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Abstract. Let X be a topologically stratified space, p be any perversity on X and
k be a field. We show that the category of p-perverse sheaves on X , constructible with
respect to the stratification and with coefficients in k, is equivalent to the category of finite-
dimensional modules over a finite-dimensional algebra if and only if X has finitely many
strata and the same holds for the category of local systems on each of these. The main
component in the proof is a construction of projective covers for simple perverse sheaves.
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1. Introduction. Let X be a topologically stratified space. The category pPerv(X )

of p-perverse sheaves on X , constructible with respect to the given stratification and with
coefficients in a field k, captures interesting aspects of the topology of X and its stratifi-
cation. When X is a complex algebraic variety with an algebraic stratification and p(S) =
− dimC(S) is the middle perversity, the perverse sheaves have deep connections with Morse
theory, differential equations (D-modules) and, for suitable X , with representation theory.

Perverse sheaves are defined as the heart of a t-structure on the constructible derived
category Dc(X ) cut out by imposing cohomological vanishing conditions. Whilst this is
convenient for theoretical purposes, one often wants a more explicit description, as mod-
ules over an algebra or as quiver representations. We characterise those X for which the
perverse sheaves can be described as modules over a finite-dimensional algebra.

MAIN THEOREM (Corollary 5.2). The category pPerv(X ) is equivalent to the category
of finite-dimensional (left) modules over a finite-dimensional k-algebra if and only if X has
finitely many strata and the same holds for the category of local systems on each of these
strata.

Surprisingly, this result depends only upon the fundamental groups of the strata and not
on the perversity or the way the strata are assembled. In particular, if X has finitely many
strata each with finite fundamental group then, for any perversity p and field k, perverse
sheaves can be described as finite-dimensional modules over a finite-dimensional algebra.

The key component of the proof is Theorem 4.6 in which we construct projective
covers of simple perverse sheaves. Our approach generalises that in [6, Section 3.2] and
is motivated by reverse-engineering. Effectively we assume that pPerv(X ) is equivalent
to modules over a finite-dimensional algebra, specifically that perverse sheaves have a
quiver description, and attempt to construct the projective cover in the same way one
would for a quiver representation. This turns out to be possible when X has finitely
many strata and the category of local systems on each has enough projectives. The
other ingredients of the proof are standard results about projective covers and generators,
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and elementary observations about the behaviour of projective perverse sheaves under
recollement functors.

In principle, one can use the construction of Theorem 4.6 to find a projective generator
P for pPerv(X ), but in practice, this is difficult because it is not obvious how to implement
the construction as an effective algorithm. We discuss approaches to computing a projective
generator in the final section, but leave the details of implementation for a second paper.

There is an extensive literature on algebraic and quiver descriptions of perverse
sheaves and to provide some context we survey some of the main themes. Unless otherwise
stated, the results below hold for the middle perversity p(S) = − dimR(S)/2. Beı̆linson
[3], see also [20], uses the nearby and vanishing cycle functors to describe how perverse
sheaves on a variety are glued from perverse sheaves on a hypersurface and its complement.
This glueing construction can be used to obtain quiver descriptions for perverse sheaves
on an algebraic curve, and also in various higher dimensional cases.

MacPherson and Vilonen [17] give a similar glueing construction for perverse sheaves
on the complement of a closed stratum of a Whitney-stratified space. This, together with
micro-local techniques and deformation to the normal cone, is the key ingredient in [11]
in which they, together with Gel’fand, prove that the category of perverse sheaves on a
stratified analytic variety is equivalent to the module category over a finitely presented
algebra. This glueing construction can be viewed as the abelian analogue of recollement
for triangulated categories. It is closely related to the work of Cline, Parshall and Scott [9]
on highest weight categories, indeed Vilonen [23] shows that a highest weight category is
precisely one, which can be glued from copies of the category of vector spaces where at
each stage certain objects have suitable filtrations.

Mirollo and Vilonen [18] employ this construction to show that perverse sheaves
on a Whitney-stratified complex analytic space, each of whose strata S satisfies π1(S) =
π2(S) = 0, form a highest weight category equivalent to finitely generated modules over
a finite-dimensional algebra. Subsequently, Vilonen [23] proved that the same holds for
equivariant perverse sheaves on a complex algebraic variety on which a complex algebraic
group acts with finitely many orbits, except that, in this case, they need not form a highest
weight category nor have finite global dimension.

