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A swirling wake flow submitted to an adverse pressure gradient is studied by bifurcation
analysis, modal analysis and direct numerical simulations. In contrast to experiments in
diverging tubes, the adverse pressure gradient is imposed by the presence of a downstream
axisymmetric obstacle centred on the vortex axis. Different adverse pressure gradients
are investigated by modifying the obstacle radius, which results in the deceleration
of the vortex axial velocity. Hence, vortex breakdown occurs for a sufficiently large
pressure gradient. We observe a spiral vortex breakdown type without any recirculation
bubble, which contrasts with classical spiral vortex breakdown developing in the bubble
wake. A weakly nonlinear analysis is performed to characterize this self-sustained
instability. The resulting Landau equation reveals the sub-critical character of this Hopf
bifurcation, highlighting a sub-critical vortex breakdown. In addition, the stabilization
mechanism of this spiral vortex breakdown caused by an off-centre displacement of
the downstream axisymmetric obstacle is investigated by direct numerical simulations.
Nonlinear dynamics, such as a quasi-periodic state, is observed as a consequence of
nonlinear interactions between the spiral vortex breakdown and the misalignment of the
obstacle before the stabilization occurs.

Key words: vortex breakdown, flow–structure interactions

1. Introduction

Vortex breakdown is a hydrodynamic phenomenon that affects swirling jet and wake flows.
It is commonly defined as an abrupt change of the flow topology going from a columnar
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vortex state to one of the possible vortex breakdown states, which are characterized by
a backward flow reversal along the vortex axis (Shtern & Hussain 1999; Lucca-Negro
& O’Doherty 2001). These breakdown states are the bubble vortex breakdown, the
spiral vortex breakdown or the multiple helical vortex breakdown. This transition is
mainly controlled by two parameters, the Reynolds number, and the Swirl number, the
latter typically defined as the ratio between the maximum azimuthal velocity and the
centreline axial velocity. Several swirling flows in industrial applications undergo vortex
breakdown. While it ensures flame stabilization and enhances mixing in combustion
chambers (Paschereit, Flohr & Gutmark 2002; Oberleithner et al. 2015), it causes in
contrast manoeuvrability difficulties of delta wings as it may cause unsteady fluctuations
(Lambourne & Bryer 1962). Such unsteady fluctuations can also jeopardize the mechanical
structure of hydraulic turbomachinery operating at off-design conditions due to unsteady
loading and fatigue (Pasche, Gallaire & Avellan 2019).

Over the years, vortex breakdown has been investigated in several configurations and for
a wide range of swirl and Reynolds numbers (see Hall 1972; Leibovich 1978; Lucca-Negro
& O’Doherty 2001). Closed container experiments with a rotating end wall produce vortex
breakdown into a steady recirculation bubble at a constant streamwise position, among
other vortex breakdown types. This configuration is particularly convenient to perform
experimental measurements and numerical simulations to explore vortex breakdown
topology (Escudier 1984; Spohn, Moiry & Hopfinger 1993; Serre & Bontoux 2002).
Recently, the circular geometry has been substituted by a polygonal container introducing
boundary effects and modifying the bifurcation map of the vortex breakdown (Naumov
& Podolskaya 2017). Swirling jet flows in open tubes have also been thoroughly studied.
Flow maps portraying the vortex breakdown type as a function of the breakdown location,
Reynolds number and swirl number have been reported by Sarpkaya (1971). Spiral vortex
breakdown is observed at smaller swirl and Reynolds numbers than the bubble vortex
breakdown, which is observed at larger swirl and Reynolds numbers. At even larger swirl,
multiple helical vortex breakdown has also been observed (see Alekseenko et al. 1999;
Okulov 2004; Sorensen, Naumov & Okulov 2011). Two- and three-dimensional direct
numerical simulations of canonical vortices, such as the Batchelor, Grabowski and Berger
or Maxworthy vortex profiles, have contributed to the further understanding of vortex
breakdown by investigating the effect of confinement, the resulting bifurcation diagrams
and possible route to chaos (see Althaus et al. 1994; Sotiropoulos, Ventikos & Lackey
2001; Mattner, Joubert & Chong 2002; Ruith et al. 2003; Jochmann et al. 2006; Jones,
Hourigan & Thompson 2015; Pasche, Gallaire & Avellan 2018b; Moise & Mathew 2019),
among others.

The formation of the recirculation follows two possible scenarios: along the first
scenario, the bubble can develop from a smooth transition as the bifurcation parameter
(swirl or Reynolds number) increases. The axial velocity, which is initially positive,
diminishes progressively until it changes sign and becomes negative, forming the
recirculation bubble. This transition has been observed in closed containers and open
configurations for a Grabowsky and Berger vortex profile prevailing at the inlet (see
Ruith et al. 2003; Meliga, Gallaire & Chomaz 2012; Viola 2016). In the second
scenario, the bubble is formed through a saddle-node bifurcation, inducing a sudden
transition to a recirculation flow. This transition is illustrated in Lopez (1994) for
low Reynolds number flow. In the latter case, a Batchelor vortex is considered at
the inlet of an open pipe, where the bubble vortex breakdown is induced by a small
contraction of the pipe. A similar bifurcation structure has been theoretically and
numerically predicted in the inviscid limit (see Wang & Rusak 1997; Rusak, Whiting &
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Vortex impingement onto an axisymmetric obstacle

Wang 1998). In this second scenario, a hysteresis region appears where both columnar
and bubble vortex breakdown solutions coexist for bifurcation parameters above a certain
threshold.

Regarding the spiral vortex breakdown state, the most commonly acknowledged
interpretation relies on a secondary destabilization of an helical disturbance that feeds
on an axisymmetric recirculation bubble that prevails at early stages (see Ruith et al.
2003; Herrada & Fernandez-Feria 2006). The formation of the spiral has been identified
as resulting from the absolutely unstable nature of a helical mode in the wake of the
vortex breakdown bubble (see Gallaire et al. 2006). This secondary destabilization can
also be characterized by a global stability analysis, which reveals a wavemaker also
located in the recirculation bubble wake (Meliga et al. 2012; Qadri, Mistry & Juniper
2013). In this unbounded flow, this helical instability results in a supercritical Hopf
bifurcation leading to a limit cycle solution with the spiral winding around the recirculation
bubble. It should be also noted that in some other flow configurations, in particular in the
presence of centrifugally unstable inlet velocity profiles, for instance in the experiment by
Billant, Chomaz & Huerre (1998), the appearance of double helical (m = 2) and triple
helical (m = 3) modes precedes the appearance of recirculation bubbles. These helical
pre-breakdown states were interpreted as primary absolute instabilities by Gallaire &
Chomaz (2003).

Besides an increase in swirl or Reynolds numbers, vortex breakdown can be favoured
by a divergent pipe, as first used in the experimental study of Sarpkaya (1971). It has been
shown that the greater the divergence of the pipe, or the adverse pressure gradient, the
less swirl is needed to generate breakdown (see Sarpkaya 1974; Krause 1985; Pagan &
Benay 1987; Spall, Gatski & Ash 1990). The role of divergent pipes on the bifurcation
structure associated with axisymmetric vortex breakdown has also been investigated
theoretically in the inviscid limit by Rusak et al. (2017), Rusak, Judd & Wang (1997)
and Wang & Rusak (1997). In addition to the diverging pipe, a second configuration has
been investigated: a free vortex entering an air intake whose mass flow can be varied
by an adjustable contraction (see Delery 1994). By reducing the mass flow, an adverse
pressure gradient was imposed on the incoming vortex provoking vortex breakdown.
A similar flow configuration has been recently investigated by Pasche et al. (2014), where
the adverse pressure gradient was generated by a sphere, which results in a single spiral
mode without a recirculation bubble. Such a configuration has been rarely studied despite
its relevance for vortex structure interactions, a subject for instance reviewed by Rockwell
(1998).

