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The evaporation of non-axisymmetric sessile drops is studied by means of experiments
and three-dimensional direct numerical simulations (DNS). The emergence of
azimuthal currents and pairs of counter-rotating vortices in the liquid bulk flow
is reported in drops with non-circular contact area. These phenomena, especially the
latter, which is also observed experimentally, are found to play a critical role in
the transient flow dynamics and associated heat transfer. Non-circular drops exhibit
variable wettability along the pinned contact line sensitive to the choice of system
parameters, and inversely dependent on the local contact-line curvature, providing
a simple criterion for estimating the approximate contact-angle distribution. The
evaporation rate is found to vary in the same order of magnitude as the liquid–gas
interfacial area. Furthermore, the more complex case of drops evaporating with
a moving contact line (MCL) in the constant contact-angle mode is addressed.
Interestingly, the numerical results demonstrate that the average interface temperature
remains essentially constant as the drop evaporates in the constant-angle (CA) mode,
while this increases in the constant-radius (CR) mode as the drops become thinner.
It is therefore concluded that, for increasing substrate heating, the evaporation rate
increases more rapidly in the CR mode than in the CA mode. In other words,
the higher the temperature the larger the difference between the lifetimes of an
evaporating drop in the CA mode with respect to that evaporating in the CR mode.

Key words: condensation/evaporation, drops and bubbles, multiphase flow

1. Introduction

The evaporation of a liquid droplet on a solid substrate is a common physical
phenomenon encountered in a vast variety of situations; it is therefore unsurprising
that it has received significant attention in the literature. For this reason, only the
publications most relevant to the subject of the present work will be highlighted here;
the reader is referred to Dunn et al. (2009), Cazabat & Guena (2010) and Erbil
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(2012) for other recent and comprehensive reviews of the topic. In addition, the
discussion will be restricted to investigations of relatively slowly evaporating drops in
which the surface remains (quasi-) saturated; the transport of vapour away from the
drop is the rate-limiting mass-transfer mechanism. It should be noted, nonetheless,
that there is another body of work concerning the complementary situation of more
rapidly evaporating liquids showing thermodynamic discontinuities at the interface
(Fang & Ward 1999; Ward & Fang 1999). Representative investigations are those by
Burelbach, Bankoff & Davis (1988), Anderson & Davis (1995) and Ajaev (2005).

A milestone investigation of sessile drops was performed by Picknett & Bexon
(1977), who experimentally and theoretically examined this problem in the late 1970s.
They addressed the two extreme modes of evaporation, namely ‘constant-angle’ (CA)
and ‘constant-radius’ (CR) modes. In the former, the droplet evaporates with a
receding contact radius R while the contact angle remains fixed at θ = θ0. In the
latter, the contact angle θ decreases with time while the base radius remains pinned
at R=R0. Picknett & Bexon (1977) observed that, when the drop evaporates, the drop
mass varies linearly in the CR mode but according to a power law in the CA mode.
They also examined the lifetime of the drop as a function of the initial (equilibrium)
contact angle θ0, concluding that, in general, for the same θ0, the lifetime of a drop
evaporating in the CR mode is shorter than that of same drop evaporating in the CA
mode. Only when the level of hydrophobicity is very high, θ > 140◦, is this behaviour
inverted. Bourgès-Monnier & Shanahan (1995) conducted experiments to study the
impact of the substrate roughness and showed that a droplet could also evaporate in
a more complicated fashion, mixing CR and CA modes. This mechanism is usually
referred to as stick–slip (SS) mode. They focused their attention on the CR stage,
and obtained an approximate analytical solution for the total mass flux across the
droplet surface.

