
Combinatorics, Probability and Computing (2019), 28, pp. 777–790
doi:10.1017/S0963548319000075

ARTICLE

A fast new algorithm for weak graph regularity
Jacob Fox1,†, László Miklós Lovász2∗,‡ and Yufei Zhao2§

1Department of Mathematics, Stanford University, Stanford, CA 94305, USA and 2Department of Mathematics, MIT,
Cambridge, MA 02139, USA
∗Corresponding author. Email: lmlovasz@mit.edu

(Received 12 January 2018; revised 18 November 2018; first published online 3 May 2019)

Abstract
We provide a deterministic algorithm that finds, in ε−O(1)n2 time, an ε-regular Frieze–Kannan partition of
a graph on n vertices. The algorithm outputs an approximation of a given graph as a weighted sum of ε−O(1)

many complete bipartite graphs.
As a corollary, we give a deterministic algorithm for estimating the number of copies of H in an n-vertex
graph G up to an additive error of at most εnv(H), in time ε−OH (1)n2.

2010 MSC Codes: Primary 05C85; Secondary 05C50, 05D99

1. Introduction
The regularity method, based on Szemerédi’s regularity lemma [18], is one of the most powerful
tools in graph theory. Szemerédi [17] used an early version in the proof of his celebrated theorem
on long arithmetic progressions in dense subsets of the integers. Roughly speaking, the regularity
lemma says that every large graph can be partitioned into a small number of parts such that the
bipartite subgraph between almost every pair of parts is random-like. One of the main drawbacks
of the original regularity lemma is that it requires a tower-type number of parts, where the height
of the tower depends on an error parameter ε. However, for many applications, the full power of
the regularity lemma is not needed, and a weaker notion of Frieze–Kannan regularity suffices.

To state the regularity lemmas requires some terminology. Let G be a graph, and let X and
Y be (not necessarily disjoint) vertex subsets. Let e(X, Y) denote the number of pairs of vertices
(x, y) ∈ X × Y that are edges of G. The edge density d(X, Y)= e(X, Y)/(|X||Y|) between X and Y
is the fraction of pairs in X × Y that are edges. The pair (X, Y) is ε-regular if, for all X′ ⊆ X and
Y ′ ⊆ Y with |X′|� ε|X| and |Y ′|� ε|Y|, we have |d(X′, Y ′)− d(X, Y)| < ε. Qualitatively, a pair of
parts is ε-regular with small ε if the edge densities between pairs of large subsets are all roughly the
same. A vertex partition V =V1 ∪ . . . ∪Vk is equitable if the parts have size as equal as possible,
that is, we have ||Vi| − |Vj||� 1 for all i, j. An equitable vertex partition with k parts is ε-regular
if all but εk2 pairs of parts (Vi,Vj) are ε-regular. The regularity lemma states that for every ε > 0
there is a (least) integer K(ε) such that every graph has an ε-regular equitable vertex partition into
at most K(ε) parts.

†J. Fox is supported by a Packard Fellowship, by NSF CAREER award DMS 1352121, and by an Alfred P. Sloan Fellowship.
‡L. M. Lovász is supported by NSF Postdoctoral Fellowship Award DMS 1705204.
§Y. Zhao is supported by NSF awards DMS-1362326 and DMS-1764176, and the MIT Solomon Buchsbaum Fund.

© Cambridge University Press 2019

https://doi.org/10.1017/S0963548319000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000075
mailto:lmlovasz@mit.edu
https://doi.org/10.1017/S0963548319000075

778 J. Fox, L. M. Lovász and Y. Zhao

To state Frieze–Kannan regularity precisely, we first extend the definition of e(X, Y) and
d(X, Y) to weighted graphs. Below, by weighted graph we mean a graph with edge-weights.
Given two sets of vertices X and Y , we let e(X, Y) denote the sum of the edge-weights over
pairs (x, y) ∈ X × Y (taking 0 if a pair does not have an edge). Let d(X, Y)= e(X, Y)/(|X||Y|)
as earlier. Recall that the cut metric d� between two graphs G and H on the same vertex set
V =V(G)=V(H) is defined by

d�(G,H) : = max
U,W⊆V

|eG(U,W)− eH(U,W)|
|V|2 ,

and this extends to graphs with weighted edges, and can be adapted to bipartite graphs (with given
bipartitions). Given any edge-weighted graph G and any partition P : V =V1 ∪V2 ∪ · · · ∪Vt of
the vertex set of G into t parts, let GP denote the weighted graph with vertex set V obtained by
giving weight dij : = d(Vi,Vj) to all pairs of vertices in Vi ×Vj, for every 1� i� j� t. We say P
is an ε-regular Frieze–Kannan (or ε-FK-regular) partition if d�(G,GP)� ε. In other words, P is
an ε-regular Frieze–Kannan partition if∣∣∣∣e(S, T)− t∑

i,j=1
dij|S∩Vi||T ∩Vj|

∣∣∣∣� ε|V|2, (1.1)

for all S, T ⊆V . We say that sets S and T witness that P is not ε-FK-regular if the above inequality
is violated.

Frieze and Kannan [7, 8] proved the following regularity lemma.

Theorem 1.1. (Frieze–Kannan). Let ε > 0. Every graph has an ε-regular Frieze–Kannan partition
with at most 22/ε2 parts.

