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Large-eddy simulation (LES) has been used to predict the statistically three-
dimensional turbulent boundary layer (3DTBL) over a rotating disk. LES predictions
for six parameter cases were compared to the experimental measurements of Littell &
Eaton (1994), obtained at a momentum thickness Reynolds number of 2660. A signal-
decomposition scheme was developed by modifying the method of Spalart (1988) to
prescribe time-dependent boundary conditions along the radial direction, entrainment
towards the disk surface was prescribed by satisfying global mass conservation. Pre-
dictions of the mean velocities and r.m.s. fluctuations are in good agreement with data,
with the largest discrepancy occurring in the prediction of the wall-normal intensities.
The primary and two secondary shear stresses are also in good agreement with the
measurements and one-dimensional energy spectra of the velocity fluctuations agree
well with established laws, i.e. a −1 slope in the buffer region and −5/3 slope near
the edge of the boundary layer.

Conditionally averaged velocities provide new evidence in support of the structural
model of Littell & Eaton (1994) concerning the interaction of mean-flow three-
dimensionality and shear-stress producing structures. Inside the buffer region under
strong ejections, the conditionally averaged crossflow (radial) velocity is larger than
the unconditioned mean, and the profile conditioned on strong sweeps is smaller
than the mean. This is consistent with the notion that streamwise vortices having
the same sign as the mean streamwise vorticity, and beneath the peak crossflow
location, are mostly responsible for strong sweep events; streamwise vortices with
opposite sign as the mean streamwise vorticity promote strong ejections. Comparison
of two-point spatial correlations with previous measurements in two-dimensional
turbulent boundary layers (2DTBLs) indicates interesting structural similarities, e.g.
the correlation of wall pressure and surface-normal velocity fluctuations is an odd
function of streamwise separation, being positive downstream and negative upstream.
These similarities offer quantitative indirect support to the hypothesis advanced by
Littell & Eaton (1994) and Johnston & Flack (1996) that structural models describing
2DTBLs may be employed as a baseline in (equilibrium) 3DTBL structural studies.

1. Introduction
1.1. Overview and objectives

Consider the flow over a flat disk which rotates about an axis, z, perpendicular to its
plane with a uniform angular velocity, ω, in an otherwise stationary incompressible
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fluid that fills the entire half-space, z > 0. The layer near the disk is carried by it
through friction and is thrown outward owing to the action of centrifugal forces.
As illustrated in figure 1(a), this is compensated by particles which flow in an axial
direction towards the disk to be in turn carried and ejected centrifugally (Schlichting
1979). Inside the layer, all three velocity components ur , uθ , and uz and their mean are
non-zero. As discussed in Kobayashi (1994), the flow over a rotating disk is laminar
for Reynolds numbers Re = ωr2/ν less than about 4.5 × 104, where r is the radial
coordinate and ν the kinematic viscosity. The flow is fully turbulent for Re greater
than about 3.9× 105. Lingwood (1996) pointed out that the onset of transition over
a rotating disk occurs at Reδ2

= (ωr)δ2/ν above 502 and below 513, where δ2 is the
boundary-layer momentum thickness. The tangential velocity distribution resembles
a fully turbulent profile by Reδ2

= 615.
The boundary layer induced by a rotating disk in an otherwise quiescent fluid bears

substantial scientific importance owing to its relevance to applications in electronic
packaging and turbomachinery, among others. It is also a flow of fundamental interest
for several reasons. The laminar flow is one of the few non-trivial three-dimensional
cases whose exact Navier–Stokes solutions exist. The solution to the laminar flow over
a rotating disk was first discussed by von Kármán, and subsequently followed by many
others (see Schlichting 1979). In these studies, the assumption that similarity solutions
to the velocity components exist is invoked. Transformations similar to those used
for axisymmetric stagnation point flow are then used to reduce the Navier–Stokes
equations to a pair of ordinary differential equations (e.g. see Schlichting 1979). The
transitional flow over a rotating disk affords a unique three-dimensional platform
for the investigation of instability and turbulence origin. The stability of the laminar
boundary layer over a rotating disk and the related transition problem has been
extensively considered by Malik, Wilkinson & Orszag (1981); Balachandar, Streett &
Malik (1992); and Lingwood (1996, 1997), among others. Transition over a rotating
disk, while of significant interest and importance, is not the subject of this paper and
the reader is referred to the work of the aforementioned authors, and in particular
to Kobayashi (1994) and Lingwood (1997) for recent reviews. Likewise, the confined
flow between co-rotating disks, which also has wide applications, is beyond the scope
of the present investigation. The reader is referred to the work of Humphrey & Gor
(1993) for discussions on that subject.

Compared to the laminar and transitional flows, the fully turbulent three-
dimensional boundary layer over a rotating disk has been the subject of considerably
fewer investigations. Unlike three-dimensional turbulent boundary layers (3DTBLs)
which are formed by turning, via a spanwise pressure gradient or shearing force, an
initially two-dimensional turbulent flow, the disk boundary layer is unique in that it
is three-dimensional from its inception. Consequently, the underlying structure does
not result from perturbing an initially two-dimensional flow, but is inherent to a
boundary layer with a continuously applied crossflow. The rotating disk boundary
layer is then one of the most canonical platforms for investigation of the underlying
structure of 3DTBLs. Increased knowledge and an improved understanding of the
disk boundary-layer structure establishes an important basis for understanding other
3DTBLs arising in more complex configurations.

As described in greater detail in § 1.2, the most thorough experimental investiga-
tion of the statistical and structural features of the 3DTBL over a rotating disk is
that conducted by Littell & Eaton (1994). A key feature of their study concerned
modification of boundary-layer turbulence by the crossflow. Littell & Eaton (1994)
first hypothesized that a plausible description of the equilibrium structure of the
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Turbulent flow over a rotating disk 233

disk flow turbulence is a modification of the baseline structural model advanced by
Robinson (1991) for two-dimensional boundary layers. Based upon measurements ob-
tained using conditional sampling and two-point correlations, Littell & Eaton (1994)
then proposed a model accounting for modification of boundary-layer structure by
the crossflow (see also Eaton 1995). One of the main goals of the present work is
to scrutinize more closely the proposed structural model and associated hypothesis
advanced by Littell & Eaton (1994) and, in general, to provide a more developed
understanding of the similarities and differences between a well-defined, equilibrium
3DTBL over a rotating disk and canonical two-dimensional turbulent flows which
have been more widely studied. One of the main contributions of this study is that the
structural model proposed by Littell & Eaton (1994) has been validated using new,
definitive measures of the near-wall structure, and their working hypothesis has also
been indirectly reinforced using insight gained from new measurements of two-point
spatial correlations.

The approach adopted in this work for investigation of the 3DTBL over a rotating
disk is large-eddy simulation (LES). As described in § 2, LES is used to resolve
boundary-layer turbulence in a Reynolds number range for which measurements
exist, outside the range at which a direct simulation could be considered feasible.
While LES permits an accurate description of the disk flow, a time-dependent and
three-dimensional simulation poses significant new challenges, and calculations of
the disk boundary layer must be carefully constructed and performed. In LES, a
subgrid model is employed to parameterize stresses not resolved by the computational
grid. The additional empiricism introduced by the subgrid model must be carefully
considered before the results from an LES calculation may be used to gain insight
into fundamental aspects of the flow. In addition, a reasonably large body of literature
now exists concerning application of LES to prediction of complex turbulent flows
and it is clear that comparison to experimental measurements is crucial in order to
validate the entire computational approach.

The two primary aims of this work are (i) prediction of the 3DTBL over a rotating
disk using LES, and (ii) investigation of the underlying structure of the flow. The
data of Littell & Eaton (1994) acquired at a momentum thickness Reynolds number
2660 are used to evaluate LES predictions. In § 1.2 a survey of previous work on the
fully turbulent flow over a rotating disk is presented. Some related studies on other
3DTBLs are also discussed in § 1.2. A summary of recent applications of LES to
prediction of complex flows is presented in § 1.3.

1.2. Three-dimensional turbulent boundary layers

Cham & Head (1969) measured the mean tangential velocity 〈uθ〉 and mean radial
velocity 〈ur〉 (cf. figure 1) in the 3DTBL over a rotating disk for 3.0 × 105 6
Re 6 2.0 × 106. In addition to the mean tangential and radial velocities, Erian &
Tong (1971) also measured two turbulence intensities u′θ,rms and u′r,rms, as well as
the primary turbulent shear stress 〈u′θu′z〉 for 6.0 × 105 6 Re 6 1.0 × 106. More
recently, Littell & Eaton (1994) reported a comprehensive experimental study in the
range 4.0 × 105 6 Re 6 1.6 × 106. Their measurements include the mean velocity
components and all six Reynolds stresses. Littell & Eaton (1994) also measured two-
point correlations and used conditional sampling away from the wall (z+ > 100) to
investigate modification by the crossflow of the production of turbulent shear stress.
Similar two-point correlation measurements were recently presented by Kang, Choi &
Yoo (1998). Computational work on the disk boundary layer is scarce. Cham & Head
(1969), Copper (1971), and Cebeci & Abbott (1975) calculated the mean velocity
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Figure 1. (a) Schematic of the 3DTBL created over a rotating disk in the laboratory coordinate
system; (b) top-view of the computational domain.

components 〈uθ〉 and 〈ur〉 using the laminar similarity method of von Kármán and
empirical eddy viscosities.