Significant insights into the drop dynamics were provided by Deegan et al. (1997,
2000) in their investigation of the so-called ‘coffee-ring’ effect, i.e. the patterns left by
pinned drops when the evaporating liquid contains a suspension of colloidal particles.
This was explained via the radial outward flow induced to replenish the liquid
eliminated by evaporation from the edge of the drop. Hu & Larson (2002) adopted
the evaporation flux distribution along the droplet surface presented by Deegan
et al. (2000). With the help of their numerical results, they suggested approximate
analytical expressions to determine the temporal evolution of the evaporation rate as a
function of the contact angle θ , in the range 0<θ < 90◦. The authors compared their
results with experiments, numerical simulations, and the theory by Picknett & Bexon
(1977), finding reasonably good agreement without parameter fitting. Subsequently,
Hu & Larson (2005a,b) neglected inertial effects and employed lubrication theory to
investigate the flow field within the drops, in the absence (Hu & Larson 2005b) and
presence (Hu & Larson 2005a) of Marangoni stresses. The lubrication approximation
restricted the validity of their analysis to θ < 40◦. Following on from these works, Hu
& Larson (2006) also showed that spontaneous, evaporation-induced thermocapillarity
could invert the typical coffee-ring depositions, therefore driving the suspended
particles to the centre of the drop rather than towards the contact line. Ristenpart
et al. (2007) concluded that the direction of the flow depends on the relative thermal
conductivities of the substrate and liquid, and provided the critical conditions that
demarcate the outward/inward flow regimes.

Other works important to the subject of this investigation are those by Birdi,
Vu & Winter (1989) and Rowan, Newton & McHale (1995), who conducted
experiments showing that the evaporation rate varies with the size of the drops.
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Erbil, McHale & Newton (2002) observed the CA evaporation mode, which is
normally more unusual, in n-butanol, toluene, n-nonane, and n-octane drops on a
polytetrafluoroethylene (PTFE) surface with equilibrium contact angle θ0 < 90◦. More
work on evaporating drops of pure, completely wetting fluids with receding contact
lines was later completed by Poulard, Benichou & Cazabat (2003). Under such
conditions, they observed that the dynamics is controlled not only by the volatility
of the liquid, but also by the properties of the wetting film left on the substrate.
The role of the substrate temperature on the wetting and evaporation behaviour of
volatile droplets was examined by Crafton & Black (2004), with water and heptane
drops on aluminium and copper surfaces, and by Mollaret et al. (2004), with water
drops on aluminium and PTFE. David, Sefiane & Tadrist (2007) demonstrated a
strong influence of the substrate’s thermal conductivity on the evaporation rate. This
important finding pointed out deficiencies of previous theoretical models (Picknett &
Bexon 1977; Bourgès-Monnier & Shanahan 1995; Rowan et al. 1995; Hu & Larson
2002), which failed to take this into account. Later, Dunn et al. (2009) provided
further insights into this problem by means of experiments and numerical work.

New theoretical expressions to predict the evaporation rate, correcting the deviations
due to thermal effects, have been recently presented by Sefiane & Bennacer (2011),
and Sobac & Brutin (2012). Xu & Luo (2007) showed a weak Marangoni flow
experienced by water drops via fluorescent nanoparticles added to the liquid. Sefiane
et al. (2009) performed experiments to elucidate the effect of the atmosphere on
pinned water drops released onto various substrates. They observed that reducing
the atmospheric pressure increased the molecular diffusion coefficient of the vapour
and, therefore, the evaporation rate. Different evaporation rates were also reported
for different ambient gases, namely nitrogen, helium, and carbon dioxide. Shanahan,
Sefiane & Moffat (2011) revised the CA and CR pure modes of evaporation and
derived new analytical expressions to demonstrate that the droplet lifetime changes
with the hydrophobicity of the substrate. Like Picknett & Bexon (1977), they also
concluded that the CR mode leads to shorter drop lifetimes. In an attempt to
investigate the more complex SS mode, Nguyen & Nguyen (2012) proposed a
more sophisticated theoretical analysis to predict the lifetime of droplets evaporating
via a combined pinned-receding mode. Under these conditions, Stauber et al. (2014)
have recently proposed a master diagram for the lifetimes of drops in all possible
modes, showing that the lifetime of a drop may not always be constrained by the
lifetimes of the extreme modes.