There is a variant of the weak regularity lemma, where the final output is not a partition of V
into 2ε−O(1) parts, but rather an approximation of the graphs as a sum of ε−O(1) complete bipartite
graphs, each assigned some (not necessarily non-negative) weight: see [8]. For S, T ⊆V , we let
KS,T denote the weighted graph where an edge {s, t} has weight 1 if s ∈ S and t ∈ T (and weight 2 if
s, t ∈ S∩ T) and weight zero otherwise. For any c ∈R, by cGwemean the weighted graph obtained
from G by multiplying every edge-weight by c. For a pair of weighted graphs G1,G2 on the same
set of vertices, we will use the notation G1 +G2 to denote the graph on the same vertex set with
edge weights summed (and weight 0 corresponding to not having an edge). Additionally, we write
c to mean the constant graph with all edge-weights equal to c. We also use d(G) : = d(V(G),V(G))
to denote the edge density of the weighted graph G.

Theorem 1.2. (Frieze–Kannan). Let ε > 0. Let G be any weighted graph with [− 1, 1]-valued
edge weights. There exists an r =O(ε−2), and there exist subsets S1, . . . , Sr , T1, . . . , Tr ⊆V, and
c1, . . . , ck ∈ [− 1, 1], so that

d�(G, c1KS1,T1 + · · · + crKSr ,Tr)� ε.

See [11, Lemma 4.1] for a simple proof (given there in amore general setting of arbitraryHilbert
spaces). It is well known using the triangle inequality (see e.g. [8]) that given sets and numbers as
in the theorem, the common refinement of all Si, Ti must be a 2ε-regular Frieze–Kannan partition.

In addition to proving that a partition or ‘cut graph decomposition’ exists, Frieze and Kannan
gave probabilistic algorithms for finding a weak regular partition [7, 8] or decomposition. Two
deterministic algorithms were given byDellamonica, Kalyanasundaram,Martin, Rödl and Shapira
[2, 3]. Specifically, in [2] they gave an ε−6nω+o(1) time algorithm (ω < 2.373 is the matrix multi-
plication exponent) to generate an equitable ε-regular Frieze–Kannan partition of a graph on n

https://doi.org/10.1017/S0963548319000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000075

Combinatorics, Probability and Computing 779

vertices into at most 2O(ε−7) parts. In [3] they gave a different algorithm, which improved the
dependence of the running time on n from Oε(nω+o(1)) to Oε(n2) while sacrificing the depen-
dence of ε. Namely, it was shown that there is a deterministic algorithm that finds, in 22ε−O(1)

n2

time, an ε-regular Frieze–Kannan partition into at most 2ε−O(1) parts.
In Section 2 we give an optimal algorithm that provides the best of both worlds: we give an

algorithm that finds, in ε−O(1)n2 time, a weakly regular partition.1 In fact, we provide an algorithm
for finding a cut graph decomposition, which is more useful in some applications. The algorithm
is also self-contained.

Theorem 1.3. There is a deterministic algorithm that, given ε > 0 and an n-vertex graph G, outputs,
in ε−O(1)n2 time, subsets S1, S2, . . . , Sr , T1, T2, . . . , Tr ⊆V(G) and

c1, c2, . . . , cr ∈
{
− ε8

300
,

ε8

300

}
for some r =O(ε−16), such that

d�(G, c1KS1,T1 + · · · + crKSr ,Tr)� ε.

Remark. The same proof also gives a bipartite version of the theorem. Namely, there is a deter-
ministic algorithm that, given ε > 0 and a graph G between two sets of vertices V and U of size n,
outputs, in ε−O(1)n2 time, subsets S1, S2, . . . , Sr ⊆V , T1, T2, . . . , Tr ⊆U and

c1, c2, . . . , cr ∈
{
− ε8

300
,

ε8

300

}
for some r =O(ε−16), such that

d�(G, c1KS1,T1 + · · · + crKSr ,Tr)� ε.

Remark. Given a decomposition as above, we can obtain a 2ε-regular Frieze–Kannan partition
in O(nr) time via the common refinement of all Si, Ti. Indeed, the parts of the partitions are rep-
resented by 2r-bit strings indicating membership in the sets S1, . . . , Sr , T1, . . . , Tr . We can sort
the vertices with respect to their 2r-bit strings lexicographically, by going through these 2r bits
and sorting the vertices one bit at a time, each bit taking O(n) time. This would sort the vertices
into intervals corresponding to common refinement partitions of the sets Si, Ti (a more naive
implementation of taking refinements might take O(n2r) time, which is more than necessary).

In Section 3, using the above algorithmic weak regularity lemma, we obtain a deterministic
algorithm for approximating the number of copies of a fixed vertex graph H in a large vertex
graph G.2 Note that there is an easy randomized algorithm for estimating the number of copies of
H by sampling. However, it appears to be non-trivial to estimate this quantity deterministically.
Duke, Lefmann and Rödl [4] gave an approximation algorithm for the number of copies of a k-
vertex graph H in an n-vertex graph G up to an error of at most εnk in time O(2(k/ε)O(1)nω+o(1)).
We give a new algorithm which significantly improves the running time dependence on both n
and ε.

Theorem 1.4. There is a deterministic algorithm that, given ε > 0, a graph H, and an n-vertex
graph G, outputs, in O(ε−OH(1)n2) time, the number of copies of H in G up to an additive error of at
most εnv(H).