These ideas, together with micro-local Morse theory are used by Braden [7], and
Braden and Grinberg [8], to obtain quiver descriptions for perverse sheaves on Schubert-
stratified Grassmannians, and, respectively, on rank stratifications of matrices. Prior to
this, Beı̆linson, Ginzburg and Soergel [6] had used algebraic techniques to show that per-
verse sheaves on complex algebraic varieties with affine stratifications could be described
as modules over a finite-dimensional Koszul algebra, and hence have a description as
representations of a quiver with quadratic relations.

Another case in which Koszul algebra plays a prominent role is that of perverse
sheaves on a triangulated space, now for any ‘classical’ perversity satisfying dimR(S) −
dimR(T) ≤ p(T) − p(S) ≤ 0. By utilising the extra combinatorial structure, Polishchuk [19]
shows that these are representations of a Koszul algebra, and Vybornov [24] uses this
and the Koszul duality results of [6] to describe the perverse sheaves as the constructible
sheaves with respect to a stratification by ‘perverse simplices’. Using similar techniques,
but now back in the algebro-geometric setting and for the middle perversity, Vybornov
[25] obtains a quiver description for perverse sheaves on Schubert-stratified flag vari-
eties. Continuing in a combinatorial vein, Kapranov and Schechtmann [13] obtain a quiver
description, with monomial relations, for perverse sheaves on complexified hyperplane
arrangements. (Even in the simplest case of C stratified by 0 and C∗, their description
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differs from Beı̆linson’s glueing description.) Their construction is motivated by the earlier
work of Galligo, Granger and Maisonobe on quiver descriptions for D-modules [10].

Finally, switching to a homotopy-theoretic perspective, MacPherson [16] observes
that constructible sheaves, i.e. perverse sheaves for the zero perversity p(S) = 0, can be
described as representations of the exit path category, directly generalising the usual mon-
odromy description of local systems to stratified spaces. Treumann [22] further generalises
by showing that perverse sheaves on a topologically stratified space can be described as
representations of the exit path 2 category. We are not aware of any explicit descriptions of
perverse sheaves from this viewpoint.

In summary, techniques from algebra, algebraic geometry, Morse theory, combi-
natorial topology and homotopy theory have all been employed to obtain alternative
descriptions of categories of perverse sheaves. As mentioned before, our approach is clos-
est to the algebraic one of Beı̆linson, Ginzburg and Soergel [6], but applied to more general
spaces and perversities. The price we pay for this generality is that there is no longer any
Koszul or highest weight category structure.

In brief, Section 2 sets the context and introduces notation. Section 3 recalls the single
stratum case in which perverse sheaves are local systems on a manifold, and therefore
have an algebraic description as modules over the fundamental group algebra. The main
construction is in Section 4, where we explain when there are enough projective perverse
sheaves. In Section 5, we reformulate the results of Section 4 in terms of finite-dimensional
algebras and also comment on computational approaches.

2. Background.

2.1. Topologically stratified spaces. Throughout X will be a topologically strati-
fied space in the sense of [12]. Briefly, a 0-dimensional topologically stratified space is
a discrete union of points; a strictly positive dimensional X is a paracompact Hausdorff
topological space with a finite filtration

∅ = X−1 ⊂ X0 ⊂ · · · ⊂ Xd = X

by closed subsets such that Xi − Xi−1 is a (possibly empty) i-dimensional topological
manifold, and such that each x ∈ Xi − Xi−1 has an open neighbourhood filtration-preserving
homeomorphic to Ri × C(L) for some topologically stratified space L. Here, C(L) =
L × [0, 1)/L × {0} is the open cone on L with the induced filtration by the vertex and the
subsets Li × [0, 1)/Li × {0}. The stratified space L is known as a link of Xi − Xi−1 at x. The
links are not part of the data and need not even be well-defined up to homeomorphism [21].
The strata of X are the connected components of the Xi − Xi−1. They are partially ordered
by the relation S ≤ T ⇐⇒ S ⊂ T .

2.2. The constructible derived category. Fix a field k; we do not assume it has char-
acteristic 0, nor that it is algebraically closed. The constructible derived category Dc(X ) is
the full subcategory of the bounded derived category of sheaves of k-vector spaces on X
on those complexes whose cohomology sheaves are locally constant on each stratum of X .

