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Three-dimensional direct numerical simulations (DNS) of a shock-induced laminar
separation bubble are carried out to investigate the flow instability and origin of any
low-frequency unsteadiness. A laminar boundary layer interacting with an oblique
shock wave at M = 1.5 is forced at the inlet with a pair of monochromatic oblique
unstable modes, selected according to local linear stability theory (LST) performed
within the separation bubble. Linear stability analysis is applied to cases with marginal
and large separation, and compared to DNS. While the parabolized stability equations
approach accurately reproduces the growth of unstable modes, LST performs less
well for strong interactions. When the modes predicted by LST are used to force
the separated boundary layer, transition to deterministic turbulence occurs near the
reattachment point via an oblique-mode breakdown. Despite the clean upstream
condition, broadband low-frequency unsteadiness is found near the separation point
with a peak at a Strouhal number of 0.04, based on the separation bubble length. The
appearance of the low-frequency unsteadiness is found to be due to the breakdown
of the deterministic turbulence, filling up the spectrum and leading to broadband
disturbances that travel upstream in the subsonic region of the boundary layer, with
a strong response near the separation point. The existence of the unsteadiness is
supported by sensitivity studies on grid resolution and domain size that also identify
the region of deterministic breakdown as the source of white noise disturbances. The
present contribution confirms the presence of low-frequency response for laminar
flows, similarly to that found in fully turbulent interactions.

Key words: boundary layer separation, compressible boundary layers, shock waves

1. Introduction

As a consequence of shock wave–boundary layer interaction (SWBLI), flow
separation, transition to turbulence, unsteadiness and three-dimensional (3D) effects
can have a significant impact on the aerothermodynamic performance of aircraft. For
these reasons, major efforts have been made by the aeronautical research community
to study SWBLI in the past 60 years (Dolling 2001). For laminar and turbulent
boundary layers at low supersonic speeds, Liepmann (1946) and Ackeret, Feldmann &
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Rott (1947) first treated the following four typical situations in which this interaction
appears: incident normal shock, oblique-shock reflection, presence of ramps and sharp
fins. Despite the large amount of experimental work on SWBLI (Delery & Marvin
1986; Settles & Dolling 1990; Settles & Dodson 1991, 1994; Smiths & Dussauge
2006), available data in a Reynolds-number range where high-fidelity numerical
simulations are feasible are limited and most of the work has been carried out for
turbulent interactions. The works by Babinsky & Harvey (2011) and Doerffer et al.
(2011), as well as being comprehensive reviews, also pointed out that unsteadiness in
SWBLI remains one of the main unsolved issues on which a deeper understanding
and further developments were still needed.

The existence of low-frequency unsteadiness in turbulent SWBLI has been widely
acknowledged in the literature (Dolling 2001; Clemens & Narayanaswamy 2014).
However, the origin of this low-frequency unsteadiness is still controversial. While,
on the one hand, this is often related to the interaction of the shock foot with
turbulent structures of the incoming upstream boundary layer (Erengil & Dolling
1991; Ganapathisubramani, Clemens & Dolling 2007, 2009), on the other hand,
the unsteadiness is believed to be caused by an intrinsic mechanism of the shock
wave–separated boundary layer system (Dupont et al. 2005; Pirozzoli & Grasso 2006;
Touber & Sandham 2009; Grilli et al. 2012). Souverein et al. (2009) and Clemens &
Narayanaswamy (2014) also discussed the possibility that both upstream and internal
mechanisms contribute to the generation of the low-frequency unsteadiness, but the
effect of the incoming turbulent boundary layer diminishes for increasing interaction
strengths.

Laminar and transitional interactions are also of interest because they can occur
in wind tunnel testing, on turbine and compressor blades and on wings and intakes.
With the intention of carrying out a joint numerical and experimental investigation
of transitional interactions at M = 6, Sandham et al. (2014) recently performed both
direct numerical simulations (DNS) and experiments with three different facilities
(Ludwieg tube and high-enthalpy shock tunnel in Göttingen, and hypersonic wind
tunnel in Cologne). By investigating the effects of Reynolds number, disturbance
amplitude, shock impingement location and wall cooling, a good cross-validation
between experiments and DNS was provided. The stability of hypersonic laminar
boundary layers interacting with an oblique shock or over a compression ramp was
investigated numerically by Pagella, Rist & Wagner (2002) and Pagella, Babucke
& Rist (2004), clearly showing that non-parallel effects led to increased growth
rates of the disturbances. The presence of reverse flow in the laminar part of the
bubble represents an additional source of inviscid instabilities due to the existence of
inflectional points in the velocity profiles. This part of the bubble acts as a spatial
filter–amplifier for the upstream disturbances, which experience a strong growth and
can potentially cause nonlinear interactions and transition to turbulence. The transition
process in boundary layers undergoing sufficiently strong adverse pressure gradient
can therefore be very different from what happens in attached boundary layers when
separation occurs (Rist 2004).

An important aspect of the transition process is whether the laminar separation
bubble presents an absolute instability. The works by Gaster (1991), Hammond &
Redekopp (1998), Alam & Sandham (2000) and Rist (2004) shed some light on
this major aspect, and the general conclusion is that, for separation bubbles with
a maximum reverse flow magnitude less than 15–20 %, the transition process is
governed by convective instabilities. In the absence of absolute (global) instability,
the breakdown mechanisms can be very different, depending on Reynolds number
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Instability and unsteadiness in shock-induced laminar separation bubble 7

and the thickness of the reverse flow region. While Alam & Sandham (2000)
and Rist (2004) clearly found an oblique-mode- and 3-vortex-induced breakdown
scenarios, Marxen et al. (2003) and Marxen, Rist & Wagner (2004) showed
numerically and experimentally that transition was driven by two-dimensional (2D)
Tollmien–Schlichting waves.

The basic mechanisms of the laminar–turbulent transition can be analysed using
stability approaches that focus on the growth of small-amplitude disturbances in
slowly varying shear flows. Linear stability analysis represents a powerful tool
to study disturbance growth, with relatively low computational costs compared to
large-eddy simulations (LES) or DNS (Herbert 1997). One of the simplest and most
commonly used transition prediction models for aerodynamic design is the en-method
(Mack 1984), which is based on local linear stability theory (LST) and quantifies
the spatial growth rate of disturbances by solving the eigenvalue problem of the
Orr–Sommerfeld equations. Despite the success of several LST strategies (Arnal
1994), the en-method does not provide satisfactory results for 3D boundary layers
(Reed, Saric & Arnal 1996). The 3D nature of boundary layers in swept wings, for
which cross-flow instabilities play a fundamental role during the transition process,
causes a scatter of the critical values of the n-factor and makes the aircraft design
rather conservative. Pagella et al. (2002) also showed that the agreement between
LST and DNS is less satisfactory for strong oblique shocks interacting with a laminar
boundary layer.

