation |=� to indicate that we restrict to models satisfying
(ma), (mb), and (mr). By Theorem A.2, RBB� is sound and complete for the class
of models satisfying (ma), (mb), and (mr). Models for the theory RBB+

� must satisfy
(ma), (mb), (mr), and the following property:

(mt) [[ϕ]] ∈ N (w) implies [[� :ϕ]] ∈ N (w),
which says that the agent believes � supports ϕ whenever she believes ϕ.

We write |=+
� to indicate that we restrict to models satisfying (ma), (mb), (mr), and

(mt). By Theorem A.2, RBB+
� is sound and complete for the class of models satisfying

(ma), (mb), (mr), and (mt).

A.2. Appendix: Semantics for QRBB, QRBB� , and QRBB+
� The models for RBB

can be used as models for QRBB as well. All that we must do is add the following
satisfaction principles:

• M,w |= r = s means that r = s .
• M,w |= (∀r)ϕ means thatM,w |= ϕ[s/r] for each s free for r in ϕ.

It is shown in Theorem A.5 that QRBB is sound and complete for this semantics: for
each theory we have QRBB � ϕ if and only if |= ϕ. However, there is one caveat: our
proof of the completeness result requires that the set R of reasons be at least countably
infinite.

Additional semantic restrictions must be imposed to ensure that QRBB models also
work for QRBB� or for QRBB+

� ; see §A.1 for details. Soundness and completeness
for QRBB� and for QRBB+

� follows by Theorem A.12, with the same caveat for
completeness as for QRBB.

A.3. Appendix: RBB soundness and completeness We now prove the following
theorem.

Theorem A.1 (RBB soundness and completeness). For each ϕ ∈ F :

RBB � ϕ iff |= ϕ.

Soundness is by induction on the length of derivation. The arguments for (CL),
(MP), (RK), (D), (RN), and (E) are straightforward. We consider the remaining
cases.
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• Validity of (A): |= r :ϕ → (r → ϕ).
M,w |= r :ϕ and M,w |= r together imply that r(w) ⊆ [[ϕ]]M and w ∈ r(w).
But thenM,w |= ϕ.

• Validity of (BRK): |= B(r : (ϕ → �)) → (B(r :ϕ) → B(r :�)).
SupposeM,w |= B(r : (ϕ → �)) andM,w |= B(r :ϕ). This means

[[r : (ϕ → �)]]M ∈ N (w) and [[r :ϕ]]M ∈ N (w).

Applying (brk), it follows that [[r :�]]M ∈ N (w), which is what it means to have
M,w |= r :�.

• Validity of (BA): |= B(r :ϕ) → (Br → Bϕ).
AssumeM,w |= B(r :ϕ) andM,w |= Br. It follows that [[r :ϕ]]M ∈ N (w) and
r◦ ∈ N (w). Applying (ba), we obtain [[ϕ]]M ∈ N (w). But this is what it means
to haveM,w |= Bϕ.

• Validity of (AS): |= B(r :ϕ) → (r → (r :ϕ)).
AssumeM,w |= B(r :ϕ) andw ∈ r(w). Hence [[r :ϕ]]M ∈ N (w) andw ∈ r(w).
Applying (as), we obtain r(w) ⊆ [[ϕ]]M . That is,M,w |= r :ϕ.

So RBB is sound.
For completeness, we prove that RBB � � implies there exists a pointed model

(Mc,Γ�1) satisfying Mc,Γ�1 	|= �. We use a canonical model construction to build the
modelMc = (W, [·], N,V ) as follows. First, to say that a set S of formulas is consistent
means that for no finite S ′ ⊆ S do we have RBB � (

∧
S ′) → ⊥, where ⊥ is a fixed

contradiction such as p ∧ ¬p. To say a set of formulas is maximal consistent means
that it is consistent and adding any formula not already present will result in a set
that is inconsistent (i.e., not consistent). Let M bet the set of all maximal consistent
sets of formulas. By a standard Lindenbaum construction, it follows that {¬�} can be
extended to some Γ� ∈M and therefore M is not empty. We defineW :=M × {1, 2}
and will write (Γ, i) ∈W in the abbreviated form Γi . Since M is nonempty, W is
nonempty. For each reason r ∈ R and Γ ∈M , define the set

Γr := {ϕ ∈ F | r :ϕ ∈ Γ}

of r-supported formulas in Γ. We then define [r] by setting

r(Γi) := {Δj ∈W | Γr ⊆ Δ & (¬r ∈ Γ ⇒ Δj 	= Γi)}.

This way, a world Δj is r-accessible from Γi iff Δj contains all formulas ϕ that are
r-supported at Γi (as per membership of r :ϕ in Γ), unless of course Δj = Γi and
reflexivity is forbidden by ¬r ∈ Γ. For each formula ϕ ∈ F , define

W (ϕ) := {Γi ∈W | ϕ ∈ Γ}

to be the set of worlds defined by the formula ϕ. Then let

N+ := {X ⊆W | ∀ϕ ∈ F : X 	=W (ϕ)}

be the set of worlds not definable by any formula. For each Γi ∈W , we define

N+(Γi) := {X ∈ N+ | ∃Br ∈ Γ : r(Γi) ⊆ X & ∀� ∈ Γr(B(r : �) ∈ Γ)}.

Intuitively, this is the set of nonformula-definable neighborhoods X for which there is a
reason the agent accepts that supports X and the agent believes this reason supports all
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the formulas it actually does support. The neighborhood function N is then defined by

N (Γi) := {X ⊆W | ∃Bϕ ∈ Γ : X =W (ϕ)} ∪N+(Γi).

Therefore, an agent believes a neighborhood X iff the agent believes some formula ϕ
that defines X or, if X is nonformula-definable, there is an accepted reason supporting
X and the agent believes the reason supports all the formulas it actually does support.
Finally, we define the valuation by

V (Γi) := {p ∈ P | p ∈ Γ}.
This definesMc . To check thatMc is indeed a premodel, we must verify thatMc satisfies
the property (pr). We prove this now.

• (pr): if x ∈ P ∩R, then x ∈ V (Γi ) if and only if Γi ∈ x(Γi ).
So assume x ∈ V (Γi ). This means x ∈ Γ. But then we have ¬x /∈ Γ by the
consistency of Γ. Further, since x ∈ Γ, it follows by (A) and the maximal
consistency of Γ that Γx ⊆ Γ. But ¬x /∈ Γ and Γx ⊆ Γ together imply Γi ∈
x(Γi ), which completes the argument for this direction.

For the converse direction, if Γi ∈ x(Γi ), then it follows by the definition of
x(Γi ) that ¬x /∈ Γ. So x ∈ Γ by the maximal consistency of Γ. But then we
have x ∈ V (Γi ) by the definition of V.