A number of experimental investigations have also revolved around the complex
pinning-depinning behaviour of the triple line (SS mode), e.g. Sefiane & Tadrist
(2006), Moffat, Sefiane & Shanahan (2009) and Orejon, Sefiane & Shanahan (2011).
The dynamics of this is dictated by a competition between pinning forces on one
hand and depinning forces on the other. The former are usually due to the contact
line being anchored to the substrate because of chemical and surface heterogeneities;
the depinning forces are normally the result of the deviation of the droplet profile
from equilibrium (Orejon et al. 2011). Before these works, Shanahan (1995) had
already developed a simple theory to explain the jumps characteristic of the SS mode
experienced by the drops in the last stages of the evaporation process. Recently,
Jansen, Zandvliet & Kooij (2014) examined elongated droplets on chemically
stripe-patterned surfaces. The contact-line dynamics of these drops is intimately
connected to the pattern’s characteristic direction. After an initial stage in which the
whole contact line is motionless, these drops evaporate with fragments of its contact
line pinned (segments parallel to the stripe pattern) while the rest moves (segments
perpendicular to the pattern).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

22
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.224


708 P. J. Sáenz, K. Sefiane, J. Kim, O. K. Matar and P. Valluri

Most of the aforementioned theoretical works essentially focus on predicting the
evaporation flux and lifetime of the drops regardless of their internal dynamics, except
for Deegan et al. (1997, 2000), Mollaret et al. (2004), Hu & Larson (2005a,b, 2006)
and Karapetsas et al. (2012), who also provide some insights into the dynamics of
bulk flow via numerical simulations. Other authors have also directed their attention to
revealing the underlying mechanisms taking place within the liquid, e.g. Ruiz & Black
(2002), Girard et al. (2006, 2008a), Girard, Antoni & Sefiane (2008b) and Girard
& Antoni (2008). At this point, it is important to realize the restrictions common to
these numerical works. Firstly, most of these investigations completely neglected the
dynamics of the gas phase by addressing the free-surface problem. In some cases,
the authors use empirical heat-transfer coefficients to approximate the energy balance.
Only Girard & Antoni (2008) and Girard et al. (2008a,b) solve Laplace’s equation
for the temperature in the gas phase, to calculate the energy transfer across the free
surface more realistically. Regarding the evaporation flux, this is computed either
via the Laplace solution of the vapour field (Hu & Larson 2002, 2005a,b, 2006;
Mollaret et al. 2004), or by use of an empirical mass-transfer coefficient (Ruiz &
Black 2002; Girard et al. 2006, 2008a,b; Girard & Antoni 2008; Karapetsas et al.
2012). In thermocapillary flows, however, the Marangoni effect may induce significant
convective transport of vapour in the gas parallel to the interface, which can alter
the evaporation flux distribution, as was shown by Sáenz et al. (2014). Thus, the full
advection–diffusion solution for the vapour concentration (and temperature) in the gas
is necessary to verify how the resulting local interface mass-transfer rate (calculated
purely based on a local temperature/concentration balance at the interface) compares
with that from the solution of the diffusion equation.

The reader should also note that relevant works available in the literature, such
as Hu & Larson (2002, 2005a,b, 2006) or Girard et al. (2006, 2008a,b) and Girard
& Antoni (2008), provide pseudo-transient solutions to the droplet development
in time, i.e. their transient solution is the sum of a set of steady-state solutions
rather than the result of a pure transient approach, such as those by Ruiz & Black
(2002), Mollaret et al. (2004) and Karapetsas et al. (2012). Pseudo-transient works
additionally require the external imposition of the drop geometry. Thus, these models
are not well suited to capturing transient phenomena, e.g. thermocapillary instabilities,
such as those recently discovered by Sefiane et al. (2008), or interfacial deformations,
e.g. for larger drops in which gravity is not negligible, such as those investigated
by Gatapova et al. (2014). Very recently, Yang, Hong & Cheng (2014) conducted
finite-element simulations of a fully coupled three-phase model (solid–liquid–gas),
restricted to two dimensions, to describe the liquid and gas flow with and without
Marangoni effects. They analysed the non-heated problem and reported an increasing
evaporation rate due to the Marangoni effect.