An obvious extension of the local linear approach is to consider the basic flow
to be inhomogeneous in two dimensions and periodic in the third one, defining a
linear ‘bi-global’ instability analysis (Theofilis 2003). Robinet (2007) performed a
bi-global/bi-local analysis to study the stability and unsteadiness of a supersonic
laminar SWBLI and successfully identified the compressible counterpart of the global
mode found by Theofilis, Hein & Dallmann (2000) as the physical origin of a 2D/3D
steady/unsteady bifurcation of the base flow found for different combinations of
shock intensity and spanwise width of the numerical domain. Another alternative
is the so-called non-local non-parallel stability theory. Inspired by the experimental
observations in which the boundary-layer instabilities have a wave-like form in the
streamwise direction, Herbert and Bertolotti (Herbert & Bertolotti 1987; Bertolotti
1991; Bertolotti, Herbert & Spalart 1992) developed the linear parabolized stability
equations (LPSE) on which the non-local non-parallel stability theory is based. This
theory is defined as non-local because the growth of the disturbances is influenced
by both local and upstream flow conditions, and non-parallel since the base flow
is allowed to ‘slowly’ vary in the streamwise direction. For an incompressible
zero-pressure gradient (ZPG) boundary layer over a flat plate, LPSE calculations by
Mack & Herbert (1995) and Bertolotti (1997) successfully produced results in very
good agreement with the experiments of Balakumar & Malik (1992) and of Klebanoff
(1971) and Kendall (1990), respectively. A successful example of the application of
LPSE on supersonic boundary layers is El-Hady (1991), who tested different criteria
when defining the growth rate and found good agreement with the experimental
results of Kendall (1967) at M = 4.5 when the growth rate was evaluated using
the maximum of the mass-flow perturbations. A complementary use of LST for the
primary instability phase and LPSE to take into account non-parallel effects was made
by Yao et al. (2007) for unstable disturbances in SWBLI, where the evolution of
the disturbances was followed up to the transition to turbulence via an oblique-mode
breakdown. Hein (2005) carried out a linear/nonlinear analysis based on the DNS
of Rist & Maucher (1994) for an incompressible laminar separation bubble. For the
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linear case, very good agreement between the disturbance growth rates predicted
by DNS and LPSE was found for 2D waves, while some discrepancies (larger for
increasing wave angles) were found in the first half of the bubble. Hein concluded
that the assumption of weakly non-parallel flow might fail near the separation point.

In this context, besides the basic instability characteristics, it is of interest to
examine the existence or otherwise of low-frequency unsteadiness in a laminar
SWBLI, where the clean incoming laminar boundary layer allows for a more
controlled interaction. Sansica, Sandham & Hu (2014) showed that a low-frequency
unsteadiness exists near the separation point for 2D laminar interactions at different
shock strengths even when the forcing was only applied internally, therefore with
a clean upstream boundary layer. However, the presence of the low-frequency
unsteadiness in a 3D transitioning configuration has not been shown. As well
as studying the linear stability of relatively large separation bubbles, the present
contribution addresses the question of the existence and mechanism of low-frequency
unsteadiness in a transitional interaction. A separated laminar boundary layer is
perturbed at the inlet using a ‘modal’ forcing technique in which only specific
eigenmodes are forced, without contaminating the low-frequency energy content
upstream of the interaction. A DNS calculation is performed and wall-pressure data
are collected for a spectral analysis. Sensitivity of the spectra to grid resolution and
numerical domain size is also investigated.

2. Simulation details
2.1. Code features

2.1.1. Direct numerical simulations
The numerical investigation presented here is carried out with an in-house fully

parallelized fourth-order finite difference code. More details and validation of the code
can be found in Sansica et al. (2014) and references therein. For time integration
a third-order low-storage Runge–Kutta method is adopted. An entropy splitting of
the Euler terms is adopted to improve numerical stability, and a total variation
diminishing scheme coupled with an artificial compression method is used to capture
the shocks with the high-order central scheme. The Rankine–Hugoniot jump relations
are applied at the computational domain top boundary to introduce the oblique
shock wave. The numerical inflow is placed downstream of the flat-plate leading
edge, where a similarity solution obtained using the Illingworth transformation
provides the laminar compressible boundary-layer profiles. The dynamic viscosity
is assumed to obey Sutherland’s law with the Sutherland reference temperature set
to the free-stream temperature T∗∞ (where the superscript ∗ denotes a dimensional
quantity) and the Sutherland constant to 110.4 K. The dimensionless conservative
flow variables are defined as [ρ, ρu, ρv, ρw, Et]T, where ρ is the density, (u, v, w)
are the three velocity components in the streamwise, wall-normal and spanwise
coordinate directions for (x, y, z), respectively, and Et is the total energy. The flow
quantities in the potential flow upstream of the interaction (U∗∞, ρ∗∞ and T∗∞) and
the boundary-layer displacement thickness at the inlet (δ∗1,0) are used as reference
quantities for the non-dimensionalization. Therefore, time scales are normalized with
δ∗1,0/U

∗
∞, pressure with ρ∗∞U∗2∞ and temperature with T∗∞. Thus, the Reynolds number

is defined as Reδ∗1,0 =U∗∞δ
∗
1,0/ν

∗
∞ and the Mach number as M =U∗∞/c

∗
∞. The ratio of

specific heats is γ = 1.4 (for air) and the Prandtl number is taken as Pr= 0.72.
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2.1.2. Linear stability methods – LST and LPSE
Another in-house code has been developed to perform linear stability analysis of

compressible boundary layers. The code allows both a local analysis, by solving
the compressible Orr–Sommerfeld equations, and a non-local one, by solving the
LPSE. Once the linearized perturbation equations are derived from the Navier–Stokes
equations, different assumptions can be made and the two approaches obtained.

A critical assumption in the formulation of the LST is the parallel nature of the
flow, where the dependence of the basic state on the streamwise direction is neglected.
Although not congruent with reality, this assumption greatly simplifies the problem.
With (ū, v̄, w̄) respectively denoting the streamwise, wall-normal and spanwise basic
flow velocities, T̄ the basic flow temperature and ρ̄ the basic flow density, the parallel-
flow assumption allows one to write

ρ̄, ū, T̄ = f (y), v̄ = w̄= 0. (2.1a,b)

Once this parallel-flow assumption is applied, the compressible formulation of the
linearized disturbance equations or Orr–Sommerfeld equations are obtained. These
equations are linear in the disturbances and all the coefficients depend only on
y. Therefore, it is possible to reduce the system to a set of ordinary differential
equations by operating a separation of variables and choosing a normal-mode or
wave solution (perturbations are periodic in the streamwise and spanwise directions
and in time)

q′(x, y, z, t)= q̂(y) exp[i(αx+ βz−ωt)], (2.2)

where q′ = [ρ ′, u′, v′, w′, T ′]T is the primitive perturbation flow quantities vector and
q̂ its corresponding modal shapes. Streamwise and spanwise wavenumbers are α and
β, respectively, and ω is the frequency.

If the normal-mode solution is substituted into the linearized perturbation equations
and a temporal approach is considered, a linear system is obtained and can be
represented as

L q̂=ωK q̂, (2.3)

where K is a matrix that contains all the terms multiplied by ω and L is a matrix
of terms containing only α and β. By considering a spatial approach, the system
described in (2.3) is solved iteratively with respect to the streamwise wavenumber to
match a prescribed target frequency.

The LPSE formulation is similar to LST, with the difference that the parallel-flow
assumption is removed and the variables are allowed to ‘weakly’ vary in the x
direction. The basic state flow is now

ρ̄, ū, v̄, T̄ = f (x, y), w̄= 0. (2.4a,b)

Despite the 3D character of the perturbations, the basic flow is 2D and for this reason
the analysis is usually referred to as two-dimensional parabolized stability equations
(2D-PSE). For a single mode and assuming periodic perturbations in the streamwise
and spanwise directions and in time, the disturbances are modelled using a normal-
mode wave solution described by

q′(x, y, z, t)= q̂(x, y) χ(x, z, t), (2.5)

where the phase function χ can be written as

χ(x, z, t)= exp
{

i
[∫ x

xo

α(x̃) dx̃+ βz−ωt
]}

. (2.6)
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The LPSE system can therefore be defined as

(L+ Lnp −ωK )q̂+M
∂ q̂
∂x
+ dα

dx
N q̂= 0, (2.7)

where L and K are the same matrices as used in (2.3) and the operators Lnp, M and
N include all the non-parallel terms. All these operators are a function of only the y
coordinate. Equation (2.7) represents a simplified partial differential equation system
that can be solved by a marching procedure in the streamwise direction that properly
takes into account of the history of the spatial evolution of the modes. The marching
procedure is initialized using local LST at the inflow, and vanishing disturbance
velocities and temperature boundary conditions are applied at the wall and at the
outer flow.