SoMc is indeed a premodel.
We prove the Truth Lemma: for each formula ϕ ∈ F and world Γi ∈W , we have

ϕ ∈ Γ iffMc,Γi |= ϕ. The proof is by induction on the construction of formulas, and
the arguments for the base and Boolean inductive step cases are standard, so we only
consider the remaining non-Boolean inductive step cases.

• Inductive step: r ∈ Γ iffMc,Γi |= r.
If r ∈ Γ, then it follows by (A) and maximal consistency that Γr ⊆ Γ and
therefore that Γi ∈ r(Γi ). But this is what it means to haveMc,Γi |= r.
Conversely, ifMc,Γi |= r, then we have Γi ∈ r(Γi ). By the definition ofN (Γi ),
we have ¬r /∈ Γ and therefore r ∈ Γ by maximal consistency.

• Inductive step: r :ϕ ∈ Γ iffMc,Γi |= r :ϕ.
If r :ϕ ∈ Γ, then we have r(Γi ) ⊆W (ϕ). By the induction hypothesis, r(Γi ) ⊆
[[ϕ]]Mc . But this is what it means to haveMc,w |= r :ϕ.
Conversely, if Mc,w |= r :ϕ, then we have r(Γi ) ⊆ [[ϕ]]Mc and hence r(Γi ) ⊆
W (ϕ) by the induction hypothesis. Toward a contradiction, assume ¬r :ϕ ∈ Γ.
It follows that Γr ∪ {¬ϕ} is consistent, for otherwise there would exist a
finite S ⊆ Γr such that � (

∧
S) → ϕ, hence � (

∧
�∈S r :�) → r :ϕ by modal

reasoning, and therefore r :ϕ ∈ Γ, which is impossible because it would follow
by the assumption ¬r :ϕ ∈ Γ that Γ is inconsistent. So we may extend the
consistent set Γr ∪ {¬ϕ} to some Δ ∈M . Taking j 	= i , it follows that Δj /∈
W (ϕ) and Δj ∈ r(Γi ), which contradicts r(Γi ) ⊆W (ϕ). So our assumption
that ¬r :ϕ ∈ Γ is incorrect; what we actually have is that ¬r :ϕ /∈ Γ and
therefore that r :ϕ ∈ Γ by maximal consistency.

• Inductive step: Bϕ ∈ Γ iffMc,Γi |= Bϕ.
If Bϕ ∈ Γ, then it follows by the definition of N (Γi ) thatW (ϕ) ∈ N (Γi ). By
the induction hypothesis,W (ϕ) = [[ϕ]]Mc , and hence [[ϕ]]Mc ∈ N (Γi ). But this
is what it means to haveMc,Γi |= Bϕ.
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Conversely, if Mc,w |= Bϕ, then we have [[ϕ]]Mc ∈ N (Γi ) and therefore that
W (ϕ) ∈ N (Γi ) by the induction hypothesis. SinceW (ϕ) /∈ N+, it follows that
there existsB� ∈ Γ such thatW (�) =W (ϕ). From this we have that� � ↔ ϕ,
for otherwise {�,¬ϕ} could be extended to Δ ∈M satisfying Δi ∈W (�) –
W (ϕ) or {¬�,ϕ} could be extended to Ω ∈M satisfying Ωi ∈W (ϕ) –W (�),
but both contradict W (ϕ) =W (�). Applying (E), we have � B� ↔ Bϕ and
therefore it follows by maximal consistency that Bϕ ∈ Γ.

This completes the proof of the Truth Lemma.
We prove the following Consistency Lemma: for each r ∈ R and Γi ∈W , if Br ∈ Γ

and ∀� ∈ Γr(B(r : �) ∈ Γ), then Γr is consistent. Proceeding, assumeBr ∈ Γ and ∀� ∈
Γr(B(r : �) ∈ Γ). Since Br ∈ Γ, we have ¬B¬r ∈ Γ by (D) and maximal consistency.
Toward a contradiction, suppose Γr is not consistent. Then there exists a finite S ⊆ Γr

such that � (
∧
S) → ⊥. Hence � (

∧
�∈S r :�) → r :⊥ by modal reasoning. Applying

maximal consistency and the fact that S ⊆ Γr , we obtain r :⊥ ∈ Γ. By maximal
consistency and the fact that � r :⊥ → r :ϕ for any ϕ, we obtain r :¬r ∈ Γ and hence
¬r ∈ Γr . Applying the assumption ∀� ∈ Γr(B(r : �) ∈ Γ), it follows thatB(r :¬r) ∈ Γ.
Applying this and the assumption that Br ∈ Γ, it follows by (BA) that B¬r ∈ Γ. Since
¬B¬r ∈ Γ, it follows that the maximal consistent set Γ is not consistent, a contradiction.
Conclusion: Γr is consistent. This completes the proof of the Consistency Lemma.

We now prove thatMc is a model (and not just a premodel); that is, we prove that
Mc satisfies the properties (brk), (ba), (as), and (d).

• Mc satisfies (brk): if [[r : (ϕ → �)]]Mc ∈ N (Γi ) and [[r :ϕ]]Mc ∈ N (Γi ), then
[[r :�]]Mc ∈ N (Γi ).
Assume [[r : (ϕ → �)]]Mc ∈ N (Γi ) and [[r :ϕ]]Mc ∈ N (Γi ). By the Truth
Lemma, it follows that W (r : (ϕ → �)) ∈ N (Γi ) and W (r :ϕ) ∈ N (Γi ).
Since neither W (r : (ϕ → �)) nor W (r :ϕ) is a member of N+, it follows
by the definition of N (Γi ) that there exists B�1 ∈ Γ and B�2 ∈ Γ such
that W (�1) =W (r : (ϕ → �)) and W (�2) =W (r :ϕ). As in the proof of
the last inductive step of the Truth Lemma, it follows using (E) that
� B�1 ↔ B(r : (ϕ → �)) and that � B�2 ↔ B(r :ϕ). Hence we have that
B(r : (ϕ → �)) ∈ Γ andB(r :ϕ) ∈ Γ by maximal consistency. Applying (BRK)
and maximal consistency, we obtain B(r :�) ∈ Γ. Applying the definition of
N (Γi ), it follows that W (r :�) ∈ N (Γi ). Since we have that W (r :�) =
[[r :�]]Mc by the Truth Lemma, we conclude that [[r :�]]Mc ∈ N (Γi ).