Experimental studies and direct numerical simulations of 3DTBLs up to 1996 were
reviewed by Johnston & Flack (1996) (see also Anderson & Eaton 1989; Spalart
1989; Moin et al. 1990; Coleman, Ferziger & Spalart 1990; Sendstad & Moin 1992;
Schwarz & Bradshaw 1994; Simpson & Olcmen 1995). More recent 3DTBL studies
were reported by Coleman et al. (1996), Webster et al. (1996), and Wu & Squires
(1997). Previous work indicates that understanding and prediction has been hampered
by the many complicating features such as upstream flow development, streamwise
pressure gradient, and surface curvature that are often present in the majority of
3DTBLs. Webster et al. (1996) found that in the flow over a swept bump, effects
of mean-flow three-dimensionality on boundary-layer properties were less significant
than changes caused by the streamwise pressure gradient. The stress/intensity ratio,
for example, was nearly the same as in its two-dimensional analogue. Their findings
are consistent with the direct simulations performed by Coleman et al. (1996) of
turbulent channel flow subjected to additional mean strains. Coleman et al. (1996)
found a stronger effect of the strains resulting from streamwise pressure gradient
on structural descriptors of the turbulence as compared to the effect of mean-flow
three-dimensionality.

Compared to other 3DTBLs, the fully turbulent flow over a rotating disk is unique
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Figure 2. (a) Schematic of the canonical 2DTBL structure model of Robinson (1991) and the
crossflow profile in the disk boundary layer; (b) Littell & Eaton (1994) model of alteration of
shear-stress producing events by the mean crossflow (see also Eaton 1995).

since there are no other complicating effects arising from variations in geometry,
streamwise pressure gradient, etc. Successful prediction of the disk flow then estab-
lishes an important baseline for methods used to predict other complex flows. In
addition, a simulation database may be used to study and understand, in a canonical
setting, the effect of mean-flow three-dimensionality on boundary-layer turbulence. In
fact, noting that few turbulence simulations are available of the disk flow, Johnston
& Flack (1996) concluded their review by ‘urging modellers to tackle this case as a
prelude to the prediction of more complex flows’. The first objective of the current
contribution is to apply LES to prediction of the 3DTBL over a rotating disk and
evaluate simulation results using the measurements of Littell & Eaton (1994).

The central flow physics question considered in detail by Littell & Eaton (1994) is
the modification of shear-stress producing structures by the crossflow. By assuming
that the underlying structure of an equilibrium 3DTBL is not fundamentally different
from its two-dimensional counterpart, Littell & Eaton first hypothesized that the
model of Robinson (1991) developed for two-dimensional boundary layers can be
used as an approximation to the shear-stress producing structure in their 3DTBL.
In Robinson’s model, most ejections are found on the upstream side of transverse
vortices, which often form ‘head’ elements of one- or two-sided vortical arches; strong
sweeps occur primarily on the outboard side of tilted necks (see figure 2a). Using
this baseline model, Littell & Eaton (1994) then proposed that the modification of
shear-stress producing structure by mean-flow three-dimensionality can be described
as follows: the crossflow reduces the ability of streamwise vortices of one sign to
produce strong ejections, while weakening the ability of those of the other sign
to produce strong sweeps (see figure 2b). In support of their proposition, Littell &
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Eaton (1994) showed that conditionally sampled wall-normal velocities at z+ > 100,
a position above the location of the peak crossflow, exhibited an asymmetry on
the upstream and downstream side (in the radial direction) of ejection/sweep events
(see Eaton 1995; Wu & Squires 1997 for further discussions). While this proposition
represents a significant step forward in the understanding of 3DTBL structure, a
direct test of their model requires examination of the radial velocity profiles beneath
the peak of the mean crossflow and conditionally averaged on strong ejections and
sweeps (see § 4.2.1 for further details).

An additional issue related to the proposition of Littell & Eaton (1994) is that
the structural model of Robinson (1991) developed for canonical two-dimensional
boundary layers was employed as the baseline for the disk flow. In order to establish
this proposition on firmer ground, it is necessary to understand more deeply the overall
structural similarities between the disk boundary layer and the more widely studied
two-dimensional turbulent flows, i.e. to clarify whether structural models developed for
the latter can indeed be used as a baseline for the former. A definitive clarification of
this issue beyond reasonable doubt is difficult. One approach to providing quantitative
support for their hypothesis is measurement of two-point correlation functions. If
the flow truly contains a dominant structure, distributed stochastically in space, its
presence should be clearly marked by two-point correlations (Moin & Kim 1985).
Therefore, conditional sampling and two-point spatial correlation measurements are
used to achieve the second objective, i.e. to provide a direct evaluation of the structural
model of Littell & Eaton (1994), and also to provide some indirect, but quantitative,
results concerning their structural similarity hypothesis.

1.3. Prediction of complex flows using LES

In this work, LES of the incompressible Navier–Stokes equations is employed. As
shown in detail in § 2, filtering the momentum equations yields the subgrid-scale
(SGS) stress, which in this study is parameterized using dynamic models. Previous
studies in LES and dynamic modelling up to 1996 were reviewed by Lesieur & Metais
(1996). Among the more recent investigations are those reported by Rodi et al. (1997),
Mittal & Moin (1997), Kravchenko & Moin (1997), and Vreman, Guerts & Kuerten
(1997). An important outcome of these and other studies is that there are many
factors affecting the accuracy of LES predictions, e.g. grid resolution and distribution,
subgrid model, numerical methods, and boundary conditions, each of which must be
carefully monitored and controlled.

Rodi et al. (1997) surveyed the status of LES research through comparison of
experimental measurements of the flow past a square cylinder to the simulation
results obtained by ten groups. LES predictions obtained using wall-layer models
produced drag coefficients that were relatively closer to experimental measurements,
while calculations resolving the wall layer (i.e. directly enforcing no-slip conditions)
tended to yield higher values of the drag coefficient. Simulations using dynamic
models tended to predict longer recirculation zones and lower drag coefficients,
and in better agreement with measurements, than in calculations performed using
the Smagorinsky model. Accurate prediction of some global parameters such as
the Strouhal number did not necessarily indicate a quality simulation. Rodi et al.
(1997) concluded that one of the keys to accurate predictions is having sufficient
resolution near the wall, whether no-slip boundary conditions or wall-layer models
are used. Insufficient spanwise resolution and inadequate spanwise dimensions were
also possible contributors to the lack of agreement with experiments. Rodi et al.
(1997) pointed out that one of the factors whose effect proved difficult to analyse was
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the choice of numerical method. Upwind methods, for example, have a dissipative
truncation error that can act as an additional subgrid model. For the flow around
a square cylinder, numerical schemes using upwind methods tended to predict short
recirculation zones owing to the numerical diffusion added by the discretization.

Mittal & Moin (1997) studied the effect of numerical discretization through com-
parison of LES predictions of the flow past a circular cylinder using a conservative
second-order central difference method to higher-order upwind-biased schemes. The
upwind-biased schemes removed excessive energy from roughly three-quarters of the
resolved wavenumber range owing to inherent numerical dissipation. In the central
difference scheme, because there is no numerical dissipation, the smaller scales were
more energetic and the computed energy spectra agreed better with experiments.
With about twenty per cent smaller grid spacing, the second-order method yielded
mean flow and Reynolds stress results that are comparable to those obtained by the
high-order upwind schemes. Based on these results, Mittal & Moin (1997) advocated
that in applications such as flow-generated noise and reacting flows where small-scale
fluctuations play a crucial role, energy conservative schemes would be preferable to
upwind methods. Mittal & Moin (1997) also pointed out an issue associated with the
use of central difference methods is that simulations can be sensitive to numerical
factors such as grid discontinuities and outflow boundary conditions. Consequently,
grid generation and boundary conditions have to be designed with extreme care. The
reader is referred to Kravchenko & Moin (1997) for further discussion of these and
related issues.

Vreman et al. (1997) recently considered several subgrid models in LES of a
temporal mixing layer. The convective terms in the filtered Navier–Stokes equations
were discretized using a fourth-order method and the viscous terms were approximated
using second-order central differences. Six SGS models were tested in the calculations,
including the Smagorinsky model and various formulations of dynamic models. The
dynamic models were found to yield more accurate results than the non-dynamic
models because the dynamic procedure provides a mechanism to dissipate energy
from resolved to subgrid scales. Vreman et al. (1997) concluded that, overall, the
dynamic mixed model provided the best performance when compared with filtered
DNS results.

These previous efforts, and similar studies performed by other researchers, have
provided important guidelines for further application of LES as a tool to predict and
investigate complex turbulent flows. As will be shown in §§ 2 and 3, the simulations
presented in this paper have been carefully constructed and executed to establish the
accuracy and validity of the computational approach.