A Chebyshev differentiation scheme is used to discretize the flow in the wall-normal
direction for both local and non-local approaches. For the non-local analysis, a first-
order backwards finite difference scheme is applied in the streamwise direction.

Following the work of Bertolotti et al. (1992), Herbert (1993) and Hein (2005), all
the second-order derivatives with respect to the streamwise direction of base flow and
disturbance quantities and all the viscous terms including first derivatives with respect
to the streamwise direction are neglected. Differently from what had been done in
Chang et al. (1993), the closure/normalization condition proposed by Hein (2005) is
used to take into account the contribution of all mode shapes and can be written as∫ ∞

0

(
ρ̂† ∂ρ̂

∂x
+ û† ∂ û

∂x
+ v̂† ∂v̂

∂x
+ ŵ† ∂ŵ

∂x
+ T̂† ∂T̂

∂x

)
dy= 0, (2.8)

where variables with a dagger indicate the complex conjugate. The correction growth
rate is here defined following Hein (2005), and the resulting variation of the imaginary
part of the streamwise wavenumber as a function of the x coordinate is

αi,corr(x)= αi(x)−Re
(
∂ ln
√

E(x)
∂x

)
, (2.9)

where Re indicates the real part and E is the kinetic energy integral defined as E =∫∞
0 ρ̄(‖û‖2 + ‖v̂‖2 + ‖ŵ‖2) dy.
A full documentation and extensive validation of the code against compressible

and incompressible benchmark cases found in the literature for both local (Macaraeg,
Streett & Hussaini 1988; Malik 1990) and non-local (Herbert 1993) studies are
available in Sansica (2015).

2.2. Inflow conditions and numerical set-up
A laminar boundary layer on a flat plate at an inflow Mach number M = 1.5,
free-stream temperature T∗∞ = 202.17 K and unit Reynolds number Re1 = 107 m−1 is
impinged with an oblique shock wave. The inflow conditions are the same as in the
experiments carried out at the Institute of Theoretical and Applied Mechanics (ITAM)
in Novosibirsk, Russia, as part of the European TFAST Project (http://www.tfast.eu).
For the present DNS study, the interaction is taken to be close to the leading edge and
a Reynolds number based on the displacement thickness at the computational domain
inlet is selected to be Reδ∗1,0 = 750, where δ∗1,0 = 7.5 × 10−5 m. The non-dimensional
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Flow
direction

Computational domain

x
y

FIGURE 1. Schematic representation of the numerical set-up. The shock generator plate
with wedge angle θ introduces a shock wave from the top boundary at xsw that impinges
onto the boundary layer at ximp. The displacement thickness at the numerical inlet δ∗1,0 is
used as a characteristic length. Free-stream and downstream regions are indicated with the
subscripts ∞ and d, respectively.

integration time step is 1t = 0.04 and the wall temperature is T∗w = 279.20 K. An
oblique shock wave, generated with a wedge angle θ = 2.5◦, is introduced at the
upper boundary of the computational domain at Rexsw = 0.95× 105 and impinges onto
the boundary layer at Reximp = 1.95 × 105, as represented schematically in figure 1.
A 2D base flow is obtained for a numerical domain that extends far enough in the
streamwise direction to contain the whole separation bubble and high enough in the
wall-normal direction to avoid any potential reflections of the shock wave from the
top boundary impinging on the boundary layer. The 2D base flow is then extruded
in the spanwise direction over a width equal to the spanwise wavelength (λz) of the
unstable 3D mode within the separation bubble (this will be shown in detail in the
next section). The domain size, normalized with the inlet displacement thickness,
is therefore selected to be (Lx, Ly, Lz) = (310, 140, 27.32), giving a streamwise
range of Reynolds number Rex = (0.80–3.13) × 105. The grid size is chosen in
order to resolve transition and turbulence at the back of the bubble. For this reason,
the grid is stretched in the streamwise and wall-normal directions to have more
grid points clustered downstream of the impingement location and near the wall,
respectively. The number of points in the streamwise, wall-normal and spanwise
directions are chosen as (Nx, Ny, Nz) = (2272, 234, 272), corresponding to grid sizes
(1x+max, 1y+wall, 1z+max) = (4, 0.85, 4) (where wall units are denoted by superscript +
and defined as x+i = xiuτ/ν). The numerical set-up is summarized in table 1. The
fully time-converged 2D-DNS base flow is obtained, and density contours (a), skin
friction (b) and wall-pressure (c) distributions are plotted in figure 2. The laminar
boundary-layer skin friction solution by Eckert (1955) is also plotted in figure 2(b).
A long steady separation bubble is formed for an adverse pressure gradient of
pd/p∞ = 1.28 (where pd indicates the pressure downstream of the reflected shock)
and captured entirely within the numerical domain. Downstream of the interaction the
flow does not fully recover to an equilibrium laminar boundary-layer solution within
the domain.

2.3. Transition tripping: modal forcing technique
To obtain transition to turbulence, the 3D steady base flow is forced by adding ‘modal’
disturbances, whose shape is defined by eigenfunctions corresponding to specifically
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M 1.5
δ∗1,0 (m) 7.5× 10−5

Re1 (m−1) 107

Reδ∗1,0 750
T∗∞ (K) 202.17
θ (deg.) 2.5
Lx × Ly × Lz 310× 140× 27.32
Nx ×Ny ×Nz 2272× 234× 272
1x+max ×1y+wall ×1z+max 4× 0.85× 4

TABLE 1. Inflow conditions and numerical set-up of the 3D SWBLI case.

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
0

1

2

3

4

5
(a)

1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0
–1

0

1

2

3
2D base flow
Eckert (1995)

1.0

1.1

1.2

1.3
(b) (c)

FIGURE 2. Two-dimensional steady base flow description: (a) density contours, (b) skin
friction and (c) normalized wall-pressure distributions. The laminar boundary-layer skin
friction result from Eckert (1955) is also plotted (dashed line).

selected eigenvalues. For the conservative variables vector q, the forcing at the inlet
is q0 = q̄0 + q′0, where q̄0 is the steady base flow and q′0 are the disturbances, which
can be described as

q′0(y, z, t)= q′(x= 0, y, z, t)= Ao Re{q̂(y) exp[i(αx± βz−ωt)]}, (2.10)

where Ao is the amplitude of the disturbances, q̂(y) are the eigenfunctions calculated
with local LST, α is the streamwise wavenumber, β is the spanwise wavenumber
and ω is the (single) frequency. The modal forcing is applied as a prescribed
time-dependent inlet boundary condition. No-slip and isothermal (with the temperature
equal to the laminar adiabatic wall temperature) conditions are enforced at the wall,
an integrated characteristic method is applied at the top boundary and a standard
characteristic boundary condition is used at the outflow. Periodic boundary conditions
are applied in the spanwise direction. The instability of a boundary layer changes
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0.4
(a) (b)

0.3

0.2

0.1

0

0

2

4

0.015

0.02

0.025

0.1 0.2 0.3 0.4

0.4

0.3

0.2

0.1

0 0.1 0.2 0.3 0.4

FIGURE 3. Temporal stability maps for (a) a ZPG boundary layer at Rex = 0.80 × 105

and (b) within the separation bubble at Rex = 1.78× 105. Contours of the imaginary part
of the frequency/eigenvalue ωi for combinations of the streamwise α and spanwise β
wavenumbers.