• Mc satisfies (ba): if [[r :ϕ]]Mc ∈ N (Γi ) and r◦ ∈ N (Γi ), then [[ϕ]]Mc ∈ N (Γi ).
Assume [[r :ϕ]]Mc ∈ N (Γi ) and r◦ ∈ N (Γi ). Similar to our argument in the
first part of the above proof for (brk), it follows from [[r :ϕ]]Mc ∈ N (Γi ) that
B(r :ϕ) ∈ Γ. Since we have by the definition of r◦ that r◦ =W (r), it follows
from r◦ ∈ N (Γi ) that W (r) ∈ N (Γi ). Again by an argument similar to the
first part of the above proof for (brk), we obtain from W (r) ∈ N (Γi ) that
Br ∈ Γ. But then it follows fromB(r :ϕ) ∈ Γ andBr ∈ Γ by (BA) and maximal
consistency that Bϕ ∈ Γ. Applying the definition ofN (Γi ), we obtainW (ϕ) ∈
N (Γi ). Applying the Truth Lemma, it follows that [[ϕ]]Mc ∈ N (Γi ).

• Mc satisfies (as): if [[r :ϕ]]Mc ∈ N (Γi ) and Γi ∈ r(Γi ), then r(Γi ) ⊆ [[ϕ]]Mc .
Assume [[r :ϕ]]Mc ∈ N (Γi ) and Γi ∈ r(Γi ). Similar to our argument in the
first part of the above proof for (brk), it follows from [[r :ϕ]]Mc ∈N (Γi ) that
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B(r :ϕ) ∈Γ. Now from Γi ∈ r(Γi ), it follows by the definition of N (Γi ) that

¬r ∈ Γ ⇒ Γi 	= Γi .

Hence ¬r /∈ Γ. But then it follows by maximal consistency that r ∈ Γ.
So from B(r :ϕ) ∈ Γ and r ∈ Γ we obtain by (AS) and maximal consistency
that r :ϕ ∈ Γ. Hence ϕ ∈ Γr . To complete the argument, we wish to show that
r(Γi ) ⊆ [[ϕ]]Mc . So let us take an arbitrary Δj ∈ r(Γi ) and prove that Δj ∈
[[ϕ]]Mc . By the Truth Lemma, it suffices to prove that Δj ∈W (ϕ). Proceeding,
since Δj ∈ r(Γi ), it follows by the definition of r(Γi ) that Γr ⊆ Δ. But then we
have by ϕ ∈ Γr that ϕ ∈ Δ and hence Δj ∈W (ϕ).

• Mc satisfies (d): if X ∈ N (Γi ), then X ′ :=W – X /∈ N (Γi ). There are two
cases to consider.
First case for (d): assume X ∈ N (Γi ) – N+(Γi ). It follows that there exists
Bϕ ∈ Γ such that X =W (ϕ). By (D) and the maximal consistency of Γ,
we have ¬B¬ϕ ∈ Γ. Toward a contradiction, assume X ′ ∈ N (Γi ). Since
X =W (ϕ), we have X ′ =W (¬ϕ) by maximal consistency and therefore that
X ′ /∈ N+. HenceX ′ ∈ N (Γi ) – N+(Γi ), which means there existsB� ∈ Γ such
that X ′ =W (�). It follows that � � ↔ ¬ϕ, since otherwise {�,ϕ} could be
extended to some Δ ∈M satisfying Δj ∈W (�) = X ′ and Δj ∈W (ϕ) = X or
{¬�,¬ϕ} could be extended to some Ω ∈M satisfying Ωk ∈W –W (�) = X
and Ωk ∈W –W (ϕ) = X ′, but both situations are impossible because X ′ ∩
X = ∅. Hence� � ↔ ¬ϕ. Applying (E), we obtain� B� ↔ B¬ϕ and therefore
that B¬ϕ ∈ Γ, contradicting the consistency of Γ. Conclusion: X ′ /∈ N (Γi ).
Second case for (d): assume X ∈ N+(Γi ). This means there exists Br ∈ Γ such
that r(Γi ) ⊆ X and ∀� ∈ Γr(B(r : �) ∈ Γ). Since X ∈ N+, it follows that X ′ ∈
N+ as well. So, toward a contradiction, assume X ′ ∈ N+(Γi ). Then we
have Br′ ∈ Γ such that r′(Γi ) ⊆ X ′ and ∀� ∈ Γr

′
(B(r′ : �) ∈ Γ), and hence

r′(Γi ) ∩ r(Γi ) = ∅. If Γr ∪ Γr
′

were consistent, then we could extend this set to
some Δ ∈M . Taking j 	= i , it would follow that Γr ⊆ Δ and Γr

′ ⊆ Δ and that
Δj 	= Γi . Hence we would have that Δj ∈ r′(Γi ) ∩ r(Γi ) = ∅, an impossibility.
So Γr ∪ Γr

′
is not consistent. Applying the Consistency Lemma and the fact

we have {Br, Br′} ⊆ Γ with ∀� ∈ Γr(B(r : �) ∈ Γ) and ∀� ∈ Γr
′
(B(r′ : �) ∈ Γ),

each of Γr and Γr
′

is consistent, so it follows from the inconsistency of
Γr ∪ Γr

′
that there exists a finite nonempty subset S of one of the two sets

Γr and Γr
′

such that for some formula ϕ that is a member of the other of
these two sets we have � (

∧
S) → ¬ϕ. Let us assume S ⊆ Γr and ϕ ∈ Γr

′
;

the argument for the other possibility, where S ⊆ Γr
′

and ϕ ∈ Γr , is similar.
Proceeding, we have� (

∧
�∈S r :�) → r :¬ϕ by modal reasoning. SinceS ⊆ Γr ,

it follows by maximal consistency that r :¬ϕ ∈ Γ and hence ¬ϕ ∈ Γr . As we
have ∀� ∈ Γr(B(r : �) ∈ Γ), it follows that B(r :¬ϕ) ∈ Γ. Since we also have
that Br ∈ Γ, it follows by (BA) and maximal consistency that B¬ϕ ∈ Γ. But
ϕ ∈ Γr

′
, from which it follows by ∀� ∈ Γr

′
(B(r′ : �) ∈ Γ) that B(r′ :ϕ) ∈ Γ.

Since we also have that Br′ ∈ Γ, it follows by (BA) and maximal consistency
that Bϕ ∈ Γ and therefore that ¬B¬ϕ ∈ Γ by (D) and maximal consistency.
But then we have shown that ¬B¬ϕ ∈ Γ and B¬ϕ ∈ Γ, which implies Γ is
inconsistent, a contradiction. Conclusion: X ′ /∈ N+(Γi ).

So Mc is indeed a model, and therefore (Mc,Γ�1) is a pointed model. Thus, since
¬� ∈ Γ� , it follows by the Truth Lemma thatMc,Γ�1 	|= �. Completeness follows.
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A.4. Appendix: RBB� andRBB+
� soundness and completeness Recalling the seman-

tics for RBB� and for RBB+
� from §A.1, we prove the following theorem.