The remainder of this paper is organized towards achieving the objectives described
in § 1.1. A detailed description of the overall computational approach is first presented
in § 2, with the governing equations and subgrid-scale models described in § 2.1. Time-
dependent turbulent boundary conditions are required for simulation of the disk flow
and this issue is addressed in § 2.2. In order to analyse the simulation results with
confidence, it is necessary to establish the accuracy of the LES prior to an examination
of the underlying physics. This task is addressed in § 3 where predictions of the mean
velocity and second-order statistics for six parameter cases are thoroughly compared
with the data of Littell & Eaton (1994). As shown in § 3, although some minor
differences between LES predictions and measurements do exist, the simulations
reproduce the mean and second-order statistics to very good accuracy and establish
the validity of the computational approach for the subsequent discussion of single-
point statistical properties in § 4.1 and analysis of structural measures in § 4.2.
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2. Simulation overview
2.1. Governing equations and subgrid model

In LES, mass and momentum conservation is enforced for the large-scale resolved
variables, which are obtained by filtering the Navier–Stokes equations. The filtered
continuity and Navier–Stokes equations in a cylindrical system are,

∂uz

∂z
+

1

r

∂(rur)

∂r
+

1

r

∂uθ

∂θ
= 0, (2.1)

∂ur
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= −∂p
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In (2.1)–(2.4), an overbar denotes the variable filtered at the grid level. Lengths in
(2.1)–(2.4) are normalized by the radius rm (defined as (r1 + r2)/2, see figure 1b),
velocities by the disk speed ωrm. The Reynolds number is then Re = ωr2

m/ν. The
stresses in (2.2)–(2.4) are given by,
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(2.5)

Note that the subgrid-scale stress arising from the filtering operation can be decom-
posed in terms of the modified Leonard, cross, and SGS Reynolds stresses (Germano
1986). In (2.1), the modified Leonard term is Lm

ij = uiuj − uiuj and an eddy viscosity
hypothesis has been used to model the modified cross and Reynolds stresses where
νT is the SGS eddy viscosity. Finally, it should also be noted that the filtered pressure
p includes the trace of the subgrid stress.
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In this study, three subgrid models are used: the dynamic eddy viscosity model of
Germano et al. (1991), the dynamic mixed model of Zang, Street & Koseff (1993),
and the dynamic mixed model of Vreman et al. (1994). These three closures can be
uniformly expressed as,

νT = C∆ 2|S |, C = −1

2

〈(Lij −Hij)Mij〉θ
〈MijMij〉θ , |S | =

√
2SijS ij , (2.6)

where

Mij = ∆̂ 2|Ŝ |Ŝ ij − ∆2 |̂S |Sij , Lij = ûiuj − ûiûj . (2.7)

The SGS stress τij is,

τij − δij

3
τkk =Lm

ij − δij

3
Lm

kk − 2νTS ij , (2.8)

and the large-scale strain rate tensor, Sij , is,
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+
∂uz
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)
.


(2.9)

In the mixed model formulations of Zang et al. (1993) and Vreman et al. (1994), the
tensor Hij is evaluated as,

Hij = ûiuj − ûiûj , or Hij =
̂̂
uiûj − ̂̂uî̂uj − (ûiuj − ûiuj), (2.10)

respectively. Note that when the dynamic eddy viscosity model is used instead of the
mixed models, Lm

ij is not explicitly computed, but rather presumed to be closed using
the eddy viscosity part of the model.

In (2.7) and (2.10), ·̂ represents a filtering operation at the ‘test filter’ level (see

Germano et al. 1991). In this work, the test-filter width, ∆̂, was twice the grid-filter
width, ∆. Filtering was applied in the tangential and radial directions and the grid-filter
width was assumed to be equal to the grid spacing in these directions. Multiple filtering

operations, e.g. test-grid filter, ·̂, and grid-grid filter, ·, were performed sequentially.
A top-hat filter was used at the test-filter level; numerical integration as required
for the filtering operations was performed using Simpson’s rule. A clipping function
was used to ensure non-negative values of C following the streamwise averaging
applied to (2.6), where 〈·〉θ indicates an average taken in the tangential direction (see
also Akselvoll & Moin 1996). The effects of clipping in two- and three-dimensional
boundary-layer simulations were discussed in Wu & Squires (1998a, b). For further
discussion of filtering, both in the dynamic procedure and LES, the reader is referred
to Vreman et al. (1997) and Vasilyev, Lund & Moin (1998).

2.2. Boundary conditions

As discussed in § 1, the interest of the present investigation is in the fully turbulent disk
flow at Re = 6.5× 105 (Reδ2

= 2660). At this Reynolds number, it would be difficult
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to incorporate into the calculation the region of laminar-to-turbulent transition. For
direct numerical simulations of flat-plate boundary-layer transition and discussion
of the associated issues, see Rai & Moin (1993) and Ducros, Comte & Lesieur
(1996). In this work, it is assumed that the residual effect of transition on turbulence
statistics and structure is negligible. Support for this assumption can be found in the
recent work of Lingwood (1996, 1997) on the stability characteristics of the disk flow
boundary layer. Lingwood’s work suggests that transition to turbulence occurs by an
absolute instability, and thus the final state determined by nonlinear effects will be
relatively independent of the transition process.

In order to solve the governing equations (2.1)–(2.4) in a computational domain,
as shown in figure 1(b), time-dependent turbulent velocities must be specified at
the two radial planes r = r1 and r = r2. These radial planes are not the same
as the streamwise inflow/outflow positions typically encountered in other spatially
developing flows. While periodic conditions are applicable along the (streamwise)
tangential direction, they are inappropriate in the radial direction because of the
entrainment from above the disk surface.

As pointed out by Littell & Eaton (1994), except near transition, there is a relatively
slow variation of turbulence statistics along the radial direction. Using empirical
correlations it is possible to estimate the growth of the boundary layer, and hence the
rate of change in turbulence lengthscales, across the radial span of the computational
domain. According to Schlichting (1979), the boundary-layer thickness in the disk
3DTBL is approximately,

δ = 0.52rRe−1/5 = 0.52r3/5(ν/ω). (2.11)

Thus, for the present case in which the radial dimension r2 − r1 = 2δr1 (cf. figure 1b),
the ratio of boundary-layer thicknesses at the two radial planes is,

δr2
δr1

=
(r1 + 2δr1 )

3/5

r
3/5
1

= [1 + 1.04r
−2/5
1 (ν/ω)1/5]3/5 = (1 + 1.04Re−1/5

r1
)3/5. (2.12)

For the Reynolds number considered in this study (Re = 6.5× 105), this ratio is
δr2/δr1 ≈ 1.04, indicating that the growth in the radial direction is indeed small.
Increasing the Reynolds number would further lower this ratio.

The weak dependence of boundary-layer lengthscales with the radial coordinate,
in turn, suggests application of quasi-periodic boundary conditions similar to those
developed by Spalart (1988) for two-dimensional boundary-layer simulations. To
account for streamwise inhomogeneity, Spalart introduced a non-Cartesian coordinate
system (new independent variables), and decomposed the turbulent signal into mean
and fluctuating parts (new dependent variables). The fluctuating part is formed by
a product of the r.m.s. velocity and a signal which is assumed to be periodic along
the new coordinate line in the streamwise direction. Growth terms are added to the
transformed Navier–Stokes equations. Streamwise derivatives of the mean and r.m.s.
values appearing in the new governing equations are evaluated with the aid of the
mean and r.m.s. results from an upstream station, which are in turn obtained through
a separate simulation. Using this method, Spalart (1988) successfully performed direct
numerical simulations of two-dimensional boundary layers at momentum thickness
Reynolds numbers ranging from 225 to 1410.

Recently, the method of Spalart (1988) was modified by Lund, Wu & Squires
(1998) for simulation of spatially developing boundary layers. The ‘modified Spalart
method’ developed by Lund et al. (1998) generates its own inflow conditions through
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a sequence of operations where the velocity field at a downstream station is rescaled
and re-introduced at the inlet. No coordinate transformation is made and the original
dependent variables (velocity and pressure), as well as the inflow–outflow structure
are preserved. At the inflow station and another downstream location, the velocity
components are decomposed as in Spalart (1988). The fluctuating part is formed by a
product of the friction velocity and a signal which is assumed to be periodic along the
streamwise direction. The mean velocities at the downstream and upstream stations
are further assumed to be related with each other through inner–outer scaling laws
similar to those discussed in Spalart (1988). The method of Lund et al. (1998) has
been successfully used as an auxiliary simulation for generation of inflow conditions
for subsequent predictions of complex spatially developing boundary layers (e.g. see
Wang & Moin 1997; Wu & Squires 1998a–c).

The scheme used for generation of turbulent boundary conditions at coordinate
planes r = r1 and r = r2 in the disk is based on a further modification of the method
of Lund et al. (1998), taking into account the uniqueness of the disk flow. Similarly to
Lund et al. (1998), no coordinate transformation is made and the original dependent
variables are preserved. The specific steps are,

1. At the beginning of each timestep t + ∆t, the instantaneous velocity fields are
decomposed into a mean and fluctuating part,

ui(r, θ, z, t) = 〈ui〉θ(r, z) + 〈u′2i 〉1/2θ (r, z)u
′
i,P (r, θ, z, t) (i = z, r, θ), (2.13)

where u
′
i,P (r, θ, z, t) is the time-dependent part of the signal that is assumed to be

periodic at r = r1 and r = r2. Note that subscript i denotes the velocity component
in the i direction, P refers to periodic, and (r, θ, z, t) indicates signal dependence. The
mean and r.m.s. velocity profiles are 〈ui〉θ(r, z) and 〈u′2i 〉1/2θ (r, z), respectively, and are
calculated during the simulation using an average in the θ-direction and running
average in time.

2. The periodic signal u
′
i,P (r, θ, z, t) from the last timestep is then applied at the two

radial boundary planes r = r1 and r = r2 at the new timestep in order to generate a
time-dependent velocity field. The velocity profile at the two radial boundaries can
then be expressed as,

ui(r1, θ, z, t+ ∆t) = 〈ui〉θ(r1, z) + 〈u′2i 〉1/2θ (r1, z)u
′
i,P (r → r2, θ, z, t), (2.14)

ui(r2, θ, z, t+ ∆t) = 〈ui〉θ(r2, z) + 〈u′2i 〉1/2θ (r2, z)u
′
i,P (r1 ← r, θ, z, t), (2.15)

where r1 ← r and r → r2 represent radial stations adjacent to the two boundary
planes r1 and r2, respectively. This is necessary since, unlike the treatment of strictly
periodic conditions as in the homogeneous tangential direction, a simple interchange
of the periodic signal u

′
i,P between r = r1 and r = r2 would result in a limit cycle in the

inhomogeneous radial direction. An analogous situation does not arise in the method
of Lund et al. (1998) because only the downstream periodic signal is supplied at the
inlet, and there is no need for a two-way exchange.

3. The time-independent mean and r.m.s. values appearing in (2.14)–(2.15) are
calculated during the simulation through linear extrapolation of the corresponding
mean and r.m.s. values at the interior radial plane r = rm (cf. figure 1b).