Let j : U ↪→ X be the inclusion of an open union of strata, and ı : Z = X − U ↪→ X
the complementary closed inclusion. There are triangulated functors
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Dc(Z) Dc(X ) Dc(U),
ı!=ı∗ j !=j∗

ı∗

ı !

j!

j∗

where ı! = ı∗ is extension by zero from a closed subset, j ! = j ∗ is restriction to an open
subset, ı∗ and j! are their respective left adjoints and ı ! and j∗ their respective right adjoints.
(The functor j∗ is the right derived functor of the usual sheaf theory pushforward, but since
we make no use of the latter we do not use the notation Rj∗.) These functors satisfy various
well-known identities, in particular j ∗ı∗ = 0 and the obvious consequences for the adjoints,
j ∗j! = id = j ∗j∗ and ı !ı∗ = id = ı∗ı∗. There are two natural exact triangles ı!ı !E → E →
j∗j ∗E → ı!ı !E[1] and j!j !E → E → ı∗ı∗E → j!j !E[1]. The Verdier dual

D(−) = HomDc(X )

(−, π !kpt
) : Dc(X )op → Dc(X )

is a triangulated equivalence where π : X → pt is the map to a point and kpt the constant
sheaf with stalk k, in degree 0. It commutes with ı∗ and j ∗ and there are natural isomor-
phisms D ◦ ı∗ ∼= ı ! ◦D and D ◦ j! ∼= j ∗ ◦D. The above natural exact triangles are Verdier
dual to one another.

2.3. Perverse sheaves. A perversity on X is function p : S → Z where S is the set of
strata of X . We do not impose any further conditions, although for many applications, it
is useful to do so. The category pPerv(X ) of p-perverse sheaves is the heart of a bounded
t-structure on Dc(X ) obtained by ‘glueing’ the categories Loc(S) [−p(S)] of shifted local
systems on the strata S of X – see [4, Section 2] for details. It is a k-linear, full abelian
subcategory of Dc(X ). When X has finitely many strata it is a finite length (noetherian and
artinian) category.

There is a functor pH0 : Dc(X ) → pPerv(X ) left inverse to the inclusion which is coho-
mological, i.e. takes exact triangles to long exact sequences of perverse sheaves. More
concretely, perverse sheaves are characterised by the vanishing conditions

E ∈ pPerv(X ) ⇐⇒
⎧⎨
⎩
Hd(ı∗

SE) = 0 d > p(S)

Hd(ı !
SE) = 0 d < p(S)

(1)

for all strata ıS : S ↪→ X , where Hd(E) denotes the cohomology sheaf of the complex of
sheaves E .

Verdier duality on Dc(X ) restricts to an exact equivalence

D : pPerv(X )op → p∗
Perv(X ) ,

where p∗(S) = − dimR(S) − p(S) is the dual perversity. This is a generalisation of the fact
that Verdier duality preserves local systems on a manifold M up to a shift; specifically
D(L) =L∨[dimR(M)] where L∨ is the dual local system.

Extension by zero from a closed union of strata and restriction to an open union are
t-exact functors. It follows that ı∗ and j! are right t-exact for the perverse t-structure, and
that ı ! and j∗ are left t-exact. As above, let j : U ↪→ X and ı : Z = X − U ↪→ X be comple-
mentary open and closed inclusions. Writing pı∗ = pH0 ◦ ı∗ and so on there is a diagram
of functors
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Perv(Z) Perv(X ) Perv(U)
ı!=ı∗ j !=j∗

pı∗

pı !

pj!

pj∗

in which ı! = ı∗ and j ! = j ∗ are exact, pı∗ and pj! are their respective left adjoints, and pı !
and pj∗ their respective right adjoints.

2.4. Simple perverse sheaves. If j : U → X is the inclusion of an open union of
strata, the intermediate extension functor pj!∗ : Perv(U) → Perv(X ) is the image of the
natural morphism pj! → pj∗. It is fully faithful, preserves both monomorphisms and epi-
morphisms, but in general is neither left nor right exact. The intermediate extension is the
unique extension with no non-zero subobjects or quotients supported on Z; equivalently, it
is the unique extension satisfying the vanishing conditions (1) for the corresponding non-
strict inequalities. The simple perverse sheaves are those of the form ıS∗pjS !∗L[−p(S)]
where L is an irreducible local system on a stratum S and jS : S ↪→ S and ıS : S ↪→ X
are the inclusions. These are known as intersection cohomology complexes because their
cohomology groups are, up to a shift by p(S) in the indexing, the perversity p intersection
cohomology groups of the closure S with coefficients in L. We therefore use the notation
pICL = ıS∗pjS !∗L[−p(S)].