Theorem A.2 (RBB� and RBB+
� soundness and completeness). Assume R contains

the symbol �. For each ϕ ∈ F :

RBB� � ϕiff |=� ϕ and

RBB+
� � ϕiff |=+

� ϕ.

Soundness for RBB� and for RBB+
� are as for RBB (Theorem A.1) except that we

must check soundness of the additional axioms. We consider each in turn.

• Validity of (MA): |=� � → (Br → r) and |=+
� � → (Br → r).

Assume M,w |=� � and M,w |=� Br. This means w ∈ �(w) and r◦ ∈ N (w),
from which it follows by (ma) that w ∈ r(w). But then M,w |=� r. The
argument for the satisfaction operator |=+

� is the same.
• Validity of (MB): |=� B� and |=+

� B�.
Given (M,w), we have �◦ ∈ N (w) by (mb). SoM,w |=� B� andM,w |=+

� B�.

• Validity of (MR):
|=� B(r :ϕ) → (Br → B(� :ϕ)) and
|=+
� B(r :ϕ) → (Br → B(� :ϕ)).

AssumeM,w |=� B(r :ϕ) andM,w |=� Br. Then [[r :ϕ]]M ∈ N (w) and r◦ ∈
N (w). Applying (mr), it follows that [[� :ϕ]]M ∈ N (w). But then M,w |=�
B(� :ϕ). The argument for the satisfaction operator |=+

� is the same.
• Validity of (MT): |=+

� Bϕ → B(� :ϕ).
Assume M,w |=+

� Bϕ. This means [[ϕ]]M ∈ N (w). Applying (mt), we have
[[� :ϕ]]M ∈ N (w). But this is what it means to haveM,w |=+

� B(� :ϕ).

So RBB� and RBB+
� are sound. Completeness for RBB� and for RBB+

� is as for RBB
(Theorem A.1) except that provability is taken with respect to the theory in question
and we must show thatMc satisfies the additional properties required of models of this
theory (§A.1).

• Mc satisfies (ma) for RBB� and for RBB+
� : Γi ∈ �(Γi ) and r◦ ∈ N (Γi ) together

imply that Γi ∈ r(Γi ).
Assume Γi ∈ �(Γi ) and r◦ ∈ N (w). As in the proof thatMc satisfies (ba) from
Theorem A.1, it follows from r◦ ∈ N (Γi ) that Br ∈ Γ. Applying the definition
of �(Γi ) to our assumption Γi ∈ �(Γi ), it follows that ¬� /∈ Γ and therefore
� ∈ Γ by maximal consistency. Since � ∈ Γ and Br ∈ Γ, we have by (MA)
and maximal consistency that r ∈ Γ. But then Γr ⊆ Γ by (A) and maximal
consistency. Since it follows from r ∈ Γ by maximal consistency that¬r /∈ Γ and
we have shown that Γr ⊆ Γ, it follows by the definition of r(Γi ) that Γi ∈ r(Γi ).

• Mc satisfies (mb) for RBB� and for RBB+
� : �◦ ∈ N (Γi ).

We have B� ∈ Γ by (MB). Hence �◦ =W (�) ∈ N (Γi ).
• Mc satisfies (mr) for RBB� and for RBB+

� : [[r :ϕ]]Mc ∈ N (Γi ) and r◦ ∈ N (Γi )
together imply that [[� :ϕ]]Mc ∈ N (Γi ).
Assume [[r :ϕ]]Mc ∈ N (Γi ) and r◦ ∈ N (Γi ). As in the proof that Mc satisfies
(ba) from Theorem A.1, it follows that B(r :ϕ) ∈ Γ and Br ∈ Γ. Applying
(MR) and maximal consistency, we obtain B(� :ϕ) ∈ Γ. By the definition
of N (Γi ), it follows that W (� :ϕ) ∈ N (Γi ). Applying the Truth Lemma, we
obtain [[� :ϕ]]Mc ∈ N (Γi ).
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• Mc satisfies (mt) for RBB+
� : [[ϕ]]Mc ∈ N (Γi ) implies [[� :ϕ]]Mc ∈ N (Γi ).

Assume [[ϕ]]Mc ∈ N (Γi ). Applying the Truth Lemma, we obtain W (ϕ) ∈
N (Γi ). We therefore have Bϕ ∈ Γ by the definition of N (Γi ). Applying (MT)
and maximal consistency, it follows from Bϕ ∈ Γ that B(� :ϕ) ∈ Γ. Applying
the definition of N (Γi ), we obtain W (� :ϕ) ∈ N (Γi ). We therefore conclude
that [[� :ϕ]]Mc ∈ N (Γi ) by the Truth Lemma.

A.5. Appendix: Lemmas for QRBB completeness The results of this section will be
used in §A.6 to prove completeness for QRBB. All provability in this section is taken
with respect to QRBB.

Lemma A.3. QRBB satisfies the following:

• Distributivity: � (∀r)(ϕ → �) → ((∀r)ϕ → (∀r)�);
• the Distribution Rule: � ϕ → � implies � (∀r)ϕ → (∀r)�;
• the Renaming Rule: if s has no occurrence in ϕ, then

� (∀r)ϕ ↔ (∀s)ϕ[s/r] and � (∃r)ϕ ↔ (∃s)ϕ[s/r];

• the Equivalence Rule: � ϕ ↔ ϕ′ implies

� (∀r)ϕ ↔ (∀r)ϕ′ and � (∃r)ϕ ↔ (∃r)ϕ′.

Proof. For Distributivity:

1. � (∀r)(ϕ → �) → (ϕ → �) (UI)
2. � (∀r)ϕ → ϕ (UI)
3. � ((∀r)(ϕ → �) ∧ (∀r)ϕ) → � by 1, 2
4. � (∀r)[((∀r)(ϕ → �) ∧ (∀r)ϕ) → �] by 3, (Gen)
5. � ((∀r)(ϕ → �) ∧ (∀r)ϕ) → (∀r)� by 4, (UD), (MP)
6. � (∀r)(ϕ → �) → ((∀r)ϕ → (∀r)�) by 5

For the Distribution Rule:

1. � ϕ → � assumption
2. � (∀r)ϕ → ϕ (UI)
3. � (∀r)ϕ → � by 1, 2
4. � (∀r)ϕ → (∀r)� by 3, (UD), (MP)