4. Entrainment along the top of the computational domain is obtained through a
mass balance, i.e. the fluid being entrained from infinity towards the disk makes up
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for the net increase in the flux along the radial direction (see figure 1),

uz(r, θ, z →∞, t+ ∆t) =

∫∫
ur(r1, θ, z, t+ ∆t) dSr1 −

∫∫
ur(r2, θ, z, t+ ∆t) dSr2∫∫

dSz→∞
(2.16)

where
∫∫
ur(r1, θ, z, t + ∆t) dSr1 is the mass flux through the coordinate plane r = r1

and
∫∫

dSz→∞ is the area of the upper surface of the computational domain. Note that
it is assumed that uz(z → ∞) has negligible spatial variation over the upper surface
of the annular domain.

The boundary treatment outlined above represents an approximation of the physical
problem, but can be regarded as necessary at present to achieve a feasible compu-
tational problem. The wall-normal derivatives of the radial and tangential velocities
along the upper surface of the computational domain are prescribed as zero. No-slip
boundary conditions are applied at the disk surface z = 0, and periodic conditions
are applied along the (streamwise) tangential direction.

2.3. Numerical method and computational details

The governing equations (2.1)–(2.4) together with the boundary conditions outlined
in § 2.2, were solved using a semi-implicit fractional step method in cylindrical co-
ordinates. Second-order central differences were used for approximation of spatial
derivatives on a staggered grid, together with a mixed explicit/implicit time advance-
ment of the discretized equations. The continuity constraint was enforced by solving
the Poisson equation for pressure using fast transforms along the homogeneous
streamwise direction together with successive line over relaxation in the other two
inhomogeneous directions. The numerical scheme is essentially the same as that used
by Akselvoll & Moin (1996) in LES of a confined circular jet. In one simulation,
streamwise derivatives were calculated using spectral discretization. For this hybrid
spectral/finite-difference calculation, the streamwise velocity is collocated accordingly
at the pressure node, and dealiasing is performed using the two-thirds rule.

Prior to prediction of the turbulent boundary layer, simulations were first performed
in the laminar regime to validate the overall computational approach against the simi-
larity solution. Calculations were performed at two Reynolds numbers, Re = 1.0× 103

and 1.0 × 104; the size of the computational domain was 20δl × 15δl × 10δl in the
tangential (streamwise), wall-normal, and radial directions, respectively, where δl is
the characteristic laminar lengthscale (ν/ω)1/2 (see Schlichting 1979). In the laminar
flow, the initial velocities ur , uz , and uθ were zero. From the initial instant, the gov-
erning equations were integrated using a grid size of 5× 65× 33 in the streamwise,
wall-normal and radial directions, respectively. The governing equations, boundary
conditions, and numerical scheme used in simulation of the laminar flow are the same
as described in §§ 2.1 and 2.2, except that the fluctuating part in the radial boundary
conditions vanishes.

In the laminar regime, the boundary layer has a constant thickness with no radial
variation. The streamwise and radial velocity profiles will then collapse after proper
scaling, while the wall-normal velocity should exhibit no dependence on the radial
coordinate. Figure 3 compares the predicted velocity components in the laminar
boundary layer with the numerical results in Schlichting (1979) obtained using von
Kármán’s similarity approach. The figure shows that the present numerical scheme
reproduces the similarity solution and the profiles at the two Reynolds numbers are
identical. Noteworthy is that the present mass-conservation based scheme reaches the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

00
00

11
17

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112000001117


Turbulent flow over a rotating disk 243

1.0

0.8

0.6

0.4

0.2

0 1 2 3 4 5 6

z √x/m

Figure 3. Velocity profiles in the three-dimensional laminar boundary layer over a rotating disk;
symbols: similarity solution; lines: present simulations at Re = 1.0×103 and 1.0×104. ◦—–, uθ/ωr;

• · · ·, ur/ωr; � - - -, −uz/(νω)1/2.

correct balance between radial mass flux and axial entrainment, as evident in the
precise prediction of the laminar entrainment velocity. Starting from zero radial mass
flux and zero entrainment at t = 0, the computation eventually yields the correct
mass flux at planes r = r1 and r2 (cf. figure 1) so that their difference yields the same
axial velocity uz(z) as obtained from the similarity solution.

LES calculations of the rotating disk 3DTBL were then performed at Re = 6.5×105

corresponding to a momentum thickness Reynolds number Reδ2
= 2660. The height of

the computational domain is 23δ2 measured from the disk surface (z = 0), where δ2 is
the turbulent boundary-layer momentum thickness. The tangential and radial dimen-
sions of the computational domain are 138δ2 and 23δ2, respectively. At Reδ2

= 2660,
the ratio of the boundary-layer momentum thickness δ2 to viscous lengthscale ν/u∗
is 118. Thus, the tangential and radial dimensions of the computational domain are
approximately 16 000 and 2700 wall units, respectively. As indicated by the two-point
spatial correlations discussed in § 4.2, the tangential dimension is adequate to avoid
contamination of the solution by periodic end conditions. The radial dimension is also
sufficient since turbulence structures in this direction have lengthscales less than about
1000 wall units. It should also be noted that use of the approximate quasi-periodic
boundary conditions presents difficulties when the radial dimension is further in-
creased. For the turbulence simulation, the initial velocities ur and uz were prescribed
as zero and the initial tangential component uθ was prescribed using the Reichardt
correlation for zero pressure gradient boundary layers (Hinze 1975), superimposed
with random fluctuations. Uniform grid spacings were applied in the tangential and
radial directions, and hyperbolic stretching is used to cluster points near the wall. At
Reδ2

= 2660 one viscous timescale ν/u∗2 is equivalent to 0.2 inertial time units, δ2/ωr.
From the initial instant, the governing equations for the large-scale field were inte-
grated to steady state at a timestep about one viscous timescale. Statistically steady
state was reached after about 5200 inertial time units. Results were then sampled over
a period of another 2600 inertial time units. Most of the results discussed in §§ 3 and
4 are presented in a rotating coordinate system. Velocities in the rotating coordinates
are related to their counterparts in the laboratory system via vr = −ur , vθ = ωr − uθ ,
and vz = uz (cf. figure 1b).
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Case (r, θ, z) ∆r+ (r∆θ)+ ∆z+
min Model

1 (65,129,75) 41 126 1.0 Vreman
2 (65,259,75) 41 63 0.5 Vreman
3 (65,129,75)# 41 126 1.0 Germano
4 (65,129,75) 41 126 1.0 Germano
5 (65,129,75) 41 126 1.0 Zang
6 (65,129,75) 41 126 1.0 No model

Table 1. Summary of numerical parameters.

# Spectral discretization in the tangential direction.

3. Simulation validation
A series of calculations were performed to validate the overall computational

approach and construct a foundation upon which further analysis can be performed
with confidence. Details of the numerical parameters used in the validation tests are
summarized in table 1.

As shown in the table, the first grid point along the wall-normal axis was within
one wall unit for all simulations, with Case 2 having more points distributed in the
region near the disk surface. Compared to Case 1, the streamwise resolution in Case
2 was refined by a factor of two. Case 3 uses the same resolution as Case 1 but with
spectral discretization in the streamwise direction. Results from these cases will be
used to demonstrate that the mean and second-order statistics resolved in the LES
have converged to an acceptable level with respect to improved grid resolution, which
would in turn suggest that the large-scale motions in the flow have been reasonably
well resolved. An absolute invariance in LES with grid refinement may not be possible
unless explicit filtering is used to eliminate the high wavenumber contributions from
scales smaller than a fixed filter width (see Vasilyev et al. 1998 for further discussion).
Although not shown here, simulations with grids coarser than that used in Case 1
were also performed and the results suggested that coarser resolutions than those
summarized in table 1 do not fall into an accurate resolution range, capable of
adequately resolving the important large-scale fluctuations, which is one prerequisite
for a successful large-eddy simulation. In Cases 4 and 5, calculations were performed
using the dynamic eddy viscosity model of Germano et al. (1991), and the dynamic
mixed model of Zang et al. (1993), respectively. The grid resolutions in Cases 4 and 5
are the same as in Case 1 (using the dynamic mixed model of Vreman et al. 1994). A
simulation was also performed (Case 6) in which no subgrid model was used. These
results allow assessment of the overall effect of the SGS model on LES predictions.

Mean flow and second-order statistics predicted in Cases 1–3 are compared with
the data of Littell & Eaton (1994) in figure 4. The dependent variables are normalized
by the disk velocity ωr. The wall-normal coordinate is normalized by the momentum
thickness δ2 based on 0.99ωr. Mean flow and turbulence statistics were obtained
through averaging over time as well as along the homogeneous streamwise (tangential)
direction. Since the momentum thickness Reynolds number Reδ2

varies only 4% along
the radial direction from 2610 to 2710, the statistics have a much weaker dependence
on the radial coordinate after being normalized by the local disk velocity or local
friction velocity (Littell & Eaton 1994). Thus, the results shown in figure 4 and in
subsequent figures are the averaged profiles for 2610 < Reδ2

< 2710.
Figure 4(a) shows the mean tangential and radial velocities. Throughout the bound-
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Figure 4. Comparison of LES predictions with experimental measurements. LES: · · ·, Case 1; —–,
Case 2; - - -, Case 3; – · –, resolved shear stresses only in Case 2; – - –, resolved shear stresses and
modelled subgrid contribution, but without the modified Leonard stresses in Case 2; •, Littell &
Eaton (1994).

ary layer the predicted mean profiles from Cases 1, 2, and 3 nearly collapse and are
in good agreement with the measurements of Littell & Eaton (1994). The largest
discrepancy in the mean tangential velocity occurs in the logarithmic region with a
maximum error less than 4% of the disk velocity. Based on the results of Case 2, one
momentum thickness δ2 is equivalent to 118 wall units. The predicted mean radial
velocity has a peak value of 0.12ωr located at z+ = 50, compared to the peak location
z+ = 47 in the experiments of Littell & Eaton. The maximum error in the mean radial
velocity occurs near the location of the peak crossflow with a magnitude less than
0.02ωr. Other important mean flow properties are summarized in table 2, where H is
the boundary-layer shape factor. The friction velocity u∗ from Littell & Eaton (1994)
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Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Littell & Eaton

u∗/ωr 0.041 0.041 0.040 0.040 0.043 0.044 0.044
α 17◦ 16◦ 16◦ 17◦ 15◦ 14◦ n/a
H 1.23 1.23 1.23 1.25 1.24 1.22 1.29

Table 2. Boundary-layer parameters.

was derived from a Clauser plot, the LES predictions were evaluated directly from
the computed near-wall profiles. As seen in the table, on average, the skewing angle,
α, that the wall shear stress vector makes with respect to the freestream is about
16◦ at Reδ2

= 2660, compared to a skewing of 39.6◦ in the laminar flow (Schlichting
1979).