In the present study, we perform a numerical study inspired by the experimental
investigation of Pasche et al. (2014). The dynamics of the streamwise impinging of the
Batchelor vortex onto an axisymmetric obstacle is investigated for laminar flow conditions.
The spherical obstacle investigated in the former paper is replaced by an axisymmetric
obstacle to avoid purposeless numerical complexities due to the sphere wake. The
two-dimensional (2-D) axisymmetric steady Navier–Stokes equations are first solved
and we perform a bifurcation analysis on the aspect ratio, swirl number and Reynolds
number. These results are supported by three-dimensional (3-D) direct numerical flow
simulations (DNS) for specific bifurcation parameters. The present study focuses on the
development of a single spiral mode of vortex breakdown as observed by Lambourne
& Bryer (1962) and Pagan & Benay (1987). In addition, the dynamics of the vortex
streamwise impingement in a presence of a misalignment between the vortex centre and
the obstacle axis is investigated. Even a small displacement leads to a stable vortex and the
route to this stabilization is investigated using bifurcation theory.
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2. Configuration

We investigate numerically the streamwise impingement of a canonical Batchelor vortex
onto an elongated axisymmetric obstacle. A cylindrical coordinate system (R, θ, Z) is
introduced, whose axial component is aligned along the obstacle centreline. In this
coordinate system, the fluid motion, associated with the state vector q = (UR, Uθ , UZ, P),
is governed by the Navier–Stokes equations and characterized by a homogeneous and
incompressible fluid of kinematic viscosity ν. The variables are scaled by the physical
length and velocities defined as the vortex core size Rv and a uniform axial velocity U∞
at the inlet, respectively. These reference scales refer to the upstream vortex defined as a
Batchelor vortex, which writes in dimensionless variables

UR(R) = 0, Uθ (R) = S

(
1 − e−R2

)
R

, UZ(R) = 1, on Γin, (2.1)

where S is the swirl number defined as S = RvΩ0/U∞ with Ω0 the vorticity and Rv the
radius of the vortex. Using this scaling, the dimensionless Navier–Stokes equations writes
in vector formulation as

∂U
∂t

+ (U · ∇) U = −∇P + Re−1∇2U, in Ω,

∇ · U = 0, in Ω,

⎫⎬
⎭ (2.2)

with the Reynolds number defined as Re = RvU∞/ν. We solve these equations in a large
computational domain Rmax = 10Rs and Zfree = 19Rs, where Rs is the obstacle radius.
These conditions ensure the vortex in front of the obstacle to be free of inlet and radial
disturbances, by isolating the vortex from the free outflow condition imposed on the
external boundary Γext (see Pasche et al. 2018b). The Batchelor vortex, (2.1), is imposed
at the inlet Z = 0 and can be aligned or shifted by an offset D regarding the obstacle axis.
The obstacle extends up to the outlet boundary Γout to avoid flow unsteadiness due to
the wake of the obstacle. The Navier–Stokes equations are solved in a 2-D axisymmetric
domain and in a 3-D domain. In the 2-D axisymmetric domain, a free outflow ((−PI +
Re−1 · (∇V )) · n = 0) is imposed on the outlet boundary Γout, while in the 3-D domain,
a convective boundary condition is imposed on Γout (∂tV + Uc · ∂nV = 0). We fix the
convective velocity to be equal to the free-stream velocity Uc = (0, 0, 1). This change of
the outlet boundary condition does not impact the flow dynamics as it is imposed far away
from the obstacle nose Zobs = 10Rs.

In this configuration, the obstacle that the vortex must accommodate is defined by a swirl
profile radius ratio, in short aspect ratio h = Rv/Rs. The different parameters investigated
are summarized in table 1. We consider only obstacles that have a larger radius than the
vortex core inducing a strong topology change of the vortex. The adverse pressure gradient
modifies both the viscous core and the potential vortex region to force the deflection of the
vortex circumventing the obstacle.

We introduce a second non-dimensional length scale Z̃ = Z × h and R̃ = R × h,
which is more appropriate to portray the flow solution because it enables a generalized
representation of the computational domain for any aspect ratio studied. Thus, in the
figures of the present study, the obstacle radius becomes unity and the vortex core size
adjusts consequently. Any variables specified with ˜(·) use the newly introduced length
scale, which is just a rescaling factor.
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Description h = Rv/Rs S Re D

2-D axi 0.5 0.85–1.2 0–1200 —
2-D axi 0.25 0.85–1.2 0–1500 —
3-D 0.5 1.0 312–324.5 —
3-D 0.25 1.0 212.5–225 —
3-D 0.25 1.0 224.75 0.0–0.2

Table 1. Parameters of the present numerical analysis, h the aspect ratio between half the vortex core size
and the obstacle radius, S the swirl number, Re the Reynolds number based on the vortex and D the lateral
displacement of the vortex.

3. Methods of analysis

We consider both 2-D axisymmetric configuration and 3-D configuration of the
computational domain. The 2-D axisymmetric analysis allows us to perform bifurcation,
modal and weakly nonlinear (WNL) analysis. The 3-D DNS analysis validates the 2-D
axisymmetric simulations and provides a deeper understanding of symmetry breaking of
the flow when the vortex is laterally displaced.

3.1. Two-dimensional axisymmetric analysis
We look for laminar solutions of the flow by solving the 2-D axisymmetric steady
Navier–Stokes equations for a wide range of Reynolds numbers and swirl numbers. These
solutions are explored by performing a bifurcation analysis on the Reynolds number for
several specified swirl numbers. An arc-length continuation method is used to follow the
stable and unstable branches of the base flow. As an axisymmetric coordinate system is
used, critical points in the space of the bifurcation parameters can be associated with
different azimuthal wavenumbers m. The boundaries of these critical points are tracked
using a fold tracking algorithm and a Hopf tracking algorithm (Salinger et al. 2005),
for the azimuthal wavenumber m = 0 and m = 1, respectively. The higher azimuthal
wavenumbers are not tracked in the present study because the azimuthal wavenumber
m = 2 becomes dominant for high swirl number, as already observed in Sarpkaya (1974)
and Meliga et al. (2012). The results of a convergence study are presented in appendix A.
These modes are highlighted in the modal analysis too. Linear global stability analysis is
performed (see Pasche et al. (2018b) for details and validation), which allows us to access
the full spectrum of the flow while tracking algorithms follow the marginally unstable
eigenmode of specific azimuthal wavenumbers.

In the linear global stability analysis, the flow is decomposed into a base flow q0 and
a disturbance q′. The disturbance q′ is expanded in normal modes for different azimuthal
wavenumbers m ∈ Z,

q′(R, θ, Z, t) = q1(R, Z) exp(−iωt + imθ) + c.c., (3.1)

where c.c. is the complex conjugate. The substitution of this definition in the governing
equations (2.2), leads to an eigenvalue equation expressed in a compact form as

((ωi − iωr)N + Lm(U)) q1 = 0, in Ωa, (3.2)

where Lm is the operator for the linearized Navier–Stokes equations of azimuthal
wavenumber m. This eigenvalue problem results in eigenvalues and eigenmodes that will
lead to self-sustained instability for unstable cases. This problem is solved using the finite
element library FreeFem++ (Hecht 2012), see appendix B.
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3.2. Weakly nonlinear analysis
A multiple time scale analysis is performed at the critical Reynolds value Rec, of
the marginally unstable eigenmode q1 of eigenvalue −iωc, to investigate the WNL
mechanism behind the flow bifurcations. An asymptotic expansion of the flow field
q = (UR, Uθ , UZ, P) regarding the small parameter ε is considered

q = q0 + εq1 + ε2q2 + ε3q3 + h.o.t, (3.3)

where h.o.t stands for higher-order terms, and where 0 < ε � 1 and defines the distance
from the thresholds (3.4). In addition, we assume that the Reynolds number departs from
criticality at order ε2, yielding

1
Re

= 1
Rec

− ε2. (3.4)

The unsteady dynamics is decomposed into a fast time scale t0 and slow time scale T2i, the
latter start acting at ε2 too:

t = t0 +
∑
i�1

ε2iT2i. (3.5)

This scaling has been used for axisymmetric flows (see Meliga et al. 2012; Citro et al.
2016). Substituting the asymptotic expansion, (3.3) in the governing equations (2.2) and
using the chain rule for the derivative involving multiple time scales results in systems
of equations at different epsilon orders that are solved. These equations are summarized
in appendix B and the reader is invited to read Meliga et al. (2012) and Sipp & Lebedev
(2007) for additional explanations.

The WNL analysis leads to the definition of an amplitude equation that describes
slow modulation in time and space of patterns out of equilibrium. This approach is only
valid for WNL conditions, which means close to the threshold of instability Re ≈ Rec,
and provides only qualitative results in the stronger nonlinear regime. Nevertheless, the
amplitude equation describes completely the pattern forming in its range of validity. In the
present case, we will show that the flow dynamics follows a Landau amplitude equation,
which writes, up to the fifth order (see Fujimura 1991; Dusek, Gal & Fraunié 1994),

∂a
∂t

− ε2(λ1 + ε2λ2)a − (μ1 + ε2μ2)a|a|2 − γ a|a|4 = 0, (3.6)

with λ, μ and γ complex coefficients and a the complex amplitude.
The amplitude a, solution of (3.6), allows a direct comparison to DNS results when the

energy norm of the eigenvector matches the energy of the DNS disturbance. The DNS
solution is a real value velocity field and the WNL analysis is performed in the complex
number set. Thus, only half the energy of the WNL analysis has to be used to compare
with the DNS, i.e. the complex conjugate part of the product is dropped. The final solution
of the WNL analysis writes

q = q0 + aq1a exp(iθ − iωct) + a|a|2q3a|a|2 exp(iθ − iωct)

+ a|a|4q5a|a|4 exp(iθ − iωct) + h.o.t + c.c. (3.7)

Assuming the decomposition: a = ρ(t) eiφ(t), the following equation holds for the
disturbance amplitude:√

(q − q0)
2 =

√
ρρ∗(eiφq1a eiθ−iωct, e−iφq∗

1a e−iθ+iωct) + h.o.t, (3.8)

910 A36-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
11

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1011


Vortex impingement onto an axisymmetric obstacle
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2Rv
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D

Y
X

Z

Figure 1. Half of the computational domain.

where the left-hand side is the disturbance amplitude of the DNS and the right-hand side
is the disturbance amplitude of the WNL analysis. It results in

√
(q − q0)

2 =
√

ρρ∗ + ρρ∗|ρ|2 + h.o.t (3.9)

using the following normalization of the adjoint eigenmode:

(q1a, q∗
1a) =

∫
Ω

q1a · q∗
1a = 1, (3.10)

which approximates very well the nonlinear disturbance amplitude at threshold. However,
it can differ further away from the threshold because of nonlinear interactions. Once
again, the computation of the WNL expansion is performed using the FreeFem++ library,
involving the resolution of eigenvalue, adjoint eigenvalue and resolvent problems, which
are expressed in appendix B.