1Theorem 1.3 replaces [6, Corollary 3.5], which we retracted [5].
2Theorem 1.4 replaces [6, Theorem 1.4], which we retracted [5].

https://doi.org/10.1017/S0963548319000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000075

780 J. Fox, L. M. Lovász and Y. Zhao

Remark. An examination of the proof shows that the exponent of ε−1 in the running time can be
9|H| (though it is not believed to be optimal). For example, we can count the number of cliques of
order 1000 in an n-vertex graph up to an additive error n1000−10−1000000 in time O(n2.1).

Remark. All results here can be generalized easily to weighted graphs G with bounded edge-
weights.

2. Algorithmic weak regularity
Here we prove Theorem 1.3. We will prove the following roughly equivalent form. In order to
state it, we first give some notation. Given a matrix A, we let ‖A‖ denote the spectral norm, i.e. the
largest singular value. It is well known that this is equal to the operator norm of A when viewed as
an operator between L2-spaces. We also use the Frobenius norm,

‖A‖F =
√∑

i,j
a2i,j,

and the entry-wise maximum norm,

‖A‖max = sup
i,j

|ai,j|.

Given a set S⊆ [n], we will let 1S ∈R
n denote the characteristic vector of S.

Theorem 2.1. There is an algorithm that, given an ε > 0 and a matrix A ∈ [− 1, 1]n×n, outputs, in
ε−O(1)n2 time, subsets S1, . . . , Sr , T1, . . . , Tr ⊆ [n] and real numbers

c1, . . . , cr ∈
{
− ε8

300
,

ε8

300

}
for some r =O(ε−16), such that, setting

A′ =
r∑

i=1
ci1Si1	

Ti ,

each row and column of A−A′ has L2-norm at most
√
n (i.e. the sum of the squares of the entries is

at most n), and

‖A−A′‖� εn.

If G and H are weighted graphs on a set X of size n, and AG,AH are the adjacency matrices,
then

d�(G,H)� ‖AG −AH‖
n

.

Indeed, for any S, T ⊆ [n], taking the characteristic vectors 1S and 1T , we have

|eG(S, T)− eH(S, T)| = |1	
S (AG −AH)1T |� ‖AG −AH‖‖‖1S‖2‖1T‖2 � ‖AG −AH‖n.

Therefore, this theorem indeed implies Theorem 1.3 (taking A to be AG). For the bipartite version
(see the remark following Theorem 1.3), we can take A to be the (not necessarily symmetric)
adjacency matrix where rows correspond to one vertex part and columns to the other vertex part.

The proof of the Frieze–Kannan regularity lemma and its algorithmic versions, roughly
speaking, run as follows.

https://doi.org/10.1017/S0963548319000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000075

Combinatorics, Probability and Computing 781

• Given a partition (starting with the trivial partition with one part), either it is ε-FK-regular
(in which case we are done) or we can exhibit some pair of subsets S, T of vertices that witness
the irregularity (in the algorithmic versions, one may only be guaranteed to find S and T that
witness irregularity for some smaller value of ε).

• Refine the partition by using S and T to split each part into at most four parts, thereby
increasing the total number of parts by a factor of at most 4.

• Repeat. Use a mean square density increment argument to upper-bound the number of
possible iterations.

This can be modified to prove the approximation version. Roughly speaking, to find the appro-
priate Si, Ti, ci, in the second step of the above outline of the proof of the weak regularity lemma,
instead of using S and T to refine the existing partition, we subtract c1S1	

T from the remaining
matrix, for a carefully chosen c. We record the corresponding Si, Ti, ci in step i of this iteration.
We can bound the number of iterations by observing that the L2-norm of A− c11S11	

T1 − · · · −
ci1Si1	

Ti must decrease by a certain amount at each step.
As for the algorithmic versions, the main challenge is checking whether a partition is regular, or

a cut graph approximation is close in cut distance. Given a matrix A, up to a polynomial change in
ε, having small singular values as a fraction of n is equivalent to trAA	AA	 being small as a frac-
tion of n4, which roughly says that most scalar products of rows are small as a fraction of n. Alon
et al. [1] use this fact to obtain an algorithm which runs in O(nω+o(1)) time, and either correctly
states that a pair of parts is ε-regular or gives a pair of subsets which realizes it is not εO(1)-regular.
Dellamonica et al. [2] adapted this to the weak regular setting. Kohayakawa et al. [10] noticed
that it suffices to check the scalar products along the edges of a well-chosen expander, which has a
linear number of edges in terms of n, allowing them to obtain anOε(n2)-time algorithm. This was
also the main idea of Dellamonica et al. [3], but their algorithm has running time doubly expo-
nential in ε−1. A further challenge in proving Theorem 2.1 with the cut matrix approximation is
that the entries of the approximation matrices may not stay bounded, which was used in the algo-
rithms for checking regularity. This is problematic, because for a general matrix A, the singular
value (divided by n) and the cut-norm may be quite different. To counter this, we give an algo-
rithm which checks regularity effectively under a weaker assumption that simply the L2-norm of
each row and each column stays bounded. Heuristically, the reason this property is useful is that it
implies that if we have a singular vector (with norm 1) with a relatively large singular value, then
no entry can be ‘too large’ – it must be ‘spread out’, which can then be used to show that a large
singular value implies a large cut-norm. We then show that if we are careful, we can make sure
that this property holds throughout the process.