in the presence of a separation bubble and different modes can become unstable
compared to a ZPG case. Temporal stability maps are calculated both at the inlet
at Rex = 0.80 × 105 (virtually for a ZPG boundary layer) and within the separation
bubble at Rex = 1.78 × 105 and respectively presented in figure 3(a,b), where the
imaginary part of the frequency ωi is plotted for different combinations of α and
β. For both cases, the unstable mode selected is a 3D wave that corresponds to
α= 0.240, β = 0.140 with ωr = 0.123 for the ZPG case and to α= 0.200, β = 0.230
and ωr = 0.101 within the separation bubble. As expected, the separated boundary
layer becomes more unstable and the imaginary part of ω increases by two orders of
magnitude (from 0.00053 to 0.02546). Some differences might arise if the stability
analysis was repeated using a spatial approach, especially in the presence of a
separated boundary layer. Confirming the link between temporal and spatial unstable
waves (Gaster 1962), for the ZPG boundary layer no differences are observed, while
for the separated case the Gaster-transformed growth rate of the most unstable mode
from spatial theory is within 15 % of that obtained from temporal theory. The scope
of the present analysis is to find a combination of modes that effectively triggers
transition to turbulence. Thus, the 3D unstable mode identified within the separation
bubble is chosen and spatial linear stability is used to calculate the corresponding
eigenfunctions at the inflow. An oblique mode breakdown has been shown to be the
predominant transition scenario for low supersonic boundary layers (Fasel, Thumm &
Bestek 1993; Sandham & Adams 1993; Sandham, Adams & Kleiser 1995; Mayer, Von
Terzi & Fasel 2011); therefore a pair of oblique modes with (ω, β)= (0.101,±0.230)
is selected to force the separated boundary layer. This information on the selected
unstable mode is also used to set the width of the numerical domain to be equal to
one wavelength of the identified 3D wave, therefore Lz = λz = 2π/β = 27.32.

3. Linear stability of shock-induced separation bubbles
Given the non-parallel nature of the flow, LST can potentially be inaccurate for

supersonic separated boundary layers. To test the applicability of linear stability,
LST and LPSE methods are used to predict 2D and 3D disturbance growth rates
for boundary layers at M = 1.5 with increasingly significant non-parallel effects. By
selecting shock waves at different strengths, marginal and large separation cases are
obtained and used as base flows for the linear stability analysis.
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FIGURE 4. Skin friction (a) and wall-pressure (b) distributions for the ZPG (dashed line),
marginal separation (dash-dotted line) and large separation (solid line) cases.

θ = 1.3◦ θ = 2.5◦

Nx ×Ny 667× 133 1000× 200 1500× 250 667× 133 1000× 200 1500× 250
LSB 8.37 8.99 9.05 138.15 140.43 139.15

TABLE 2. Grid resolution study for the marginal (θ = 1.3◦) and large (θ = 2.5◦)
separation cases.

3.1. Base flow selection
The same 2D base flow for a wedge angle θ = 2.5◦ presented in § 2.2 is here
considered for the comparison between DNS and linear stability methods. For this
case, the separation bubble is relatively large and, since the analysis is aimed to
investigate different non-parallel effect intensities, a weaker shock at θ = 1.3◦ is also
considered and a ‘marginal separation’ is obtained. The Reynolds number at the inlet
is kept fixed and, in order to have the same impingement location of the shock wave
on the boundary layer, the shock is introduced slightly earlier at Rexsw = 0.91 × 105

for the marginal separation case. Since only a linear investigation is intended, the
grid resolution is coarsened with respect to the one presented in § 2.2 and selected
to be (Nx, Ny)= (1000, 200). The 2D base flow is considered to be grid-independent
when the difference in the separation bubble length LSB for different resolutions is
less than 1 %, and a grid resolution study is presented in table 2. The 3D base flow
is constructed by extruding the 2D base flow in the spanwise direction. A domain
size (Lx, Ly, Lz) = (310, 140, λz) is selected for the large separation case and, for
simplicity, also used for the marginal separation case. The domain width is fixed
to be one spanwise wavelength (λz) of the 3D mode selected and will be specified
case by case. For small-amplitude (linear) problems 16 grid points in the spanwise
direction are sufficient as only one wave needs to be resolved. For validation and
comparison purposes, a ZPG boundary layer is also analysed.

For each case, the simulations are run long enough in time to obtain a fully
converged solution. It is possible to appreciate the differences in bubble size and
pressure gradient for the investigated shock strengths by analysing the skin friction
and wall-pressure distributions for the ZPG (dashed line), marginal separation
(dash-dotted line) and large separation (solid line) cases reported in figures 4(a)
and 4(b), respectively.
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FIGURE 5. Marginal (a) and large (b) separation cases: streamwise distribution of the
maximum reverse flow magnitude (dashed line) and streamwise velocity profiles (black
solid lines) in the region around the separation bubble. Separation and reattachment points
are indicated with (S) and (R), respectively.

To verify the applicability of the stability tools to these separated flows, it is
necessary to check whether the boundary layer is convectively unstable. The reverse
flow magnitude within the separation bubble can be considered as an indicator. The
maximum reverse flow magnitude for each streamwise location is plotted (dashed line)
in the region around the separation bubble for both marginal and large separation
cases in figure 5(a,b), where separation (S) and reattachment (R) points are also
indicated. The streamwise velocity profiles at different locations are also plotted
to show the regions where reverse flow exists (black solid lines). The maximum
reverse flow magnitude is 0.06 % for the marginal separation case and 6 % for the
large separation case. Following the criterion given by Alam & Sandham (2000) and
Rist (2004), for which separated boundary layers are absolutely unstable when the
maximum reverse flow magnitudes are larger than 20 %, the boundary layers under
investigation can be considered almost certainly convectively unstable.

These DNS base flows are used for the LST and LPSE analysis and are interpolated
in the wall-normal direction over 250 grid points using the mapping Chebyshev
collocation method. For the local LST analysis, the streamwise evolution of the
streamwise wavenumber is obtained by repeating the analysis at different x locations
independently. For the non-local analysis, the streamwise derivatives of the pressure
terms are retained and the method is stabilized by choosing a sufficiently large
marching integration step 1xPSE. The sensitivity of the LPSE solution to the marching
integration step is analysed by using 1xPSE = 3δ∗1,0, 6δ∗1,0, 12δ∗1,0 and 24δ∗1,0.

While the n-factor from the stability analysis methods is calculated as

nLST/LPSE(x)=−
∫ x

x=0
αi dx̃= ln

(
A

Ax=0

)
, (3.1)
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FIGURE 6. Streamwise evolution of the maximum n-factor for a 2D (a) and 3D (b) mode.
Comparison between DNS (circles), LST (dashed line) and LPSE (solid line with error
bars).

the DNS n-factor is defined to be

nDNS(x)= ln
[

ADNS(x)
ADNS(x= 0)

]
, (3.2)

where

ADNS =
√∫ ye

0
(|ρ̂|2 + |û|2 + |v̂|2 + |ŵ|2 + |T̂|2) dy. (3.3)

The integration is evaluated between the wall and the edge of the boundary layer
(ye) using fast Fourier transforms (FFTs) of time series of the primitive variable flow
quantities (indicated with the hat symbol). The time series are accumulated over four
periods of the forced mode.

3.2. ZPG boundary layer
Modal disturbances, as described in § 2.3, are applied at the inlet to force the ZPG
boundary layer, and the temporal stability map reported in figure 3(a) is used to select
the modes of interest. A 2D wave (α= 0.240, β = 0.00 and ω= 0.124) and a 3D one
(α = 0.240, β = 0.140 and ω= 0.123) are chosen and the domain spanwise width is
therefore fixed to Lz = λz = 2π/β = 44.9.