The simulation of evaporating drops with a moving contact line (MCL) has
been undertaken by Murisic & Kondic (2011) and Karapetsas et al. (2012), via
the ‘one-sided’ approach. Murisic & Kondic (2011) investigated the two traditional
evaporation models (equilibrium and non-equilibrium interface) with the help of
the lubrication approximation, which limited their work to θ < 40◦. Depending on
the model, they found significantly different results, including drop evolution and
thermal gradients along the liquid–gas interface. Karapetsas et al. (2012) conducted
simulations providing insights for a mixed pinned-receding scenario. Focusing on
rather thin drops, θ < 23◦, they reported spontaneous emergence of unstable convective
rolls in the two-dimensional axisymmetric flow for increasing Prandtl number. As
pointed out by Sui, Ding & Spelt (2014) in their recent review of the state of the art
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in the numerical simulation of flows with a moving contact line, the direct numerical
simulation (DNS) of a fully coupled two-phase flow with a moving contact line and
phase change remains a challenge. In addition, it is important to develop a model
capable of resolving both pure CR and CA evaporation modes to examine how the
dynamics compare for the extreme cases, similar to the work by Picknett & Bexon
(1977) on the overall evaporation rate.

All of the aforementioned numerical and theoretical work has been concerned with
axisymmetric drops, with the exception of the linear-stability analysis performed by
Karapetsas et al. (2012) in an attempt to shed light on the thermocapillary instabilities
reported earlier by Sefiane et al. (2008). In the majority of the cases and in most
real-life applications, however, spherical evaporating drops are the exception rather
than the rule. In the present investigation we address the more complex case of three-
dimensional deformed droplets, and with moving contact lines. To the best of our
knowledge, this is the first study of its kind in the literature.

The rest of this paper is organized as follows. In § 2 we describe a novel fully
coupled two-phase model based on the diffuse-interface (DI) method. The results
of an accompanying experimental investigation of evaporating drops in a controlled
environment are presented in § 3. These are employed in § 4 to provide the validation
of our model. The flow dynamics for two non-spherical pinned drops are examined
in § 5. In addition, the versatility of our model also allows the resolution of the more
complex case of drops evaporating with a moving contact line according to the pure
CA mode, which is addressed in § 6. Finally, the conclusions resulting from this
investigation are summarized in § 7.

2. Mathematical modelling
2.1. Problem statement

A sketch of the problem is provided in figure 1(a). A sessile drop of initial height
Ĥ0 and contact radius R̂0 resting on a heated substrate evaporates into a non-saturated
surrounding gas at atmospheric pressure; the caret denotes dimensional variables.
The liquid is a pure substance (distilled water in the experiments) while the gas is
modelled as a two-component mixture of variable composition: a non-condensable gas
(nitrogen in the experiments) and the liquid’s vapour. All three pure substances are
regarded as Newtonian fluids. The density, dynamic viscosity, thermal conductivity,
and specific heat capacity for the liquid are denoted by ρ̂l, µ̂l, k̂l, and ĉpl, respectively.
The equivalent physical properties for the non-condensable gas (designated by
subscript ‘1’) and vapour (designated by subscript ‘2’) are represented by ρ̂g1, µ̂g1,
k̂g1, ĉpg1, and ρ̂g2, µ̂g2, k̂g2, ĉpg2, respectively. The relative amount of the gaseous
components is represented by the vapour mass fraction, ω, defined as the mass of
vapour per unit mass of gas mixture. The coefficient of binary molecular diffusion
is D̂, and the specific latent heat is 1ĥv. The liquid–gas interface is endowed with
a surface tension, σ̂ , which decreases monotonically with temperature, T̂ , according
to σ̂ = σ̂0 − γ̂ (T̂ − T̂a); here, σ̂0 is the surface tension at the reference temperature
T̂a, and γ̂ =−∂σ̂ /∂T̂ denotes its temperature-dependence coefficient. The substrate is
considered to remain isothermal at temperature T̂w while the gas far from the drop is
at temperature T̂a.
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FIGURE 1. Schematic of (a) the mathematical model and (b) the experimental set-up.

