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Longer-Term Time-Series Volatility Forecasts

Louis H. Ederington and Wei Guan∗

Abstract

Option pricing models and longer-term value-at-risk (VaR) models generally require
volatility forecasts over horizons considerably longer than the data frequency. The typical
recursive procedure for generating longer-term forecasts keeps the relative weights of re-
cent and older observations the same for all forecast horizons. In contrast, we find that older
observations are relatively more important in forecasting at longer horizons. We find that
the Ederington and Guan (2005) model and a modified EGARCH (exponential generalized
autoregressive conditional heteroskedastic) model in which parameter values vary with the
forecast horizon forecast better out-of-sample than the GARCH (generalized autoregres-
sive conditional heteroskedastic), EGARCH, and Glosten, Jagannathan, and Runkle (GJR)
models across a wide variety of markets and forecast horizons.

I. Introduction

This paper explores the problems that arise when GARCH-type time-series
models, such as GARCH, EGARCH,1 and the Glosten, Jagannathan, and Runkle
(GJR) (1993) (or threshold GARCH (TGARCH)) model, estimated from daily or
higher frequency data are used to forecast volatility (either the standard deviation,
or variance of returns, or their logs)2 over the longer horizons common to option
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from the comments of Mark Bertus, Stephen Brown (the editor), Binh Do, Stephen Figlewski (the
referee), George Jiang, Tim Krehbiel, Dean Leistkow, Scott Linn, Duane Stock, and Steve Swidler.
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research was completed while Ederington was a visiting professor at the University of Queensland and
the University of Melbourne. He thanks them for their assistance. Any errors are our responsibility of
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1We analyze GARCH(1,1) and EGARCH(1,1) models and use the shorter terms, GARCH and
EGARCH, to indicate those models. However, most of our results should be generalizable.

2Specifically, GARCH and GJR forecast the variance of returns and EGARCH the natural log
of the variance. These are often converted to standard deviation forecasts. Since the exact volatility
measure varies between models, we use the term “volatility” in a general sense to refer to either the
variance, standard deviation, or log of the variance when the implications are the same for all. When a
statement applies to a particular volatility measure, such as the variance or standard deviation, we use
the more specific term.
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valuations and longer-term value-at-risk (VaR) measures. While the GARCH-type
models generate volatility forecasts for the very next period or observation (nor-
mally the next day),3 option pricing models and longer-horizon VaR measures
commonly require volatility forecasts for much longer periods of weeks, months,
or even years. These are generally obtained by successive forward substitution in
which the volatility forecast for period t+1 is used together with the model param-
eters to forecast volatility for period t + 2, the forecast for t + 2 is used to forecast
volatility for period t + 3, etc. These are then combined to obtain the “integrated
volatility” forecast for the interval from t + 1 through t + N. Most evaluations of
volatility forecasting models in the econometrics literature have focused on their
ability to forecast volatility at t+1. As Christoffersen and Diebold (2000) have ob-
served, “much less is known about volatility forecastability at longer horizons.”4

We seek to fill this gap.
We argue that a problem with time-series volatility forecasts over multi-

period horizons is that since the forecast volatility for day (or period) t + 1 is
used to forecast volatility for any future day t + k, the relative5 importance of ob-
served volatility today (t) versus volatility yesterday (t − 1) or last week (t − 5)
is forced to be the same whether forecasting volatility for tomorrow, next week,
or next month. In other words, in the usual recursive forecast, today’s volatil-
ity receives the same weighting relative to volatility a week ago in forecasting
volatility a month from now as it does in forecasting volatility tomorrow. We
show that for the GARCH, EGARCH, and GJR models, the parameters that best
forecast volatility for the next day are not those that forecast best over longer
horizons—specifically, older observations are relatively more important in fore-
casting volatility at longer horizons. One model in which the relative importance
of older and more recent observations varies with the forecast horizon is the ab-
solute restricted least squares (ARLS) model of Ederington and Guan (2005). We
also find in this model that the relative importance of older observations increases
with the forecast horizon.

We compare the out-of-sample forecasting ability of the GARCH, EGARCH,
and GJR models, regression-based modifications of those 3 models in which
the parameter values vary with the forecast horizon, and the ARLS model. Of
these 7 models, we find that the ARLS and modified EGARCH models forecast
best across a wide variety of markets, forecast horizons, and volatility measures.
ARLS tends to generally have a somewhat lower root mean squared forecast error

3For expositional ease we assume daily data and use the terms “today,” “yesterday,” and “tomor-
row” for observations t, t − 1, and t + 1, respectively. However, our arguments are not frequency-
specific.

4Exceptions to this statement are explorations of the long memory property of many financial
series (e.g., Ding, Granger, and Engle (1993), Ding and Granger (1996), and Andersen and Bollerslev
(1997), among others). These studies find that absolute and squared returns are more correlated at
long lags than GARCH predicts they should be—leading to the development of alternatives (e.g., the
fractionally integrated generalized autoregressive conditional heteroskedasticity (FIGARCH) model
of Baillie, Bollerslev, and Mikkelsen (1996)).

5As seen below, “relative” is the operative word here. Most models are mean reverting so that the
unconditional volatility becomes more important and past volatilities less important as the forecast
horizon lengthens. Our issue is with the importance of older observations relative to more recent
observations, not the absolute importance of each.
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(RMSE) than the modified EGARCH model, while modified EGARCH generally
has a lower mean absolute forecast error (MAE).

Our data set consists of daily data on 1 equity index market (the Standard
and Poor’s (S&P) 500), 2 interest rates (3-month T-bills and 1-year T-notes), 2
exchange rates (yen/dollar and dollar/pound), 2 commodities (crude oil and gold),
and 5 individual equities from the Dow Jones index (Caterpillar, Disney, Dupont,
GE, and Walmart). Volatility forecasts are examined for horizons of 10, 20, 40,
and 80 trading days.

While many volatility forecasting models have been proposed in the
econometrics literature, GARCH-type models (including Riskmetric’s variant of
GARCH) dominate in practice along with the simple historical standard devia-
tion. We focus on the 3 models that appear to be the most popular: GARCH,
EGARCH, and the GJR (or TGARCH) model of Glosten et al. (1993). While not
as popular as the other 3, we also examine the ARLS model of Ederington and
Guan (2005), since it allows older observations to be relatively more important
in forecasting at longer horizons. Implied volatilities provide another source of
volatility forecasts. While theoretically these should reflect all available informa-
tion, including time-series information, much evidence indicates that this is not
the case.6 Moreover, implied volatilities cannot simultaneously be used to price
the derivatives from whose prices they are calculated and are only available for
some assets and some time horizons. Consequently, time-series models remain a
major source of volatility forecasts.

The paper is organized as follows. The next section explores how the relative
weights attached to recent and older observations in forecasting volatility depend
on the forecast horizon in the context of the GARCH model. The same issue is
explored in Section III for the GJR, EGARCH, and ARLS models. Out-of-sample
forecasting ability is compared in Section IV. Section V concludes the paper.

II. The Forecast Horizon and the Relative Importance of
Past Observations in GARCH

A. Multiperiod Horizon Volatility Forecasts

As pointed out by Figlewski (1997) and Christoffersen and Diebold (2000),
many uses of volatility forecasts, such as option pricing and longer-term VaR
models, require volatility estimates over a much longer horizon than the data fre-
quency used to estimate the model. Typically, time-series models and daily data
are used to generate forecasts of volatility for day t + 1, but for option valua-
tion purposes, what is required is a volatility estimate over the life of the option
that may expire months in the future. Sometimes it is simply assumed that the
forecast volatility for day t + 1 will continue through the end of the period. This
ignores volatility’s mean reverting tendency and, as Christoffersen, Diebold, and
Schuermann (1998) show, can lead to serious estimation error. More appropri-
ately and typically, volatility over the longer period is forecast through a recursive
procedure in which the volatility forecast for day t + 1 is used together with the

6For a review of evidence on this issue, see Poon and Granger (2003).
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model parameters to forecast volatility on day t + 2, the forecast for day t + 2 is
used to forecast volatility for day t + 3, etc. These are then combined to obtain
forecast volatility for the period from t +1 through t +N, a measure that Andersen,
Bollerslev, Christoffersen, and Diebold (2006) term “integrated volatility.”