Figure 6 shows the streamwise evolution of the maximum n-factors for the 2D (a)
and the 3D (b) waves calculated from DNS (circles), LST (dashed line) and LPSE
(solid line with error bars showing the standard deviation of the variations due to
the integration step size sensitivity). The modes selected are unstable at the inlet
and initially grow, but they become stable and decay further downstream. While it is
clear that the LST suffers because of the non-parallelism of the base flow, very good
agreement is obtained between DNS and LPSE for both regions of the flow when
the disturbances grow and decay.

3.3. Shock-induced separated boundary layer
The same 2D and 3D waves used for the validation of the LPSE tool on the ZPG
non-parallel boundary layer are selected to force the marginal and large separation
cases and modal forcing is applied at the inlet. With β = 0.14, the spanwise width
of the numerical domain is again Lz = 44.9. Similarly to the previous case, the
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FIGURE 7. Streamwise evolution of the n-factor for 2D (a,c) and 3D (b,d) modes for
the marginal separation (a,b) and large separation (c,d) cases. Comparison between DNS
(circles), LST (dashed line) and LPSE (black line with error bars).

streamwise evolution of the n-factors for the 2D and 3D waves calculated from
DNS (circles) are compared with the predictions of LST (dashed line) and LPSE
(solid line) and reported in figure 7(a,b) for the marginal separation case, and in
figure 7(c,d) for the large separation case. The effect of the integration step size on
the LPSE growth rates is represented by the error bars, which indicate the mean
standard deviation. It is interesting to see that, for both 2D and 3D waves, the
LPSE tool is able to accurately reproduce the disturbance growth rates when the
boundary layer is marginally separated. When the shock strength increases and a
large separation occurs, the LPSE tool agrees very well with the DNS for the 2D
wave but is less accurate when a 3D wave is considered. In this case, the errors
accumulate in the streamwise direction and lead to a disagreement in the second half
of the bubble. Differently from what was observed by Hein (2005), the growth at
the separation point is still well predicted and deviates only when the reverse flow is
stronger. On the other hand, LST suffers due to the non-parallelism of the base flows;
nevertheless the disturbance growth rates do not differ excessively from DNS or
LPSE. For example, if we consider the large separation case, where the growth rates
are high, the maximum relative error between DNS and LST is only approximately
11 %. For the marginal separation case the relative error is bigger, but only because
small growth of the disturbances is observed.

As highlighted in § 2.3, it is important to note that the previously selected waves are
unstable at the inlet and that, in the presence of separation, different modes become
unstable. The comparison between DNS, LST and LPSE is therefore repeated for
the large separation case by considering a 2D wave that corresponds to α = 0.200,
β = 0.000 and ω = 0.098 and a 3D wave with α = 0.200, β = 0.230 and ω = 0.101.
Thus, the spanwise width of the numerical domain is now Lz = 27.3. In figure 8(a,b)
the streamwise evolutions of the 2D and 3D waves in the separated boundary layer
are plotted for DNS (circles), LST (dashed line) and LPSE (solid line with error
bars). It is important to note that this set of unstable modes within the separation
bubble reaches higher n-factors with respect to the set of unstable modes at the inlet,
confirming that the separation bubble acts like a spatial filter–amplifier. It appears
again that the LPSE tool struggles to represent the growth of the 3D wave in the
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FIGURE 8. Streamwise evolution of the n-factor for a 2D (a) and 3D (b) mode for
the large separation bubble case and modes calculated at Rex = 1.31 × 105. Comparison
between DNS (circles), LST (dashed line) and LPSE (solid line with error bars).
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2D base flow

Young (1989)

FIGURE 9. Time- and span-averaged (black solid line) and instantaneous span-averaged
(light grey solid line) skin friction distributions of the 3D forced SWBLI configuration.
Laminar (Eckert 1955) (black dashed line), turbulent (Young 1989) (black dash-dotted line)
and 2D base flow (dark grey solid line) skin friction distributions are also plotted for
reference.

streamwise direction when strong reverse flow is present. In this case, the LPSE
calculations have been performed by neglecting the ∂p/∂x terms in order to stabilize
the code, and a higher sensitivity to the integration step size is found as shown by
the increase in the error bars. Similarly to Pagella et al. (2004), LST still does not
match DNS but is not excessively inaccurate, with a maximum relative error of 15 %.

4. Low-frequency unsteadiness for the large separation case
The large separation case is extruded in the spanwise direction and the resulting

3D base flow is selected to investigate the existence of a low-frequency unsteadiness.
Modal forcing is applied at the inlet, as shown in § 2.3, and breakdown to turbulence
is obtained. Before starting the collection of wall-pressure time series for spectral
analysis, the 3D-DNS base flow is brought to statistical convergence. Features of the
transition process and the main findings of the spectral analysis are discussed.

4.1. Breakdown to turbulence
Transition happens in the vicinity of the reattachment point and reduces significantly
the separation length as shown by the time- and span-averaged skin friction
distributions in figure 9 (black solid line) with respect to the 2D base flow (dark
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FIGURE 10. Transition visualization. (a) Isosurfaces of the wall-normal vorticity for the
levels ωy=+0.08 (red) and ωy=−0.08 (black) and coloured with the streamwise velocity.
(b) Contours of the streamwise vorticity for z–y planes at different x locations showing
the appearance of strong streamwise vortices associated with the oblique-mode breakdown
(25 levels between ωx =±1).

grey solid line). The laminar (black dashed line) and turbulent (black dash-dotted
line) boundary-layer solutions by Eckert (1955) and Young (1989), respectively,
are also plotted. An instantaneous span-averaged skin friction distribution at the
non-dimensional time t = 55 000 (light grey solid line) is also reported to show
the strong unsteady character of the flow near the reattachment point and further
downstream. Isosurfaces of the instantaneous wall-normal vorticity are plotted for the
levels ωy = +0.08 (red) and ωy = −0.08 (black) and coloured with the streamwise
velocity in figure 10(a) to illustrate the breakdown scenario. It is also interesting to
see from figure 10(b), where contours of the streamwise vorticity ωx in z–y planes
are plotted at different streamwise locations, that the oblique-mode transition causes
the appearance of strong streamwise vortices (see the z–y plane at Rex ≈ 2.32× 105)
that develop downstream and break down to turbulence. The modes selected to force
the separated boundary layer affect the breakdown to turbulence and the separation
bubble size. In this case, the symmetric nature of the forcing imposed at the inlet
causes the breakdown also to be symmetric in the whole domain except for a small
region towards the outlet. Similarly to what was obtained numerically by Nikitin
(2008) and later experimentally by Borodulin, Kachanov & Roschektayev (2011), the
turbulence obtained at the back of the bubble is essentially deterministic turbulence
that is reproducible over a period of the forcing frequency. An analogous phenomenon
was also seen in the DNS transition study by Sandham & Kleiser (1992) for a plane
channel flow, for which the shear-layer roll-up into discrete vortices was happening
while the imposed initial spanwise symmetry was still preserved, defining the process
as deterministic rather than triggered by the growth of the random background
numerical noise.
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FIGURE 11. Amplitude of the time-transformed Fourier modes of the span-averaged wall-
pressure fluctuations, |Ft(pw− p̄w)|, calculated at the streamwise locations (a) Rex=1.29×
105, (b) Rex = 1.74× 105, (c) Rex = 2.15× 105 and (d) Rex = 3.09× 105.