Let us state this more precisely. Given a matrix A, let ai be the ith row of A and aj the jth
column. Our main ingredient then is the following theorem. Note that in the algorithm below, the
parameter C affects the running time but not the discrepancy of the output sets S, T.

Theorem 2.2. There exists a (C/ε)O(1)n2 algorithm which, given a matrix A ∈R
n×n such that

‖A‖max � C, and each ‖ai‖22 � n, ‖aj‖22 � n (or equivalently ‖A	A‖max, ‖AA	‖max � n), either

• correctly outputs that each singular value of A is at most εn, or
• outputs sets S, T ⊆ [n] such that ∣∣∣∣ ∑

i∈S,k∈T
ai,k

∣∣∣∣� ε8

100
n2.

(This implies that A has a singular value that is at least (ε8/100)n.)

https://doi.org/10.1017/S0963548319000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000075

782 J. Fox, L. M. Lovász and Y. Zhao

In the next lemma, we construct the expander along which we will check the scalar products.
For an integer n, let Jn denote the n× nmatrix with each entry equal to 1.

Lemma 2.3. There exist fixed absolute constants l> 0 and 0< c< 1 such that there is an algorithm
which, given d0 and n, outputs a matrixM onRn×n with non-negative integer entries, and an integer
d with d0 � d� ld0, such that ∥∥∥∥dnJn −M

∥∥∥∥� d1−c.

In other words, for any vector v= (vi)ni=1 ∈R
n, we have∣∣∣∣(∑

i
vi

)2
− n

d
v	Mv

∣∣∣∣� n
dc

‖v‖22. (2.1)

The running time of the algorithm is O(dn(log n)O(1)).

Proof. Construct an l-regular two-sided expander G0 on [̃n] for some n� ñ�Kn with K fixed.
This can be done in n(log n)O(1) time. For example, Margulis [13] constructed an 8-regular
expander on Zm ×Zm for every m, and Gabber and Galil [9] showed that all other eigenvalues
(besides 8 with multiplicity 1) are at most 5

√
2< 8. For every vertex (x, y) ∈Zm ×Zm, its eight

neighbours are
(x± 2y, y), (x± (2y+ 1), y), (x, y± 2x), (x, y± (2x+ 1)).

Therefore we can compute, for each vertex, a list of neighbours in time O(logm)=O(log n),
which then takes O(n log n) time total. Alternatively, we can start with a Ramanujan graph for
some fixed degree, constructed explicitly by Lubotzky, Phillips and Sarnak [12], Margulis [14] and
Morgenstern [15].

The adjacency matrix AG0 has AG01= l1, and all eigenvalues besides l have absolute value at
most some explicit a< l. Let k be the integer and M̃ =Ak

G0
be such that d0n/ñ� d̃ : = lk < ld0n/ñ.

Note that M̃ is symmetric and has non-negative integer entries, so it is the adjacency matrix of
some graph G (possibly with multiple edges and loops). Clearly M̃1= d̃1, so d̃ is an eigenvalue
of M̃, and all other eigenvalues have absolute value at most ak = alogl (d̃) = d̃logl (a). Since a< l,
c̃ : = 1− logl (a)> 0. This implies that∥∥∥∥ d̃ñ Jñ − M̃

∥∥∥∥� d̃1−c̃.

Take any set of n vertices, letM be the restricted submatrix of M̃, and let d = d̃n/ñ. As ñ/n� K,
and the spectral norm of a matrix cannot increase when taking a submatrix, we have that∥∥∥∥dnJn −M

∥∥∥∥�
∥∥∥∥ d̃ñ Jñ − M̃

∥∥∥∥� d̃1−c̃ =
(
ñ
n
d
)1−c̃

� (Kd)1−c̃ � d1−c

for an explicit c> 0.
We can construct G0 in time (log n)O(1)n. We make sure, for each vertex, to keep a list of its

neighbours. We then compute Ai
G0

for i= 1, 2, . . . , k. In each case, we make sure to keep a list of
the li neighbours of each vertex (with multiplicities). We can then compute Ai+1

G0
in O(lin) time

by computing the list of li+1 neighbours for each vertex, by looking at its l neighbours in G0 and
taking the (multiset) union. The total running time is therefore

O

⎛⎝(log n)O(1)n+
k∑

i=1
lin

⎞⎠ =O(((log n)O(1) + d)n).

https://doi.org/10.1017/S0963548319000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000075

Combinatorics, Probability and Computing 783

Alternatively, we could have used the zig-zag construction of expanders due to Reingold,
Vadhan and Wigderson [16].

Proof of Theorem 2.2. Throughout this proof, we use the convention that i and j refer to rows
and k and l refer to columns. The basic idea of the algorithm is as follows. It is easy to see that

tr (AA	AA)=
∑
i,j,k,l

ai,kai,laj,kaj,l. (2.2)

In order to estimate this sum, we can use the expander to only compute the sum for pairs (i, j)
which form an edge of the expander (and then multiply by n/d). In fact, this is true even for the
terms in (2.2) corresponding to a fixed k, l. We can therefore use the expander to estimate the sum
in (2.2), and if it is large, find a k for which the sum of the terms corresponding to k are large. This
will allow us to find sets S, T as required.

Here is the algorithm.