Predictions of the resolved streamwise turbulence intensity from Cases 1–3 are
compared with measurements in figure 4(b). As shown in the figure, v′θ,rms is sensitive
to streamwise resolution in a region close to the disk surface, i.e. 0.5 < z/δ2 < 3. Case
1 overpredicts the streamwise turbulence intensity in this region. The overprediction
is reduced with a refinement in the streamwise grid spacing, and there is very good
agreement with Littell & Eaton (1994) for the Case 2 prediction. Predictions of the
radial and wall-normal fluctuating velocities are presented in figures 4(c) and 4(d),
respectively. The agreement between LES predictions of v′r,rms in figure 4(c) with
measurements is good, with some small differences among the cases. The predicted
wall-normal intensity is in fair agreement with Littell & Eaton (1994), and is relatively
insensitive to changes in streamwise resolution. The underprediction of v′z,rms in the
near-wall region is common to LES calculations of wall-bounded flows and related to
the anisotropy of the computational grid and subgrid-scale motions (e.g. see Scotti,
Meneveau & Lilly 1993); the overprediction in the outer part of the boundary layer
seems to be unique to the present calculations. Near the edge of the boundary layer,
LES predictions of the turbulence intensities tend to be more isotropic than those
measured by Littell & Eaton (1994).

Predictions of the primary turbulent shear stress −〈v′θv′z〉 and the secondary shear
stress 〈v′rv′z〉 are shown in figure 4(e). These two stresses appear in the Reynolds-
averaged boundary-layer equations, and the vector formed by −〈v′θv′z〉 and 〈v′rv′z〉 is
parallel to the disk surface. Note the predicted turbulent shear stresses include the
resolved large-scale fluctuations and the subgrid-scale contributions τij . As defined

in (2.8), τij is composed of the part modelled by −2νTS ij and the modified Leonard
term Lm

ij . Figure 4(e) shows there is very good agreement between the predicted and

measured turbulent shear stresses. The secondary shear stress 〈v′rv′z〉, although negative
through most of the boundary layer, changes sign very close to the disk surface and
reaches a minor positive peak. This is consistent with the conjecture made by Littell
& Eaton (1994) that 〈v′rv′z〉 must change sign close to the wall in order to approach
the radial wall shear stress. Figure 4(e) also shows profiles of the resolved component
as well as the sum of resolved and modelled SGS stresses obtained from the Case 2
simulation. For the primary shear stress, the peak of the resolved-only profile is 20%
lower than the peak in the profile which includes contributions from all the three
sources, i.e. the resolved, modelled, and modified Leonard term contributions. For the
secondary shear stress 〈v′rv′z〉, the differences among the three profiles are negligible.
The other secondary shear stress 〈v′θv′r〉 is shown in figure 4(f). This component
does not appear in the boundary-layer equation and is usually neglected in 3DTBL
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Figure 5. Comparison of LES predictions with experimental measurements. LES: —–, Case 4;
· · ·, Case 5; - - -, Case 1; – · –, Case 6; •, Littell & Eaton (1994).

analysis (e.g. see Spalart 1989; Littell & Eaton 1994; Johnston & Flack 1996). Figure
4(f) shows the agreement between the LES predictions of 〈v′θv′r〉 and measurements
is reasonable. Additional discussion of this particular shear stress is provided in § 4.1.

The overall effect of the SGS model on the mean flow and second-order statistics is
shown in figure 5. Four sets of results from simulations using the same resolution are
presented, which include calculations using the dynamic eddy viscosity model (Case
4), the dynamic mixed model of Zang et al. (1993) (Case 5), the dynamic mixed model
of Vreman et al. (1994) (Case 1), and no-model results (Case 6). Figure 5(a) shows that
near the wall, the no-model calculation overpredicts the mean streamwise velocity.
Case 5 using the mixed model of Zang et al. (1993) yields similar overpredictions to
the Case 6 results obtained without a subgrid model. Cases 1 and 4 predictions of
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Figure 6. Streamwise energy spectrum. · · ·, radial; —–, tangential; - - -, wall-normal. – · –, −1 slope
in (a) and (b), −5/3 slope in (c) and (d). (a) Case 3, z/δ2 = 0.5; (b) Case 2, z/δ2 = 0.5; (c) Case 3,
z/δ2 = 8; (d) Case 2, z/δ2 = 8.

the mean streamwise velocity are in better agreement with the data throughout the
boundary layer. This is similar to the findings obtained by Vreman et al. (1994) in
which a reduced level of SGS dissipation was obtained using the dynamic formulation
of Zang et al. (1993), resulting in predictions similar to those from simulations using
no subgrid model. Also apparent from figure 5(a) is that the predicted mean radial
velocity is insensitive to the change of SGS models.

The predicted turbulence intensities are shown in figures 5(b)–5(e). The Case 6
prediction obtained without a subgrid model and the Case 5 results using the dynamic
model of Zang et al. (1993) yield slightly higher near-wall fluctuation levels than the
other two cases, analogous to the behaviour observed in the mean flow predictions
(cf. figure 5a). The figure also shows that the differences among the cases are smaller
for the tangential and radial fluctuations than for the wall-normal fluctuations. The
predicted primary shear stress in figure 5(e) exhibits similar trends to the intensities,
i.e. overprediction of the peak values for Case 5 and Case 6, and good agreement with
measurements for the other two cases. Similarly to figure 4(e), the shear stress profiles
include contributions from the modified Leonard term and eddy viscosity part of the
model. Figures 5(e) and 5(f) also suggest that variations of the two secondary shear
stress components with the change of SGS model are more complex than those of
the mean flow, turbulence intensities, and the primary shear stress. Nevertheless, the
overall agreement of the predicted secondary shear stresses with the experimental
measurements of Littell & Eaton (1994) is still reasonably good.

Streamwise energy spectra are presented in figure 6 for wall-normal locations
z/δ2 = 0.5 (z+ = 55) and z/δ2 = 8 (z+ = 880). Two sets of results are shown, i.e.
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Case 3 predictions using the hybrid spectral/finite-difference scheme similar to that of
Mittal & Moin (1997), and the finite-difference Case 2 calculations. Figures 6(a) and
6(b) show Ev′i v′i acquired at z/δ2 = 0.5 for Cases 3 and 2, respectively. As summarized
in Hinze (1975), it is possible to distinguish the spectral behaviour associated with
two different types of motions. In the first instance, the vorticity of the main motion is
small compared with the vorticity of the turbulence in the wavenumber range under
consideration. Direct interaction between the main and turbulent motions becomes
weak and finally zero. In an inertial subrange this implies Kolmogorov’s −5/3 law. In
the second instance, the vorticity of the main motion is comparable to the vorticity of
the turbulence in the wavenumber range under consideration. Since the vorticity of
the mean motion is large, the effect of its interaction with the turbulent motion
predominates with respect to the viscous dissipation and eddy transfer. Energy
spectra for the wavenumber range in which such an interaction occurs varies as
k−1. Although the development in Hinze (1975) applies to homogeneous turbulent
shear flow, previous experiments have found similar spectral slopes in 2DTBLs (e.g.
Perry, Henbest & Chong 1986). It is interesting that the disk boundary-layer spectra
in figures 6(a) and 6(b) exhibit ranges which vary approximately as k−1

θ . This is
more apparent for the radial and wall-normal velocity fluctuations, and also for the
azimuthal component prior to its drop off. Figures 6(c) and 6(d) show Ev′i v′i acquired
at z/δ2 = 8.0 for Cases 3 and 2, respectively. The spectra exhibit a reasonable −5/3
range.

Overall, there is good agreement between LES predictions of the mean flow and
second-order statistics from Cases 1–4 and the measurements of Littell & Eaton
(1994). The streamwise and radial mean and fluctuating velocities are in good agree-
ment with measurements, with the largest discrepancy occurring in prediction of the
wall-normal fluctuations. The primary and two secondary turbulent shear stresses are
also in good agreement with Littell & Eaton (1994). One-dimensional energy spectra
decay with approximately a −1 slope in the near-wall region and −5/3 range in the
outer part of the boundary layer. The results in figures 4 and 5 have shown that the
important large-scale fluctuations in the disk boundary layer have been reasonably
resolved, as suggested by the weak dependence on grid refinement and change in
subgrid model. Thus, while some small discrepancies do exist between calculation and
experiment, predictions presented in this section demonstrate that the first objective
discussed in § 1.1 has been achieved, i.e. accurate simulation of the 3DTBL over a
rotating disk at Reδ2

= 2660 and evaluation of LES predictions using the data of
Littell & Eaton (1994). The results will be used next to explore single-point statistics
in § 4.1 and then analyse structural features of the flow in § 4.2.