To illustrate, consider the GARCH model:

vt+1 = α0 + α1r 2
t + βvt,(1)

where rt is the surprise log return (i.e., rt=Rt−Et−1(Rt), where Rt= ln(Pt/Pt−1)
and Pt is the asset price at time t), and vt is the variance of rt.7 Since Et(r 2

t+1)=vt+1,
successive forward substitution yields the expression for the expected variance at
time t + k based on the forecast for t + 1:

vt+k = α0

k−2∑
j=0

(α1 + β) j + (α1 + β)k−1vt+1(2)

= α0

k−1∑
j=0

(α1 + β) j + (α1 + β)k−1
[
α1r 2

t + βvt
]
.

While vt+1 and vt+k are point volatility estimates, option valuation and longer-
term VaR measures require volatility forecasts for a multiday interval, not a single
day.8 To generate such forecasts, it is normally assumed that surprise returns are
independent, so the forecast integrated variance for the interval is obtained by
summing or averaging the forecast daily variances. Summing equation (2) from
k = 1 to s and dividing by s yields the integrated volatility forecast Vt+s:

Vt+s = (1/s)
s∑

k=1

vt+k = αs +
[
α1r 2

t + βvt
] s∑

k=1

(α1 + β)k−1,(3)

where αs = (α0/s)
∑s

k=1

∑k−1
j=0 (α1 + β) j.

B. The Relative Importance of Past Observations in GARCH

The main issue of this paper is how the relative importance of recent versus
older observations in predicting future volatility depends on the forecast horizon.
Suppose at the end of trading on a Tuesday, you are forecasting volatility for:
i) tomorrow (Wednesday), and ii) Wednesday a week or month forward. Given
evidence on volatility persistence, Tuesday’s volatility should be more important
than Monday’s in predicting tomorrow’s volatility. But is it much more important
than Monday’s volatility in predicting volatility a week or month forward? The
successive substitution procedure preserves the relative importance of recent and
older observations regardless of the forecast horizon, while we hypothesize that
differences in relative importance between recent and past observations should
decline as the forecast horizon lengthens.

7Our measure of Et−1(Rt) is explained in Section II.D. Of course in the case of dividends, Dt , or
other payments, Rt = ln((Pt + Dt)/Pt−1).

8While the Black and Scholes (1973) model assumes constant volatility over the life of the option,
this is generally ignored based on the Hull and White (1987) observation that, if volatility varies but
the volatility of volatility is not priced, then the option price is equal to the expected Black-Scholes
price based on average volatility.
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Consider the relative importance of past observations in the GARCH model.
Since vt =α0 +α1r 2

t−1 + βvt−1, vt+1= (α0 + βα0) +α1r 2
t + βα1r 2

t−1 + β 2vt−1, and
successive substitution back to time t − J yields the alternative expression of the
GARCH model in equation (1),

vt+1 = α′0 + α1

J∑
j=0

β jr 2
t−j,(4)

where a′0 = α0
∑J

j=0 β
j + βJ+1vt−J . Substituting equation (4) into equation (2),

yields

vt+k = α0

k−2∑
j=0

(α1 + β) j + (α1 + β)k−1α′0 + (α1 + β)k−1α1

J∑
j=0

β jr 2
t−j.(5)

As equation (5) makes clear, while the absolute weights decline with the horizon
k, assuming α1 + β < 1, the relative weights on past squared surprise returns
decline at the same exponential rate whether forecasting volatility for tomorrow
or for the distant future. Since ∂vt+k/∂r 2

t−j=α1(α1 +β)k−1β j, relative partials for
past observations m days apart are

∂vt+k/∂r 2
t−j−m

∂vt+k/∂r 2
t−j

= βm.(6)

So in GARCH forecasts, the relative weights assigned to past observations m days
or periods apart are in the ratio βm regardless of the forecast horizon, k, and how
far in the past, j.

While related to the criticism of Engle and Bollerslev (1986), Ding and
Granger (1996), Baillie et al. (1996), and Bollerslev and Mikkelsen (1996) that
the GARCH model’s memory is too short, it is not the same. In those papers, the
main issue is how rapidly the impact of a return shock decays in the future. The
impact of a squared return shock, r 2

t−j, on volatility forecasts n days apart is

∂vt+k+n/∂r 2
t−j

∂vt+k/∂r 2
t−j

= (α1 + β)n.(7)

So the impact of a shock on volatility at t+k declines at the exponential rate α1 +β
while there is evidence (e.g., Ding et al. (1993), Ding and Granger (1996), and
Andersen and Bollerslev (1997)) that its impact lasts longer. Note that the weights
in equation (6) decline much faster than those in equation (7). For instance, for
daily observations on the S&P 500 index from January 3, 1968 to December 31,
2002, GARCH estimates of α1 and β are 0.0690 and 0.9228, respectively, so
(α1 + β)10 = 0.9210, and the reversion of forward forecasts to the mean is fairly
slow. At the same time, β10 = 0.4478, so r 2

t−10 (i.e., an observation 10 days or 2
weeks ago) receives a weight only 44.8% of that attached to r 2

t in forecasting any
future volatility. A number of long-memory models employ a slower decay rate
than the GARCH model’s exponential, βm. However, in any model in which the
forecasts for future days are linear functions of the forecast for t + 1, the relative
weights attached to recent and older observations will be the same regardless of
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the forecast horizon, while we would argue that older observations should be
relatively more important in forecasting volatility in the more distant future.

The relation is basically the same for integrated volatility. Summing equation
(5) from k = 1 to s and dividing by s yields the integrated volatility forecast from
t + 1 through t + s, Vt+s:

Vt+s = (1/s)
s∑

k=1

vt+k = αs + λs

J∑
j=0

β jr 2
t−j,(8)

where

αs = (1/s)
s∑

k=1

⎡
⎣α0

k−2∑
j=0

(α1 + β) j + α′0(α1 + β)k−1

⎤
⎦ and(9)

λs = (α1/s)
s∑

k=1

(α1 + β)k−1.

It is easily seen from equation (8), that the relative impact of r 2
t−j and r 2

t−j−m
on the integrated volatility from t to t + s is in the same ratio βm; that is,

∂Vt+s/∂r 2
t−j−m

∂Vt+s/∂r 2
t−j

= βm, for all s.(10)

We hypothesize that the GARCH parameter estimates that maximize the
likelihood of generating observed returns for t + 1 (e.g., the next day if the model
is estimated from daily data) do not forecast volatility very well for t + k when k is
large. Specifically, we hypothesize that better long-horizon forecasts are obtained
if equation (8) is altered to allow β to vary with the forecast horizon s:

Vt+s = (1/s)
s∑

k=1

vt+k = αs + λs

J∑
j=0

β j
s r 2

t−j.(11)

We further hypothesize that the βs that yield the best volatility forecasts in-
crease with the horizon s so that ∂βs/∂s > 0.9 The basic idea is simple and
intuitive. Suppose at the end of trading on Tuesday we want to forecast volatil-
ity for both tomorrow (Wednesday) and Wednesday a week hence. Among other
information, we know volatility today (Tuesday) and Tuesday a week ago. For
forecasting tomorrow’s volatility, today’s volatility is likely much more impor-
tant than volatility a week ago. For forecasting volatility next Wednesday, we
expect the difference in the importance of these 2 past volatilities to be smaller.
Therefore, we hypothesize that as the forecast horizon lengthens, better forecasts
are obtained by increasing the relative weights on older observations.

One way to avoid this problem is to match the data frequency to the fore-
cast horizon. For example, if the goal is to forecast volatility over the next month,

9Andersen, Bollerslev, and Lange (1999) estimate a continuous time GARCH model in which
the values of β vary with the forecast horizon s. However, in their model β varies inversely with the
horizon, while we hypothesize and find a positive relation.
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one could use monthly data to estimate the GARCH model and forecast volatil-
ity for month t + 1. But if the forecast horizon is long, the number of observa-
tions is sharply reduced and, as Figlewski (1997) points out, convergence often
requires a long time series. Moreover, as Andersen et al. (1999) show, the result-
ing volatility forecasts are considerably less accurate than those generated from
higher frequency data through the usual forward substitution strategy.

Our argument could explain a surprising finding in past studies. A common
alternative to GARCH for option valuation purposes (and the model presented
most often in textbooks) is the historical variance or standard deviation. Conceptu-
ally, the historical variance would appear decidedly inferior to GARCH forecasts
in that it weights all included past surprise returns, r 2

t−j, equally (i.e., β=1). Also,
it imposes an arbitrary cutoff date, J. It is hard to believe that the informativeness
of the day t − J return is equal to that of day t, while there is no information in
knowing the return on day t−J−1. Yet many studies find that historical volatility
forecasts better than GARCH. In a survey of 39 such studies, Poon and Granger
(2003) report that 22 find that historical volatility (including some weighted mea-
sures) forecasts actual volatility better. Our hypothesis provides a possible expla-
nation. If the GARCH estimate of β is too low when forecasting beyond t + 1,
then the historical variance imposition of β = 1 may be better at long horizons.