3. Local systems. A stratified space X with a single stratum is a topological mani-
fold. In this case, for any perversity p, the perverse sheaves pPerv(X ) are equivalent to the
category Loc(X ) of finite-dimensional local systems on X with coefficients in k, i.e. the
category of locally constant sheaves of finite-dimensional k-vector spaces on X .

Taking monodromy establishes an equivalence Loc(X ) � k[π1X ]−mod with the cate-
gory of finite-dimensional left modules over the group algebra of the fundamental group. In
particular, the question of whether there are enough projective local systems on X depends
only on the fundamental group. Clearly, if π1X is finite then k[π1X ] is a finite-dimensional
k-algebra and k[π1X ]−mod has enough projectives. Generically, one has a stronger result –
if π1X is finite and the characteristic of k does not divide its order then Maschke’s Theorem
implies that k[π1X ]−mod is a semi-simple category so that all modules are projective.
However, if π1X ∼= Z and k = C, for example, then there are no non-zero projective local
systems. In this case, indecomposable local systems are classified by their Jordan normal
forms, none of which is projective. In general, the question is quite subtle (and we do not
attempt to answer it). To see why, recall that there are finitely presented infinite groups
with no non-trivial finite-dimensional representations (over any field k). For example, a
representation of a finitely presented infinite simple group G is either trivial or faithful, but
the latter is impossible since G cannot embed as a subgroup of GLn(k). (This is because a
finitely generated linear group is residually finite by Mal’cev’s Theorem, i.e. the intersec-
tion of all its finite index normal subgroups is trivial, and so it cannot be simple.) Since
any finitely presented group arises as the fundamental group of a smooth compact four-
manifold X , we can find such an X with π1X ∼= G and therefore with Loc(X ) equivalent to
the category of finite-dimensional k-vector spaces.

After this detour into the intricacies of representation theory, the main result of this
paper should come as a relief! Roughly, it says that generalising to stratified spaces one
does not meet any further subtleties; the existence of projective perverse sheaves depends
only on the fundamental groups of the strata.
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4. Projective perverse sheaves. In this section, we assume that the topologically
stratified space X has finitely many strata. Under this assumption, pPerv(X ) is a Hom-
finite length abelian category for any perversity p, i.e. the Hom-spaces between objects
are finite-dimensional vector spaces over k, and each object has a finite composition
series with simple quotients. Either of these properties implies that pPerv(X ) is a Krull–
Remak–Schmidt category [15, Section 5] – each perverse sheaf is a finite direct sum
of indecomposable perverse sheaves, and a perverse sheaf is indecomposable precisely
when its endomorphism algebra is local. The indecomposable summands of a perverse
sheaf, counted with multiplicity, are unique up to isomorphism and reordering. In partic-
ular, pPerv(X ) has enough projectives if and only if each simple object has a projective
cover, and the projective covers of the simple objects are precisely the indecomposable
projectives [15, Lemma 3.6]. We will use the following well-known characterisation of
indecomposable projective objects.

LEMMA 4.1. Fix a simple perverse sheaf pICL. If P satisfies Ext1(P, pICM) = 0 for
all simple perverse sheaves pICM and

Hom(P, pICM) ∼=
{

k if M∼=L
0 otherwise.

(2)

then P is a projective cover of pICL.

Proof. The first condition implies that P is projective. The second condition implies it
has pICL as a quotient and that P is indecomposable; if it decomposes only one summand
can have pICL as a quotient, and the other summand has no non-zero quotients at all, hence
vanishes. Therefore, P is an indecomposable projective with pICL as a quotient, and so is
a projective cover of pICL.

4.1. Restricting and extending projective perverse sheaves. Let j : U ↪→ X be the
inclusion of an open union of strata and ı : Z ↪→ X the complementary closed union.

LEMMA 4.2. The functors pj! and pı∗ preserve projective perverse sheaves.