The following scaling is introduced to render the flow variables dimensionless:

x̂= Ĥ0 x, û= Û0 u, p̂= ρ̂lÛ2
0 p,

T̂ = T1T̂ + T̂a, t̂= Ĥ0

Û0
t, σ̂ = σ̂0σ .

 (2.1)

Here, x = (x, y, z) and u= (u, v, w) are the coordinate and velocity vectors, Û0 =
γ̂ 1T̂/µ̂l represents the characteristic thermocapillary velocity with 1T̂ = T̂w− T̂a, p is
the pressure, and t denotes the time. The physical properties of the non-condensable
gas and vapour are taken into consideration via the following ratios:

Γρ = ρ̂l

ρ̂g1
, Γµ = µ̂l

µ̂g1
, Γk = k̂l

k̂g1

, Γcp = ĉpl

ĉpg1
,

Ωρ = ρ̂l

ρ̂g2
, Ωµ = µ̂l

µ̂g2
, Ωk = k̂l

k̂g2

, Ωcp = ĉpl

ĉpg2
.

 (2.2)

The gas-mixture properties, denoted by ρ̂g, µ̂g, k̂g and ĉpg, depend on the relative
amount of each component as follows:

ρg= [Γρ(1−ω)+Ωρω]−1,

µg= (1−ω)/Γµ +ω/Ωµ,

kg= (1−ω)/Γk +ω/Ωk,
cpg= (1−ω)/Γcp +ω/Ωcp.

 (2.3)

The initial drop geometry (H0, R0) and the dimensions of the computational domain
(Lx, Ly, Lz) are

H0 = 1, R0 = R̂0

Ĥ0
, Lx = l̂x

Ĥ0
, Ly = l̂y

Ĥ0
, Lz = l̂z

Ĥ0
, (2.4a−e)

where l̂x, l̂y and l̂z are the width, depth and height of the computational region.
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2.2. Governing equations
The fully coupled two-phase dynamics of the drop and surrounding gas is modelled
via DNS with a DI method (see Anderson, McFadden & Wheeler 1998 for a review
of this methodology). According to this method, the mathematically sharp interface
is replaced with an interface of finite thickness, which can be prescribed (Jacqmin
1999). We use a DI method based on that developed by Ding, Spelt & Shu (2007)
for pure hydrodynamic problems (following Jacqmin 1999, and Badalassi, Ceniceros &
Banerjee 2003), but with a number of extensions to address non-isothermal conditions
and phase change.

DI methods are grounded in two fundamental principles. The first was given by van
der Waals (1979). If the interface between two fluids is regarded as a narrow layer
of finite thickness, the volumetric free energy density f̂ across it is dependent on the
local composition (represented here by the order parameter c) and their gradients,

f̂ = ε̂−1σ̂0αΨ (c)+ 1
2 ε̂σ̂0α|∇̂c|2, (2.5)

where ε̂ is a measure of the interface thickness, Ψ (c) is the bulk energy density
with minimum levels corresponding to the fluids’ two stable phases, and α is a
dimensionless adjustment parameter. In addition, van der Waals (1979) hypothesized
that equilibrium interface profiles are those that minimize the total free energy
F̂ = ∫