4.2. Spectral analysis
A spectral analysis is carried out for wall-pressure time series collected over a
time period long enough to ensure that the minimum frequency of the spectra is
two orders of magnitude smaller than the forcing frequency ( f = 0.016). The time
series are recorded over the whole wall plane with 16 samples for each period.
The recorded signals are broken into three segments with 50 % overlapping (Welch
1967; Hu, Morfey & Sandham 2006). A Strouhal number, St, based on the time-
and span-averaged separation bubble length LSB = 67.8 (see figure 9), is used to
plot the amplitude of the Fourier transform in time of the wall-pressure fluctuations,
|Ft(pw − p̄w)|; St is linked to the dimensionless frequency as St= LSB f . The spectral
analysis is performed for each x and z location on the wall. However, the spectra
are found to be unaffected by the spanwise position, except for the z locations
corresponding to the zero node of the spanwise modulation applied to the forcing,
i.e. at z = Lz/4 and 3Lz/4. Thus, the wall-pressure time series at each streamwise
location can be span-averaged before the calculation of the spectra. Figure 11 shows
the |Ft(pw − p̄w)| frequency distribution at different streamwise locations moving
from the inlet towards the outlet, chosen as (a) upstream of the separation point and
at the beginning of the interaction region at Rex = 1.29 × 105, (b) at the separation
point Rex = 1.74 × 105, (c) at the reattachment point Rex = 2.15 × 105 and (d) in
the turbulent region at Rex = 3.09 × 105. Each location shows a narrow peak at
St = 1.091 that corresponds to the applied forcing. This causes the appearance
of higher harmonics, visible as narrow peaks at multiples of the forcing Strouhal
number. It is interesting to see from figure 11 that a low-frequency broadband peak
appears. The low-frequency unsteadiness starts to become energetically significant at
the beginning of the interaction region (figure 11b). The deterministic components
associated with the applied forcing cause the rise of the unforced/non-deterministic
modes and, moving downstream towards the turbulent region (figure 11d), the
energy content at high frequencies increases, the spectrum flattens out and only
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FIGURE 12. Contours of f |Ft(pw − p̄w)| normalized with its maximum in frequency for
each streamwise location as a function of the streamwise location and Strouhal number.
Contour levels are set on a logarithmic scale between 10−11 and 10−7. The vertical black
dashed line indicates the streamwise location of the separation point.

the forcing frequency and its harmonics can be distinguished. The spatial extent
of the low-frequency broadband peak can be more clearly seen by plotting the
contours of the frequency-weighted wall-pressure Fourier modes f |Ft(pw − p̄w)|
normalized with its maximum in frequency for each streamwise location as a function
of the streamwise location and Strouhal number in figure 12. A broadband peak at
frequencies around St= 0.04 is localized just upstream of the separation point, marked
by the vertical black dashed line on the figure. This low-frequency broadband peak
is located at a Strouhal number that is comparable to the low-frequency unsteadiness
found for the turbulent interactions (Dussauge, Dupont & Debiéve 2006; Touber &
Sandham 2009), suggesting a close analogy between the laminar and turbulent cases.
However, it is important to note that the mechanism producing the low-frequency
unsteadiness in the laminar case yields only very low amplitude levels, whereas in
the turbulent case both the background disturbances and the low-frequency response
are large.

From the results shown in figures 11 and 12, it is now possible to identify the origin
of the low-frequency unsteadiness in the breakdown of deterministic turbulence, which
creates a broadband white noise spectrum (zero slope in figure 11d) downstream of
the reattachment. Similarly to the 2D interaction presented in Sansica et al. (2014),
where the low frequency was explicitly forced with white noise, these disturbances can
travel upstream in the subsonic region of the boundary layer and the low-frequency
unsteadiness becomes relatively more significant just upstream of the separation point.
The presence of upstream-travelling disturbances is demonstrated in figure 13, where
the Strouhal number/streamwise wavenumber spectrum calculated in the streamwise
range Rex = (1.00–2.88) × 105 is presented. For positive values of α, the amplitude
of the double Fourier transform in space and time of the span-averaged wall-pressure
fluctuations shows the deterministic downstream-travelling component of the forcing
at (α, St)= (0.200, 1.091) and its first harmonic. The upstream-travelling disturbances
are visible for negative values of α, where a straight line with constant phase speed
cph≈−0.6 stretches from low to high frequencies. Considering the near-zero velocity
of the flow within the separation bubble, this value is very close to the speed of an
upstream-travelling acoustic wave at M = 1.5, suggesting the acoustic nature of the
waves responsible for the appearance of the low-frequency unsteadiness.

4.2.1. Low-frequency unsteadiness sensitivity
The low-frequency energy content that arises from the broadband white noise

created by the breakdown of the deterministic turbulence is at very low amplitudes
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FIGURE 13. Strouhal number/streamwise wavenumber spectrum. The amplitude of the
double Fourier transform in space and time of the span-averaged wall-pressure fluctuations
shows the deterministic downstream-travelling components and upstream-travelling waves.
The black dashed line indicates zero values of α.

and might be sensitive to the numerical details of the simulation. Here, grid resolution
and domain size (to study the influence of outflow and free-stream boundaries) are
considered as the two major parameters that can affect the response of the separated
region.

A grid resolution study is carried out on the 3D base flow configuration for a
grid that was coarsened by a factor of 2 in all three directions. The time- and
span-averaged skin friction distributions for the coarse and fine grid cases are in
good agreement and the fine grid is therefore considered suitable for the present study
(Sansica 2015). This base flow is used here to repeat the spectral analysis previously
presented, and the amplitude of the Fourier transform in time of the wall-pressure
fluctuations, |Ft(pw − p̄w)|, is reported for different x locations in figure 14 (black
line). Using the same resolution, an additional simulation was performed with the
domain increased in height by 20δ∗1,0 and in length by 30δ∗1,0 further downstream.
The spectral analysis relative to this enlarged numerical domain is also presented in
figure 14 (light grey line).

The low-frequency response of the separation bubble still exists and arises from the
broadband numerical white noise. However, it is interesting to see the sensitivity of
the energy content for both low-frequency and non-deterministic parts of the spectra,
which increase both for the coarse grid and coarse grid enlarged domain cases with
respect to the fine grid simulation (dark grey line). This is because the numerical
background noise generated by the coarse grid is higher, as is visible upstream of the
separation point (figure 14a) where the non-deterministic part of the spectra at high
frequencies reaches an amplitude approximately three orders of magnitude larger than
the fine grid case. However, the energy of the low-frequency broadband peak only
increases by one order of magnitude. This observation again links the low-frequency
unsteadiness with the broadband white noise spectrum created by the breakdown to
turbulence that also increases by approximately one order of magnitude (figure 14d).
This is also true for the coarse grid enlarged domain case, where, despite some small
differences in the amplitude of the non-deterministic white noise component due to the
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FIGURE 14. Grid resolution and domain size sensitivity. Amplitude of the Fourier
transform in time of the wall-pressure fluctuations, |Ft(pw − p̄w)|, calculated from
span-averaged wall-pressure time series at the streamwise locations (a) Rex = 1.29× 105,
(b) Rex = 1.74× 105, (c) Rex = 2.15× 105 and (d) Rex = 3.09× 105. Fine grid (dark grey
line; the lowest curve in each case), coarse grid (black line) and coarse grid with enlarged
domain (light grey line).

influence of the outflow boundary, the energy level of the low frequency is practically
unchanged. It could be argued that the low frequency could be reduced by further
refining the numerical grid, but the existence of broadband white noise will always
be present in real-world applications (i.e. noise generated by wind tunnel walls, free-
stream turbulence, etc.) and contribute to the appearance of the unsteadiness.