Proof. This follows because the left adjoint of an exact functor preserves projective
objects.

LEMMA 4.3. Suppose P ∈ Perv(X ) is projective and that pı∗P = 0. Then j ∗P ∈
Perv(U) is projective.

Proof. We show that Hom(j ∗P, −) ∼= Hom(P, pj∗(−)) is exact. Given short exact
0 → E →F → G → 0 in Perv(U) the cokernel of pj∗F → pj∗G is supported on Z so that
there is an exact sequence 0 → pj∗E → pj∗F → pj∗G → ı∗C → 0 for some C ∈ Perv(Z).
Applying the exact functor Hom(P, −), we obtain a short exact sequence

0 → Hom(P, pj∗E) → Hom(P, pj∗F) → Hom(P, pj∗G) → 0,

since Hom(P, ı∗C) ∼= Hom(pı∗P, C) = 0.

A simple perverse sheaf on X is either the intermediate extension pj!∗E of a simple
perverse sheaf on U or the extension by zero ı∗E of a simple perverse sheaf on Z. This
establishes a correspondence between the set of isomorphism classes of simple perverse
sheaves on X and the union of the sets of isomorphism classes of perverse sheaves on Z
and on U .
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LEMMA 4.4.

(1) Suppose E ∈ pPerv(U) is simple and P is a projective cover of E . Then pj!P is a
projective cover of the intermediate extension pj!∗E .

(2) Suppose E ∈ pPerv(U) is simple and P is a projective cover of its intermediate
extension pj!∗E . Then j ∗P is a projective cover of E .

(3) Suppose E ∈ pPerv(Z) is simple and P is a projective cover of its extension by
zero ı∗E . Then pı∗P is a projective cover of E .

Proof. In each case we apply Lemma 4.1.

(1) By Lemma 4.2 the extension pj!P is projective, so the Ext condition in Lemma
4.1 holds. The Hom conditions in (2) follow from the adjunction between pj!
and j ∗.

(2) Since Hom(P, ı∗F) = 0 for all simple F ∈ pPerv(Z) we have pı∗P = 0. Hence
j ∗P is projective by Lemma 4.3, so the Ext condition in Lemma 4.1 holds. The
Hom conditions in (2) follow from the adjunction between j ∗ and pj∗ and the
fact that for simple F ∈ pPerv(U) there is a short exact sequence 0 → pj!∗F →
pj∗F → ı∗F ′ → 0 with F ′ ∈ pPerv(Z).

(3) By Lemma 4.2 the restriction pı∗P is projective, so the Ext condition in Lemma
4.1 holds. The Hom conditions in (2) follow from the adjunction between pı∗
and ı∗.

In the next section, we establish a sufficient criterion for pPerv(X ) to have enough
projectives. Here we note a necessary condition implied by the previous lemma.

COROLLARY 4.5. Suppose X is a topologically stratified space with finitely many strata
and p a perversity. If pPerv(X ) has enough projectives then so does Loc(S) for each
stratum S.

Proof. Let E ∈ Loc(S) be irreducible and suppose that P is a projective cover of pICE
in pPerv(X ). Lemma 4.4 implies that jS

∗pı∗
SP (shifted by p(S)) is a projective cover of E

in Loc(S) where jS : S ↪→ S and ıS : S ↪→ X are the inclusions.

4.2. Existence of projectives. The next result establishes a sufficient condition for
pPerv(X ) to have enough projectives. The delicate part is the construction of a projective
cover of a simple perverse sheaf supported on a closed stratum. This construction gener-
alises that of [6, Theorem 3.2.1]. It mimics the construction of a projective cover of simple
a module for the path algebra of a quiver.

THEOREM 4.6. Let X be a topologically stratified space and p a perversity. Suppose
X has finitely many strata and that Loc(S) has finitely many (isomorphism classes of)
simple objects and enough projectives for each stratum S. Then pPerv(X ) also has enough
projectives.

Proof. It is enough to construct a projective cover for each simple perverse sheaf.
We do so by induction over the number of strata. When X has a single stratum there is
nothing to prove. Suppose S is a closed stratum and let ı : S ↪→ X and j : X − S ↪→ X
be the inclusions. Since X − S has strictly fewer strata we may assume that each simple
j ∗pICM has a projective cover AM in pPerv(X − S). Then PM = pj!AM is a projective
cover of pICM by Lemma 4.4.