4. Flow analysis
4.1. Single-point statistical measures

The derivative of the mean streamwise velocity from Case 2 is shown in figure 7,
together with the measurements of Littell & Eaton (1994). Spalart (1989) pointed out
that a rigorous definition of a logarithmic layer is a region within which z+d〈vθ〉+/dz+

takes the constant value 1/κ. In a canonical two-dimensional boundary layer this
region is bounded at both ends by values larger than 1/κ, i.e. by the buffer and wake
regions. Figure 7 shows that in the disk flow both LES predictions and measurements
display a substantial logarithmic region as evident from z+d〈vθ〉+/dz+ taking nearly
constant values very close to 1/κ within 50 < z+ < 800. It is also interesting to note
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Figure 7. Derivative of the mean streamwise velocity. •, Littell & Eaton (1994);
- - -, z+d〈vθ〉+/dz+ = 1/0.41; —–, Case 2.
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Figure 8. Near-wall behaviour of turbulence intensities (in a and b) and turbulent shear stresses
(in c), lines: Case 2. In (a) and (b): •, DNS of two-dimensional boundary layer (Spalart 1988);
�, DNS of channel flow (Kim et al. 1987); —–, streamwise; · · ·, wall-normal; - - -, radial. In (c):

•, {〈v′θv′z〉+2 + 〈v′rv′z〉+2}1/2; —–, −〈v′θv′z〉+; · · ·, 〈v′rv′z〉+; - - - �, 〈v′θv′r〉+. Symbols in (c) are DNS of
three-dimensional boundary layer (Spalart 1989).

from the figure that, compared to two-dimensional turbulent boundary layers, the
disk 3DTBL lacks a well-defined wake region since the high end of the constant
z+d〈vθ〉+/dz+ region is bounded by values smaller than 1/κ, rather than larger
values. A similar behaviour is also observed in other equilibrium 3DTBLs created
over infinite geometries (Spalart 1989; Wu & Squires 1997).

Near-wall characteristics of the turbulence intensities and turbulent shear stresses in
the disk flow are presented in figure 8, together with the DNS results of Spalart (1988,
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1989) from zero-pressure gradient and three-dimensional boundary layers and Kim,
Moin & Moser (1987) from turbulent channel flow. Figure 8(a) shows the intensities
of the three velocity fluctuations relative to the friction velocity u∗. Similarly to Spalart
(1988), the streamwise component peaks at about z+ = 15 but with a larger maximum
value of 3.3. The higher peak of v

′+
rms,θ compared to the boundary-layer DNS is due

both to errors in the computed friction velocity and numerical resolution. The radial
component also resembles that of Spalart (1988) with a plateau about 1.3 in the
region of 30 < z+ < 50. Figure 8(b) shows the turbulence intensities normalized by
the magnitude of the local mean velocity, i.e. v

′
i,rms/[〈vθ〉2 + 〈vr〉2]1/2. As pointed out

by Kim et al. (1987), the limiting values of these quantities should approach the wall
values of the corresponding vorticity fluctuations normalized by the mean velocity
gradient. The figure shows that the streamwise components in all three types of flow
reach constant values (about 0.4) at the wall. The radial component v

′
r,rms/〈vr〉 has

a limiting value 0.2, nearly identical to Kim et al. (1987), but smaller than Spalart
(1988). Overall, the results shown in figure 8 suggest that the turbulence intensities in
the near-wall region of a disk flow are not markedly different from their counterparts
in other canonical two-dimensional flows.

Figure 8(c) shows the three shear stress components relative to u∗2. Also shown
are the DNS results of Spalart (1989) obtained from a 3DTBL created by a rotating
free-stream velocity vector. For the flow considered by Spalart (1989), only 〈v′θv′r〉+
and the magnitude of the shear stress vector {〈v′θv′z〉+2 + 〈v′rv′z〉+2}1/2 are shown since
the stresses 〈v′θv′z〉 and 〈v′rv′z〉 are defined in a coordinate system not aligned with
the freestream velocity (see Wu & Squires 1997 for further discussion). For the disk
flow, the profile of {〈v′θv′z〉+2 + 〈v′rv′z〉+2}1/2 collapses with that of the primary shear
stress −〈v′θv′z〉+ because the other component 〈v′rv′z〉+ is very small in the near-wall
region. The figure shows that the magnitude of the shear stress vector parallel to the
wall for the disk 3DTBL is similar to that of Spalart (1989) with a plateau around
0.7, smaller than the corresponding value in a two-dimensional boundary layer (e.g.
0.92 in the DNS of Spalart 1988). As in Spalart (1989), the secondary shear stress
〈v′θv′r〉 takes rather large values near the wall which is comparable or even larger than
the magnitude of the shear stress vector parallel to the wall. The peak of 〈v′θv′r〉+
is located at z+ = 15 for both 3DTBLs. Spalart (1989) also pointed out that this
particular component has a significant dependence on Reynolds number but has only
a negligible effect on the mean momentum equation. Although not shown here, the
ratio of the shear stress vector magnitude in planes parallel to the wall to twice the
turbulence kinetic energy was nearly constant for 100 < z+ < 800 with a value about
0.14. In addition, the angle between the turbulent shear stress vector and strain rate
vector in planes parallel to the disk surface was small, with a maximum difference
of about 10◦ near the wall. Similar behaviour has been reported in other equilibrium
3DTBLs, such as the Ekman layer considered by Coleman et al. (1990) and the
rotating 3DTBL of Spalart (1989).

4.2. Structural measures

4.2.1. Disk flow structure

The structural model of Littell & Eaton (1994) is based on the hypothesis that
the overall shear-stress producing structure in the disk flow can be modelled as an
appropriate alteration of that in a canonical two-dimensional boundary layer. Based
on their measurements, Littell & Eaton (1994) proposed that the modification by the
crossflow alters the relative strengths of ejections and sweeps arising from structures
with different signs of streamwise vorticity. Specifically, their model considers a
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Figure 9. Conditionally averaged velocities. - - - ◦, averaged using the strong ejection condition
−v′θv′z > βv′θ,rmsv′z,rms and v′z > 0; · · · �, averaged using the strong sweep condition −v′θv′z > βv′θ,rmsv′z,rms
and v′z < 0; lines: β = 6; symbols: β = 10; —–, mean; (a) streamwise; (b) wall-normal; (c) radial.

subdivision of vortical structures into two classes (+ or −) according to the sign of
streamwise vortices relative to that of the mean streamwise vorticity (see figure 2).
Class + structures are those whose streamwise vortices have the same sign as the
mean streamwise vorticity beneath the peak crossflow location. Class − structures
refer to those whose streamwise vortices have opposite sign as the mean streamwise
vorticity beneath the peak crossflow.

The model is then that Class + vortices are mostly responsible for strong sweep
events, while Class − structures promote strong ejections. A consequence of this
model is that beneath the location of the peak crossflow, conditionally sampled radial
velocities should be smaller than the mean for strong sweep events, and the profile
for strong ejections should be larger than the mean (cf. figure 2b). In support of this
model, Littell & Eaton (1994) used the asymmetry of their conditionally sampled
wall-normal fluctuating velocity upstream and downstream (in the radial direction) of
shear-stress producing events. A direct examination of the model can be undertaken
by measuring the conditionally averaged radial crossflow velocity for shear-stress
producing events.

Figure 9 shows conditionally-averaged velocities occurring under strong ejection
and sweep events. The criteria used in figure 9 to define strong ejections is −v′θv′z >
βv′θ,rmsv′z,rms and v′z > 0, while the criteria for strong sweeps is −v′θv′z > βv′θ,rmsv′z,rms and
v′z < 0. To check the consistency of the results, two values of β are used, i.e. β = 6 and
10. Note that since the ratio of shear stress −〈v′θv′z〉 to the product of the intensities
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Figure 10. Conditionally averaged velocities. - - - ◦, averaged using the strong ejection condition at
the peak location of crossflow z+ = 50: −v′θv′z > βv′θ,rmsv′z,rms and v′z > 0; · · · �, averaged using the

strong sweep condition at the peak location of crossflow z+ = 50: −v′θv′z > βv′θ,rmsv′z,rms and v′z < 0;
lines: β = 2; symbols: β = 10; —–, mean; (a) streamwise; (b) wall-normal; (c) radial.

v′θ,rmsv′z,rms is around 0.5 in the buffer region, these thresholds translate into requiring
that the instantaneous shear stress be 12 and 20 times the mean primary shear stress,
respectively. The profiles of the streamwise and wall-normal velocities in figures 9(a)
and 9(b) show substantial differences between the mean and conditionally averaged
profiles. This is consistent with the consensus discussed in Robinson (1991) that in
most cases the variance of the measurable attributes of shear-producing structures
about their mean values is very large (see also Kim & Moin 1986). Figure 9(c) shows
that beneath the location of the peak crossflow, z+ = 50, the conditionally averaged
radial profile is larger than the unconditioned mean for strong ejection events, and has
a deficit compared to the global profile for strong sweeps. There is also an indication
that these two profiles intersect slightly above the location of the peak crossflow
velocity, which is consistent with the structural model of Littell & Eaton (1994)
as well as other conceptual models which coincide with canonical two-dimensional
boundary-layer structure.