This analysis shows that different types of broadband perturbations can produce
the low-frequency unsteadiness, as already shown in Sansica et al. (2014). While in
that case an energetically higher low-frequency response was obtained by explicitly
forcing the low-frequency unsteadiness with random white noise, here the unsteadiness
is indirectly created by the breakdown of the deterministic turbulence.

5. Conclusions

It has been shown that low-frequency unsteadiness exists in an oblique shock
wave–laminar boundary layer interaction, analogous to the phenomenon that is known
for turbulent interactions. A 3D laminar shock-induced separation bubble is forced at
the inlet with a pair of oblique unstable eigenmodes calculated by local linear stability
theory within the separation bubble. Despite the strongly non-parallel nature of the
flow, linear stability analysis is shown to reproduce with reasonable accuracy the
growth of 2D and 3D waves when applied to marginal and relatively large separated
cases. LPSE showed good accuracy in the prediction of modal growth with respect to
DNS, apart from minor differences seen in the second half of the separation bubble
due to the error accumulation in the streamwise marching integration procedure. The
non-parallelism of the configurations studied led to the LST approach giving larger
errors (approximately 15 %) but still representing a remarkable accuracy considering
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its low computational cost. The modes selected to force the 3D laminar separation
bubble have higher frequencies with respect to the unsteadiness of interest and only
indirectly affect the low-frequency energy content of the interaction region. Whereas
in Sansica et al. (2014) the low-frequency response was explicitly forced, here it
develops as a consequence of the transition process. Oblique-mode transition occurs
near the reattachment point and the breakdown of deterministic turbulence fills up
the spectrum. This causes the appearance of a low-frequency broadband peak near
the separation point via nonlinear contributions that travel upstream in the subsonic
region of the boundary layer. A frequency/wavenumber analysis suggests the acoustic
nature of the upstream-travelling waves. A sensitivity study showed that the energy
of the unsteadiness is influenced by grid resolution and domain size but its existence
is confirmed. The separation bubble acts as a low-pass spatial amplification filter and
does not need an upstream low-frequency spectral content as a precondition for the
low-frequency unsteadiness seen in shock wave–boundary layer interactions.

Acknowledgements
This work is supported through the European Union (EU) FP7 project TFAST.

Computer time is provided by UK Turbulence Consortium under grant EP/L000261/1.

REFERENCES

ACKERET, J., FELDMANN, F. & ROTT, N. 1947 Investigation of compression shocks and boundary
layers in gases moving at high speed. NACA Technical Memorandum 1113.

ALAM, M. & SANDHAM, N. D. 2000 Direct numerical simulation of ‘short’ laminar separation
bubbles with turbulent reattachment. J. Fluid Mech. 410, 1–28.

ARNAL, D. 1994 Boundary layer transition: predictions based on linear theory. AGARD Report 793.
BABINSKY, H. & HARVEY, J. K. 2011 Shock Wave–Boundary-Layer Interactions. Cambridge University

Press.
BALAKUMAR, P. & MALIK, M. R. 1992 Waves produced from a harmonic point source in a

supersonic boundary-layer flow. J. Fluid Mech. 245, 229–247.
BERTOLOTTI, F. P. 1991 Linear and nonlinear stability of boundary layers with streamwise varying

properties. PhD thesis, Ohio State University.
BERTOLOTTI, F. P. 1997 Response of the Blasius boundary layer to free-stream vorticity. Phys.

Fluids 9, 2286–2299.
BERTOLOTTI, F. P., HERBERT, T. & SPALART, P. R. 1992 Linear and nonlinear stability of the

Blasius boundary layer. J. Fluid Mech. 242, 441–474.
BORODULIN, V. I., KACHANOV, Y. S. & ROSCHEKTAYEV, A. P. 2011 Experimental detection of

deterministic turbulence. J. Turbul. 12 (23), 1–34.
CHANG, C.-L., MALIK, M. R., ERLEBACHER, G. & HUSSAINI, M. Y. 1993 Linear and nonlinear

PSE for compressible boundary layers. NASA ICASE Report 93–70.
CLEMENS, N. T. & NARAYANASWAMY, V. 2014 Low-frequency unsteadiness of shock wave/turbulent

boundary layer interactions. Annu. Rev. Fluid Mech. 46, 469–492.
DELERY, J. & MARVIN, J. 1986 Shock-wave boundary layer interactions. AGARDograph 280. NATO

Brussels.
DOERFFER, P., HIRSCH, C., DUSSAUGE, J.-P., BABINSKY, H. & BARAKOS, G. N. 2011 Unsteady

Effects of Shock Wave Induced Separation. Cambridge University Press.
DOLLING, D. 2001 Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA

J. 39 (8), 1517–1531.
DUPONT, P., HADDAD, C., ARDISSONE, J. P. & DEBIÈVE, J.-F. 2005 Space and time organization

of a shock wave/turbulent boundary layer interaction. Aerosp. Sci. Technol. 9, 561–572.
DUSSAUGE, J.-P., DUPONT, P. & DEBIÉVE, J.-F. 2006 Unsteadiness in shock wave boundary layer

interaction with separation. Aerosp. Sci. Technol. 10, 85–91.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

29
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.297


Instability and unsteadiness in shock-induced laminar separation bubble 25

ECKERT, E. R. G. 1955 Engineering relations for friction and heat transfer to surfaces in high
velocity flow. J. Aeronaut. Sci. 22, 585–587.

EL-HADY, N. M. 1991 Nonparallel instability of supersonic and hypersonic boundary layers. Phys.
Fluids 3, 2164–2178.

ERENGIL, M. E. & DOLLING, D. S. 1991 Unsteady wave structure near separation at Mach 5
compression ramp interaction. AIAA J. 29, 728–735.

FASEL, H., THUMM, A. & BESTEK, H. 1993 Direct numerical simulation of transition in supersonic
boundary layer: oblique breakdown. In Transitional and Turbulent Compressible Flows (ed.
L. D. Kral & T. A. Zang), ASME-FED, vol. 151, pp. 77–92.

GANAPATHISUBRAMANI, B., CLEMENS, N. & DOLLING, D. 2007 Effects of upstream boundary
layer on the unsteadiness of shock-induced separation. J. Fluid Mech. 585, 369–394.

GANAPATHISUBRAMANI, B., CLEMENS, N. & DOLLING, D. 2009 Low-frequency dynamics of shock-
induced separation in a compression ramp interaction. J. Fluid Mech. 636, 397–436.

GASTER, M. 1962 A note on the relation between temporally-increasing and spatially-increasing
disturbances in hydrodynamic stability. J. Fluid Mech. 14, 222–224.

GASTER, M. 1991 Stability of velocity profiles with reverse flow. In Instability, Transition and
Turbulence, ICASE-Workshop, Berlin (ed. M. Y. Hussaini, A. Kumar & C. L. Streett),
pp. 212–215. Springer.

GRILLI, M., SCHMID, P. J., HICKEL, S. & ADAMS, N. A. 2012 Analysis of unsteady behaviour in
shockwave turbulent boundary layer interaction. J. Fluid Mech. 700, 16–28.

HAMMOND, D. A. & REDEKOPP, L. G. 1998 Local and global instability properties of separation
bubbles. Eur. J. Mech. (B/Fluids) 17 (2), 317–328.

HEIN, S. 2005 Nonlinear nonlocal transition analysis. PhD thesis, Deutsches Zentrum für Aerodynamik
und Strömungstechnik Göttingen/University of Stuttgart.

HERBERT, T. 1993 Parabolized stability equations. AGARD CP 793 (1), 487–526.
HERBERT, T. 1997 Parabolized stability equations. Annu. Rev. Fluid Mech. 29, 245–283.
HERBERT, T. & BERTOLOTTI, F. P. 1987 Stability of nonparallel boundary layers. Bull. Am. Phys.