1. Construct the matrixM via Lemma 2.3 that satisfies (2.1) (inputting d0 = (3C2ε−4)1/c). Let
M = (mi,j)ni,j=1.

2. For each i, j withmi,j > 0, compute si,j = 〈ai, aj〉.
3. For each k ∈ [n], compute

bk =
n∑

i,j=1
mi,jai,kaj,ksi,j.

4. If each bk � 2
3ε

4dn2, return that ‖A‖� εn.
5. If some bk � 2

3ε
4dn2, do the following.

a. Compute for each l

cl =
∑
i

ai,kai,l.

b. Let T be either the set of l such that cl > 0, or the set of l such that cl < 0, whichever has
a bigger sum in absolute value.

c. Compute for each i ∈ [n] the values

dT(i)=
∑
k∈T

ai,k.

d. Let S be either the set of i ∈ [n] such that dT(i)> 0 or the set of i ∈ [n] such that dT(i)< 0,
whichever has a bigger sum in absolute value.

Let us first analyse the running time. We can constructM in time (log n)O(1)dn. We can compute
each si,j inO(n) time, so computing all of them takesO(dn2) time in total. Computing each bk then
similarly takes O(dn) time (since we only need to sum the terms wheremi,j > 0, and we keep a list
of these entries), so that takes O(dn2) total time. If the algorithm says that ‖A‖� εn, then we are
done. Otherwise, computing each cl can be done in time O(n), so that takes O(n2) time in total.
We then obtain T inO(n) time. Computing S then similarly takesO(n2) time. Since d = (C/ε)O(1),
this shows that the algorithm runs in time (C/ε)O(1)n2.

We now show that the algorithm is correct. First, we show the following lemma, which makes
precise that we can use the expander to estimate the sum (2.2).

https://doi.org/10.1017/S0963548319000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000075

784 J. Fox, L. M. Lovász and Y. Zhao

Lemma 2.4. For any k, l ∈ [n], we have∣∣∣∣∑
i,j

ai,kai,laj,kaj,l − n
d

∑
i,j

mi,jai,kai,laj,kaj,l
∣∣∣∣� C2n2

dc
� ε4

3
n2. (2.3)

Proof. Let ak,l be the vector with entries (ak,l)i = ai,kai,l. Since each |ai,j|� C, we have that
‖ak,l‖22 � C2n. Therefore, by (2.1),∣∣∣∣(∑

i
ai,kai,l

)2
− n

d
a	
k,lMak,l

∣∣∣∣� C2n2

dc
.

Clearly (∑
i

ai,kai,l
)2

=
∑
i,j

ai,kai,laj,kaj,l,

and by the definition ofM and ak,l, we have

a	
k,lMak,l =

∑
i,j

mi,jai,kai,laj,kaj,l.

Lemma 2.5. If the algorithm returns that ‖A‖2 � εn, then it is correct.

Proof. We have∑
k,l

∑
i,j

mi,jai,kai,laj,kaj,l =
∑
i,j

mi,j〈ai, aj〉2 =
∑
k

∑
i,j

mi,jai,kaj,k〈ai, aj〉 =
∑
k

bk �
2
3
ε4dn3.

Summing (2.3) over all pairs k, l ∈ [n], we have∣∣∣∣∑
k,l

∑
i,j

ai,kai,laj,kaj,l − n
d

∑
k,l

∑
i,j

mi,jai,kai,laj,kaj,l
∣∣∣∣� ε4

3
n4.

Therefore,

trAA	AA	 =
∑
i,j,k,l

ai,kai,laj,kaj,l �
n
d

∑
i,j

mi,j〈ai, aj〉2 + ε4

3
n4 � ε4n4.

Since trAA	AA	 is the sum of the fourth powers of the singular values, this implies that each
singular value is at most εn.

Lemma 2.6. If the algorithm returns S and T, then∣∣∣∣ ∑
(i,l)∈S×T

ai,l
∣∣∣∣� ε8

100
n2.

Proof. First, note that for the particular k we obtain in the algorithm, we have

2
3
ε4dn2 � bk =

∑
i,j

mi,jai,kaj,ksi,j =
∑
i,j,l

mi,jai,kaj,kai,laj,l.

https://doi.org/10.1017/S0963548319000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000075

Combinatorics, Probability and Computing 785

We claim that we have∑
i,j,l∈[n]

ai,kaj,kai,laj,l �
n
d

∑
i,j,l∈[n]

mi,jai,kaj,kai,laj,l − ε4

3
n3 � ε4

3
n3.

Indeed, for any fixed l, by (2.3), we have∣∣∣∣ ∑
i,j∈[n]

ai,kaj,kai,laj,l − n
d

∑
i,j∈[n]

mi,jai,kaj,kai,laj,l
∣∣∣∣� ε4

3
n2,

and we can add this up over all l ∈ [n]. Let u= (ai,k)ni=1, and let v be the vector with coordinates

vl =
∑
j

aj,kaj,l.

Then ‖v‖∞ � n and ‖u‖2 �√
n, and we have

u	Av� ε4

3
n3.

Note, however, that

|u	Av|� ‖u	A‖1‖v‖∞.

Therefore, we obtain that

‖u	A‖1 � ε4

3
n2.

Since T consists of either the positive or the negative coordinates of u	A, whichever one has
larger sum in absolute value, this implies that the T we obtain in step 5b satisfies, with 1T the
characteristic vector,

|u	A1T |� ε4

6
n2.