3.3. Three-dimensional direct numerical flow simulations
Direct numerical flow simulations of the configuration displayed in figure 1 have been
performed using NEK5000, a spectral element solver developed by Fischer, Lottes &
Kerkemeier (2008). An O-grid mesh is used to mesh the obstacle. We use a convective
boundary condition at the outlet that avoids backward waves and helps convergence for this
swirling flow. Similar simulations of the vortex breakdown have already been performed
by the authors in Pasche et al. (2018b). A convergence analysis is presented in appendix A.

4. Bifurcation analysis

Let us start by introducing an axisymmetric flow solution for S = 1.05 and Re = 255.5
with and without a downstream obstacle having an aspect ratio of h = 0.5, see figure 2.
The flows are illustrated by surface streamlines coloured by the axial velocity magnitude
on the upward R coordinate and by the azimuthal velocity magnitude on the downward
R coordinate. In figure 2(a), the flow is purely columnar and the vortex progressively
dissipates by viscous diffusion as it propagates downstream. On the contrary, the formation
of a recirculation bubble is observed when an obstacle is located on the vortex trajectory
for the parameters considered. This obstacle generates an adverse pressure gradient which
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(b)

(a)

Figure 2. Two-dimensional axisymmetric vortex flow solutions at S = 1.05, Re = 255.5 without
impingement (a), and with impingement onto a downstream obstacle h = 0.5 (b). On the upward R coordinate,
the figure shows surface streamlines coloured by the axial velocity magnitude, and on the downward R
coordinate the figure shows the azimuthal velocity component. Both examples are stable solutions. Panel (b)
represents a typical solution observed in the present numerical study.

originates in this change of flow topology. The recirculation bubble is reminiscent of
a bubble vortex breakdown, which is characterized by a negative velocity on the axis
defining the starting location of the bubble (see Leibovich & Stewartson 1983). Behind
the first vortex breakdown bubble, a typical swirling wake flow develops, which attaches
to the obstacle, generating a second recirculation region.

The adverse pressure gradient decelerates mainly the axial velocity on the centreline,
while the azimuthal velocity remains almost constant before the vortex breaks down (see
Delery 1994; Pasche et al. 2014). In an axisymmetric system, the azimuthal velocity
is mainly affected by the radial momentum through the radial pressure gradient. The
transport of the azimuthal momentum is ensured by nonlinear advection. In contrast, the
axial pressure gradient modifies straightforwardly the axial momentum. Thus, the axial
velocity is first decelerated, and then the azimuthal velocity is modified as the recirculation
bubble is reached.

In figure 2(b), we define the recirculation length, which measures the length between
the obstacle front and the upstream zero value of the axial velocity on the axis. This
recirculation length is used, in the present study, as a bifurcation parameter to identify
the different bifurcation branches of the flow. The associated bifurcation diagrams are
presented for two configurations: an aspect ratio h = 0.5 in figure 3(a) and an aspect
ratio h = 0.25 in figure 3(b). The black curves, which represent bifurcation branches,
show the recirculation length of the bubble on the vertical axis as a function of the
Reynolds number Re, for different values of the swirl number S. As the Reynolds number
is increased, the recirculation bubble propagates upstream, following a cusp shape in the
bifurcation diagram. Such a transition is similar to the saddle-node bifurcation observed
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Figure 3. Axisymmetric bifurcation map of the vortex impinging a downstream obstacle for two aspect ratios;
h = 0.5 (a) and h = 0.25 (b). The red dots show the saddle-node bifurcation threshold, and the blue dots show
the Hopf bifurcation threshold.

by Lopez (1994) resulting from the presence of a radial contraction in a numerical
tube experiment. In figure 3, the forward branches represent stable solutions, while the
backward branches represent unstable solutions. For h = 0.5, the transition is smooth,
while for h = 0.25 several unstable branches appear, increasing the complexity of the
bifurcation diagram. In both cases, as the swirl number is increased, the first bifurcation
appears at smaller Reynolds numbers and the cusp shapes are damped, tending to the
bubble vortex breakdown solution of the canonical vortex observed in tube experiments
(see Meliga & Gallaire 2011). At lower Reynolds number, we observe in figure 3 that
the bifurcation curves are flat, implying that the flow is attached to the obstacle. On
the contrary, at the largest displayed Reynolds numbers, the recirculation lengths remain
constant because the back flow approaches the inlet of the computational domain. A larger
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Figure 4. Bifurcation curves of the axisymmetric vortex flow impinging an obstacle of aspect ratio h =
Rv/Rs = 0.5 (a) and h = 0.25 (b), for a swirl number of S = 1.0. The dashed curves represent the unstable
branch, while the solid curves represent the stable branches. The blue crosses exhibit the critical Reynolds
number Rec of the Hopf bifurcation, and the green dots exhibit the selected bifurcation points represented in
the subsequent figures 5 and 6.

obstacle size shifts the saddle-node bifurcation to smaller Reynolds number as already
reported by Delery (1994) and Pasche et al. (2014).

In figure 3, we also present the outcome of the turning point and the Hopf point tracking
algorithms. The red dots are the neutrally stable limit of the flow for the azimuthal
wavenumber m = 0. These curves accurately fall on the stable–unstable limit of the
bifurcation branches, which has already been observed for swirling flows (Meliga &
Gallaire 2011; Pasche, Avellan & Gallaire 2018a). The blue dots represent the neutrally
stable limit of the flow concerning the azimuthal wavenumber m = 1, i.e. limit cycle
solutions.

The detailed bifurcation curves for a S = 1.0 are shown in figure 4. The unstable
branches are represented by discontinuous curves and the solid lines represent stable
branches. The critical Reynolds number at which the Hopf bifurcation occurs is indicated
with blue crosses. In both cases, the turning points giving birth to the second stable
branches appear before the critical Reynolds number of the Hopf bifurcation.

The flow solutions of the first and second stable branches are illustrated in figure 5,
and correspond to the bifurcation parameters of the green dots in figure 4. On the first
stable branch, at low Reynolds number, the classical stagnation point is recovered. As
the Reynolds number increases, a small recirculation region is observed in front of the
obstacle as illustrated in figure 5(a) at Re = 350, S = 1.0 and h = 0.5. This recirculation
slowly propagates upstream until the turning point is reached, and remains attached
to the obstacle. On the unstable branch, the recirculation zone increases without the
formation of a separate bubble, to merge with the first axisymmetric solution on the second
stable branch, see the turning point in figure 5(b) at Re = 263.2 and S = 1.0. Then, the
recirculation zone separates from the obstacle and defines a detached bubble as illustrated
in figure 5(c) at Re = 350 and S = 1.0 (note the relative analogy with the upper branch
solution depicted in figure 2(b) for S = 1.05 and Re = 255.5). The transition from the
attached to the detached recirculation bubble occurs smoothly as the Reynolds number
increases. The second stable branch is, therefore, associated with the development of the
bubble vortex breakdown. Regarding the smaller aspect ratio h = 0.25, whose first stable
branch solution is displayed in figure 5(d) at Re = 325.1 and S = 1.0, a similar scenario
is observed up to the second stable branch: the recirculation bubble detaches from the

910 A36-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
11

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1011


Vortex impingement onto an axisymmetric obstacle

4

2

0

2

4

–0.01 0.2 0.4

h = 0.5, Re = 350, 1st stable branch

h = 0.5, Re = 263.2, 2nd stable branch

h = 0.5, Re = 350, 2nd stable branch

h = 0.25, Re = 325.1, 1st stable branch

U

R�

0.6 0.8 1.0

0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0

4

2

0

2

4

R�

0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0

4

2

0

2

4

R�

0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0

4

2

0

2

4

R�

0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0

Z�

(b)

(a)

(c)

(d )

Figure 5. Axisymmetric vortex flow solutions for h = 0.5 and S = 1.0, on the first stable branch Re =
350.0 (a), at the threshold of the second stable branch Re = 263.2 (b) and on the second stable branch Re =
350 (c), as well as the solution for h = 0.25 and S = 1.0 on the first stable branch Re = 325.1 (d). These
solutions correspond to the green dots in figure 4.

obstacle and moves upstream letting a second recirculation region appear, which remains
attached to the obstacle.