Ω
f̂ dV̂ , where Ω represents the interfacial domain. From the calculus of

variations (Jacqmin 1999), these profiles must satisfy

φ̂ = ε̂−1σ̂0αΨ
′(c)+ ε̂σ̂0α∇̂2c= constant, (2.6)

where φ̂ = ∂F̂/∂c is the chemical potential. The second key element of DI methods
was given by Cahn & Hilliard (1958, 1959) and Cahn (1961), who extended the van
der Waals hypothesis to time-dependent situations, postulating that irregular interface
profiles recover equilibrium by virtue of diffusion fluxes which are proportional to
chemical potential gradients. On these premises, and selecting the liquid volume
fraction as an order parameter (c = 1 in the liquid, c = 0 in the gas and 0 < c < 1
in the interface region), it can be shown that the spatiotemporal evolution of c is
governed by the phase-field, advection–diffusion Cahn–Hilliard equation (Ding et al.
2007)

∂c
∂t
+∇ · (cu)− 1

Pe
∇ · (M∇φ)= 0, (2.7)

where Pe= Û0Ĥ0/(M̂0φ̂0) is the Péclet number, M= c(1− c) is a diffusive coefficient
referred to as ‘mobility’, φ = ε−1[Ψ ′(c) − ε2∇2c] is the chemical potential, and
Ψ (c) = 1

4 c2(1 − c)2. With appropriate boundary conditions, (2.7) conforms to a
mass-conservative interface-capturing method, in which the interface profile is kept
regular by means of the diffusive term. Some recent examples in which this equation
has been used include droplet spreading (Ding & Spelt 2007a), droplet motion under
shear flow (Ding & Spelt 2008; Ding, Gilani & Spelt 2010), and two-layer flows
(Valluri et al. 2010).

For an evaporating drop, the total mass of liquid and vapour is globally conserved,
but the mass of liquid is not; this decreases in time due to the liquid-to-gas
phase change. Thus, accounting for interface mass transfer requires adding an
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interface sink/source term in (2.7), which leads to the phase change version of
the Cahn–Hilliard equation,

∂c
∂t
+∇ · (cu)− 1

Pe
∇ · (M∇φ)=−S, (2.8)

where S is the volumetric interface mass-transfer rate (only computed in the interface
region). The negative sign on the right-hand side of (2.8) results from our sign
convention, namely S > 0 (S < 0) for evaporation (condensation). Following the
traditional assumption that the gas at the interface is (quasi-) saturated with vapour
(Deegan et al. 1997; Picknett & Bexon 1977; Hu & Larson 2002; Cazabat & Guena
2010), which is valid for slow evaporation cases like the one considered here, S is
calculated as follows:

S= (1− c)ρg

ts

 ps

ps + 1
M

(
1
P
− ps

) −ω
 , (2.9)

where ps denotes the saturation vapour pressure, M = M̂g2/M̂g1 is the vapour-gas
molar weight ratio, P = ρ̂lÛ2

0/p̂r, is a dimensionless group including the absolute
pressure p̂r, and ts is a measure of interface mass-transfer rate small enough to
maintain saturation condition at the interface. The first term within the brackets
represents the saturation vapour mass fraction calculated using Raoult’s law and
Dalton’s law of partial pressure, i.e. it is assumed that the gaseous components form
an ideal mixture. The detailed justification of this expression is given in Sáenz et al.
(2014). The saturation pressure dependence on T is approximated with a standard
Antoine expression, log10(p̂s)= Â− B̂/(Ĉ + T̂), where Â, B̂ and Ĉ are the empirical
coefficients.

The overall mass balance is completed with the continuity equation, while the
conservation of momentum is governed by the Navier–Stokes equations

∇ · u=−S(1−Ωρ), (2.10)
∂(ρu)
∂t
+∇ · (ρuu)=−∇p+ 1

Re
∇ · [µ(∇u+∇uT)] + 1

We
φ∇c− 1

Re
(∇sT)δ, (2.11)

where ρ= c+ρg(1− c) and µ= c+µg(1− c) are the one-fluid form of the density and
viscosity respectively, Re= ρ̂lÛ0Ĥ0/µ̂l is the Reynolds number, We= ρ̂lÛ2

0Ĥ0/(6
√

2σ̂0)

denotes the Weber number, φ∇c is the DI interpretation of the mean surface
tension stress enforcing (Jacqmin 1999; Ding et al. 2007), and (∇sT)δ models the
thermocapillarity effect, with ∇s = ∇ − n(n · ∇) being the gradient tangent to the
interface, n=∇c/|∇c| the inwards unit vector normal to the interface, and δ = |∇c|.
It should be noted that several authors (Jacqmin 2000; Ding & Spelt 2007a; Yue,
Zhou & Feng 2010) have already shown that the results from this DI approach
converge to the sharp-interface limit in the limit of zero interfacial thickness.