Since ‖u‖2 �√
n, by the Cauchy–Schwarz inequality, this implies that

‖A1T‖22 �
(u	A1T)2

‖u‖22
� ε8

36
n3.

Since each row ai of A has ‖ai‖2 �√
n, we also have that

‖A1T‖∞ �
√
n‖1T‖2 � n.

Therefore,

‖A1T‖1 � ‖A1T‖22
‖A1T‖∞

� ε8

36
n2.

This means that for the S that we obtain in step 5b, we have, if 1S is the characteristic vector,

|1	
S A1T |� ε8

72
n2 � ε8

100
n2,

which is what we wanted to show.

We have seen that either output of the algorithm must be correct, so this completes the proof
of Theorem 2.2.

Before proving Theorem 2.1, we need one more technical lemma.

https://doi.org/10.1017/S0963548319000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000075

786 J. Fox, L. M. Lovász and Y. Zhao

Lemma 2.7. There exists an O(n2) time algorithm which takes as input a matrix A ∈R
n×n and

subsets S, T ⊆ [n] such that ∑
i∈S
k∈T

ai,k � ε′n2,

and outputs sets S′, T′ ⊆ [n] such that ∑
i∈S′,k∈T′

ai,k �
2
3
ε′n2.

Furthermore, for any i ∈ S′, ∑
k∈T′

ai,k �
ε′

6
n,

and for any k ∈ T′, ∑
i∈S′

ai,k �
ε′

6
n.

Proof. Here is the algorithm.

1. To start, set S′ = S and T′ = T.
2. For each i ∈ S′ and each k ∈ T′, store the sum of the corresponding row or column in the

submatrix induced by S′ × T′.
3. Check whether there is a row or column with sum less than (ε′/6)n.
4. If there is, delete it, and update the row or column sums by subtracting the corresponding

element from each sum.
5. Go back to step 3 and repeat until no such row or column remains.

We first show that the running time is O(n2). We can compute each row and column sum in O(n)
time, therefore step 2 takes O(n2) time total. Each time we delete an element from S′ or T′, we
perform O(n) subtractions. The loop runs for at most 2n iterations since |S| + |T|� 2n. Thus the
algorithm takes O(n2) time.

We next show that the algorithm is correct. At each step, the sum decreases by at most (ε′/6)n,
and there are at most 2n steps in total. Therefore, after this process, for the S′ and T′ that we kept,
we must still have ∑

(i,k)∈S×T
ai,k �

2
3
ε′n2.

In particular, this implies that when the algorithm terminates, S′ and T′ cannot be empty. By the
definition of the algorithm, if it terminates, we must have the property that, for any i ∈ S′,∑

k∈T′
ai,k �

ε′

6
n,

and for any k ∈ T′, ∑
i∈S′

ai,k �
ε′

6
n.

This completes the proof of the lemma. �

We are now ready to prove our main theorem.

https://doi.org/10.1017/S0963548319000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000075

Combinatorics, Probability and Computing 787

Proof of Theorem 2.1. Let ε′ = ε8/100. Here is the algorithm.We iteratively construct a sequence
of matrices as follows.

1. Set A0 =A.
2. For each l starting at 0, do the following.

a. Apply the algorithm from Theorem 2.2 to Al.
b. If the algorithm returns that ‖Al‖� εn, then FINISH.
c. Otherwise, the algorithm outputs sets S, T ⊆ [n] such that∣∣∣∣ ∑

i∈S,k∈T
ai,k

∣∣∣∣� ε′n2.

Let σ ∈ {−1, 1} be the sign of the above sum.
d. Use Lemma 2.7, applied to σAl (and S, T from above), to find S′, T′ ⊆ [n] such that

σ
∑

i∈S′,k∈T′
ai,k �

2
3
ε′n2.

Furthermore, for any i ∈ S′,

σ
∑
k∈T′

ai,k �
ε′

6
n,

and for any k ∈ T′,

σ
∑
i∈S′

ai,k �
ε′

6
n.

Replace S and T with S′ and T′.
e. Let Sl = S, Tl = T, t = σ (ε′/3), and Al+1 =Al − tKSl ,Tl .

Let us first show that we can indeed apply Theorem 2.2 to each Al. We first show that if v is a row
or column of Al, then

‖v‖22 � n.

By the assumptions of the theorem, this is true for l= 0. Fix l so that it is true for Al, let ai,k be the
entries of Al, and let i be any row. If i /∈ S, then the row does not change, so the L2-norm of the
row does not change in Al+1. If i ∈ S, then we have∑

k∈T
a2i,k − (ai,k − t)2 = 2t

∑
k∈T

ai,k − |T|t2 � 2tσ
ε′

6
n− t2n= t

(
σ

ε′

3
− t

)
n= 0.

Since the entries in Al were ai,k, and the entries in Al+1 are ai,k − t, this implies that the L2-norm
of the corresponding row in Al+1 cannot increase, and so for each row it is still at most

√
n. The

analogous argument for columns shows that the same holds for each column.
Next, note that each entry ofA0 has absolute value at most 1, and each entry changes by at most

ε′/3 when going fromAl toAl+1. Therefore, each entry ofAl is at most 1+ lε′/3 in absolute value,
so we can apply Theorem 2.2 with C = 1+ lε′/3.