Moreover, we present the eigenvalue spectra of the solutions corresponding to the green
dots displayed in figures 4 and 5. On the first stable axisymmetric branch at h = 0.5
and Re = 350 (see figure 6a) the eigenvalue spectrum displays an unstable eigenvalue of
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Figure 6. Eigenvalue spectra of the axisymmetric vortex solution h = 0.5, S = 1.0 for the first stable branch
at Re = 350.0 (a), for the second stable branch at Re = 263.2 (b) and for the second stable branch at
Re = 350 (c), as well as the first stable branch for h = 0.25, S = 1, Re = 325.1 (d). These solutions correspond
to the green dots in figure 4.

azimuthal wavenumber m = 1. This eigenvalue growth rate is positive in agreement with
the critical Reynolds number at Rec = 324.5 of the Hopf tracking method. The eigenvalue
spectrum at h = 0.5 and Re = 263.2 for the second stable branch displays several unstable
eigenvalues of azimuthal wavenumber m = 1 and m = 2 showing the hydrodynamically
unstable flow field (figure 6b). As we move along the second stable branch, the number of
unstable eigenmodes increases and their growth rates are strengthened (figure 6c). The
eigenvalue spectrum at h = 0.25 displays two unstable eigenvalues on the first stable
branch: a first unstable eigenmode of azimuthal wavenumber m = 1 and a second of
m = 2, see figure 6(d). The latter has a smaller growth rate and a lower frequency
than the unstable mode m = 1. We observe on the eigenvector plot (not shown here)
that the second unstable mode develops in the recirculation region in front of the
obstacle while the first unstable mode is the helical unstable mode of the spiral vortex
breakdown.

We observe, finally, that in contrast to the saddle-node bifurcation of Lopez (2006), the
second stable axisymmetric branch of a vortex impinging an obstacle is strongly unstable
and cannot exist in 3-D configurations. Only the first axisymmetric stable branch can exist.
While the Reynolds or swirl numbers are increased, a recirculation zone ahead of the
obstacle develops, which is submitted to a Hopf bifurcation of azimuthal wavenumber
m = 1 as a first instability.

910 A36-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
11

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1011


Vortex impingement onto an axisymmetric obstacle

Y

ZX

–0.20 –0.12

Lambda 2

–0.06 –0.02

Figure 7. Axial vorticity of the 3-D solution for S = 1.0, Re = 224.6 and h = 0.25.
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Figure 8. Time series (a) and amplitude Fourier spectrum (b) of the 3-D DNSs at (X̃, Ỹ, Z̃) = (0.5, 0.0, 18.0)

for the axial velocity and S = 1.0 and h = 0.25, and for Re = 218.75 (a,b), respectively.

5. Subcritical Hopf bifurcation

The flow, issued from the 3-D direct numerical flow simulations, is illustrated by the
lambda 2 criterion in figure 7 for h = 0.25 and S = 1.0. The development of a single
helical spiral in front of the obstacle is shown. This mode is also obtained in the 2-D
axisymmetric solution represented by the eigenmode of the most unstable eigenvalue
having the same winding direction and temporal rotation as the 3-D solution. In addition,
the spiral suddenly forms from the centreline of the vortex without the development of
a recirculation bubble. Such a spiral vortex breakdown has the same origin as the single
spiral appearing in the wake of a recirculation bubble, (see Gallaire et al. 2006). Both are
hydrodynamic instabilities of a swirling wake flow.

The time series of the flow and the Fourier amplitude spectrum of this 3-D solution is
portrayed in figure 8. A limit cycle solution is observed with a well-defined frequency.
However, the periodic solution displayed in figure 8 at Re = 218.75 appears for a smaller
Reynolds number than the critical Reynolds number Re = 224.6 identified by modal
analysis. This shift is not a numerical inaccuracy. The transition from a steady to an
unsteady dynamics of the vortex streamwise impingement onto an axisymmetric obstacle
is caused by a subcritical Hopf bifurcation, in contrast to supercritical Hopf bifurcation of
the spiral vortex breakdown of Gallaire et al. (2006).
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Coefficients h = 0.5 h = 0.25

Third order (WNL) λ1 (6.10 + 5.14i) × 101 (4.03 + 3.80i) × 101

μ1 (2.94 − 7.30i) × 10−1 (1.25 − 2.91i) × 10−1

Fifth order (DNS fit) λ2 (2.04 + 5.77i) × 105 (2.49 − 14.09i) × 104

μ2 (10.86 − 0.94i) × 102 (2.74 − 7.34i) × 102

γ (−2.32 + 3.69i) × 100 (−4.18 + 6.55i) × 10−1

Table 2. Coefficients of the fifth-order Landau equations for h = 0.5 and h = 0.25. The third-order
coefficients are computed by solving the WNL analysis. The fifth-order coefficients are fitted on the DNS data.

To fully characterize the nature of the Hopf bifurcation, we perform a WNL analysis.
It provides, in addition, a powerful tool to obtain a model for this bifurcation with
the resulting amplitude equation. Subcritical Hopf bifurcation requires to perform the
expansion up to the fifth order. At the fifth order, the amplitude equation of a Hopf
bifurcation is the Landau equation, which writes as

∂a
∂t

− ε2(λ1 + ε2λ2)a − (μ1 + ε2μ2)a|a|2 − γ a|a|4 = 0, (5.1)

with λ, μ and γ complex coefficients and a the complex amplitude. However, the
radius of convergence regarding the bifurcation parameter decreases as we compute
higher-order expansions. In both cases investigated, the WNL analysis fails to predict
accurate coefficients at the fifth order, see figure 18 in appendix B. We, therefore, present
the third-order coefficients which are combined with a numerical fit of the 3-D DNS to
obtain the fifth-order coefficients, see table 2. This fit is based on the fluctuating kinematic
energy.

Regarding the coefficients of the Landau equation, the μ1 coefficients are always
positive meaning that the quadratic nonlinearities destabilize the linear eigenmode in
addition to the linear growth rate, represented by λ1. Only γ , the fifth-order term, stabilizes
the amplitude equation. This is typical of a subcritical bifurcation. Such a bifurcation
type is sensitive to external perturbation and the location of the vortex breakdown in
experimental cases can be, therefore, very sensitive.

The amplitude equations are displayed in figure 9(a) and the corresponding frequencies
are displayed in figure 9(b). The third-order solution of the WNL solution is represented
by the dashed blue curves. The fluctuating kinematic energy of the 3-D DNS are displayed
by the red dots, and the fifth-order amplitude equation is displayed by the red curves. The
solid curves represent the stable branches and the dashed curves are unstable branches.
As the Hopf bifurcation is subcritical, the third-order amplitude equation is unstable
and the fifth-order amplitude equation stabilizes at an earlier Reynolds number than the
critical Reynolds number. The frequency remains almost constant for the Reynolds number
investigated.

The linear threshold characterized by the critical Reynolds number does not correspond
to the only possible transition of the flow, the nonlinear threshold defining the hysteresis
region appears for smaller Reynolds number and develops possibly first. The hysteresis
range spans over ΔRe = 7 for h = 0.25 and ΔRe = 10 for h = 0.5. In both cases
considered, the nonlinear thresholds appear for Reynolds larger than the turning point
giving rise to the second, stable, branch in axisymmetric bifurcation diagram (see figure 5).
Nevertheless, the 3-D solution shows only the spiral mode and no recirculation regions
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Figure 9. Limit cycle amplitude (a,c), and frequency (b,d) predicted by the third- and fifth-order amplitude
equations for S = 1.0, h = 0.5 (a,b) and h = 0.25 (c,d), where a = ρ eiφ as defined in (5.1).

are observed. Due to the nature of the bifurcation, which is very sensitive to disturbance,
the eventuality to see the recirculation bubble for such a swirling flow, submitted to an
adverse pressure gradient, is unlikely for the considered 3-D configurations.

6. Lateral displacement of the vortex

The vortex dynamics induced by a lateral displacement of the obstacle is summarized in
the bifurcation diagram portrayed in figure 10. This bifurcation diagram is produced by
displaying the successive minima and the maxima of a time series recorded at the location
(R̃, θ̃, Z̃) = (0.5, 0.0, 18.0). Therefore, limit cycle solutions appear as two points, while
more complex orbits such as quasi-periodic states or chaotic states display a dispersed
distribution of points.