It remains to construct a projective cover for pICL where L is an irreducible local
system on S. By assumption L has a projective cover in Loc(S). Let BL denote the perverse
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sheaf obtained by shifting this cover by [−p(S)] and extending by zero. Let I be the union
of the sets of (isomorphism classes of) irreducible local systems on the strata of X − S.
Since I is finite

P =
⊕
M∈I

PM ⊗ Ext1(BL, pICM)
∨

is a well-defined and projective perverse sheaf. Let π : P �Q be such that Q has maximal
length amongst quotients for which there exists ε ∈ Ext1(BL,Q) inducing isomorphisms

Hom(Q, pICN ) ∼= Ext1(BL, pICN ) : ϕ �→ ϕ ◦ ε (3)

for each N ∈ I . Such a Q exists because P has finite length and the quotient⊕
M∈I

pICM ⊗ Ext1(BL, pICM)
∨

has the required property – a suitable choice of ε in this case is the sum of the units in⊕
M∈I

Ext1(BL, pICM) ⊗ Ext1(BL, pICM)
∨

.

Let PL ∈ Perv(X ) be defined (up to isomorphism) by the triangle

Q→ PL →BL
ε−→Q[1]. (4)

We prove that PL is the projective cover of pICL using Lemma 4.1. Apply Hom(−, pICN )

to (4) to obtain a long exact sequence. The property (3) implies this splits into an
isomorphism Hom(PL, pICN ) ∼= Hom(BL, pICN ) ∼= Hom(BL, pı∗pICN ) and an exact
sequence

0 → Ext1(PL, pICN ) → Ext1(Q, pICN ) → Ext2(BL, pICN ) → · · · , (5)

where the Ext groups are computed in Dc(X ) rather than in pPerv(X ). Since

pı∗pICN ∼=
{
N [−p(S)] if N ∈ Loc(S)

0 otherwise,

the only simple quotient of PL is pICL, and this occurs with multiplicity one. Hence PL
is indecomposable. To show PL is projective, it suffices to prove that the third map in (5)
is injective. Suppose 0 �= ϕ ∈ Ext1(Q, pICN ) is in the kernel, i.e. ϕ ◦ ε[−1] = 0. Then we
have a commutative diagram

P

pICN Q′ Q pICN [1]

BL[−1]

π
π ′ 0

ϕ

ε[−1]
ε′[−1] 0

in Dc(X ) whose middle row is the triangle induced from ϕ. The composite ϕ ◦ π = 0
because P is projective. Therefore, there are factorisations via π ′ and ε′[−1] as indicated.
By construction Q′ is a perverse sheaf with �(Q′) = �(Q) + 1, where �(E) denotes the
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length of (any) composition series for E . Applying Hom(−, pICM) to the triangle induced
by ϕ yields a long exact sequence

0 → Hom(Q, pICM) → Hom
(Q′, pICM

) → Hom(pICN , pICM) → Ext1(Q, pICM) → · · · .

Since the third term vanishes for M �=N , and injects into the fourth when M=N
because ϕ �= 0, we conclude that Hom(Q, pICM) ∼= Hom

(Q′, pICM
)
. Therefore compo-

sition with ε′ induces an isomorphism

Hom
(Q′, pICM

) ∼= Ext1(BL, pICM)

for any M ∈ I . Thus π ′ cannot be an epimorphism of perverse sheaves, for otherwise Q
would not be the maximal length quotient of P satisfying (3). In particular, this means
that �(im π ′) ≤ �(Q′) − 1 = �(Q). However, since π is an epimorphism so is the com-
posite im π ′ ↪→Q′ �Q, and thus �(im π ′) ≥ �(Q). We conclude that �(im π ′) = �(Q).
Therefore, the epimorphism im π ′ �Q is an isomorphism and Q′ →Q splits in pPerv(X ),
contradicting the assumption that ϕ �= 0. We conclude that the third map in (5) is injective,
and this completes the proof.

REMARK 4.7. It is not clear a priori that the quotient Q appearing in the proof is unique
(up to isomorphism), however a posteriori we see that it is. The short exact sequence
0 →Q→PL →BL → 0 and the fact that Lemma 4.2 implies BL ∼= ı∗pı∗PL show that
Q∼= pj!j ∗PL.