Finally, we show that the Frobenius norms of the matrices must decrease:

‖Al+1‖2F � ‖Al‖2F − ε′2

3
n2.

https://doi.org/10.1017/S0963548319000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000075

788 J. Fox, L. M. Lovász and Y. Zhao

Let ai,k be the entries of Al again. We have

‖Al‖2F − ‖Al+1‖2F =
∑
i∈S
k∈T

a2i,k − (ai,k − t)2 = 2t
∑
i∈S
k∈T

ai,k − |S||T|t2

� σ
4
3
tε′n2 − |S||T|t2 �

(
σ
4
3
tε′ − t2

)
n2.

With our choice of t = σ (ε′/3), this implies that

‖Al+1‖2F � ‖Al‖2F − ε′2

3
n2.

Now, we must have ‖A0||2F � n2. Since the square of the Frobenius norm decreases by at least

ε′2

3
n2 = ε16

30000
n2

at each step, the number of steps is at most O(1/ε16). Therefore, after at most O(1/ε16), the
algorithm must terminate.

As for the running time, the algorithm from Theorem 2.2 (with C = 1+ lε′/3) takes at most
O((l/ε)O(1)n2)= ε−O(1)n2 time as l=O(ε−16). The algorithm from Lemma 2.7 takes O(n2) time.
Finally, as the number of steps is O(ε−16), the whole process takes ε−O(1)n2 time. �

3. Approximation algorithm for subgraph counts
We would like to approximate the number of copies of a fixed k-vertex graph H in an n-vertex
graph G, up to an additive error of at most εnk. In this section, we prove Theorem 1.4, which
claims an algorithm to perform the task in O(ε−OH(1)n2) time.

It will be cleaner to work instead with hom (H,G), the number of graph homomorphisms
from H to G. This quantity differs from the number of (labelled) copies of H in G by a negligible
OH(nv(H)−1) additive error. We use the following multipartite version.

Definition 3.1. Let H be a graph on [k], and let G be a k-partite weighted graph with vertex sets
V1, . . . ,Vk. We write

hom∗(H,G)=
∑

(v1,...,vk)∈V1×···×Vk

∏
{i,j}∈E(H)

G(vi, vj), (3.1)

where G(x, y) denotes the edge-weight of {x, y} in G, as usual.

Note that for graphsH and G, hom∗(H,G) counts the number graph homomorphisms fromH
to G where every vertex vi ∈V(H) is mapped to the associated vertex part Vi in G.

For every graph G, there is a k-partite G∗, obtained by replicating each vertex of G into k iden-
tical copies and two vertices of G∗ are adjacent if the original vertices in G they came from are
adjacent, such that hom (H,G)= hom∗(H,G∗). Thus Theorem 1.4 follows from its multipartite
generalization below.

Theorem 3.2. There exists a deterministic algorithm that takes as input a graphH on [k], a k-partite
graph G with each vertex part having at most n vertices, and ε > 0, and outputs, in time ε−OH(1)n2,
a quantity that approximates hom∗(H,G) up to an additive error of at most εnk.

Proof. We begin with a description of the algorithm. If H has no edges, then hom∗(H,G)=
|V1| · · · |Vk|. Assume now thatH has at least one edge, say {1, 2} (relabelling if necessary). Denote

https://doi.org/10.1017/S0963548319000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000075

Combinatorics, Probability and Computing 789

the vertex parts of G by V1, . . . ,Vk. Let G12 denote the bipartite graph induced by V1 and V2
in G, and d(G12)= d(V1,V2)= e(V1,V2)/(|V1||V2|) to denote the edge density between V1 and
V2 in G. By Theorem 1.3 and the remark afterwards, we can algorithmically find S1, . . . , Sr ⊆V1,
T1, . . . , Tr ⊆V2, and c1, . . . , cr =O(ε8), with r =O(ε−16), such that the weighted bipartite graph
G′
12 on vertex sets V1 and V2 defined by

G′
12 =

r∑
i=1

ciKSi,Ti (3.2)

satisfies
d�(G12,G′

12)� ε/2.

Let G(i) be obtained from G by deleting the vertices in (V1 \ Si)∪ (V2 \ Ti). Let H′ be H with the
edge {1, 2} removed. Since H′ has one fewer edge than H, we can recursively apply the algorithm
to estimate each of hom∗(H′,G), hom∗(H′,G(1)), . . . , hom∗(H′,G(r)) up to an additive error of at
most cε9, where c is some absolute constant. Summing up a linear combination of these estimates,
we obtain an estimate for

r∑
i=1

ci hom∗(H′,G(i)),

which we use as our estimate for hom∗(H,G).
Now we prove the correctness of the algorithm. Let G′ be obtained from G by replacing the

bipartite graph between V1 and V2 by G′
12. We claim that∣∣ hom∗(H,G)− hom∗(H,G′)

∣∣� εnk

2
. (3.3)

Indeed,

hom∗(H,G)− hom∗(H,G′)=
∑

(v1,...,vk)∈V1×···×Vk

fv3,...,vk(v1)gv3,...,vk(v2)(G(v1, v2)−G′(v1, v2))

for some fv3,...,vk(v1), gv3,...,vk(v2) ∈ {0, 1} obtained by appropriately grouping the G(vi, vj) factors
in (3.1).3 For fixed (v3, . . . , vk) ∈V3 × · · · ×Vk, we have∣∣∣∣ ∑

(v1,v2)∈V1×V2

fv3,...,vk(v1)gv3,...,vk(v2)(G(v1, v2)−G′(v1, v2))
∣∣∣∣

� max
U⊂V1,W⊂V2

|eG12 (U,W)− eG′
12
(U,W)|� n2d�(G12,G′

12)� εn2/2.