Figure 10 shows that the vortex dynamics preserves its periodicity below the lateral
displacement D < 0.1. In this limit, which can be considered as small, the obstacle appears
still as a flat wall for the vortex and does not disturb the sub-critical unstable mode of
the vortex. The displacement required to fully stabilize the unstable spiralling mode is
D = 0.2, where the vortex is seen to manage to escape the obstacle. A single point is
displayed in figure 10, meaning that a steady-state solution is retrieved.

Complex orbits are observed in this bifurcation diagram for a lateral displacement
between D = 0.1 and D = 0.16. These quasi-periodic or chaotic states exhibit the
nonlinear interactions induced by the misalignment of the vortex centre and the obstacle.
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Figure 10. Bifurcation diagram of the min-max temporal series of the axial velocity of the 3-D DNS at
(X̃, Ỹ, Z̃) = (0.5, 0.0, 18.0) as a function of the obstacle lateral displacements D at S = 1.0, Re = 224.6 and
h = 0.25.
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Figure 11. Time series (a) and amplitude Fourier spectrum (b) of the 3-D DNS at (X̃, Ỹ, Z̃) = (0.5, 0.0, 18.0)

for S = 1.0, Re = 224.6, h = 0.25, and D = 0.1.

The associated time series and amplitude Fourier spectrum is displayed in figure 11 for the
representative case of D = 0.1. The transient phase, which ends at t = 1600, is removed
from the Fourier analysis. The flow solution evolves toward a more complex orbit, where
the main frequency of the spiralling motion is kept, and low-frequency modulations of the
signal develop.

Visualizations of the flow solutions using the lambda 2 criterion are displayed in
figure 12. Figure 12(a) represents the flow solution for a lateral displacement of D = 0.16.
The main spiral is observed, with smaller vortices inside the main recirculation region.
In addition, the steady flow solution for lateral displacement of D = 0.2 is displayed in
figure 12(b). A horseshoe vortex develops in front of the obstacle with a stronger branch
where most of the vorticity is redirected as the vortex circumvents the obstacle.

An amplitude Fourier spectrum is displayed in figure 13 for D = 0.16. The
low-frequency oscillations are axisymmetric pulsations of the flow with residual
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Figure 12. Lambda 2 criterion of the 3-D DNS for S = 1.0, Re = 224.6, h = 0.25 and D = 0.16 (a),
D = 0.2 (b), and their associated time series at the probe location (X̃, Ỹ, Z̃) = (0.5, 0.0, 18.0).
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Figure 13. Amplitude Fourier spectrum decomposed in azimuthal wavenumber of the 3-D DNS at
(X̃, Ỹ, Z̃) = (0.24, 0, 18.75) for azimuthal velocity and S = 1.0, Re = 224.6, h = 0.25 and D = 0.16.

oscillations of a double helix that can be associated with a flow structure developing in
the recirculation zone between the obstacle and the spiralling vortex. It should be noticed
that this double helix, which rotates at low frequency, is a mode reported in the modal
analysis for the axisymmetric solution in figure 6(d). The main frequency peak is mainly
composed of the single helix spiral and partially of the previously mentioned axisymmetric
pulsation. Such a type of scenario is typically due to the quadratic nonlinearity of the
Navier–Stokes equations. The lateral displacement of the obstacle can be associated with
a steady mode of azimuthal wavenumber m = 1, which interacts with the main single
spiral mode generating axisymmetric oscillations. This scenario has already been reported
in Francis turbines with the generation of a synchronous pressure (Nishi et al. 1984; Pasche
et al. 2019) and in the spiral vortex breakdown where several single helical modes generate
axisymmetric pulsations (Pasche et al. 2018a).
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7. Discussion and conclusion

We have investigated the dynamics of a vortex submitted to an adverse pressure gradient
modelled by a Batchelor vortex impinging onto an axisymmetric obstacle. First, a
parametric study of the vortex dynamics is performed: the Reynolds number, swirl number
and obstacle radius are varied. Second, the obstacle is moved laterally to investigate the
stabilization mechanism of the vortex, while it circumvents the obstacle.

The parametric study of the present swirling wake flow on the 2-D axisymmetric
configuration shows the development of a bubble vortex breakdown, whose dynamics
is associated with a saddle-node bifurcation. This bifurcation map of the bubble vortex
breakdown has already been reported by Lopez (1994) and Meliga & Gallaire (2011)
in a different configuration: a swirling jet flow induced by a contraction of the pipe
radius. In the present study, on the first stable branch of the saddle-node bifurcation, a
recirculation zone develops in front of the obstacle, which remains attached to the obstacle.
On the second stable branch, a recirculation bubble develops that is identified as a vortex
breakdown bubble. At larger swirl and Reynolds numbers, the adverse pressure gradient
pushes the bubble against the inlet of the computational domain, while for an intermediate
swirl and Reynolds number, the bubble vortex breakdown moves progressively upstream.
Finally, below a swirl threshold, the saddle-node bifurcation vanishes.

The intensity of the adverse pressure gradient induces a shift of the bifurcation to lower
Reynolds and swirl numbers. This characteristic has already been observed for adverse
pressure gradients induced by an air intake (Delery 1994) and in a vortex impinging a
sphere (Pasche et al. 2014). In addition, at larger Reynolds numbers, multiple saddle-node
bifurcations are identified for the larger obstacle radius investigated. This behaviour, only
valid for 2-D axisymmetric configuration, is connected to the second recirculation region
that develops in the wake of the bubble vortex breakdown and is attached to the obstacle.
The reversal swirling flow allows the onset of a second vortex breakdown phenomenon
having a similar configuration as the closed container experiments (Escudier 1984).

Not only saddle-node bifurcations are tracked, but also the Hopf bifurcations. These
bifurcations correspond to the development of a marginally unstable mode of azimuthal
wavenumber m = 1, corresponding to a single helical spiral. In the present configuration,
the Hopf transition appears at a smaller Reynolds number than the first saddle-node
transition. This scenario is confirmed by 3-D DNS, which shows a single helical vortex
breakdown. Moreover, this single helical spiral develops in the absence of a recirculation
bubble. The mechanism for the generation of this single helical mode is identical to the
one identified by Gallaire et al. (2006). This spiral mode results from a hydrodynamic
instability growing due to the swirling wake flow profile. However, the spiral forming in
the wake of a recirculation bubble is due to a supercritical Hopf bifurcation, while in
the present case, we identify a sub-critical Hopf bifurcation through a WNL analysis.
We perform this analysis up to the fifth order to describe the saturation amplitude.
The consequences are that the transition is very sensitive to small disturbances present,
for instance, in the boundary layer. A hysteresis region appears where two different
thresholds can be defined: the linear threshold associated with the marginally unstable
linear mode and the nonlinear threshold associated with a smaller Reynolds number.
The nonlinear threshold associated with the backward Hopf bifurcation appears for a
Reynolds number larger than the fold point giving birth to the second stable branch of the
axisymmetric saddle-node bifurcation. However, we never observe a recirculation bubble
in the 3-D DNS, and the development of the spiral vortex breakdown is not accompanied a
recirculation bubble. It should be mentioned that the 2-D axisymmetric solution at the
turning point giving birth to the second stable saddle-node branch does not display a
recirculation bubble which is consistent with the 3-D DNS. The recirculation bubble is
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formed later on this branch. Thus, swirling jet flow impinging a downstream obstacle
leads to a spiral vortex breakdown induced by a sub-critical Hopf bifurcation bypassing
the classical bubble vortex breakdown.

Swirling wake flows can stand axisymmetric waves as demonstrated by Benjamin
(1962) and Mager (1972). Two-dimensional axisymmetric direct numerical simulations
of swirling wake flows in an unconfined domain, performed by Ruith et al. (2003), stress
that these standing waves lead to the bubble vortex breakdown. In the present case, the
axisymmetric solutions do not recover such a recirculation region. The main difference
is that the present vortex is free of inlet disturbance while in the case of Ruith et al.
(2003), the recirculation bubble hits the inlet boundary. Therefore, swirling wake flow
could become first unstable to the helical mode instead of axisymmetric standing waves.
Minimal energy principle can be stressed where forming a single helical spiral is more
efficient than forming an axisymmetric recirculation bubble with helical unstable wake
flow.