Figure 10 shows the conditionally averaged profiles for strong ejection and sweep
events using a different set of criteria to those in figure 9. The criteria used in figure
10 to define strong ejections are −v′θv′z > βv′θ,rmsv′z,rms and v′z > 0 at z+ = 50, while
the criteria for strong sweep events is −v′θv′z > βv′θ,rmsv′z,rms and v′z < 0 at z+ = 50, i.e.
averaging is performed across the boundary layer whenever an ejection/sweep event
is detected at the peak crossflow location. To again check the consistency of the
results, two values of β are used, i.e. β = 2 and 10. Again, as shown in figure 10(c),
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a large excess and a measurable deficit appear in the conditionally averaged radial
velocity in the region 20+ < z+ < 50 corresponding to the strong ejection and strong
sweep events, respectively. Moreover, there is an intersection above z+ = 50. This
arises because, according to the model of Littell & Eaton (1994) illustrated in figure
2(b), above the peak crossflow location, Class − structures should reduce the radial
velocity for strong ejections, and Class + structures should augment it for strong
sweeps. The trend is a reverse of that beneath the peak crossflow.

4.2.2. Structural similarities between 2DTBLs and 3DTBLs

Although figures 9 and 10 have provided new proof in support of the 3DTBL
structural model advanced by Littell & Eaton (1994), these results have not yet touched
upon the important hypothesis made in their work, i.e. the arch-like vortex structure
discussed in Robinson (1991) comprising the underlying structure of canonical two-
dimensional boundary layers can be used as a baseline in the disk 3DTBL. As pointed
out by Johnston & Flack (1996), this assumption has been accepted to date more or
less as a fact based partly on intuition, partly on single-point statistics, and partly
on visualizations which showed that low- and high-speed streaks in two-dimensional
boundary layers are also present in many 3DTBLs. A similar example from the disk
flow is presented in figure 11. Figure 11(a) shows isosurfaces of the instantaneous
pressure fluctuation. Only regions corresponding to strong negative fluctuations are
shown, corresponding to the low-pressure cores discussed in Robinson (1991). The
figure shows at this particular instant that there exists a well-defined arch-like vortex
structure in remarkable resemblance to that drawn in figure 2(a) for 2DTBLs (because
of the quasi-periodic boundary condition applied in the radial direction, part of the
longer leg near the r2 boundary is displaced to the region near r1). Isosurfaces of
Q = WijWij − SijSij , where Wij is the skew symmetric rate of rotation tensor, were
also used to identify vortical structures. Using Q, however, did not yield a definitive
visualization of structural features (see also Chong et al. 1996). On the other hand,
identification of vortical motions such as the elongated structures described above
by correspondence with regions of low pressure was more revealing. The reader
is referred to Jeong et al. (1997) and references therein for further discussion of
structural identification in turbulent boundary layers. Figure 11(b) shows contours
of the instantaneous azimuthal velocity fluctuation v

′
θ/ωr at z+ ≈ 5. Apparent in

the figure are elongated regions of low- and high-speed fluid, associated with the
streaklike character of the near-wall region of turbulent boundary layers. The streaks
are not aligned with the azimuthal direction, rather, they are skewed away from the
disk centre. Dimensions of the streak structures can be inferred by noting that the
radial and azimuthal dimensions of the computational domain are 2700 and 16 000
wall units, respectively.

A quantitative illustration based on single-point measures of the similarity in the
disk boundary layer and statistically two-dimensional flows is shown in figure 12.
Shown in the figure is the contribution to the primary turbulent shear stress from
each quadrant as a function of wall-normal distance, following the quadrant analysis
of Kim et al. (1987). As shown in the figure, the overall similarity between the LES
predictions and DNS results of Kim et al. (1987) is striking, taking into account of
the significant difference in the Reynolds number. Both flows display the dominance
of the ejection event (second quadrant) away from the wall with sweep events (fourth
quadrant) dominating in the wall region. The limiting wall values in the disk flow
for ejections and sweeps are 0.9 and 0.5, respectively, compared to 1.1 and 0.5 in the
channel flow. Near the boundary-layer edge the ejection profile (second quadrant)
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Arch-like structure

(a)

(b)

Figure 11. (a) Isosurfaces of instantaneous low-pressure cores showing the vortical structure similar
to Robinson (1991), also shown are surface streamlines at the same instant; (b) instantaneous

azimuthal velocity fluctuations v
′
θ/ωr at z+ ≈ 5, contours vary from −0.68 to 0.32, with an

increment of 0.04.

has an upward tail preceded by a plateau around 0.75, also similar to the profile near
the channel centreline in Kim et al. (1987). The location at which sweeps make the
same contribution as ejections in the disk flow is higher (z+ = 32) than in the channel
(z+ = 12), which is probably due to the difference in Reynolds number between the
two flows. Comparison of the contributions from the other two quadrants (first and
third) in the disk boundary layer with those from Kim et al. (1987) as plotted in the
lower half of figure 12 also demonstrates substantial similarities.

In the remainder of this section we shall focus on examining quantitative mea-
sures to provide some indirect support to Littell & Eaton’s (1994) hypothesis. This
is achieved primarily through comparison of two-point spatial correlations in the
disk flow with previous measurements in two-dimensional boundary layers. As dis-
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Figure 12. Contributions to the primary shear stress from each quadrant normalized by the local
mean primary shear stress. Lines: Case 2; symbols: DNS of channel flow (Kim et al. 1987); - - - +,
first; —– ◦, second; – · – �, third; · · · •, fourth quadrant.
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Wooldridge (1962); - - -, Case 1; —–, Case 2.

cussed previously, this approach is based on the premise that if two flows contain
similar dominant structures, then their two-point correlations will exhibit similar
‘signatures’ reflected in two-point correlation functions (see Moin & Kim 1985 for
further discussion).

A conventional definition of the two-point correlation coefficient is employed (e.g.
see Tritton 1967),

Rij(d1, d2, d3) =
〈v′iv′j(d1, d2, d3)〉

v′i,rmsv′j,rms(d1, d2, d3)
(i, j = 1, 2, 3), (4.1)

where subscripts 1, 2, and 3 represent streamwise (tangential), wall-normal, and
radial directions, respectively. Figure 13(a) shows the streamwise two-point corre-
lation coefficients for the tangential and wall-normal fluctuations at z/δ2 = 1.4.
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Figure 14. Spatial correlation R̂22(0, d2, 0) as a function of (z+d2)/z. (a) Two-dimensional boundary
layer using the method of Lund et al. (1998), Reδ2

= 2200; (b) Case 2. •, z+ = 10; �, z+ = 22;
◦, z+ = 40; ∇, z+ = 97; 4, z+ = 190; · · ·, Hunt (1984); - - - -, Hunt et al. (1989).

Two sets of LES results from Cases 1 and 2 are presented to demonstrate the
consistency of the statistics. Also shown are the boundary-layer measurements of
Tritton (1967) and Grant (1958). The computed correlation coefficient for the tan-
gential fluctuating velocity R11(d1, 0, 0) is in good agreement with the measurements
of Tritton (1967) and remains positive for a considerable streamwise distance. The
correlation coefficient for the wall-normal component R22(d1, 0, 0) also shows good
agreement with Grant (1958). Although the correlation length of R22(d1, 0, 0) is much
smaller than that of R11(d1, 0, 0), R22(d1, 0, 0) nevertheless does not take on appreciable
negative values which is consistent with the measurements of Townsend (1976) in
two-dimensional boundary layers. Figure 13(b) compares the wall-pressure correla-
tion coefficient Rpp(d1, 0, 0) with the two-dimensional boundary-layer measurements
of Willmarth & Wooldridge (1962). Note Rpp is defined similarly as the velocity–
velocity correlation Rij in (4.1). As seen in the figure, the wall-pressure correlations
exhibit nearly the same characteristics in these two types of flow with rather limited
streamwise correlation lengths. The r.m.s. wall-pressure fluctuation used to normalize
Rpp in the disk flow is 2.5u∗2 (Case 2), compared with 2.54u∗2 quoted in Hinze (1975)
for two-dimensional turbulent boundary layers.

Examination of two-point correlations in the context of the structural similarity
theory of Hunt et al. (1989) is considered in figure 14. As discussed in Hunt et
al. (1989), the large-scale eddy structure and lengthscales in wall-bounded flows are
determined by a combination of shear and blocking. They proposed that the vertical
component of the turbulent fluctuations has a self-similar structure in shear boundary

layers. Shown in figures 14(a) and 14(b) are the spatial correlation R̂22(0, d2, 0) from
LES of a two-dimensional boundary layer using the method of Lund et al. (1998)
and in the disk flow, respectively. Also shown is the theoretical profile from Hunt
(1984) for shear-free boundary layers and the averaged profile of Hunt et al. (1989)
obtained from previous results in turbulent shear flows. Following Hunt et al. (1989),

R̂22(0, d2, 0) is defined as,

R̂22(0, d2, 0) =
〈v′zv′z(0, d2, 0)〉

v′2z,rms
(d2 6 0). (4.2)

The similarity between figures 14(a) and 14(b) is striking. The LES results obtained
from both the two-dimensional boundary layer and disk flow exhibit good collapse at
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Figure 15. R22 with fixed wall-normal separation and variable streamwise separation. (a)
R22(d1, d2/δ2 = 3.0, 0) at z/δ2 = 1.4; (b) R22(d1, d2/δ2 = 1.5, 0) at z/δ2 = 2.1; •, Tritton (1967); - - -,
Case 1; —–, Case 2.

different wall-normal locations, indicating strong similarity in R̂22(0, d2, 0) with respect
to (z + d2)/z. The results are also in good agreement with Hunt et al. (1989). In both
figures 14(a) and 14(b), the profiles for z + d2 > 0.3z can be roughly correlated with
a straight line which intersects the abscissa at about (z + d2)/z = 0.22.