C. Testing Procedure

To explore whether volatility forecasts can be improved by varying βs with
the forecast horizon, we use nonlinear least squares (NLS) regressions to obtain
estimates of βs (also αs and λs) in equation (11). Letting AV(s)t represent the
actual (or ex post) realized variance over the period from t + 1 through t + s (i.e.,
AV(s)t = (1/s)

∑s
i=1 r 2

t+i), equation (11) is estimated by applying least squares
estimation to the equation pair:10

AV(s)t = αs + λsZt + εt, where Zt =
J∑

j=0

β j
s r 2

t−j.(12)

This procedure finds the equation (11) parameter values that minimize the in-
sample root mean squared variance forecast errors. Thus we can test whether the
parameters that minimize the sum of squared forecast errors of the variance differ
from the GARCH parameter estimates of equation (1) and vary with the forecast
horizon. Criteria other than this quadratic loss function will be considered in
Section IV when we compare out-of-sample forecasts.

D. Data

Our data set consists of daily log returns on 1 equity index market (the
S&P 500), 2 interest rates (3-month T-bills and 1-year T-notes), 2 exchange rates
(yen/dollar and dollar/pound), 2 commodities (crude oil and gold), and 5 indi-
vidual equities chosen from the Dow Jones index (Caterpillar, Disney, Dupont,

10For these estimations we set J=250. Since β <1, βJ is nil for high values of J, so our estimations
are not sensitive to this choice as long as J is fairly high.
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GE, and Walmart). The series start in January 1968 or the first available date af-
ter January 1968 and run through December 2002. Data sources, time periods,
and descriptive statistics are reported in Table 1. We consider horizons, s, of 10,
20, 40, and 80 trading days. Ten days is a popular horizon for VaR measures.
The other horizons cover expiries of the more heavily traded options. Surprise
log returns are estimated as rt = Rt − Et−1(Rt), where, reflecting the possibility
of serially correlated returns, Et−1(Rt) = η0 + η1Rt−1. The coefficients η0 and η1

in this “mean equation” are estimated simultaneously with the variance equation
(e.g., equation (11)).11

TABLE 1

Markets and Data

In Table 1, sources and descriptive statistics are reported for the 12 markets for which volatility forecasting models are
estimated and compared.

Daily Returns
(× 1,000)

Standard
Market or Index Data Source Data Period Daily Obs. Mean Deviation

S&P 500 CRSP 1/3/68–12/31/02 8,809 0.2514 9.9407
T-bill Federal Reserve 1/3/68–12/31/02 8,809 –0.1629 14.2690
T-note Federal Reserve 1/3/68–12/31/02 8,809 –0.1663 12.7353
Yen/dollar Federal Reserve 1/5/71–12/31/02 8,078 –0.1303 6.4371
Dollar/pound Federal Reserve 1/5/71–12/31/02 8,078 –0.0499 5.8547
Crude oil COMEX 3/31/83–12/31/02 4,954 0.0108 24.3518
Gold NYMEX 1/3/75–12/31/02 7,026 0.0964 12.6908
Caterpillar CRSP 4/2/71–12/31/02 8,017 0.3182 18.4326
Disney CRSP 1/3/68–12/31/02 8,809 0.5134 21.3474
DuPont CRSP 1/3/68–12/31/02 8,809 0.3410 16.3096
GE CRSP 1/3/68–12/31/02 8,809 0.4865 15.9671
Walmart CRSP 11/21/72–12/31/02 7,602 0.8981 21.5836

E. Results

GARCH estimates of β in equation (1) and NLS estimates of βs in equation
(11) are reported in Table 2. The results confirm our argument that better volatility
forecasts are obtained by increasing the relative weight on older observations as
the forecast horizon lengthens. With the single exception of the S&P 500 index
at the 10-day horizon, the β values that minimize the sum of the squared fore-
cast errors are all greater than the GARCH estimates. Moreover, in 31 of the 36
adjacent pairs in Table 2, the regression estimates of βs increase as the horizon s
lengthens. Two sets of statistical tests are reported. One asterisk (double asterisks)
on β̂40 indicates that it is significantly greater than the GARCH estimate at the 5%
(1%) level at least.12 In all markets β40 is significantly greater than the GARCH

11Estimates of η0 and η1 are not reported here but are available from the authors. In all except the
2 commodity markets, there is small but positive autocorrelation, and in 9 of the 10, the estimate of
η1 is significantly greater than 0 at the 1% level in the GARCH estimation. In the gold market, η1 is
significantly less than 0 at the 1% level. However, the explanatory power of this equation is low, and
the results below are not sensitive to this specification. We have run estimations without the lagged
return term Rt−1 in the mean equation, and the results are virtually identical to those presented here.

12These are based on likelihood ratio tests. First we calculated the log likelihood for the least
squares estimates of equation (12) and again using the GARCH equation (1) estimates of β allowing
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estimate at the 5% level at least. One asterisk (double asterisks) on β̂80 indicates
that it is significantly greater than the estimated β̂10 at the 5% (1%) level.13 The
difference is significant at the 5% level at least in 9 of the 12 markets.

TABLE 2

GARCH Model Estimates and the Forecast Horizon

Table 2 reports GARCH estimates of β and regression estimates of βs in the equation

Vt+s = (1/s)
s∑

k=1
vt+k = αs + λs

J∑
j=0
β

j
s r 2

t−j,

where Vt+s is the variance of surprise returns from t + 1 to t + s, and rt−j is the surprise return on day t − j. The reported
GARCH parameters are those estimated using the normal procedure, which chooses parameter values to maximize the
likelihood of observing rt+1. Regression estimates are obtained by estimating the above equation using nonlinear least
squares. Separate regressions are estimated for horizons, s, of 10, 20, 40, and 80 trading days; * (**) on the 40-day βs
estimate indicates that it is significantly greater than the GARCH estimate at the 5% (1%) level based on likelihood ratio
tests adjusted for the data overlap; * (**) on the 80-day βs estimate indicates that it is significantly greater than the 10-day
estimate at the 5% (1%) level.

Least Squares Regression
Estimates of βs by HorizonGARCH

Estimates
Market of β 10-Day 20-Day 40-Day 80-Day

S&P 500 0.923 0.852 0.964 0.968 0.984**
T-bill 0.827 0.943 0.976 0.985** 0.989**
T-note 0.913 0.981 0.984 0.984** 0.988*
Yen/dollar 0.863 0.969 0.972 0.980** 0.980
Dollar/pound 0.902 0.941 0.945 0.962** 0.972**
Crude oil 0.918 0.962 0.965 0.964* 0.957
Gold 0.905 0.903 0.939 0.953** 0.948**
Caterpillar 0.952 0.969 0.980 0.984* 0.989**
Disney 0.886 0.964 0.979 0.982** 0.990**
Dupont 0.953 0.972 0.982 0.988** 0.992**
GE 0.946 0.953 0.972 0.978** 0.986**
Walmart 0.921 0.955 0.955 0.950* 0.950

The differences in the implied importance of older versus recent observations
is substantial. Consider, for instance, the weight attached to r 2

t−20 (the observation
approximately 1 month ago) relative to that attached to today’s volatility, r 2

t , in
generating volatility forecasts. For the GARCH model, the average estimated β
over our 12 markets is 0.909, which translates into a relative weight on r 2

t−20
that is only 14.9% of the weight on r 2

t . This is the same regardless of the forecast
horizon. By comparison, at the 20-day forecast horizon, the average NLS estimate
of βs over our 12 markets is 0.968, which implies a relative weight on r 2

t−20 that
is 52.2% of that on r 2

t . For older observations, the weighting differences are even
more stark. Again using the average β estimates across the 12 markets, the implied

αs and λs to take sum-of-squared-errors minimizing values. We calculate the difference λ between the
2 log likelihoods. Since we utilize daily data but forecast volatility over multiday periods, s, volatility
forecasts on days less than s days apart overlap. Hence the log likelihoods for observations less than
s days apart are not independent. To correct for this we calculate the likelihood ratio as 2λ/s instead
of the usual 2λ. This is a very conservative approach that treats any 2 observations with any days in
common as perfectly correlated. Thus the significance levels in Table 2 are understated; that is, if the
2 pairs of β estimates are significant at the 5% level, they are significant at the 5% level at least.