The second part of the present study is focused on the stabilization mechanism of
this spiral vortex breakdown caused by an off-centre displacement of the downstream
axisymmetric obstacle for the smaller aspect ratio (half of the vortex core size divided
by the obstacle radius). A small lateral displacement of the obstacle does not disturb
the amplitude of the spiral and does not significantly affect its frequency. For a larger
displacement, the vortex reaches a quasiperiodic state or chaotic state characterized by
the onset of non-commensurable frequencies with the main frequency of the single
helical mode. We observe in the 3-D DNS the formation of a second mode growing
inside the recirculation region of the spiral. This mode has been predicted by the global
stability analysis on the 2-D axisymmetric configuration as a double helical spiral (m = 2)
rotating at a lower frequency than the main spiral. We also see the formation of an
axisymmetric oscillation of the flow as observed when multiple single helical modes exist.
The displacement of the obstacle can be modelled as a stationary m = 1 mode that by
nonlinear interactions produces an axisymmetric pulsation of the flow. This mechanism
has been reported for the spiral vortex breakdown (Pasche et al. 2018a) and hydraulic
turbines (Pasche et al. 2019) as a plunging wave. The quasiperiodic or chaotic state
persists for increasing lateral displacements up to the point where the vortex stabilizes as
a horseshoe vortex with a strong and weak secondary vortex circumventing the obstacle.
We did not succeed in capturing this dynamics by a WNL analysis including a domain
perturbation method to predict the lateral displacement required to stabilize the vortex. In
the present case, the obstacle radius could already be too large to be in the validity range
of the fifth-order WNL analysis.

Helical vortex breakdown without a recirculation bubble has been observed by Billant
et al. (1998) when a swirling jet flow enters in an unbounded container. Billant et al. (1998)
characterized the helical mode as a prebreakdown state because the recirculation bubble
appears at a larger swirl number. The observed helical mode has two branches growing
radially as they propagate. Radial velocity contribution to spiral vortex breakdown is also
observed in the work of Meliga et al. (2012) where a pipe contraction is used to favour
vortex breakdown. At low swirl number, a self-sustained instability of single helical mode
appears before the formation of the bubble (see figure 4 in this reference). In addition,
Mattner et al. (2002) show experimentally using a vortex generator that the development
of a spiralling vortex as a transient structure on the top of a bubble vortex breakdown, when
a sudden radial disturbance is applied by modifying the guide vane angle. Based on the
present study and these examples, we argue that the non-parallel character of the vortex
inducing a radial velocity component contributes to the distinction of the spiral vortex
breakdown with and without a recirculation bubble. Moreover, unsteady flow simulations
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of hydraulic Francis turbines operating at part load conditions show the development
of a single helical mode without a recirculation bubble as a consequence of the radial
velocity contribution at the inlet of the draft tube (Pasche, Avellan & Gallaire 2017) while
a steady recirculation bubble is observed for the solution based on the axisymmetric
Reynolds averaged Navier–Stokes equations (see Susan-Resiga et al. 2006). In a swirl
burner, similar behaviour has been observed by Jochmann et al. (2006). In the study
of Tammisola & Juniper (2016) and Oberleithner et al. (2011), the contribution of the
radial velocity is more ambiguous because the recirculation bubble reaches the nozzle,
forcing the development of the single helical mode to be radial. It is already well known
that helical disturbances can be triggered by parallel swirling flow as demonstrated by
Delbende, Chomaz & Huerre (1998) with the convective/absolute instability analysis of
one-dimensional Batchelor vortex profile or by Heaton, Nichols & Schmid (2009) for the
2-D counterpart. However, the presence of a radial velocity could also trigger a helical
instability of a single helical mode. The local temporal stability analysis of a non-parallel
vortex has been investigated by Fernandez-Feria (1996). Self-similar one-dimensional
vortex profiles matching the viscous core and the potential region define a family of base
flows, which are dependent on the axial coordinate inducing a non-zero radial velocity
component. The temporal stability analysis of these vortex profiles shows that these vortex
profiles are unstable for non-axisymmetric disturbances. Thus, further investigations are
required to distinguish the contribution of the radial velocity to the vortex breakdown
dynamics.

Ultimately, we observe that, in the present investigation, the adverse pressure gradient
tends to make vortices unstable to helical disturbances at lower swirl numbers than
classical spiral vortex breakdown induced by a recirculation bubble. Such a type of spiral
vortex breakdown without a recirculation region has already been observed by Lambourne
& Bryer (1962) and Delery (1994) and we show that it develops here as a subcritical Hopf
bifurcation.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
S. Pasche https://orcid.org/0000-0003-0229-8878.

Appendix A. Direct numerical flow simulation validation

A.1. Two-dimensional axisymmetric solver
All the computations are carried out by means of the finite element library Freefem++
(Hecht 2012) in a 2-D axisymmetric domain. The steady axisymmetric incompressible
Navier–Stokes equations are first premultiplied by R to avoid the axis singularity
and then solved numerically via a Newton–Raphson iterative method. We use the
unsymmetric multifrontal sparse lower-upper factorization package (UMFPACK) to solve
steady Navier–Stokes equations. The computational domain is meshed by approximately
260 000 triangular Taylor–Hood elements, P2 − P1 polynomial-order elements for the
velocity–pressure unknowns. The tolerance to obtaining a converged solution is defined as
10−8 using the H1-norm. The arc-length continuation method uses the same specification.
The initial increment on the Reynolds number is 15, which can be adapted if the radius
of convergence of the method becomes smaller. The tracking algorithms require more
computational resources as the system to solve is extended with eigenvectors of the
linearized Navier–Stokes equations. Therefore the tolerance for convergence is relaxed
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Figure 14. Validation of the 2-D axisymmetric continuation method for S = 1.0, h = 0.5.

to 10−5 on the residual L2 norm of the incremental errors on the bifurcation parameter.
It should be also noticed that both tracking algorithms are solved in the complex
variable. The eigenvalue problem is solved by the implicit restarted Arnoldi method of
the ARPACK library embedded in the FreeFem++ library. The eigenvalues are obtained
with a tolerance of 10−6 of the ARPACK solver.

The continuation method has been validated using a finer mesh of approximately
420 000 triangular Taylor–Hood elements. The convergence results are portrayed in
figure 14.

A.2. Three-dimensional solver
Direct numerical flow simulations are performed using NEK5000. The mesh used for the
computation is presented in figure 15. It is refined close to the vortex core and before
the obstacle nose, while it is stretched approaching the lateral boundaries. The mesh
is created using ICEM CFX to properly define an O-grid topology that matches the
spherical nose of the obstacle and minimizes skewed cells. Eighty per cent of the cells
have a minimum angle larger than 80 degrees. Only a few cells, 0.09 %, have minimum
angles between 25 and 45 degrees. No convergence issues are induced by these cells.
The mesh is then transferred to NEK5000 in its native format using Matlab software.
The computational domain is bounded by the Batchelor vortex equation (2.1) on the
inlet boundary Γin, a free-outflow condition (−PI + Re−1 · (∇V )) · n = 0 on the external
boundary Γext, a convective condition ∂tV + Uc · ∂nV = 0 on the outlet boundary Γout
and a no-slip condition on the obstacle Γobs. We have fixed the convective velocity to be
equal to the free-stream velocity Uc = (0, 0, 1). The solution obtained is checked using a
second computation where the polynomial order is increased. The temporal discretization
of the nonlinear terms is treated explicitly by a third-order backward-differentiation
scheme combined with a third-order extrapolation scheme. The linear terms are treated
implicitly in time and a pressure–velocity decoupling method is used for the spatial
discretization. The velocity and pressure space are represented by a tensor-product array
of Gauss–Lobatto–Legendre and Gauss–Legendre points of polynomial orders N and
N − 2. In the present study, a P8 − P6 polynomial order for velocity–pressure with 92 652
hexahedral elements is required to compute the flow field.

The mesh is not modified to perform the convergence analysis, only the polynomial
order of the element is increased. The parameters for this analysis are displayed in table 3.
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Figure 15. Half of the mesh defining the spectral elements of the 3-D computational domain.
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Figure 16. Time series (a) and amplitude Fourier spectrum (b) at the monitoring point
(X̃, Ỹ, Z̃) = (0.5, 0.0, 18.0) for the axial velocity of the 3-D finer DNS at S = 1.0, Re = 224.6 and h = 0.25.

Case

Boundary
condition on

Γext nb elements Discretization
Courant-Friedrichs-

Lewy number h 3-D (Amp, freq)

M1 Freestress 92 652 P8 − P6 0.3 0.25 (0.0289, 0.0408)

M2 Freestress 92 652 P10 − P8 0.3 0.25 (0.0303, 0.0408)

Table 3. Convergence of the 3-D numerical flow simulations.

The time series and the amplitude Fourier spectrum at the monitoring point for the
finer discretization are displayed in figure 16. A limit cycle solution is obtained for the
bifurcation parameters S = 1.0 and Re = 224.6 as for the coarser discretization. In table 3,
the frequency and the amplitude of the signal for the two discretizations are reported, and
a good agreement is obtained. Thus, we consider that the used discretization is sufficiently
small to capture the nonlinear dynamics of the vortex impinging an obstacle.
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Vortex impingement onto an axisymmetric obstacle

Azimuthal wavenumber Boundary conditions

m = 0 uR = uθ = 0, ∂RuZ = 0
m = ±1 uZ = p = 0, ∂RuR = ∂Ruθ = 0
m > 1 uR = uθ = uZ = 0

Table 4. Boundary conditions on the axisymmetric axis applied to the disturbances for different azimuthal
wavenumbers.