Based on the measurements of Grant (1958) and Tritton (1967), Townsend (1976)
concluded that except for wall-normal fluctuations, correlations such as R12 and
R11 with constant displacement in the direction of shear, i.e. fixed d2, and variable
displacement in the streamwise direction reach their maximum value for non-zero r1;
R22(d1, d2 = fixed, 0) attains its maximum very close to d1 = 0. The applicability of this
observation in the disk flow is examined in the next two figures. Shown in figures 15(a)
and 15(b) are profiles of R22(d1, d2 = 3δ2, 0) at z/δ2 = 1.4 and R22(d1, d2 = 1.5δ2, 0)
at z/δ2 = 2.1, respectively, together with the measurements of Tritton (1967). The
specific separation parameters were chosen to match those in Tritton (1967). As in
two-dimensional boundary layers, the correlations computed in the disk flow attain
their maximum at d1 ≈ 0 and there is good overall agreement with the data of Tritton
(1967). Note that although the tangential (streamwise) direction in the disk boundary
layer is statistically homogeneous, there is nevertheless no a priori constraint to
require that R22(d1, d2 = fixed, 0) be symmetric with respect to d1 = 0 since a non-zero
inhomogeneous dimension d2 has been introduced into the correlation. Tritton (1967)
noted that there is slight asymmetry in the correlation R22(d1, d2 = fixed, 0) with a
slower decrease towards zero on the positive d1 side. The figure shows that this feature
seems also to exist in the disk flow.

Figure 16 shows the correlation coefficient −R12(d1, d2 = 3δ2, 0) at z/δ2 = 1.6, to-
gether with the data of Tritton (1967). The correlation attains a maximum of about
0.14 upstream at separation d1 = −1.7δ2 for the disk flow and at d1 = −2.0δ2 for the
two-dimensional boundary layer. However, the decrease in −R12(d1, d2 = 3δ2, 0) on the
positive d1 side is much more rapid compared to that of Tritton (1967). The reduced
streamwise length scale implied by the more rapid reduction in −R12(d1, d2 = fixed, 0)
seems to be consistent with the notion that in 3DTBLs the near-wall shear-producing
structures are not quite streamwise but skewed away from the direction of the mean
velocity vector as discussed in Johnston & Flack (1996). In general, the results shown
in figures 15 and 16 suggest that the observation of Townsend (1976) appears to be
applicable to the disk 3DTBL.
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Figure 16. −R12 with fixed wall-normal separation and variable streamwise separation at
z/δ2 = 1.6. •, Tritton (1967); - - -, Case 1; —–, Case 2.
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Figure 17. −R12 with variable wall-normal separation. (a) −R12(0, d2, 0) at z/δ2 = 3.0;
(b) −R12(0, d2, 0) at z/δ2 = 7.0; •, Tritton (1967); - - -, Case 1; —–, Case 2.

One of the approximate measures for the wall-normal spatial extent of the large ed-
dies responsible for shear stress generation is the correlation coefficient −R12(0, d2, 0).
Shown in figures 17(a) and 17(b) is −R12(0, d2, 0) with a positive d2 separation (away
from the disk) starting from z/δ2 = 3 and −R12(0, d2, 0) with a negative d2 separation
(towards the disk) starting from z/δ2 = 7, respectively. Also shown are the mea-
surements of Tritton (1967). Although there are some discrepancies in −R12(0, d2, 0)
between these two types of flow, especially near the zero separation region, the cor-
relations decrease at a similar rate and show fair agreement away from d2 = 0. The
limiting value of −R12(0, d2 = 0, 0) = 0.4 obtained from the LES agrees with Littell &
Eaton (1994), but is lower than the value of 0.46 quoted in Tritton (1967). Neverthe-
less, the results shown in figure 17 still indicate it is likely that the wall-normal extent
of the large eddies responsible for the generation of the primary shear stress is not
substantially different from those in canonical two-dimensional flows.

Further evidence of the structural similarity between these two types of flow can
be found in the wall-pressure and velocity correlations. Willmarth & Wooldridge
(1962) and Willmarth & Tu (1967) measured spatial correlations between wall-
pressure fluctuations and one component of the velocity fluctuations in another point
near the wall. One of the important results of their pressure–velocity correlation
measurements was that Rp2(d1, d2 = fixed, 0) is an odd function of the streamwise
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Figure 18. Wall-pressure and velocity correlation Rp2 with fixed wall-normal separation and
variable streamwise separation. •, Willmarth & Tu (1967); —–, Case 2.

separation d1, being positive for d1 > 0 and negative for d1 < 0, consistent with
U-shaped vortical structures in the boundary layer (Willmarth & Tu 1967). They
also found that for d2 > 0.6δ2, the correlation is nearly symmetric with respect to
d1 = 0. For planes closer to the wall with small d2, however, the symmetry was no
longer apparent (see also Hinze 1975). Shown in figure 18 is the pressure–velocity
correlation Rp2(d1, d2 = fixed, 0) in the disk flow, together with the two-dimensional
boundary-layer data from Willmarth & Tu (1967). Following Willmarth & Tu (1967),
Rp2(d1, d2 = fixed, 0) is normalized by the r.m.s. wall pressure fluctuation and the wall-
normal fluctuation at z = 0.66δ2. Profiles of Rp2(d1, d2 = 0.13δ2, 0) and Rp2(d1, d2 =
0.66δ2, 0) are shown in figures 18(a) and 18(b), respectively. As in two-dimensional
turbulent boundary layers, the pressure–velocity correlation Rp2(d1, d2 = fixed, 0) is an
odd function of the streamwise displacement, taking positive values for d1 > 0 and
negative values for d1 < 0. The profile further from the wall shown in figure 18(b)
has a slightly improved symmetry compared to that closer to the wall shown in figure
18(a). For larger streamwise separations Rp2(d1, d2 = fixed, 0) decrease rapidly to zero.

The quadrant analysis and two-point correlations in figures 12–18, while not
exhaustive, have provided quantitative evidence to support the working hypothesis
invoked by Littell & Eaton (1994), i.e. that the overall shear-stress producing structures
are similar in the disk 3DTBL and the 2DTBL. Thus, the structural model advanced
by Robinson (1991) may be used as a baseline in the disk 3DTBL. A plausible
description of the modifications of the baseline model, after taking into account the
effect of mean streamwise vorticity, is, in turn, that proposed by Littell & Eaton
(1994). The conditionally averaged velocities discussed in connection with figures 9
and 10 obtained from the present LES calculations have offered direct conclusive
evidence in support of their proposition.

5. Summary
Large-eddy simulation of the three-dimensional turbulent boundary layer over

a rotating disk in an otherwise quiescent incompressible fluid was performed. The
boundary layer considered is one of the simplest flows with mean flow three-
dimensionality all the way through its laminar origin. It is statistically homogeneous
along the streamwise direction and evolves to an equilibrium presumably independent
of its initial conditions. A signal-decomposition scheme was developed by modifying
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the method of Spalart (1988) and Lund et al. (1998) to prescribe time-dependent
boundary conditions along the disk radial direction. Entrainment towards the disk
surface was prescribed by requiring the mass increment in the radial direction to
be balanced with axial entrainment. Predictions from six different parameter cases
were presented to study the effects of grid resolution and the SGS model. When the
resolution is in a range in which large-scale motions are accurately and well-resolved,
the effect of the SGS model and further grid refinement on LES predictions are not
significant.

LES predictions show that the skewing angle of the wall shear stress (relative to
the disk velocity) is about 16◦ at a momentum thickness Reynolds number 2660.
Compared with the measurements of Littell & Eaton (1994), the maximum errors
in the predicted mean tangential and radial velocities using dynamic models are 4%
and 2% of the disk speed, respectively. Good agreement was also obtained between
the predicted and measured turbulence intensities as well as all three turbulent shear
stresses. The one-dimensional spectra of the velocity fluctuations agree reasonably
well with the established laws, i.e. −1 slope in the buffer region and −5/3 slope near
the edge of the boundary layer.

The simulations described in §§ 2 and 3 have answered to a satisfactory degree
the call by Johnston & Flack (1996) for turbulence modellers to tackle the disk
3DTBL as a prelude to computation of more complex engineering 3DTBLs. Aside
from this, one of the more interesting findings is the conditionally averaged velocities
obtained for strong ejection/sweep events. These results have offered new evidence
to support the structural model advanced by Littell & Eaton (1994) that streamwise
vortices with the same sign as the mean streamwise vorticity are mostly responsible for
strong sweep events, streamwise vortices having opposite sign to the mean streamwise
vorticity promote strong ejections. Further, two-point velocity–velocity and wall-
pressure and velocity correlations exhibit interesting structural similarities with those
previously found in two-dimensional turbulent boundary layers. This has provided
some quantitative indirect support to the hypothesis invoked by Littell & Eaton (1994)
and Johnston & Flack (1996) that appropriate vortical structural models developed for
two-dimensional boundary layers (e.g. by Robinson 1991) may be used in equilibrium
3DTBLs. While instructive, future studies directed at understanding the effect of
the crossflow on near-wall structures could benefit from consideration of additional
techniques used to understand and model coherent motions (e.g. see Jeong et al. 1997),
possibly using direct simulations. Another area not explored in the current study is
evaluation of turbulence models (first- and second-moment closure) against the LES
database. Such investigations would seem useful for understanding the strengths and
limitations of engineering models used to predict complex boundary layers.

The 3DTBL over a rotating disk considered in this work can be classified as a
canonical case, representative of equilibrium 3DTBLs, especially those created over
infinite geometries and which are three-dimensional from inception. Examples include
the Ekman layer and the 3DTBL created by a rotating free-stream velocity vector
(Spalart 1989). Thus, the statistical and structural properties discussed in the present
study are expected to apply to other equilibrium 3DTBLs (see also Wu & Squires
1997). However, it should be noted that a straightforward extension of the conclusions
drawn from the disk flow to other spatially developing non-equilibrium 3DTBLs, e.g.
those over a swept wing, might be too simplistic. Complicating features such as
upstream history, streamwise pressure gradient and variation in flow configuration
may render the study of these complex spatially developing 3DTBLs a case-by-case
endeavour.
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