The conservation of energy in both phases is computed via

∂(ρcpT)
∂t

+∇ · (ρcpTu)= 1
Re Pr

∇ · (k∇T)− 1
Ja

S. (2.12)
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Here, k = c + kg(1 − c) and cp = (c + ρgcpg(1 − c))/(c + ρg(1 − c)) are the
one-fluid form thermal conductivity and specific heat capacity, and Pr = µ̂lĉpl/k̂l

and Ja = ĉpl1T̂/1ĥv are the Prandtl and Jakob numbers, respectively. Finally, the
vapour mass fraction, ω, is governed by a general advection–diffusion transport
equation only solved in the gas phase:

∂[ρg(1− c)ω]
∂t

+∇ · [ρg(1− c)ωu] = 1
Re Sc

∇ · [ρg(1− c)∇ω] + S, (2.13)

where Sc= µ̂l/(ρ̂lD̂) is the Schmidt number.

2.3. Boundary and initial conditions
The boundary conditions are selected to mimic the experiments presented in § 3. The
lower boundary (z = 0) is modelled as an isothermal (T = 1), no-slip (u = 0) solid
substrate with non-penetration of mass (nz · ∇ω = 0). Here, nx, ny, and nz denote
the unit vectors in the principal directions. The Cahn–Hilliard equation requires the
Neumann boundary condition nz · ∇φ = 0 to guarantee the volume conservation of
each fluid (Ding & Spelt 2007b). Another condition on c is necessary, this being
a Dirichlet or Neumann condition in pinned or MCL configurations, respectively. A
number of models have been proposed to solve the dynamics of moving contact
lines, e.g. Qian, Wang & Sheng (2006), Ding & Spelt (2007b), Carlson, Do-Quang
& Amberg (2009) and Yue et al. (2010). The approach suggested by Ding & Spelt
(2007b) is adopted here. The contact angle is therefore prescribed by virtue of the
boundary condition

nw · ∇c=− cos θs|tw · ∇c|/ sin θs, (2.14)

where θs is the microscale contact angle, and nw and tw are the unit vectors normal
and tangential to the solid wall, respectively (Ding & Spelt 2007b). It is important to
emphasize that prescribing a slip velocity is unnecessary, given that the slow contact-
line motion is solved by virtue of finite diffusion (Sui et al. 2014). The temperature
of the upper boundary (z= Lz) is set to the ambient temperature as recorded by the
secondary thermocouple (T=0), while Neumann boundary conditions (nx ·∇T=0 and
ny · ∇T = 0) are used at the vertical walls of the computational domain (x = ±Lx/2
and y=±Ly/2).

In the experimental set-up, the size of chamber was intentionally designed to
be very large in comparison to that of the drop, so this would evaporate into a
much larger volume of pure N2 (dry gas). An approximately infinite amount of N2
surrounding the drop makes it reasonable to assume that the phase change does
not result in a noteworthy increment in the bulk humidity. Thus, the zero Dirichlet
boundary condition is imposed in the vertical and top boundaries (ω= 0 at x=±Lx/2,
y=±Ly/2, and z= Lz). Provided that the computational domain is large enough, the
vapour distribution around the drop becomes independent of the far-field boundary
conditions. For the same reason, it is considered that the flow far away from the
drop is at rest (u = 0 at x = ±Lx/2, y = ±Ly/2, and z = Lz). Finally, the fact that
the species equation is only solved in the gas phase requires the implicit imposition
of the no-penetration condition (n · ∇ω = 0, and n · u = 0) along the species-field
boundary in the liquid–gas interface (contour c= 0.9).