Appendix B. Weakly nonlinear analysis fifth order

The derivation of the equations for the WNL analysis follows the derivation of Fujimura
(1991). We first recall the asymptotic expansion regarding the parameter ε with the slow
time scale acting at ε2:

q = q0 + εq1 + ε2q2 + ε3q3 + ε4q4 + ε5q5 + h.o.t. (B1)

Inserting this expansion in the Navier–Stokes equations and collecting the terms at
different orders yields the following systems of equations to be solved. It should be noticed
that the boundary conditions applied to the axisymmetric configuration are the Batchelor
vortex at the inlet, free outflow on the external and outlet boundary, no slip on the obstacle
and the axis and the boundary is dependent of the azimuthal wavenumber, see table 4.

At order ε0, the base flow solution q0 of the axisymmetric governing equations is
retrieved

Mq0 + N (q0, q0) = 0, (B2)

where M regroups the pressure gradient, divergence and the diffusive term and N the
nonlinear convective term (see figure 17).

At order ε1, the linearized Navier–Stokes equations are obtained. Since we deal with
an axisymmetric formulation of the governing equation, an azimuthal Fourier series
decomposition is applied and each azimuthal wavenumber m ∈ Z is investigated to recover
the full spectrum of the flow. However, at this order, the only growing mode is associated
with the first azimuthal wave. The solution reads

q1 = A1(T2, T4) q1A1
exp(iθ − iωt) + A∗

1(T2, T4) q∗
1A1

exp(−iθ + iωt), (B3)

with A1(T2, T4) the amplitude of the general solution which is a function of the slow
times only (see figure 17). This amplitude is unknown at that stage and will be the result
of this WNL analysis. In this relation, the symbol ∗ defined the complex conjugate. The
eigenvalue system associated with this solution writes

((ωi − iωr)B + Lm(q0))q1A1
= 0, (B4)

with B the temporal operator and the spatial operator gathering the linearized convective
operator, the diffusive operator, the pressure gradient and the incompressibility condition

Lm(q0)q =
⎛
⎝∇u · u0 + ∇u0 · u − 1

Rec
∇2

mu + ∇p

∇ · u

⎞
⎠ . (B5)

The following normalization of the eigenmode is considered:

〈u1A1, u∗
1A1

〉 =
∫

S
u1A1 · u∗

1A1
R dR dZ = 1, (B6)

which makes the amplitude equation equal to the amplitude of the DNS disturbance.
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Figure 17. Base flow (a), mean flow correction (b), direct eigenmode (c) and adjoint eigenmode (d) at
Re = 224.6, S = 1.0 and h = 0.25.

We anticipate the closure of the expansion that results in a non-resonant solution
using the orthogonality condition. The adjoint eigenvector has to be orthogonal to
the higher-order solution defining the first unstable eigenmode as the leading-order
contribution. The normalization allows the system to satisfy the Fredholm alternative that
defines uniquely the solution of the system

((ωi + iωr)B + L†
m(q0))q

†
1A1

= 0, (B7)

〈u1A1, u†
1A1

〉 =
∫

S
u1A1 · u†

1A1
R dR dZ = 1. (B8)

At order ε2, the interaction between the two previous modes appears, generating three
sets of equations spread by the azimuthal wavenumber m and temporal harmonics k of the
initial modes coming from the general equations(

∂u2

∂T0
+ ∂u0

∂T2
+ Lm(q0)

)
q2 = F 2. (B9)

The forcing term writes

F 2 =

⎛
⎜⎝

−δ∇2
0 u0

−|A1|22Re(∇1u1A1 · u∗
1A1

)

−A2
1∇1u1A1 · u1A1 exp(2iθ − 2iωct) + c.c.

⎞
⎟⎠ , (B10)

with ωc the angular frequency of the marginally unstable mode at the critical Reynolds
number Rec. In this equation, the base flow solution is time independent. It results trivially
in zero for

∂u0

∂T2
= 0, (B11)

while ∂u2/∂T0 = ikωcB after normal mode expansion, with k ∈ Z. The linear properties
of this equation imply the superposition principle. Therefore, each system is solved
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Vortex impingement onto an axisymmetric obstacle

independently to obtain the solution for each m and k, which strictly depends on the forcing
amplitude

q2 = q2δ + |A1|2 q2|A1|2 +
(

A2
1 q2A2

1
exp(2iθ − 2iωct) + c.c.

)
. (B12)

A similar approach will be used for all system at the next orders.
At order ε3, distinguishing the different terms of the expansion yield the following

equations: (
∂u3

∂T0
+ ∂u1

∂T2
+ Lm(q0)

)
q3 = F 3, (B13)

where the forcing term writes

F 3 =

⎛
⎜⎜⎜⎜⎜⎝

−A1
[∇2

1 u1A1 + ∇1u1A1 · u2δ + ∇0u2δ · u1A1

]
exp(iθ − iωct) + c.c.

−A1|A1|2
[∇1u1A1 · u2|A1|2 + ∇0u2|A1|2 · u1A1

+∇2u2A2
1
· u∗

1A1
+ ∇1u∗

1A1
· u2A2

1

]
exp(iθ − iωct) + c.c.

−A3
1

[
∇1u1A1 · u2A2

1
+ ∇2u2A2

1
· u1A1

]
exp(3iθ − 3iωct) + c.c.

⎞
⎟⎟⎟⎟⎟⎠

. (B14)

Using the superposition principle, three systems of equations have to be solved for A1,
A1|A1|2 and A3

1. The last system presents no difficulties has it is a non-degenerate operator
as for the previous orders. In contrast, the systems for A1, A1|A1|2 are degenerate. The
solutions resonate with the forcing term. Thus this system is solved by extending the
system with an inner product of the solution which has to be zero to avoid contribution
to the kernel of the operator

(−iωcB + Lm(q0) −u1A1

u†
1A1

0

)(
u3δA1
λ

)
=

(
F 3δ

0

)
. (B15)

The orthogonality condition is then strictly imposed using the relation

u3δA1 = u3δA1 − 〈u3δA1, u†
1A1

〉
〈u1A1, u†

1A1
〉

u1, (B16)

satisfying exactly

〈u3δA1, u†
1A1

〉 = 0. (B17)

The same technique is used for the second degenerate solution, leading to the second
normalization

〈u3A1|A1|2, u†
1A1

〉 = 0. (B18)

At this order, this compatibility condition has to be solved using the Fredholm
alternative. It results in the third-order amplitude equation given by

∂A1

∂T2
+ λ1A1 + μ1A1|A1|2 = 0, (B19)
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S = 1.0, Re = 164 λ1 μ1 μ1i/μ1r

Present 30.1 + 22.4i 0.531 − 1.61i 3.03
Meliga et al. (2012) 28.1 + 21.8i 0.545 − 1.63i 2.99

Table 5. Validation of the WNL analysis up to the third order for the vortex breakdown induced by a
Grabowsky vortex.

Coefficients h = 0.5 h = 0.25

Third order (WNL) λ1 (6.1 + 5.14i) × 101 (4.03 + 3.80i) × 101

μ1 (2.94 − 7.30i) × 10−1 (1.25 − 2.91i) × 10−1

Fifth order (WNL) λ2 (11.28 + 2.38i) × 104 (8.43 + 2.88i) × 104

μ2 (−2.22 + 1.77i) × 103 (−8.49 + 9.30i) × 102

γ (−1.35 + 1.34i) × 101 (−3.40 + 4.66i) × 100

Fifth order (DNS fit) λ2 (2.04 + 5.77i) × 105 (2.49 − 14.09i) × 104

μ2 (10.86 − 0.94i) × 102 (2.74 − 7.34i) × 102

γ (−2.32 + 3.69i) × 100 (−4.18 + 6.55i) × 10−1

Table 6. Coefficients of the fifth-order Landau equations for h = 0.5 and h = 0.25. The third- and fifth-order
coefficients are computed by solving the WNL analysis.

where the coefficients express as

λ1 = 〈∇1u1A1 · u2δ + ∇0u2δ · u1A1 + δν∇2
1 u1A1, u†

1A1
〉, (B20)

μ1 = 〈∇1u1A1 · u2|A1|2 + ∇u2|A1|2 · u1A1 + ∇1u∗
1A1

· u2A2
1
+ ∇2u2A2

1
· u∗

1A1
, u†

1A1
〉.

(B21)

The coefficient λ1 is associated with the growth rate of the nonlinear amplitude and μ1
represents the nonlinear damping of the quadratic term.

The solution at this order writes

q3 =
([

A1 q3δ + A1|A1|2 q3A1|A1|2 + A2 q1A1

]
exp(iθ − iωct) + c.c.

)
(B22)

+
(

A3
1 q3A3

1
exp(3iθ − 3iωct) + c.c.