For the Renaming Rule: if s has no occurrence in ϕ, then

1. � (∀r)ϕ → ϕ[s/r] (UI)
2. � (∀s)((∀r)ϕ → ϕ[s/r]) by 1, (Gen)
3. � (∀r)ϕ → (∀s)ϕ[s/r] by 2, (UD), (MP)
4. � (∀s)ϕ[s/r] → ϕ[s/r][r/s] (UI)
5. � (∀s)ϕ[s/r] → ϕ by 4, ϕ[s/r][r/s] = ϕ
6. � (∀r)((∀s)ϕ[s/r] → ϕ) by 5, (Gen)
7. � (∀s)ϕ[s/r] → (∀r)ϕ by 6, (UD), (MP)
8. � (∀r)ϕ ↔ (∀s)ϕ[s/r] by 3, 7—our first result
9. � (∀r)¬ϕ ↔ (∀s)(¬ϕ)[s/r] by an argument like 1–8
10. � (∀r)¬ϕ ↔ (∀s)¬ϕ[s/r] by 9, (¬ϕ)[s/r] = ¬(ϕ[s/r])
11. � ¬(∀r)¬ϕ ↔ ¬(∀s)¬ϕ[s/r] by 10
12. � (∃r)ϕ ↔ (∃s)ϕ[s/r] by 11
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For the Equivalence Rule:

1. � ϕ ↔ ϕ′ assumption
2. � ϕ → ϕ′ by 1
3. � (∀r)ϕ → (∀r)ϕ′ by 2, Distribution Rule
4. � ϕ′ → ϕ by 1
5. � (∀r)ϕ′ → (∀r)ϕ by 4, Distribution Rule
6. � (∀r)ϕ ↔ (∀r)ϕ′ by 3, 5—our first result
7. � ¬ϕ ↔ ¬ϕ′ by 1
8. � (∀r)¬ϕ ↔ (∀r)¬ϕ′ from 7 by an argument like 1–6
9. � ¬(∀r)¬ϕ ↔ ¬(∀r)¬ϕ′ by 8
10. � (∃r)ϕ ↔ (∃r)ϕ′ by 9

�
Lemma A.4. If r is not free in �, then:

1. � (∀r)(ϕ → �) → ((∃r)ϕ → �); and
2. � (∃r)(� → ϕ) → (� → (∃r)ϕ).

Proof. For Item 1: if r is not free in �, then

1. � (∀r)(ϕ → �) → (∀r)(¬� → ¬ϕ) Equivalence Rule, CL
2. � (∀r)(¬� → ¬ϕ) → (¬� → (∀r)¬ϕ) (UI)
3. � (∀r)(ϕ → �) → (¬� → (∀r)¬ϕ) by 1, 2
4. � (∀r)(ϕ → �) → (¬(∀r)¬ϕ → �) from 3
5. � (∀r)(ϕ → �) → ((∃r)ϕ → �) from 4

For Item 2: if r is not free in �, then

1. � � → (¬ϕ → (� ∧ ¬ϕ)) (CL)
2. � (∀r)� → (∀r)(¬ϕ → (� ∧ ¬ϕ)) by 1, Distribution Rule
3. � (∀r)� → ((∀r)¬ϕ → (∀r)(� ∧ ¬ϕ)) by 2, Distributivity
4. � ((∀r)� ∧ (∀r)¬ϕ) → (∀r)(� ∧ ¬ϕ) by 3
5. � � → � (CL)
6. � (∀r)(� → �) by 5, (Gen)
7. � � → (∀r)� by6, (UD), (MP)
8. � (� ∧ (∀r)¬ϕ) → (∀r)(� ∧ ¬ϕ) by 4, 7
9. � ¬(∀r)(� ∧ ¬ϕ) → (� → ¬(∀r)¬ϕ) by 8
10. � ¬(∀r)¬(� → ϕ) → (� → ¬(∀r)¬ϕ) by 9, Equivalence Rule
11. � (∃r)(� → ϕ) → (� → (∃r)ϕ) by 10

�
A.6. Appendix: QRBB soundness and completeness Recalling the semantics for

QRBB from §A.2, we prove the following theorem.

Theorem A.5 ( QRBB soundness and completeness). We have:

• QRBB is sound: QRBB � ϕ implies |= ϕ for each ϕ ∈ F ∀; and
• if R is at least countably infinite, then QRBB is sound and complete: for each
ϕ ∈ F ∀,

QRBB � ϕ iff |= ϕ.
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Soundness is by induction on the length of derivation. Most cases are addressed in
the proof of Theorem A.1. We only address the remaining cases.

• Validity of (UD): |= (∀r)(ϕ → �) → (ϕ → (∀r)�), where r is not free in ϕ.
Assume M,w |= (∀r)(ϕ → �) and M,w |= ϕ. From the former, we have
M,w |= (ϕ → �)[s/r] for each s free for r in ϕ → �. Since r is not free in ϕ, it
follows thatM,w |= ϕ → �[s/r] for each s free for r in �. By our assumption
M,w |= ϕ, it follows that M,w |= �[s/r] for each s free for r in �. That is,
M,w |= (∀r)�.

• Validity of (UI): |= (∀r)ϕ → ϕ[s/r], where s is free for r in ϕ.
By the definition of satisfaction.

• Validity of (EP) and (EN): |= r = r and |= ¬(r = s), where r and s are different.
By the definition of satisfaction.

• (Gen) preserves validity: |= ϕ implies |= (∀r)ϕ.
If 	|= (∀r)ϕ, then there exists (M,w) and s free for r inϕ such thatM,w 	|= ϕ[s/r].
Given thatM = (W, [·], N,V ), define the modelM ′ = (W, [·]′, N,V ) by setting

[t]′ :=

{
[s] if t = r,
[t] otherwise.

It follows that rM
′
(w) = sM (w) and tM

′
(w) = tM (w) for all t 	= r. By the

usual arguments about the preservation of truth of formulas under the renaming
of quantified variables and their corresponding bound occurrences, we may
assume without loss of generality that every occurrence of r in ϕ is free. But
then it is easy to see that we have M,w 	|= ϕ[s/r] iff M ′, w 	|= ϕ. After all, ϕ
and ϕ[s/r] differ only in the occurrences of r in ϕ that are replaced by s in
ϕ[s/r], and M ′ interprets all such occurrences of r just as M interprets the
corresponding occurrences of s. And all other occurrences of symbols in ϕ are
the same as they are in ϕ[s/r], they are syntactically different than r, andM ′

and M interpret them in the same way. Conclusion: 	|= ϕ.

So QRBB is sound.
For completeness, we adapt the standard Henkin-style construction in [31, sec. 3.1]

to the present setting. To begin, our language F ∀ depends on two parameters: a
nonempty set R of reasons and a nonempty set P of propositional letters. We shall
keep P fixed but consider different options for R. As such, it will be convenient to write
L(R) to denote the set of formulas with quantifiers that we can form using R 	= ∅ as
our set of reasons. By convention in this proof, we restrict all derivation to be with
respect to QRBB. Also, we shall assume for the remainder of the argument that R is at
least countably infinite.