13These are based on volatility forecasts for the shorter horizon to minimize the data overlap. We
estimate the log likelihood for the 10-day horizon using the parameter estimates for the 10-day horizon
and again using β from the 80-day horizon estimation (allowing αs and λs to take sum-of-squared-
errors minimizing values). As explained in footnote 12, due to the data overlap, we calculate the
likelihood ratio as 2λ/s, where λ is the difference in the 2 log likelihoods and s= 10.
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weight on r 2
t−41 (approximately 2 months ago) relative to r 2

t is only 2.01% for
GARCH, versus 26.4% for NLS at the 20-day horizon and 36.7% at the 80-day
horizon. So while volatility 2 months or more ago has virtually no impact on
the GARCH forecasts, there is evidence that it contains considerable information
about likely volatility at the longer horizons. Estimates of the other parameters, αs

and λs, in equation (11) are available from the authors. Since the relative weights
on older observations (as represented by βs) increase as the forecast horizon s
lengthens, we expect the absolute weight on the most recent observation, λs, to
decline with s, and that is generally the case.

III. The Forecast Horizon and the Relative Importance of
Past Observations in the GJR and EGARCH Models

A. The GJR Model

Since regardless of the model, multiperiod volatility forecasts are normally
generated by first forecasting volatility for period t + 1 and then generating fore-
casts for later periods from the t + 1 forecast, most time-series models keep the
relative importance of older and recent observations the same at all forecast hori-
zons. We present evidence for 2 additional models: the GJR (or TGARCH) model
of Glosten et al. (1993) and Nelson’s (1991) EGARCH model starting with the
GJR model. The GJR model adds to the GARCH model of equation (1) a term
to capture asymmetric volatility: a2Dtr 2

t , where Dt = 1 if rt < 0, and Dt = 0 if
rt ≥ 0:

vt+1 = α0 + α1r 2
t + α2Dt r 2

t + βvt.(13)

Backward and forward substitution leads to the following expression for volatility
at time t + k:

vt+k = αk + α1δk

J∑
j=0

β jr 2
t−j + α2δk

J∑
j=0

β jDt−j r 2
t−j,(14)

where δk =Π
k−2
j=0 ζt+j and ζt = α1 + α2Dt + β.

Consequently, the partials for past observations m periods apart are in the
ratio

∂vt+k/∂r 2
t−j−m

∂vt+k/∂r 2
t−j

= βm

[
(α1 + α2Dt−j−m)

(α1 + α2Dt−j)

]
.(15)

Thus if the shocks at times t − j − m and t − j have the same sign, the relative
weights in forecasting future volatility are in the ratio βm as in the GARCH model
and in any case do not depend on the forecast horizon k.

B. GJR Results

Equation (14) leads to the following expression for integrated volatility:

Vt+s = (1/s)
s∑

k=1

vt+k = αs + λ1s

J∑
j=0

β jr 2
t−j + λ2s

J∑
j=0

β jDt−jr
2
t−j,(16)

https://doi.org/10.1017/S0022109010000372  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109010000372


Ederington and Guan 1065

where λ1s = (1/s)
∑s

k=1 α1δk and λ2s = (1/s)
∑s

k=1 α2δk. As with the GARCH
model, we hypothesize that volatility forecasts with smaller root mean squared
forecast errors (RMSEs) may be obtained by allowing the weighting parame-
ter β to vary with the forecast horizon, s, and that the optimal parameter βs

increases with the forecast horizon. To test this, we use NLS to estimate the
model:

AV(s)t = αs + λ1sZ1t + λ2sZ2t + εt,(17)

where Z1t =
J∑

j=0

β j
s r 2

t−j and Z2t =
J∑

j=0

β j
s Dt−jr

2
t−j,

for the same 12 markets, where again AV(s)t represents the actual (or ex post)
realized variance over the period from t + 1 through t + s. The resulting estimates
of βs are reported in Table 3 along with the usual GJR estimates of β obtained
through maximum likelihood estimation of equation (13).

TABLE 3

GJR Model Estimates and the Forecast Horizon

Table 3 reports GJR estimates of β and regression estimates of βs in the equation

Vt+s = (1/s)
s∑

k=1
vt+k = αs + λ1s

J∑
j=0
β

j
s r 2

t−j + λ2s

J∑
j=0
β

j
sD t−j r

2
t−j,

where Vt+s is the variance of surprise returns from t + 1 to t + s, rt−j is the surprise return on day t − j, and Dt−j = 1 if
rt−j < 0, and 0 otherwise. The reported GJR parameters are those estimated using the normal procedure, which chooses
parameter values to maximize the likelihood of observing rt+1. Regression estimates are obtained by estimating the above
equation using nonlinear least squares. Separate regressions are estimated for horizons, s, of 10, 20, 40, and 80 trading
days; * (**) on the 40-day βs estimate indicates that it is significantly greater than the GJR estimate at the 5% (1%) level
based on likelihood ratios adjusted for the data overlap; * (**) on the 80-day estimate indicates that it is significantly greater
than the 10-day estimate at the 5% (1%) level.

Least Squares Regression
Estimates of βs by HorizonGJR

Estimates
Market of β 10-Day 20-Day 40-Day 80-Day

S&P 500 0.924 0.863 0.961 0.966 0.987**
T-bill 0.822 0.944 0.973 0.985** 0.988**
T-note 0.914 0.983 0.987 0.987** 0.990*
Yen/dollar 0.856 0.965 0.966 0.973** 0.973
Dollar/pound 0.899 0.941 0.946 0.962** 0.973**
Crude oil 0.900 0.964 0.969 0.970** 0.968
Gold 0.904 0.936 0.961 0.969** 0.970**
Caterpillar 0.942 0.968 0.981 0.985** 0.988**
Disney 0.892 0.965 0.979 0.982** 0.992**
Dupont 0.946 0.972 0.982 0.988** 0.994**
GE 0.943 0.951 0.971 0.978** 0.987**
Walmart 0.922 0.957 0.958 0.952* 0.949

In Table 3, we again report tests of the null that β80 ≤ β10 and that β40 is less
than or equal to the usual GJR estimate of β in equation (13). As one would expect
given the similar structures of the GJR and GARCH models, the β estimates in
Table 3 are close to those in Table 2. In 33 of the 36 pairs in Table 3, the estimated
βs increases as s increases.
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C. The EGARCH Model

Consider next the EGARCH model, which is of particular interest since it
tends to have a longer memory than GARCH. It has the form

ln(vt+1) = α0 + β ln(vt) + γ1|rt/σt| + γ2(rt/σt).(18)

Assuming a normal distribution (as is normally assumed for maximum likelihood
estimation of the EGARCH model and in option pricing applications), forward
substitution yields

ln(vt+k) =
[
α + γ1

√
2/π
] k−2∑

j=0

β j + βk−1 ln(vt+1),(19)

while backward substitution yields

ln(vt+1) = α′ + γ1

J∑
j=0

β j|rt−j/σt−j| + γ2

J∑
j=0

β j(rt−j/σt−j).(20)

Substituting equation (20) into equation (19) yields the following expression for
the relative impact of returns (not squared as before) at times t − j and t − j − m
on ln(vt+k):

∂ ln(vt+k)/∂rt−j−m

∂ ln(vt+k)/∂rt−j
= βm

[
(Dt−j−m/σt−j−m) + (1/σt−j−m)

(Dt−j/σt−j) + (1/σt−j)

]
,(21)

where Dt = 1 if rt > 0, and Dt =−1 if rt ≤ 0.
So if i) the returns at t − j and t − j − m have the same sign, and ii) the

conditional volatilities σt−j and σt−j−m are equal, then we have a result analogous
to that for the GARCH and GJR models in that the 2 partials are in the ratio βm.
More generally, in the EGARCH model the relative impact of past returns on the
volatility forecast does not depend on the forecast horizon k.

Defining integrated volatility, Vt+s as the geometric average14 of volatilities
from t + 1 through t + s yields the integrated volatility expression15

ln(Vt+s) = (1/s)
s∑

k=1

ln(vt+k)(22)

= λ1s + λ2s

J∑
j=0

β j|rt−j/σt−j| + λ3s

J∑
j=0

β j(rt−j/σt−j).

14This is different from the usual arithmetic average expression for integrated volatility as utilized
above for the GARCH and GJR models but should be a better measure, since it compounds returns
over the forecast horizon.