Then, summing over all (v3, . . . , vk) ∈V3 × · · · ×Vk and applying the triangle inequality, we
obtain (3.3).

From (3.2), we have

hom∗(H,G′)=
r∑

i=1
ci hom∗(H′,G(i)).

Since ci =O(ε8) and r =O(ε−16), we obtain an estimate of hom∗(H,G′) up to an additive error of
at most εnk/2 as long as each hom∗(H′,−) in the above sum is estimated up to an additive error
of cε9nk for an appropriate positive constant c. Together with (3.3), the estimate is within εnk of
hom∗(H,G), as claimed.

3We use the assumption that 0�G� 1 in this step. In the analogous step in [6], wemistakenly also assumed that 0�G′ � 1,
which is not necessarily the case.

https://doi.org/10.1017/S0963548319000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000075

790 J. Fox, L. M. Lovász and Y. Zhao

Now we analyse the running time. It takes ε−O(1)n2 time (independent ofH) to find S1, . . . , Sr ,
T1, . . . , Tr , and c1, . . . , cr . Estimating each hom∗(H′,G), hom∗(H′,G(1)), . . . , hom∗(H′,G(r)) up
to an additive error of at most cε9 takes ε−OH′ (1)n2 time (by induction), and we need to perform
r + 1=O(ε−16) such estimates. Thus the total running time is ε−OH(1)n2.

References
[1] Alon, N., Duke, R. A., Lefmann, H., Rödl, V. and Yuster, R. (1994) The algorithmic aspects of the regularity lemma.

J. Algorithms 16 80–109.
[2] Dellamonica, D., Kalyanasundaram, S., Martin, D., Rödl, V. and Shapira, A. (2012) A deterministic algorithm for the

Frieze–Kannan regularity lemma. SIAM J. Discrete Math. 26 15–29.
[3] Dellamonica, D. Jr., Kalyanasundaram, S., Martin, D. M., Rödl, V. and Shapira, A. (2015) An optimal algorithm for

finding Frieze–Kannan regular partitions. Combin. Probab. Comput. 24 407–437.
[4] Duke, R. A., Lefmann, H. and Rödl, V. (1995) A fast approximation algorithm for computing the frequencies of

subgraphs in a given graph. SIAM J. Comput. 24 598–620.
[5] Fox, J., Lovász, L. M. and Zhao, Y. (2018) Erratum for ‘On regularity lemmas and their algorithmic applications’.

Combin. Probab. Comput. 27 851–852.
[6] Fox, J., Lovász, L. M. and Zhao, Y. (2017) On regularity lemmas and their algorithmic applications. Combin. Probab.

Comput. 26 481–505.
[7] Frieze, A. and Kannan, R. (1996) The regularity lemma and approximation schemes for dense problems. In 37th Annual

Symposium on Foundations of Computer Science, IEEE Computer Society Press, pp. 12–20.
[8] Frieze, A. and Kannan, R. (1999) Quick approximation to matrices and applications. Combinatorica 19 175–220.
[9] Gabber, O. and Galil, Z. (1981) Explicit constructions of linear-sized superconcentrators. J. Comput. System Sci. 22

407–420.
[10] Kohayakawa, Y., Rödl, V. and Thoma, L. (2003) An optimal algorithm for checking regularity. SIAM J. Comput. 32

1210–1235.
[11] Lovász, L. and Szegedy, B. (2007) Szemerédi’s lemma for the analyst. Geom. Funct. Anal. 17 252–270.
[12] Lubotzky, A., Phillips, R. and Sarnak, P. (1988) Ramanujan graphs. Combinatorica 8 261–277.
[13] Margulis, G. A. (1973) Explicit constructions of expanders. Problemy Peredači Informacii 9 71–80.
[14] Margulis, G. A. (1988) Explicit group-theoretic constructions of combinatorial schemes and their applications in the

construction of expanders and concentrators. Problemy Peredachi Informatsii 24 51–60.
[15] Morgenstern, M. (1994) Existence and explicit constructions of q+ 1 regular Ramanujan graphs for every prime power

q. J. Combin. Theory Ser. B 62 44–62.
[16] Reingold, O., Vadhan, S. andWigderson, A. (2002) Entropy waves, the zig-zag graph product, and new constant-degree

expanders. Ann. of Math. (2) 155 157–187.
[17] Szemerédi, E. (1975) On sets of integers containing no k elements in arithmetic progression. Acta Arith. 27 199–245.
[18] Szemerédi, E. (1978) Regular partitions of graphs. Problèmes Combinatoires et Théorie des Graphes (Colloq. Internat.

CNRS, Univ. Orsay, Orsay, 1976), Colloq. Internat. CNRS, Vol. 260, CNRS, Paris, pp. 399–401.

Cite this article: Fox J, Lovász LM and Zhao Y (2019). A fast new algorithm for weak graph regularity. Combinatorics,
Probability and Computing. 28, 777–790. https://doi.org/10.1017/S0963548319000075

https://doi.org/10.1017/S0963548319000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000075
https://doi.org/10.1017/S0963548319000075

	A fast new algorithm for weak graph regularity
	Introduction
	Algorithmic weak regularity
	Approximation algorithm for subgraph counts

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