To say that a set Γ ⊆ L(R) is consistent means that for no finite Γ′ ⊆ Γ is it the case
that � (

∧
Γ′) → ⊥. To say that Γ ⊆ L(R) is maximal L(R)-consistent means that Γ is

consistent and adding to Γ any formula of L(R) not already present would produce
an inconsistent set.

For the purposes of the present proof, a theory in the languageL(R) is a setT ⊆ L(R)
of formulas in L(R) satisfying the following properties:

• Closure under theorems: if ϕ ∈ L(R) and � ϕ, then ϕ ∈ T ; and
• Closure under (MP): if ϕ → � ∈ T and ϕ ∈ T , then � ∈ T .

Given Γ ⊆ L(R), let TR(Γ) be the set of all theories in L(R) that contain Γ. The
intersection of a collection of theories in L(R) is also a theory inL(R). Hence for each
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Γ ⊆ L(R), we may define the theory

TR(Γ) :=
⋂

TR(Γ)

called the theory in L(R) generated by Γ.
AnL(R)-proof from Γ is a finite nonempty sequence 〈ϕ1, ... , ϕn〉 of formulas inL(R)

such that for eachϕi in the sequence, we have one of the following: ϕi ∈ Γ, QRBB � ϕi ,
or there exist ϕj and ϕk from earlier in the sequence (i.e., j < i and k < i) such that ϕi
follows by (MP) from ϕj and ϕk (i.e., ϕk = ϕj → ϕi). To say that anL(R)-proof from
Γ is of ϕ, means that ϕ is the last formula in the sequence. We write Γ �R ϕ to mean
that there exists an L(R)-proof of ϕ from Γ. Notation: in writing the set to the left of
the turnstile �R, we may use a comma to denote set-theoretic union, we may identify
an individual formula with the singleton set containing the formula in question, and
we may omit any set-indicating notation if the set is empty. We state without proof the
following results, grouped together under the name Simple Lemma:

• Γ �R ϕ iff ϕ ∈ TR(Γ);
• Γ �R ϕ iff TR(Γ) �R ϕ;
• Γ �R ϕ iff there exists a Γ′ ⊆ Γ such that Γ′ �R ϕ;
• Γ �R ϕ iff there exists a finite Γ′ ⊆ Γ such that Γ′ �R ϕ;
• if Γ is finite, then Γ′ �R ϕ iff

∧
Γ′ �R ϕ, where

∧
Γ′ :=

∧
�∈Γ′ �; and

• �R ϕ iff QRBB � ϕ.

Generally the Simple Lemma will be used only tacitly.
Given a theory T in L(R) and a theory T ′ in L(R′), to say that T ′ is an extension

of T means that T ⊆ T ′. To say that T ′ is a conservative extension of T means that
T ′ ∩ L(R) = T .

To say that a theory T in L(R) is Henkin means that for each closed formula (i.e.,
containing no free variables) of the form ¬(∀r)ϕ ∈ L(R), there exists a reason rϕ ∈ R
called a witness (or Henkin constant) for ¬(∀r)ϕ for which we have

(¬(∀r)ϕ → ¬ϕ[rϕ/r]) ∈ T.

Given a theory T in L(R), letR∗ be the set obtained from R by adding for each closed
¬(∀r)ϕ ∈ L(R) a new reason rϕ . To be clear: there is a bijection between the set of
closed formulas ¬(∀r)ϕ ∈ L(R) and the set R∗ – R. We define the set

H (R) := {¬(∀r)ϕ → ¬ϕ[rϕ/r] | ¬(∀r)ϕ ∈ L(R) is closed}

of Henkin axioms in L(R) and let T ∗ := TR∗(T ∪H (R)) be the theory in L(R∗)
generated by T ∪H (R).

Lemma A.6 (Constants). Assume R is at least countably infinite and R ⊆ R′. If
Γ ∪ {ϕ} ⊆ L(R), then Γ �R′ ϕ iff Γ �R ϕ.

Proof. The right-to-left direction is immediate (since R ⊆ R′), so we prove only the
left-to-right direction. Proceeding, assume Γ ∪ {ϕ} ⊆ L(R) and Γ �R′ ϕ; that is, there
exists an L(R′)-proof �′ = 〈�′

1, ... , �
′
n〉 of ϕ from Γ. Let r′1, ... , r

′
m be a non-repeating

list of all reasons in R′ – R that appear in �′. Since R is at least countably infinite
and �′ is finite, we may choose a non-repeating list r1, ... , rm of reasons in R that do
not appear anywhere in �′. Such a list exists because R is at least countably infinite.
Form � := 〈�1, ... , �n〉 by defining �i as the formula obtained from �′

i by replacing
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all occurrences of r′1, ... , r
′
m by r1, ... , rm (respectively). Since Γ ∪ {ϕ} ⊆ L(R), one

may verify that � is an L(R)-proof of ϕ from Γ (i.e., formulas in Γ ⊆ L(R) are
left unchanged, QRBB-theorems in L(R′) are mapped to QRBB-theorems in L(R),
formulas in L(R′) obtained via (MP) in �′ are mapped to formulas in L(R) obtained
via (MP) in �, and ϕ ∈ L(R) is left unchanged). Hence Γ �R ϕ. �

Lemma A.7 (Deduction). For each R, we have:

Γ ∪ {ϕ} �R � iff Γ �R ϕ → �.
Proof. The right-to-left direction is easy, so we only address the left-to-right direction.

Proceeding, assume Γ ∪ {ϕ} �R �, which implies there exists anL(R)-proof 〈�1, ... , �n〉
of � from Γ ∪ {ϕ}. It suffices for us to prove by induction on i ≤ n that Γ �R ϕ → �i .

In the base case, i = 1 and therefore either � �i or �i ∈ Γ ∪ {ϕ}. If � �i , then
� ϕ → �i and therefore Γ �R ϕ → �i . If �i ∈ Γ ∪ {ϕ}, then either �i ∈ Γ or �i = ϕ.
If �i = ϕ, then since � ϕ → ϕ by (CL), we have Γ �R ϕ → ϕ. So suppose �i ∈ Γ.
Hence Γ �R �i . Since for 	i := �i → (ϕ → �i) we have � 	i by (CL), we have Γ �R 	i
and therefore Γ �R ϕ → �i .

For the induction step ( i > 1), we have that� �i , that�i ∈ Γ ∪ {ϕ}, or that�i follows
by (MP) from �k and �k → �i appearing earlier in the L(R)-proof. The argument for
the first two possibilities is as in the base case. So assume the third possibility obtains.
By the induction hypothesis, we have Γ �R ϕ → �k and Γ �R ϕ → (�k → �i) Let �i
be the classical tautology

�i := (ϕ → (�k → �i)) → ((ϕ → �k) → (ϕ → �i)).