15The implied λ parameters are

λ1s = (1/s)
s∑

k=1

⎡
⎣(α + γ1

√
2/π
) k−2∑

j=0

β j + α′βk−1

⎤
⎦ ,

λ2s = (γ1/s)
s∑

k=1

βk−1, and λ3s = (γ2/s)
s∑

k=1

βk−1.
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D. EGARCH Results

As with the other 2 models, we hypothesize that better volatility forecasts are
obtained by allowing the weighting parameter β to vary with the forecast horizon,
s, and that the optimal βs increases with the forecast horizon. To test this we use
NLS to estimate the model:

ln(AV(s)t) = λ1s + λ2sZ2t + λ3sZ3t + εt,(23)

where Z2t =

J∑
j=0

β j
s |rt−j/σ̂t−j| and Z3t =

J∑
j=0

β j
s (rt−j/σ̂t−j),

where σ̂t−j is the volatility estimate for day t − j.16 The resulting estimates of βs

are reported in Table 4 along with the usual EGARCH estimates of β obtained
through maximum likelihood estimation of equation (18).

TABLE 4

EGARCH Model Estimates and the Forecast Horizon

Table 4 reports EGARCH estimates of β and regression estimates of βs in the equation

ln(Vt+s) = λ1s + λ2s

J∑
j=0
β

j
s|rt−j/σt−j| + λ3s

J∑
j=0
β

j
s(rt−j/σt−j),

where Vt+s is the variance of surprise returns from t + 1 to t + s, and rt−j is the surprise return on day t − j. The reported
EGARCH parameters are those estimated using the normal procedure, which chooses parameter values to maximize the
likelihood of observing rt+1. Regression estimates are obtained by estimating the above equation using nonlinear least
squares. Separate regressions are estimated for horizons, s, of 10, 20, 40, and 80 trading days; * (**) on the 40-day βs
estimate indicates that it is significantly greater than the EGARCH estimate at the 5% (1%) level; * (**) on the 80-day
estimate indicates that it is significantly greater than the 10-day estimate at the 5% (1%) level.

Least Squares Regression
Estimates of βs by HorizonEGARCH

Estimates
Market of β 10-Day 20-Day 40-Day 80-Day

S&P 500 0.9853 0.9902 0.9908 0.9917** 0.9937**
T-bill 0.9678 0.9828 0.9857 0.9885** 0.9897**
T-note 0.9828 0.9897 0.9903 0.9915** 0.9922*
Yen/dollar 0.9495 0.9798 0.9817 0.9843** 0.9953**
Dollar/pound 0.9592 0.9782 0.9798 0.9805** 0.9779
Crude oil 0.9895 0.9913 0.9908 0.9899 0.9887**
Gold 0.9829 0.9895 0.9906 0.9922** 0.9939**
Caterpillar 0.9890 0.9936 0.9939 0.9939** 0.9944
Disney 0.9859 0.9915 0.9919 0.9916** 0.9927
Dupont 0.9919 0.9958 0.9966 0.9965** 0.9969
GE 0.9893 0.9922 0.9926 0.9935** 0.9953**
Walmart 0.9809 0.9877 0.9886 0.9894** 0.9901

As shown in Table 4, estimates of β for the EGARCH model are much higher
than those for the GARCH and GJR models. Across the 12 markets, β̂ averages
0.9795 for EGARCH versus 0.9091 for GARCH, implying a much longer mem-
ory and also implying that older observations receive a much higher weight (rela-
tive to more recent observations) in the EGARCH model. For instance, the 0.9091
GARCH figure implies that the weight on r 2

t−20 is only 14.9% of that on r 2
t , while

the 0.9795 EGARCH figure implies a weight on rt−20 that is 66.1% of that on rt.

16Note that this minimizes the root mean squared forecast error (RMSE) of the log of the variance—
not the variance itself, as with GARCH and GJR.
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Nonetheless, again there is strong evidence that older observations are rela-
tively more important in forecasting volatility at longer horizons than at shorter
horizons. In every market except crude oil, the EGARCH estimate of β using the
usual maximum likelihood procedure for the next day is less than the regression
estimates for longer horizons. In 30 of 36 pairwise cases (the crude oil market is
the major exception), the regression estimates of βs increase as s increases. Across
our 12 markets, the average β̂s is 0.9885 for s = 10, implying a weight on rt−40

that is 63.0% of the weight on rt. For s = 80, the average is 0.9917, implying a
weight on rt−40 that is 71.8% of the weight on rt. In contrast, the usual maximum
likelihood EGARCH estimate of 0.9795 implies that the weight on rt−40 is only
43.7% of the weight on rt.

E. The ARLS Model

One existing model that allows the relative weights on recent versus older ob-
servations to vary with the forecast horizon is the absolute restricted least squares
(ARLS) model suggested in Ederington and Guan (2005). As in GARCH, in this
model the weights on past volatilities decline exponentially, and it incorporates
mean reversion. However, it models the standard deviation instead of the variance
and is based on absolute, not squared, surprise returns.17

Specifically, the model is

ASD(s)t = αs + λs

J∑
j=0

√
π/2β j

s |rt−j|,(24)

where ASD(s)t is the standard deviation of returns from t + 1 to t + s. This is struc-
turally identical to the GARCH expression in equation (11) except: i) the standard
deviation replaces the variance on the left-hand side of the equation; ii) the abso-
lute return, |rt−j|, replaces r 2

t−j on the right-hand side; iii) the coefficients βs, αs,
and λs are allowed to vary with the horizon s; and iv) the term

√
π/2 is added.

While E(r2)=σ2, under quite general conditions, E(|r|) is distribution dependent.
If log returns rt are normally distributed with mean μ, then E(|rt|) = σ

√
2/π,

where rt = Rt − μ, and E(
√
π/2
∑n−1

j=0 Wj|rt−j|) = σ, where
∑

Wj = 1. Hence
the term

√
π/2 in equation (24). Obviously, this means that this model presumes

that log returns are approximately normally distributed. However, this assumption
also underlies maximum likelihood estimations of GARCH-type models. More-
over, most option pricing models (e.g., Black and Scholes (1973), Barone-Adesi
and Whaley (1987)) and VaR measures assume normality, so no new assump-
tion is imposed in these applications. In any case, we test below how well the
resulting model forecasts over a broad range of markets that could deviate from
normality.

17Ederington and Guan (2010) find that models based on squared returns tend to predict large
volatility increases after extreme returns, which are rarely fully realized. In an earlier version of
the present paper, we included the AGARCH (absolute generalized autoregressive conditional het-
eroskedasticity) model among the models analyzed, but it had poor forecasting ability, so we have
dropped it here to save space.
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We estimate equation (24) by regressing the ex post standard deviation from
t + 1 to t + s on |rt−j| from j=0 to J=250.18 Estimates of αs, λs, and βs for s=40
days are reported in Table 5. As shown there, as compared with the GARCH es-
timates in Table 2, the least squares estimates of βs for the ARLS model tend
to be considerably higher. Estimates of λs are considerably lower. This means
that (as compared with GARCH) older (recent) observations receive considerably
more (less) weight in forecasting future volatility over longer horizons. For in-
stance, the average β across our 12 markets is 0.9637 for the ARLS model with
a 40-day horizon versus 0.9091 for GARCH. Thus, in forecasting the standard
deviation from t + 1 to t + 40, the weight attached to |rt−10| (i.e., 10 days ago) is
about 69.1% of the weight attached to |rt|, while in the GARCH model the weight
attached to r 2

t−10 is only 38.6% of that attached to r 2
t .

TABLE 5

ARLS Model Parameter Estimates

Table 5 reports regression estimates of parameters for the ARLS model:

ASD(s)t = αs + λs

J∑
j=0

√
π/2β j

s|rt−j|,

where ASD(s)t is the standard deviation of returns over the period from t + 1 to t + s, and rt−j is the return on day t − j.
We report estimates of all 3 parameters for a 40-day horizon and estimates of βs for horizons of 10, 20, 40, and 80 days.