Soc. 32, 2079.
HU, Z., MORFEY, C. L. & SANDHAM, N. D. 2006 Wall pressure and shear stress spectra from

direct simulations of channel flow. AIAA J. 44 (7), 1541–1549.
KENDALL, J. M. 1967 Boundary Layer Transition Study Group Meeting, vol. II, ed. W. D. McCauley.

Tech. Rep. BSD-TR-67-213, US Air Force.
KENDALL, J. M. 1990 Boundary layer receptivity to freestream turbulence. AIAA Paper 90-1504.
KLEBANOFF, P. S. 1971 Effect of free-stream turbulence on a laminar boundary layer. Bull. Am.

Phys. Soc. 16, 1323.
LIEPMANN, H. W. 1946 The interaction between boundary layer and shock waves in transonic flow.

J. Aeronaut. Sci. 13, 623–637.
MACARAEG, M. G., STREETT, C. L. & HUSSAINI, M. Y. 1988 A spectral collocation solution to

the compressible stability eigenvalue problem. NASA Technical Paper 2858.
MACK, L. M. 1984 Boundary layer linear stability theory. Repository 709. AGARD.
MACK, L. M. & HERBERT, T. 1995 Linear wave motion from concentrated harmonic sources in

Blasius flow. In 33rd Aerospace Sciences Meeting and Exhibit, AIAA.
MALIK, M. R. 1990 Numerical methods for hypersonic boundary layer stability. J. Comput. Phys.

86 (2), 376–413.
MARXEN, O., LANG, M., RIST, U. & WAGNER, S. 2003 A combined experimental/numerical study

of unsteady phenomena in a laminar separation bubble. Flow Turbul. Combust. 71, 133–146.
MARXEN, O., RIST, U. & WAGNER, S. 2004 Effect of spanwise-modulated disturbances on transition

in a separated boundary layer. AIAA J. 42, 937–944.
MAYER, C. S., VON TERZI, D. A. & FASEL, H. F. 2011 Direct numerical simulation of complete

transition to turbulence via oblique breakdown at Mach 3. J. Fluid Mech. 674, 5–42.
NIKITIN, N. 2008 On the rate of spatial predictability in near-wall turbulence. J. Fluid Mech. 614,

495–507.
PAGELLA, A., BABUCKE, A. & RIST, U. 2004 Two-dimensional numerical investigations of small-

amplitude disturbances in a boundary layer at Ma= 4.8: compression corner versus impinging
shock wave. Phys. Fluids 16, 2272–2281.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

29
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.297


26 A. Sansica, N. D. Sandham and Z. Hu

PAGELLA, A., RIST, U. & WAGNER, S. 2002 Numerical investigations of small-amplitude disturbances
in a boundary layer with impinging shock wave at Ma= 4.8. Phys. Fluids 14, 2088–2101.

PIROZZOLI, S. & GRASSO, F. 2006 Direct numerical simulation of impinging shock wave/turbulent
boundary layer interaction at M = 2.25. Phys. Fluids 18, 065113.

REED, L. H., SARIC, W. S. & ARNAL, D. 1996 Linear stability theory applied to boundary layers.
Annu. Rev. Fluid Mech. 28, 389–428.

RIST, U. 2004 Instability and Transition Mechanisms in Laminar Separation Bubbles. (RTO-AVT-VKI
Lecture Series), Von Karman Institute.

RIST, U. & MAUCHER, U. 1994 Direct numerical simulation of 2-D and 3-D instability waves in a
laminar separation bubble. In Application of Direct and Large Eddy Simulation to Transition
and Turbulence, Proceedings 74th Fluid Dynamics Symposium, Crete, Greece, 551, pp. 34-1–
34-7. AGARD.

ROBINET, J. CH. 2007 Bifurcations in shock-wave/laminar-boundary-layer interaction: global instability
approach. J. Fluid Mech. 579, 85–112.

SANDHAM, N. D. & ADAMS, N. A. 1993 Numerical simulations of boundary-layer transition at
Mach two. Appl. Sci. Res. 51, 371–375.

SANDHAM, N. D., ADAMS, N. A. & KLEISER, L. 1995 Direct simulation of breakdown to turbulence
following oblique instability waves in a supersonic boundary layer. Appl. Sci. Res. 54, 223–234.

SANDHAM, N. D. & KLEISER, L. 1992 The late stages of transition to turbulence in channel flow.
J. Fluid Mech. 245, 319–348.

SANDHAM, N. D., SCHÜLEN, E., WAGNER, A., WILLEMS, S. & STEELANT, J. 2014 Transitional
shock-wave/boundary-layer interactions in hypersonic flow. J. Fluid Mech. 752, 349–382.

SANSICA, A. 2015 Stability and unsteadiness of transitional shock-wave/boundary-layer interactions
in supersonic flows. PhD thesis, University of Southampton.

SANSICA, A., SANDHAM, N. D. & HU, Z. 2014 Forced response of a laminar shock-induced
separation bubble. Phys. Fluids 26, 093601.

SETTLES, G. S. & DODSON, L. J. 1991 Hypersonic shock/boundary-layer interaction database. NASA
CR 177577.

SETTLES, G. S. & DODSON, L. J. 1994 Supersonic and hypersonic shock/boundary layer interaction
database. AIAA J. 32, 1377–1383.

SETTLES, G. S. & DOLLING, D. S. 1990 Swept shock/boundary-layer interactions – tutorial and
update. AIAA Paper 90-0375.

SMITHS, A. J. & DUSSAUGE, J.-P. 2006 Turbulent Shear Layers in Supersonic Flow, 2nd edn.
Springer.

SOUVEREIN, L. J., DUPONT, P., DEBIÈVE, J.-F., DUSSAUGE, J.-P., VAN OUDHEUSDEN, B. W. &
SCARANO, F. 2009 Effect of interaction strength on the unsteady behavior of shock wave
boundary layer interactions. AIAA Paper 2009-3715.

THEOFILIS, V. 2003 Advances in global linear instability analysis of nonparallel and three-dimensional
flows. Prog. Aerosp. Sci. 39, 249–315.

THEOFILIS, V., HEIN, S. & DALLMANN, U. 2000 On the origins of unsteadiness and three-
dimensionality in a laminar separation bubble. Phil. Trans. R. Soc. Lond. A 358, 3229–3246.

TOUBER, E. & SANDHAM, N. D. 2009 Large-eddy simulation of low-frequency unsteadiness in a
turbulent shock-induced separation bubble. Theor. Comput. Fluid Dyn. 23, 79–107.

WELCH, P. D. 1967 The use of fast Fourier transform for the estimation of power spectra: a method
based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust.
15 (2), 70–73.

YAO, Y., KRISHNAN, L., SANDHAM, N. D. & ROBERTS, G. T. 2007 The effect of Mach number
on unstable disturbances in shock/boundary-layer interactions. Phys. Fluids 19, 054104.

YOUNG, A. D. 1989 Boundary Layers. (AIAA Education Series), Blackwell Science.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

29
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.297

	Instability and low-frequency unsteadiness in a shock-induced laminar separation bubble
	Introduction
	Simulation details
	Code features
	Direct numerical simulations
	Linear stability methods – LST and LPSE

	Inflow conditions and numerical set-up
	Transition tripping: modal forcing technique

	Linear stability of shock-induced separation bubbles
	Base flow selection
	ZPG boundary layer
	Shock-induced separated boundary layer

	Low-frequency unsteadiness for the large separation case
	Breakdown to turbulence
	Spectral analysis
	Low-frequency unsteadiness sensitivity


	Conclusions
	Acknowledgements
	References