)
. (B23)

The validation of the third-order term is performed by reproducing the WNL analysis
of the vortex breakdown configuration of Meliga et al. (2012): a supercritical Hopf
bifurcation. The ratio between the imaginary part and the real part of the saturation
coefficients has to be constant for any normalization of the analysis as demonstrated by
Dusek et al. (1994), see table 5. We report the results of the WNL analysis up to the fifth
order in table 6.

At order ε4, a second amplitude A2 is introduced having the same unstable mode as A1.

(
∂u4

∂T0
+ ∂u2

∂T2
+ Lm(q0)

)
q4 = F 4, (B24)
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Vortex impingement onto an axisymmetric obstacle

where the forcing term writes

F 4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−A2
1

[
∇2

1 u2A2
1
+ ∇1u1A1 · u3δA1 + ∇1u3δA1 · u1A1

+∇0u2δ · u2A2
1
+ ∇2u2A2

1
· u2δ

]
exp(2iθ − 2iωct) + c.c.

−|A1|2
[
∇2

1 u2|A1|2 + 2Re
(
∇1u3δA1 · u∗

1A1

)
+ 2Re

(
∇1u1A1 · u∗

3δA1

)
+∇0u2δ · u2|A1|2 + ∇0u2|A1|2 · u2δ

]
−A2

1|A1|2
[
∇1u1A1 · u3A1|A1|2 + ∇1u3A1|A1|2 · u1A1 + ∇1u∗

1A1
· u3A3

1

+∇3u3A3
1
· u∗

1A1
+ ∇2u2A2

1
· u2|A1|2 + ∇0u2|A1|2 · u2A2

1

]
exp(2iθ − 2iωct) + c.c.

−|A1|4
[
2Re

(
∇1u3A1|A1|2 · u∗

1A1

)
+ 2Re

(
∇1u1A1 · u∗

3A1|A1|2
)

+∇0u2|A1|2 · u2|A1|2
]

−A4
1

[
∇1u1A1 · u3A3

1
+ ∇3u3A3

1
· u1A1 + ∇2u2A4

1
· u2A2

1

]
exp(4iθ − 4iωct) + c.c.

−A1A2
[
2Re

(∇1u1A1 · u1A1

)]
exp(2iθ − 2iωct) + c.c.

−A∗
1A2

[
2Re

(
∇1u1A1 · u∗

1A1

)]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B25)
The full development of ∂u2/∂T2 must be included in this equation, which writes

∂u2

∂T2
= −

[
(λ+ λ∗)|A1|2 + (μ + μ∗)|A1|4

]
u2|A1|2 (B26)

−
[
2λA2

1 + 2μA2
1|A1|2

]
u2A2

1
(B27)

−
[
2λ∗A2∗

1 + 2μ∗A2∗
1 |A1|2

]
u2A2∗

1
. (B28)

The solution at this order is given by

q4 = |A1|2 q4|A1|2 + A∗
1A2 q4|A1|2 + |A1|4 q4|A1|4 (B29)

+
([

A2
1 q4A2

1
+ A1A2 q4A2

1
+ A2

1|A1|2 qA2
1|A1|2

]
exp(2iθ − 2iωct) + c.c.

)
(B30)

+
([

A4
1 q4A4

1

]
exp(4iθ − 4iωct) + c.c.

)
. (B31)

At order ε5, the following system is obtained:

(
∂u5

∂T0
+ ∂u3

∂T2
+ ∂u1

∂T4
+ Lm(q0)

)
q5 = F 5, (B32)
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where the forcing term writes

F 5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−A1
[∇2

1 u3δA1 + ∇0u2δ · u3δA1 + ∇1u3δA1 · u2δ

]
exp(iθ − iωct) + c.c.

−A2
[∇2

1 u1A1 + ∇0u2δ · u1A1 + ∇1u1A1 · u2δ

]
exp(iθ − iωct + c.c.

−A1|A1|2
[
∇2

1 u3A1|A1|2 + ∇1u1A1 · u4|A1|2 + ∇0u4|A1|2 · u1A1 + ∇1u∗
1A1

· u4A2
1

+∇2u4A2
1
· u∗

1A1
+ ∇0u2δ · u3A1|A1|2 + ∇1u3A1|A1|2 · u2δ

+∇0u2|A1|2 · u3δA1 + ∇1u3δA1 · u2|A1|2 + ∇2uA2
1
· u∗

3δA1

+∇1u∗
3δA1

· u2A2
1

]
exp(iθ − iωct) + c.c.

−A2|A1|2
[
∇1u1A1 · u4A∗

1A2 + ∇0u4A∗
1A2 · u1A1 + 2∇1u∗

1A1
· u4A1A2

+2∇2u4A1A2 · u∗
1A1

+ ∇1u3A2 · u2|A1|2 + ∇0u2|A1|2 · u3A2

]
exp(iθ − iωct) + c.c.

−A1|A1|4
[
∇1u1A1 · u4|A1|4 + ∇0u4|A1|4 · u1A1 + ∇1u∗

1A1
· u4A2

1|A1|2
+∇2u4A2

1|A1|2 · u∗
1A1

+ ∇0u2|A1|2 · u3A1|A1|2
+∇1u3A1|A1|2 · u2|A1|2 + ∇2u∗

2A2
1
· u3A3

1
+ ∇3u3A3

1
· u∗

2A2
1

+∇2u2A2
1
· u∗

3A1|A1|2 + ∇1u∗
3A1|A1|2 · u2A2

1

]
exp(iθ − iωct) + c.c.

+N.R.T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B33)
Again, the term ∂u3/∂T2 is developed

∂u3

∂T2
= −

[
λA1 + μA1|A1|2

]
u3δA1 (B34)

−
[
(2λ+ λ∗)A1|A1|2 + (2μ + μ∗)A1|A1|4

]
u3A1|A1|2 (B35)

−
[
3λA3

1 + 3μA3
1|A1|2

]
u3A3

1
(B36)

+ ∂A2

∂T2
u1A1 . (B37)

Removing the secular term using the Fredholm alternative results in

∂A1

∂T4
+ ∂A2

∂T2
+ λ1A2 + λ2A1 + μ1A2|A1|2 + μ2A1|A1|2 + γ A1|A1|4 = 0. (B38)

Letting a = εA1 + ε2A2 and t = T0 + ε2T2 + ε4T4, we obtain

∂a
∂t

+ ε2(λ1 + ε2λ2)a + (μ1 + ε2μ2)a|a|2 + γ a|a|4 = 0, (B39)
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Figure 18. Amplitudes and frequencies of the third- and fifth-order WNL analyses as well as the fifth-order
amplitude equation obtained by fitting the DNS data at h = 0.5 and h = 0.25 and for S = 1.0.

with

λ2 = 〈∇1u3δA1 · u2δ + ∇u2δ · u3δA1 + ∇2
1 u3δA1 + λu3δA1, u†

1A1
〉, (B40)

μ2 = 〈∇1u1A1 · u4|A1|2 + ∇u4|A1|2 · u1A1 + ∇1u1A∗
1
· u4A2

1
+ ∇u4A2

1
· u1A∗

1

+ ∇u2δ · u3A1|A1|2 + ∇u3A1|A1|2 · u2δ + ∇u3δA∗
1
· u2A2

1
+ ∇u2A2

1
· u3δA∗

1

+ ∇u2|A1|2 · u3δA1 + ∇u3δA1 · u2|A1|2 + ∇2
1 u3δA1 + αu3δA∗

1

+ (2λ+ λ∗)u3A1|A1|2, u†
1A1

〉, (B41)

γ = 〈∇1u1A1 · u4|A1|4 + ∇u4|A1|4 · u1A1 + ∇1u1A∗
1
· u4A2

1|A1|2 + ∇u4A2
1|A1|2 · u1A∗

1

+ ∇u2|A1|2 · u3A1|A1|2 + ∇u3A1|A1|2 · u2|A1|2 + ∇u3A∗
1|A1|2 · u2A2

1

+ ∇u2A2
1
· u3A∗

1|A1|2 + ∇u2A2∗
1

· u3A3
1
+ ∇u3A3

1
· u2A2∗

1
+ ∇2

1 u3δA1

+ (2α + α∗)u3A1|A1|2, u†
1A1

〉, (B42)

defining λ2, μ2 and γ , the fifth-order coefficients. The numerical values of these
coefficients for the present configuration are reported in table 6. The amplitude equation
is written in polar coordinates assuming a = ρ eiφ . Plugging this definition into (B39) and
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separating the real part from the imaginary part yields to

ρ′ = ε2(λ1r + ε2λ2r)ρ + (μ1r + ε2μ2r)ρ
3 + γρ5, (B43)

φ′ = ε2(λ1i + ε2λ2i) + (μ1i + ε2μ2i)ρ
2 + γρ4. (B44)

The final solution is: q = q0 + ρ eiφq1 eiθ−iωct + ε2q2 + ε3q3 + h.o.t.. This solution is
displayed in figure 18 with the coefficients given in table 6.
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