Parameter Estimates Estimates of
for a 40-Day βs for Different

Forecast Horizon Forecasting Horizons

Market αs λs βs 10-Day 20-Day 80-Day

S&P 500 0.00325 0.0371 0.9443 0.9280 0.9397 0.9809
T-bill 0.00381 0.0211 0.9729 0.9140 0.9360 0.9822
T-note 0.00259 0.0259 0.9695 0.9542 0.9603 0.9794
Yen/dollar 0.00214 0.0214 0.9676 0.9465 0.9521 0.9768
Dollar/pound 0.00283 0.0283 0.9578 0.9376 0.9479 0.9655
Crude oil 0.00457 0.0457 0.9422 0.9452 0.9442 0.9336
Gold 0.00306 0.0306 0.9623 0.9301 0.9522 0.9636
Caterpillar 0.00181 0.0181 0.9763 0.9727 0.9755 0.9793
Disney 0.00245 0.0245 0.9663 0.9632 0.9687 0.9766
Dupont 0.00145 0.0145 0.9824 0.9684 0.9771 0.9875
GE 0.00257 0.0257 0.9668 0.9526 0.9615 0.9797
Walmart 0.00283 0.0283 0.9557 0.9510 0.9555 0.9647

Also reported in Table 5 are estimates of βs for horizons s of 10, 20, and 80
days. As hypothesized, the estimated βs generally rises with the forecast hori-
zon s with the exception of the crude oil market. In Figure 1, we graph the
coefficients of |rt−j| as a function of the lag j for s = 10 and 80 days based
on the average values of βs and λs across our 12 markets. As reflected in
Figure 1, the longer the forecast horizon, the greater the importance of older
observations.

18Procedurally we first generate the series W(β) =
√
π/2
∑250

j=0 β
j|rt−j| using values of β from

0.500 through 1.000 in increments of 0.0001, then regress ASD(s)t on W(β)t using ordinary least
squares (OLS), repeat the regression for all values of β, and choose the values of β, α, and λ for the
regression resulting in the lowest residual sum of squares.
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FIGURE 1

Relative Weights on Past Return Observations in the ARLS Model

Figure 1 graphs the weights on absolute values of past daily returns (|rt−j|) as a function of the lag j ( j = 0 to j = 100) in
the ARLS model shown in equation (24). The weights are based on the average estimated values of the parameters λs
and βs across the 12 markets for 10- and 80-day forecast horizons.

IV. Out-of-Sample Forecast Accuracy

Next we compare how well the models forecast out-of-sample. For the
GARCH, GJR, and EGARCH models, we estimate both the standard models in
equations (1), (13), and (15), respectively, and the modified versions in equations
(12), (17), and (23), respectively, which allow the parameter values to vary with
the forecast horizon and which are estimated using NLS. For instance, we esti-
mate separately both the GARCH model in equation (1) and the modified version
in equation (12) and use both to forecast the future variance. In total we compare
7 models: GARCH, GJR, EGARCH, modified least squares versions of each with
parameters specific to the forecast horizon, and ARLS.

Following tradition in this literature, our primary measure of forecast accu-
racy is the out-of-sample root mean squared volatility forecast error defined as

RMSE(s, j, k) =

√√√√(1/T)
T∑

t=1

FE(s, j, k)2t ,(25)

where FE(s, j, k)t is model k’s volatility forecast error for an s-day horizon in mar-
ket j on day t. One issue is whether to measure volatility as the standard deviation
of surprise returns, the variance, or some other measure. Poon and Granger (2003)
argue that the standard deviation is better than the variance, since the variance is
more susceptible to outliers and deviations from normality. In addition, in Black
and Scholes (1973) (and most other option pricing models), the option price is an
approximately linear function of the standard deviation for near-the-money op-
tions, and of course VaR measures are linear functions of the standard deviation.
As explored in Ederington and Guan (2010), by Jensen’s inequality, an unbiased
estimator of the variance yields biased estimates of the standard deviation, and
vice versa in small samples. As we have seen, GARCH and GJR model the vari-
ance, ARLS models the standard deviation, and EGARCH models the log of the
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standard deviation (or variance).19 Hence we consider these 3 volatility measures
starting with the standard deviation. The standard deviation forecast error is cal-
culated as FE(s, j, k)t=Fore(s, j, k)t−Act(s, j)t, where Fore(s, j, k)t is the forecast
standard deviation (annualized) for the s-day horizon from t + 1 to t + s in market
j using model k, and Act(s, j)t is the actual standard deviation observed ex post.20

To generate out-of-sample forecasts, the models are estimated using 1,260 daily
return observations (approximately 5 years of daily data). To limit the compu-
tational burden, parameter values are reestimated every 40 days.21 In generating
multiday forecasts for the GJR and EGARCH models, we assume that positive
and negative surprise returns on any future day are equally likely. In generating
multiday forecasts for the standard GARCH, GJR, and EGARCH models, we
employ the standard recursive substitution procedure described above. As in the
in-sample estimations in Tables 2–5, the estimated βs for the modified models
generally exceed the estimated βs for the corresponding standard models and rise
with the forecast horizon.

The resulting root mean squared forecast errors, RMSE(s, j, k), for forecasts
of the standard deviation of returns are reported in Table 6 for all 7 forecasting
models k, and forecast horizons s = 10, 20, 40, and 80 trading days in all 12
markets, j, where the lowest RMSE in a row is in bold to indicate the forecasting
model with the lowest RMSE for that market and forecast horizon. To provide an
indication of how much of the variation in volatility is forecast by the models, we
also report the standard deviation of the realized standard deviation. This corre-
sponds to the RMSE for a “naive” model that assumes an unchanging volatility
equal to mean volatility for the entire sample.22

As shown in Table 6, no one model predicts best in all markets at all forecast
horizons, but the ARLS and modified EGARCH models clearly dominate. We
have 12 markets and 4 forecast horizons. Of these 48 market/horizon combina-
tions, the ARLS model has the lowest out-of-sample RMSE in 26. The modified
EGARCH model, which allows the β parameter to vary with the forecast horizon,
has the lowest RMSE in 15 market/horizon combinations. No other forecasting
model has the lowest RMSE in more than 3 market/horizon combinations.

Note that while the modified version of the GJR model dominates the stan-
dard GJR model in in-sample forecasts, this ranking is generally reversed out-of-
sample. The reason for this is readily apparent. The independent variables, Z1t and

19Of course results for the log of the standard deviation also hold for the log of the variance, since
the latter is 2 times the former.

20In a few instances, the 2 GJR models (and very rarely the GARCH models) forecast a negative
variance. When this occurred it was replaced by the minimum variance over the last 5 years. Also, if
the forecast standard deviation was more than double the maximum standard deviation over the last 5
years, it was replaced with 2 times the maximum standard deviation over the last 5 years.

21For instance, the models are first estimated using observations 1–1,260, and these parameter
estimates are used to generate volatility forecasts for the period t + 1 (1,261) through t + s (1,260 + s),
where s is the forecast horizon. These parameters and return observations through day t + 1 are used
to generate volatility forecasts for the period t + 2 through t + s + 1, and so forth so that the forecasts
for the period t + 40 through t + s + 39 are generated using the same parameters but return observations
through day t + 39. Then the models are reestimated using data from day 41 through day 1,300.

22This model assumes that the mean is known and so is not purely “out-of-sample” like the other 7
models.
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TABLE 6

Forecast Accuracy (standard deviation)

Table 6 presents estimates of root mean squared forecast errors (RMSE) for out-of-sample forecasts of the standard devi-
ation of returns for 7 volatility forecasting models: ARLS, GARCH, EGARCH, GJR, and modifications of the last 3 that allow
the parameters to vary with the forecast horizon and are estimated using least squares regression. For comparison, the
standard deviation of the realized standard deviation over the entire sample is reported in column 2. Forecast standard
deviations are generated for horizons of 10, 20, 40, and 80 trading days. For each row (i.e., market and forecast horizon),
the lowest RMSE is in bold.