We have � �i by (CL) and hence Γ �R �i . But then Γ �R ϕ → �i by (MP). �
We remark that the version of Lemma A.7 for the QRBB consequence relation

� does not hold in general. For example, we have r :ϕ � (∀r)(r :ϕ) and yet
� r :ϕ → (∀r)(r :ϕ). As another example, we have p � r :p and yet � p → r :p.
Lemma A.7 does not fail in similar ways because the consequence relation given by
the R-specific turnstile �R gives rise to a notion of proof (i.e., the L(R)-proof) that
forbids the direct use of any QRBB rule other than (MP).

Lemma A.8 (Fresh Variable). If s ∈ R does not occur in any formula in Γ ∪ {ϕ} ⊆
L(R), then, letting Γ[s/r] := {�[s/r] | � ∈ Γ}, we have:

1. � ϕ iff � ϕ[s/r], and
2. Γ �R ϕ iff Γ[s/r] �R ϕ[s/r].

Proof. 1 follows by induction on the length of QRBB derivations. 2 follows by
induction on the length of L(R)-proofs and makes use of 1. �

Lemma A.9 (Conservativity). Assume R is at least countably infinite. If T is a theory
in L(R), then T ∗ is a conservative extension of T.

Proof. We prove that for eachϕ ∈ L(R), we haveT ∗ �R∗ ϕ iffT �R ϕ. The right-to-
left direction is immediate, so we only need prove the left-to-right direction. Proceeding,
if ϕ ∈ L(R), then we have T ∗ �R∗ ϕ iff there exists a finite set H ⊆ H (R) of Henkin
axioms satisfying T,H �R∗ ϕ. So it suffices for us to prove by induction on the finite
cardinality of H ⊆ H (R) that T,H �R∗ ϕ implies T �R ϕ. The base case (where
H = ∅) follows by Lemma A.6, so we proceed directly to the induction step. That
is, we assume that the result holds for H ⊆ H (R) having |H | = n and we prove the
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result holds forH ⊆ H (R) having |H | = n + 1. Proceeding, takeH ⊆ H (R) satisfying
|H | = n + 1, choose a Henkin axiom h ∈ H with

h = ¬(∀r)� → ¬�[r�/r],

and defineH ′ := H – {h} so thatH = H ′ ∪ {h} and |H ′| = n. Now assumeT,H �R∗
ϕ with ϕ ∈ L(R), and hence T,H ′, h �R∗ ϕ. It follows that there is a finite T ′ ⊆ T
such that T ′, H ′, h �R∗ ϕ. Let s ∈ R be a variable not occurring in any formula in the
finite set T ′ ∪H ′ ∪ {h, ϕ}. Such s exists because R is at least countably infinite. Define

h′ := ¬(∀r)� → ¬�[s/r].

Then, omitting mention of instances of classical reasoning and the use of the Simple
Lemma in the last six lines of the derivation, we have:

T ′, H ′, h �R∗ ϕ (derived above)
T ′, H ′, h′ �R∗ ϕ Lemma A.8
�R∗

∧
(T ′ ∪H ′) → (h′ → ϕ) Lemma A.7

�
∧

(T ′ ∪H ′) → (h′ → ϕ) Simple Lemma
� (∀s)(

∧
(T ′ ∪H ′) → (h′ → ϕ)) (Gen)

�
∧

(T ′ ∪H ′) → (∀s)(h′ → ϕ) (UD), no s in T ′ ∪H ′

�R∗
∧

(T ′ ∪H ′) → (∀s)(h′ → ϕ) Simple Lemma
T ′, H ′ �R∗ (∀s)(h′ → ϕ) Lemma A.7
T ′, H ′ �R∗ (∀s)((¬(∀r)� → ¬�[s/r]) → ϕ) write out h′

T ′, H ′ �R∗ (¬(∀r)� → (∃s)¬�[s/r]) → ϕ Lemma A.4, no s in ϕ or ¬(∀r)�
T ′, H ′ �R∗ (¬(∀r)� → ¬(∀s)¬¬�[s/r]) → ϕ definition of ∃
T ′, H ′ �R∗ (¬(∀r)� → ¬(∀s)�[s/r]) → ϕ Equivalence (Lemma A.3)
T ′, H ′ �R∗ ϕ Renaming (Lemma A.3)

Therefore T,H ′ �R∗ ϕ. Applying the induction hypothesis, T �R ϕ. �
Now, given a theory T in L(R), define:

T0 = T
Ti+1 = (Ti)∗ for i ∈ 

T
 =

⋃
i∈
 Ti

R0 = R
Ri+1 = (Ri)∗ for i ∈ 

R
 =

⋃
i∈
 Ri

Lemma A.10 (Henkin). Let R be at least countably infinite and T be a theory in L(R).
Then T
 is a Henkin theory that is a conservative extension of T.

Proof. Take a closed ¬(∀r)ϕ ∈ L(R
). Then there exists i ∈ 
 such that ¬(∀r)ϕ ∈
L(Ri). But then there is a witness rϕ ∈ L(Ri+1) ⊆ L(R
) such that

¬(∀r)ϕ → ¬ϕ[rϕ/r] ∈ Ti+1 ⊆ T
.

So T
 is a Henkin theory.
By induction on i ∈ 
, we prove that Ti is a conservative extension of T. Base case:

T0 = T and the result is immediate. Induction step: Ti+1 is a conservative extension
of Ti by Lemma A.9; that is, Ti+1 ∩ L(Ri) = Ti . By the induction hypothesis, Ti ∩
L(R) = T . But then, since L(R) ⊆ L(Rj) ⊆ L(Rk) if j < k, we have

Ti+1 ∩ L(R) = (Ti+1 ∩ L(Ri)) ∩ L(R) = Ti ∩ L(R) = T.

https://doi.org/10.1017/S1755020319000522 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000522
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So each Ti is a conservative extension of T. But then

T
 ∩ L(R) = (
⋃
i∈
 Ti) ∩ L(R) =

⋃
i∈
(Ti ∩ L(R)) = T,

which shows that T
 is a conservative extension of T. �
By the usual Lindenbaum argument (using Zorn’s Lemma) [31, sec. 3.1], for each R,

any consistent set in L(R) may be extended to a maximal L(R)-consistent set. Hence
for a consistent theory T in L(R), the theory T
 in L(R
) is consistent and may be
extended to a maximalL(R
)-consistent setT ′


 . This set is a theory inL(R
). Further,
this theory is Henkin because T
 ⊆ T ′


 , both theories are in the same language, T

is Henkin by Lemma A.10, and any extension of a Henkin theory within the same
language is still Henkin (because all Henkin axioms are already present).