What is surprising about this result is that the existence of enough projective perverse
sheaves depends only upon the fundamental groups of the strata and the field k, and not on
the perversity or on any information about how the strata are assembled to form the space.
In fact, although we have formulated it in terms of perverse sheaves, it can be reformulated
in the abstract setting of recollement of t-structures.

PROPOSITION 4.8. Suppose DZ
ı∗−→ DX

j∗−→ DU is an exact triple of k-linear Hom-
finite triangulated categories satisfying the axioms for recollement [4, Section 1.4.3].
Further suppose we have bounded t-structures on DZ and DU whose hearts are length
categories with finitely many simple objects. Then the heart of the glued t-structure on DX

[4, Theorem 1.4.10] has enough projectives if and only if the hearts of the t-structures on
DZ and DU each have enough projectives.

5. Finite-dimensional algebras. When there are enough projective perverse
sheaves and finitely many simple ones perverse sheaves can be described as modules
over a finite-dimensional algebra, and therefore also as representations of a quiver with
relations. The direct sum of projective covers of the simple perverse sheaves is a projec-
tive generator of pPerv(X ) and tilting theory provides an equivalence between pPerv(X )

and finite-dimensional modules over its endomorphism ring. More precisely we apply the
following result.

THEOREM 5.1 [2, Chapter II, Exercise after Theorem 1.3]. Let C be a Hom-finite and
length k-linear abelian category. Then C has a projective generator if and only if there
is an exact equivalence C � A−mod where A−mod is the category of finite-dimensional
(left) modules over a finite-dimensional k-algebra A.
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COROLLARY 5.2. Let X be a topologically stratified space and p a perversity on X .
There is an exact equivalence Perv(X ) � A−mod where A is a finite-dimensional k-algebra
if and only if X has finitely many strata and for each stratum S there is a finite-dimensional
k-algebra AS with an exact equivalence Loc(S) � AS−mod.

Proof. Recall that there are finitely many simple modules over any finite-dimensional
algebra, and note that pPerv(X ) has finitely many simple objects if and only if X has finitely
many strata each with only finitely many irreducible local systems. The result follows by
combining Theorems 4.6 and 5.1 with Corollary 4.5.

We emphasise that the perversity p and the links of the stratification of X play no role.
Of course, these do enter into the determination of an algebra A whose module category is
the perverse sheaves. An immediate consequence is that pPerv(X ) has a projective gener-
ator if and only if p∗

Perv(X ), where p∗ is the dual perversity, has one. Hence, by duality,
pPerv(X ) has an injective cogenerator if and only if it has a projective generator.

The immediate corollary identifies a large class of examples.

COROLLARY 5.3. Suppose X is a topologically stratified space with finitely many
strata, each with finite fundamental group, and p any perversity. Then the category
pPerv(X ) of perverse sheaves with coefficients in a field k is equivalent to the category
of finite-dimensional (left) modules over a finite-dimensional k-algebra.

5.1. Remarks on computations. How can one find, when it exists, a finite-
dimensional k-algebra A such that pPerv(X ) � A−mod? As mentioned in the introduction,
there are several known approaches, but these involve extra geometric assumptions on X
and restrictions on the perversity p. The constructions and results above open the possi-
bility of more algebraic approaches. We outline three of these. The second paper will give
detailed examples.

The first approach is the most direct. The proof of Theorem 4.6 explains how to induc-
tively construct a projective cover PL of a simple perverse sheaf pICL. If one can do
this then the sum

⊕
L PL is a projective generator, and the algebra we seek is its endo-

morphism ring. Unfortunately, it is not easy to implement this construction of PL as an
effective algorithm. The principal obstruction is that one has to find a maximal length
quotient Q of

P =
⊕
M∈I

PM ⊗ Ext1(BL, pICM)
∨

satisfying the property (3). This quotient exists, and is unique by Remark 4.7, but we do not
have a better construction than searching through all the quotients. For the top ‘classical’
perversity p(S) = − dimR(S), the simple perverse sheaves have the form jS∗L[− dimR(S)],
where jS : S ↪→ S. This implies that P = 0 whence also Q= 0. So, in this case, the
construction degenerates and the projective cover PL = pjS !L[− dimR(S)]. However, in
general, there can be multiple quotients satisfying (3). For example, let X = CP1 strat-
ified by C and a point ∞, let p(S) = − dimC(S) be the middle perversity, and L= k∞
be the skyscraper on the point stratum. Then P = j!kC[1] and both itself and its quotient
pj!∗kC[1] satisfy (3). Choosing the maximal length quotient, as the construction dictates,
gives Q=P = j!kC[1] and verifies (as is well-known) that Beı̆linson’s maximal extension
is the projective cover of ı∗k∞.