GARCH EGARCH GJR

Market Std. Dev. ARLS Standard Modified Standard Modified Standard Modified

Panel A. 10-Day Forecast Horizon

S&P 500 0.0775 0.0665 0.0684 0.0727 0.0670 0.0657 0.0681 0.0739
T-bill 0.1277 0.1037 0.1117 0.1130 0.1132 0.1083 0.1142 0.1195
T-note 0.1044 0.0834 0.0884 0.0895 0.0870 0.0855 0.0901 0.0939
Yen/dollar 0.0452 0.0415 0.0440 0.0427 0.0429 0.0440 0.0442 0.0437
Dollar/pound 0.0417 0.0346 0.0357 0.0356 0.0356 0.0362 0.0365 0.0372
Crude oil 0.2178 0.1785 0.1914 0.2056 0.1844 0.1865 0.1931 0.2355
Gold 0.0896 0.0703 0.0785 0.0781 0.0754 0.0698 0.0768 0.0809
Caterpillar 0.1292 0.1159 0.1221 0.1198 0.1196 0.1186 0.1224 0.1215
Disney 0.1493 0.1340 0.1391 0.1429 0.1367 0.1343 0.1436 0.1473
Dupont 0.1051 0.0908 0.0970 0.0939 0.0962 0.0918 0.0958 0.0948
GE 0.1086 0.0889 0.0887 0.0925 0.0880 0.0872 0.0882 0.0935
Walmart 0.1229 0.1059 0.1069 0.1065 0.1068 0.1101 0.1069 0.1120

Panel B. 20-Day Forecast Horizon

S&P 500 0.0722 0.0620 0.0639 0.0688 0.0629 0.0614 0.0640 0.0688
T-bill 0.1183 0.0975 0.1061 0.1059 0.1040 0.1000 0.1081 0.1125
T-note 0.0964 0.0767 0.0804 0.0821 0.0794 0.0773 0.0821 0.0832
Yen/dollar 0.0389 0.0359 0.0380 0.0370 0.0366 0.0392 0.0383 0.0384
Dollar/pound 0.0373 0.0308 0.0317 0.0317 0.0314 0.0324 0.0327 0.0342
Crude oil 0.2008 0.1610 0.1718 0.1945 0.1627 0.1661 0.1726 0.2312
Gold 0.0830 0.0632 0.0732 0.0720 0.0690 0.0632 0.0715 0.0740
Caterpillar 0.1130 0.0978 0.1060 0.1025 0.1032 0.1009 0.1059 0.1107
Disney 0.1343 0.1199 0.1270 0.1290 0.1239 0.1196 0.1315 0.1325
Dupont 0.0921 0.0767 0.0838 0.0801 0.0833 0.0772 0.0823 0.0820
GE 0.0990 0.0799 0.0783 0.0856 0.0777 0.0770 0.0778 0.0900
Walmart 0.1084 0.0924 0.0931 0.0919 0.0931 0.0964 0.0931 0.0997

Panel C. 40-Day Forecast Horizon

S&P 500 0.0674 0.0599 0.0613 0.0671 0.0606 0.0585 0.0614 0.0722
T-bill 0.1091 0.0937 0.1027 0.1019 0.0996 0.0924 0.1045 0.1084
T-note 0.0897 0.0745 0.0737 0.0774 0.0760 0.0730 0.0754 0.0786
Yen/dollar 0.0338 0.0334 0.0345 0.0336 0.0328 0.0360 0.0349 0.0355
Dollar/pound 0.0333 0.0278 0.0283 0.0296 0.0280 0.0300 0.0293 0.0340
Crude oil 0.1881 0.1496 0.1627 0.1844 0.1503 0.1566 0.1589 0.2185
Gold 0.0768 0.0583 0.0705 0.0666 0.0656 0.0587 0.0692 0.0751
Caterpillar 0.1002 0.0850 0.0943 0.0898 0.0907 0.0884 0.0932 0.0978
Disney 0.1205 0.1095 0.1171 0.1193 0.1121 0.1081 0.1203 0.1217
Dupont 0.0822 0.0659 0.0751 0.0696 0.0744 0.0674 0.0728 0.0717
GE 0.0916 0.0756 0.0716 0.0821 0.0723 0.0708 0.0710 0.0883
Walmart 0.0972 0.0860 0.0850 0.0855 0.0852 0.0857 0.0850 0.0943

Panel D. 80-Day Forecast Horizon

S&P 500 0.0634 0.0595 0.0601 0.0695 0.0602 0.0575 0.0599 0.0848
T-bill 0.0995 0.0912 0.0994 0.1002 0.0981 0.0864 0.1017 0.1047
T-note 0.0844 0.0749 0.0713 0.0762 0.0777 0.0767 0.0739 0.0782
Yen/dollar 0.0291 0.0321 0.0304 0.0312 0.0298 0.0353 0.0308 0.0343
Dollar/pound 0.0299 0.0283 0.0269 0.0316 0.0266 0.0298 0.0278 0.0372
Crude oil 0.1768 0.1438 0.1705 0.1720 0.1549 0.1558 0.1620 0.2290
Gold 0.0709 0.0558 0.0693 0.0651 0.0655 0.0572 0.0689 0.0763
Caterpillar 0.0904 0.0796 0.0862 0.0846 0.0826 0.0824 0.0846 0.0935
Disney 0.1087 0.1041 0.1143 0.1132 0.1066 0.1034 0.1208 0.1163
Dupont 0.0752 0.0604 0.0699 0.0640 0.0697 0.0631 0.0674 0.0704
GE 0.0860 0.0804 0.0685 0.0884 0.0712 0.0684 0.0675 0.0905
Walmart 0.0878 0.0823 0.0826 0.0844 0.0820 0.0781 0.0818 0.0901

Z2t in equation (17), are highly correlated by construction. For the 40-day horizon,
their average correlation across our markets and samples is 0.972, and the mini-
mum average correlation is 0.934 in the gold market. This high multicollinearity
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results in high standard errors for the 2 coefficients leading to high forecast errors.
In contrast, for the 40-day horizon, the average absolute correlation between the
Z2t and Z3t terms for the modified EGARCH model in equation (23) is only 0.138.
As a result, its standard errors and forecasting errors are small, and the modified
EGARCH model has lower RMSEs than the standard EGARCH model in most
markets at most horizons.

In addition to forecasts of the standard deviation, we generate forecasts and
RMSEs for forecasts of the variance of surprise returns and of the natural log of
the standard deviation of surprise returns. Note that, as compared to RMSEs for
forecasts of the standard deviation, outliers have more impact on the RMSE for
forecasts of the variance and less on the RMSE for forecasts of the log of the
standard deviation. Summary measures of the relative forecast accuracy for fore-
casts of the variance and log standard deviation are reported in Table 7, along
with results for the standard deviation forecasts. To keep the presentation man-
ageable, in Table 7 we report RMSEs averaged across the 12 markets. Since
RMSE(s, j, k) varies considerably for different markets, j, to weight the mar-
kets equally, we first standardize by calculating for each market, horizon, and
model, a relative root mean squared forecast error RRMSE(s, j, k), where each
model’s RMSE is divided by the RMSE for a naive model in which the fore-
cast is a constant equal to the mean of actual volatility over the entire sample.
Specifically, RRMSE(s, j, k) =RMSE(s, j, k)/RMSE(s, j)′, where RMSE(s, j)′=
{(1/T)∑T

t=1[Act(s, j)t−Act(s, j)]2}0.5 and Act(s, j)=(1/T)
∑T

t=1 Act(s, j)t. For
example, for the standard deviation forecasts, RRMSE(s, j, k) is calculated by di-
viding the figures in columns 3–9 of Table 6 by the figures in column 2. Note
that since Act(s, j) is an average over the entire sample, it is not out-of-sample
like the 7 forecasting models. We then average the RRMSEs over the 12 markets:
RRMSE(s, k) = (1/12)

∑12
j=1 RRMSE(s, j, k).

Values of RRMSE(s, k) are reported in Table 7 for each model k and horizon
s for forecasts of the standard deviation, variance, and natural log of the standard
deviation. For each horizon, the lowest RRMSE(s, k) is shown in bold and the
second lowest in italics. In general, the ARLS model has the lowest RRMSE(s, k),
followed by the modified EGARCH model. This pattern is weakest for forecasts
of the variance.

Of course, the RRMSEs in Table 7 are averages over 12 markets, so the fig-
ures in Table 7 do not mean that the ARLS and modified EGARCH models are
the best in all markets. For forecasts of the variance, the ARLS model has the low-
est RMSE in 23 of our 48 market/horizon combinations, the modified EGARCH
model in 13, the standard EGARCH model in 6, the standard GJR model in 3,
the modified GARCH in 2, and the standard GARCH in 1. For forecasts of the
log of the standard deviation, the number of minimum RMSEs for the respective
models are modified EGARCH: 24, ARLS: 19, standard GARCH: 3, standard
EGARCH:1, and standard GJR:1.

Finally, we compare the 7 models using a different loss criterion: the mean
absolute forecast error, MAE(s, j, k), defined as MAE(s, j, k)=[(1/T)

∑T
t=1 |FE(s,

j, k)t|]. Summary measures are presented in Table 8. Since the MAE scale differs
across the different markets, we again first calculate each model k’s MAE rela-
tive to that of a naive model in which the forecast volatility is a constant equal to
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TABLE 7

Relative Root Mean Squared Forecast Errors

Table 7 presents estimates of relative root mean squared forecast errors (RRMSE) for 7 volatility forecasting models. For
each market and forecast horizon, RRMSEs are calculated as the ratio of the root mean squared forecast error (RMSE) for
each model relative to the RMSE for a naive model in which forecast volatility (either standard deviation, variance, or log
standard deviation) is a constant equal to mean volatility over the entire period. RRMSEs are then averaged across the 12
markets listed in previous tables and reported for forecasts of the standard deviation, variance, and log standard deviation
of surprise returns in Panels A, B, and C, respectively. For each horizon (or row), the lowest mean RRMSE is in bold and
the next lowest is in italics.