To prove completeness of QRBB, we take � such that QRBB � �. We construct a
structure Mc = (W, [·], N,V ) as in the proof of Theorem A.1 except that our set of
worlds W is defined differently. First, letM0 be the set of all maximal L(R)-consistent
sets; each such set is a theory in L(R). For each theory T ∈M0, define M
(T ) to
be the set of all maximal L(R
)-consistent extensions of T
 . As we have seen, each
member ofM
(T ) is a maximal L(R
)-consistent Henkin theory that is conservative
over T (Lemma A.10). Define the set

M :=
⋃
T∈M0

M
(T )

whose members are maximal L(R
)-consistent extensions of T
 for each T ∈M0. It
follows that {¬�} can be extended to a T� ∈M0 and hence neitherM
(T�) nor M is
empty. We defineW :=M × {1, 2} and write (Γ, i) ∈W in the abbreviated form Γi .
Since M is nonempty, W is nonempty. The remaining components ofMc are defined
as in the proof of Theorem A.1 except that all language-specific aspects of definitions
are extended to the larger language L(R
).

We prove the Truth Lemma: for each formula ϕ ∈ L(R
) and world Γi ∈W , we
have ϕ ∈ Γ iffMc,Γi |= ϕ. The proof is by induction on the construction of formulas.
The arguments for all but two cases are as in the proof of Theorem A.1. All that
remains are the equality and quantifier inductive step cases.

• Inductive step: (s = r) ∈ Γ iffMc,Γi |= s = r.
By (EP) and (EN), we have (s = r) ∈ Γ iff s = r. But the latter holds iff
Mc,Γi |= s = r.

• Inductive step: (∀r)ϕ ∈ Γ iffMc,Γi |= (∀r)ϕ.
If (∀r)ϕ ∈ Γ, then it follows by maximal L(R
)-consistency and (UI) that
ϕ[s/r] ∈ Γ for each s ∈ R
 that is free for r in ϕ. By the induction hypothesis,
we haveMc,Γi |= ϕ[s/r] for each such s ∈ R. But this is what it means to have
Mc,Γi |= (∀r)ϕ.Conversely, if Mc,Γi |= (∀r)ϕ, then it follows thatMc,Γi |=
ϕ[s/r] for all s ∈ R
 free for r in ϕ. By the induction hypothesis, we have
ϕ[s/r] ∈ Γ for all such s. Since Γ is a Henkin theory, there is a Henkin constant
rϕ ∈ R
 for ¬(∀r)ϕ. Hence ϕ[rϕ/r] ∈ Γ. But Γ contains the Henkin axiom

¬(∀r)ϕ → ¬ϕ[rϕ/r],

and so we have by L(R
)-consistency that (∀r)ϕ ∈ Γ.

This completes the proof of the Truth Lemma.
The proof that Mc satisfies (pr), (brk), (ba), (as), and (d) is as in the proof of

Theorem A.1. SoMc is indeed a model (and not just a premodel).
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To complete the proof of completeness, we recall that we obtained T� ∈M0 as a
maximal L(R)-consistent extension of {¬�}. Hence there exists Γ� ∈M
(T�) ⊆M .
But Γ� is a maximalL(R
)-consistent extension of (T�)
 , and (T�)
 is a conservative
extension of T� by Lemma A.10. Therefore, since � /∈ T� by consistency, we have
� /∈ Γ� . Applying the Truth Lemma,Mc,Γ�1 	|= �. Completeness follows.

A.7. Appendix: Conservativity of QRBB over RBB As a corollary of Theorems
A.1 and A.5, we have the following.

Corollary A.11. QRBB is a conservative extension of RBB: for each ϕ ∈ F ,

QRBB � ϕ iff RBB � ϕ.

Proof. The right-to-left direction is obvious (QRBB contains all the axioms and
rules of RBB). The left-to-right direction follows by QRBB soundness (Theorem A.5)
and RBB completeness (Theorem A.1). �

A.8. Appendix: QRBB� and QRBB+
� soundness and completeness Recalling the

semantics for QRBB� and for QRBB+
� from §A.2, we prove the following theorem.

Theorem A.12 (QRBB� and QRBB+
� soundness and completeness). Assume R

contains the symbol �.

• QRBB� is sound: QRBB� � ϕ implies |=� ϕ for each ϕ ∈ F ∀.
• if R is at least countably infinite, then QRBB� is sound and complete: for each
ϕ ∈ F ∀,

QRBB� � ϕ iff |=� ϕ.

• analogous soundness and completeness results hold for QRBB+
� with respect to

the satisfaction relation |=+
� .

Soundness is proved as in Theorem A.2. Completeness is proved as in Theorem A.5,
except that provability is taken with respect to either QRBB� or QRBB+

� and one must
show (using an argument as in the completeness portion of Theorem A.2) that Mc
satisfies the relevant properties.
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726 PAUL ÉGRÉ, PAUL MARTY AND BRYAN RENNE

Roy Sorensen, Daniele Sgaravatti, Benjamin Spector, Giuseppe Spolaore, Sylvia
Wenmackers, Timothy Williamson, and Elia Zardini.

We also thank Joelle Proust, Igor Douven, Fabien Mikol, and Giuliano Torrengo
who organized the respective events where our paper was presented (the IJN seminar
on epistemic norms, the SND epistemology colloquium, the Paris IV workshop on the
Limits of Knowing, and the Latin Meeting in Analytic Philosophy in Milan). We also
thank the various audience members present at these events for their questions.

BIBLIOGRAPHY

[1] Armstrong, D. M. (1973). Belief, Truth and Knowledge. Cambridge: Cambridge
University Press.

[2] Artemov, S. (2008). The logic of justification. Review of Symbolic Logic, 1(4),
477–513.

[3] Artemov, S. & Fitting, M. (2011). Justification logic. In Zalta, E.
N., editor. The Stanford Encyclopedia of Philosophy. Summer 2020 edition.
https://plato.stanford.edu/archives/sum2020/entries/logic-justification/.

[4] Baltag, A., Renne, B., & Smets, S. (2012). The logic of justified belief change,
soft evidence and defeasible knowledge. In Ong, L. & de Queiroz, R., editors. Logic,
Language, Information and Computation: 19th International Workshop, WoLLIC 2012,
Buenos Aires, Argentina, September 3–6, 2012. Lecture Notes in Computer Science,
Vol. 7456. Berlin: Springer-Verlag, pp. 168–190.

[5] ———. (2014). The logic of justified belief, explicit knowledge, and conclusive
evidence. Annals of Pure and Applied Logic, 165(1), 49–81.
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