The second approach is to try to obtain a quiver description. When k is algebraically
closed, the category of finite-dimensional modules over a finite-dimensional algebra is
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equivalent to the category of finite-dimensional representations of a finite quiver with
admissible relations [1, Chapter II, Theorem 3.7]. Therefore, when k is algebraically closed
and pPerv(X ) has a projective generator, perverse sheaves have a quiver description. The
quiver is the Ext-quiver – it has one vertex for each isomorphism class of simple objects
(of which there are finitely many, labelled by irreducible local systems on the strata) and
dimk Ext1(pICL, pICM) arrows from the vertex labelled by L to that labelled by M.
These groups can be computed inductively in terms of intersection cohomology groups
of links, or by using a spectral sequence [6, Section 3.4]. The relations are determined
by the canonical A∞-structure on the algebra Ext∗pPerv(X )(S, S) where S is the direct sum
of the simple objects [25, Section 2.8.4]. This raises two difficulties. First if the perverse
heart is not faithful, then the underlying algebra is not the same as Ext∗Dc(X )(S, S) in higher
degrees. Whilst the latter can be computed within Dc(X ), and thereby directly related to
the topology of X , the former is much less accessible. Second, the A∞-structure is itself
hard to construct. One can obtain the quadratic part of the relations from (the dual of) the
composition

Ext1(S, S) ⊗ Ext1(S, S) → Ext2pPerv(X )(S, S) ↪→ Ext2Dc(X )(S, S)

using the fact that the second map is injective [6, Lemma 2.3], i.e. from composition of
morphisms in Dc(X ). In several very interesting examples, the A∞-structure is formal and
all relations are quadratic so this suffices – see e.g. [6] and [25]. However, in general,
the A∞-structure is non-formal and there are also higher relations which are difficult to
compute.

The third approach is via silting theory. Assume that f Perv(X ) is a faithful heart for
some perversity f . This is the case, for instance, if X is

(1) a complex projective variety stratified by affine subvareities S with H>0(S; k) = 0
and f (S) = − dimC(S) is the middle perversity [5, Section 1.5]; or

(2) a compact space stratified by a simplicial triangulation and f is a ‘classical’ per-
versity, i.e. f (S) = f (dimR(S)) satisfies f (0) = 0 and m − n ≤ f (n) − f (m) ≤ 0 [19,
Theorem 4.2].

Length hearts in Dc(X ) � Db
(

f Perv(X )
)

correspond to silting objects in the bounded
homotopy category Kb

(
f Proj(X )

)
of projective perverse sheaves [14]. In our setting, a

faithful heart has global dimension bounded by dimR(X ), in particular it is finite, so that
the canonical functor

Kb
(

f Proj(X )
) → Db

(
f Perv(X )

)
is an equivalence. Thus, there is a correspondence between length hearts and silting objects
in Dc(X ). Moreover, this correspondence is compatible with silting mutation and simple
Happel–Reiten–Smalø tilting.

Since each perverse heart pPerv(X ) is length, each corresponds to a silting object Sp.
The latter can be obtained by starting with a basic projective generator of f Perv(X ) and per-
forming a sequence of silting mutations corresponding to a sequence of simple tilts leading
from f Perv(X ) to pPerv(X ). Such a sequence always exists – if perversities p and q differ
by 1 on a single stratum then the corresponding hearts are related by a Happel–Reiten–
Smalø tilt, which can be decomposed into a finite sequence of simple tilts. The perverse
cohomology pH0(Sp) is a projective generator of pPerv(X ), and pPerv(X ) is faithful pre-
cisely when Sp is tilting, equivalently when pH0(Sp) ∼= Sp. Even if Sp is not tilting, there is
an algebra isomorphism End

(Sp

) ∼= End
(

pH0(Sp)
)

so that pPerv(X ) � End
(Sp

)−mod. In
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summary, this approach is productive if there is a faithful heart f Perv(X ) for which we can
compute a basic projective generator.
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