GARCH EGARCH GJR

Forecast Horizon ARLS Standard Modified Standard Modified Standard Modified

Panel A. Forecasts of the Standard Deviation of Surprise Returns

10-day horizon 0.8465 0.8895 0.8993 0.8759 0.8652 0.8948 0.9359
20-day horizon 0.8367 0.8853 0.8989 0.8652 0.8542 0.8908 0.9504
40-day horizon 0.8520 0.9008 0.9194 0.8779 0.8622 0.9026 0.9956
80-day horizon 0.9088 0.9457 0.9870 0.9293 0.9141 0.9478 1.1025
All horizons 0.8610 0.9053 0.9262 0.8871 0.8739 0.9090 0.9961

Panel B. Forecasts of the Variance of Surprise Returns

10-day horizon 0.9238 0.9662 0.9408 0.9500 0.9554 0.9958 0.9671
20-day horizon 0.9084 0.9734 0.9428 0.9300 0.9310 1.0008 0.9787
40-day horizon 0.9097 0.9781 0.9556 0.9177 0.9119 0.9940 1.0161
80-day horizon 0.9453 1.0034 1.0138 0.9431 0.9397 1.0103 1.1442
All horizons 0.9218 0.9803 0.9633 0.9352 0.9345 1.0002 1.0265

Panel C. Forecasts of the Log of the Standard Deviation of Surprise Returns

10-day horizon 0.8285 0.8890 0.9268 0.8842 0.8231 0.8859 0.9981
20-day horizon 0.8104 0.8690 0.9063 0.8649 0.8174 0.8678 1.0082
40-day horizon 0.8302 0.8846 0.9200 0.8837 0.8442 0.8856 1.0445
80-day horizon 0.9041 0.9343 1.0039 0.9425 0.9130 0.9405 1.1705
All horizons 0.8433 0.8942 0.9392 0.8938 0.8494 0.8949 1.0553

mean volatility over the period; that is, RMAE(s, j, k)=MAE(s, j, k)/MAE(s, j)′,
where MAE(s, j)′ is the naive volatility forecast. RMAEs are then averaged over
the 12 markets, j, yielding the average RMAE(s, k) reported in Table 8.

The basic result is the same as for the RMSE criterion in that the ARLS
and modified EGARCH models clearly dominate the other 5 forecasting models.
However, under this criterion, the usual relative ranking of the ARLS and mod-
ified EGARCH models is reversed. Whereas the ARLS model tends to have a
lower RMSE in more markets and horizons, the modified EGARCH model gen-
erally has the lower MAE. For forecasts of the standard deviation, in our 48 mar-
ket/horizon combinations, the modified EGARCH has the lowest MAE in 30,
ARLS has the lowest in 16, and the standard GARCH model has the lowest in
2 (both at the 80-day horizon, where all models predict poorly). For forecasts
of the variance, the modified EGARCH model has the lowest MAE in 32 mar-
ket/horizon combinations, ARLS in 13, and standard GARCH in 3 (again, all at
the 80-day horizon). For forecasts of the log of the standard deviation, the mod-
ified EGARCH model has the lowest MAE in 26 market/horizon combinations,
ARLS in 20, and standard GARCH in 2 (80-day horizon). The finding that the
modified EGARCH model tends to have a lower MAE than ARLS, but a higher
RMSE, indicates that a majority of the time the modified EGARCH’s forecasts
are closer to actual volatility than ARLS’s forecast but that it also has more large
forecast errors.

In summary, the ARLS model of Ederington and Guan (2005) and the modi-
fied EGARCH model developed here clearly dominate the other 5 models in terms
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TABLE 8

Relative Mean Absolute Forecast Errors

Table 8 presents estimates of relative mean absolute forecast errors (RMAE) for 7 volatility forecasting models. For each
market and forecast horizon, RMAEs are calculated as the ratio of the mean absolute forecast error (MAE) for each model
relative to the MAE for a naive model in which forecast volatility (either standard deviation, variance, or log standard
deviation) is a constant equal to the mean volatility over the entire period. RMAEs are then averaged across the 12 markets
listed in previous tables and reported for forecasts of the standard deviation, variance, and log standard deviation of
surprise returns in Panels A, B, and C, respectively. For each horizon (or row), the lowest mean RMAE is in bold and the
next lowest is in italics.

GARCH EGARCH GJR

Forecast Horizon ARLS Standard Modified Standard Modified Standard Modified

Panel A. Forecasts of the Standard Deviation of Surprise Returns

10-day horizon 0.8089 0.8788 0.9159 0.8692 0.7954 0.8761 0.9484
20-day horizon 0.7882 0.8579 0.8966 0.8497 0.7773 0.8562 0.9370
40-day horizon 0.8105 0.8760 0.9132 0.8736 0.7970 0.8750 0.9743
80-day horizon 0.8730 0.9245 0.9753 0.9359 0.8635 0.9235 1.0618
All horizons 0.8201 0.8843 0.9252 0.8821 0.8083 0.8827 0.9804

Panel B. Forecasts of the Variance of Surprise Returns

10-day horizon 0.7656 0.8394 0.8599 0.8201 0.7522 0.8451 0.8841
20-day horizon 0.7557 0.8318 0.8582 0.8096 0.7416 0.8365 0.8892
40-day horizon 0.7857 0.8544 0.8858 0.8362 0.7597 0.8566 0.9419
80-day horizon 0.8482 0.9060 0.9541 0.9015 0.8207 0.9045 1.0444
All horizons 0.7891 0.8579 0.8895 0.8419 0.7686 0.8607 0.9399

Panel C. Forecasts of the Log of the Standard Deviation of Returns

10-day horizon 0.8288 0.8918 0.9327 0.8890 0.8194 0.8873 0.9896
20-day horizon 0.8058 0.8700 0.9105 0.8705 0.8021 0.8671 0.9783
40-day horizon 0.8243 0.8859 0.9215 0.8931 0.8249 0.8849 1.0067
80-day horizon 0.8905 0.9325 0.9860 0.9529 0.8984 0.9340 1.0986
All horizons 0.8374 0.8950 0.9377 0.9014 0.8362 0.8933 1.0183

of out-of-sample forecasting ability over multiperiod horizons. The latter model is
structurally identical to the standard EGARCH model except that the parameters
vary with the forecast horizon and it is estimated using NLS. The ARLS model
tends to have lower RMSEs in more markets at more horizons, while the modified
EGARCH model tends to have lower MAEs. However, by both criteria, these 2
forecasting models clearly forecast better over multiday horizons than the other 5
models, including traditional GARCH, EGARCH, and GJR.

V. Conclusions

Option valuation and value-at-risk (VaR) applications typically require vola-
tility forecasts over longer horizons than the frequency of the data used to generate
the volatility forecast. We have shown that, in GARCH-type models, the standard
practice of generating these longer-horizon forecasts by recursive substitution
forces the importance of older observations relative to more recent observations to
be the same whether forecasting volatility for the near or distant future—although
the absolute importance of both recent and older observations declines due to
mean reversion. In contrast, we find that older observations are relatively more
important in forecasting volatility in the more distant future than in forecasting
volatility in the near future.

We estimate modified versions of the GARCH, EGARCH, and GJR mod-
els that allow the weighting parameter to vary with the forecast horizon, stan-
dard versions of these 3 models, and the ARLS model of Ederington and Guan
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(2005). Out-of-sample forecasting ability of all 7 is compared over a variety of
markets and forecast horizons for forecasts of the standard deviation, variance,
and log of the standard deviation of returns. While no one model forecasts best
over all markets and horizons, the ARLS and modified EGARCH models (both of
which allow relative weights on past observations to vary with the forecast hori-
zon) clearly dominate in most markets at most horizons, with the ARLS model
generally having the lower RMSE and modified EGARCH the lower MAE.

Our main points are: i) that generating longer-term volatility forecasts by the
standard recursive procedure is inappropriate, and ii) that volatility forecasting
procedures need to allow older observations to be relatively more important in
forecasting volatility at more distant horizons.
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