Initial conditions are also prescribed. At t= 0, the drop is a spherical cap of height
H0= 1 and base radius R0; the two-phase flow is at rest (u= 0), and the gas-mixture
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is completely dry (ω = 0). The initial pressures in the gas, and within the drop are
set to zero, and the Laplace pressure, respectively. In dimensionless form, the latter
becomes 1p= 1/(3

√
2WeRs) with Rs = (H2

0 + R2
0)/(2H0). From the experiments, it is

known that the chamber was allowed to reach thermal equilibrium before the drop
was deposited onto the substrate, and that the liquid dosed through the pipette was
pumped from a reservoir located outside the chamber and was therefore at ambient
temperature. These two considerations led us to select the initial drop temperature as
T = 0, and the initial temperature of the gas as a linear distribution from the substrate
to the ambient temperature, i.e. T = (Lz − z)/Lz. Both conditions are simultaneously
met with T = (1− c)(Lz − z)/Lz.

2.4. Numerical method
The governing equations (2.8), (2.10)–(2.13), coupled with the volumetric interface
mass-transfer rate calculated with (2.9), constitute a system of seven partial differential
equations (PDEs) with seven unknowns (c, p, u, v, w, T and ω). This system of
equations is simultaneously solved (DNS) with a finite-volume (FV) discretization of
the physical domain by means of a staggered marker-and-cell (MAC) grid: scalar
variables (c, p, T , ω) are stored in the cell centres while the velocity components
(u, v, w) are defined at the control-volume faces. Spatial derivatives are approximated
by a centred scheme. Mesh refinement tests are carried out to ensure that the results
are grid-independent.

The Cahn–Hilliard equation is solved numerically using the implicit–explicit strategy
proposed by Badalassi et al. (2003) with a second-order semi-backward difference
formula (SBDF) scheme (see Ascher, Ruuth & Wetton 1995). The convective term is
explicitly computed approximating the fluxes at cell faces with an upwind (referred
to the flow direction) fifth-order weighted essentially non-oscillatory (WENO) scheme
(Liu, Osher & Chan 1994) to increase the code’s stability to the shock-like nature of
the c profile across the interface (Ding et al. 2007). The resolution of the velocity and
pressure fields is achieved by a standard projection method, wherein the intermediate
velocity (without considering p) is found with the second-order Crank–Nicolson
Adams–Bashforth (CNAB) scheme to approximate the diffusive (implicitly) and
advective (explicitly) terms, respectively. The pressure is then added to update the
velocity to its final value ensuring that the continuity condition is satisfied. The energy
and species fields are advanced in time with similar semi-implicit CNAB techniques.

The solution strategy requires us to know the value of all the variables at the current
time-step (n) as well as c at the previous time-step (n − 1). The computation then
proceeds by updating the volume fraction via (2.8) with u and S evaluated at (n).
Equations (2.13) and (2.12) are then solved sequentially. This order results naturally
from the fact that the former involves cn+1 (to evaluate ρg) while the latter additionally
requires ωn+1 (to evaluate ρ, k and cp). Finally, with cn+1, ωn+1 and Tn+1, the velocity
is updated solving (2.10) and (2.11) with the surface tension and physical properties
evaluated at (n + 1/2), as recommended by Ding et al. (2007). Following the study
conducted by Ding et al. (2007), the Péclet number is set to Pe= 1/ε2, choosing ε to
be proportional to the grid resolution, i.e. ε= 0.5 min(1x, 1y, 1z). This configuration
leads to an interface thickness, i.e. a distance between contours of c = 0.1 and 0.9,
of around three times the minimum grid spacing. The relevant time scales in the
system are the viscous, conductive, convective, molecular diffusivity and evaporative
time scales. The marching time is selected to be smaller than all of them, i.e. 1t<
min(1x̂2/ν̂l, 1x̂2/α̂l, 1x̂/û0, 1x̂2/D̂, ρ̂g/Ŝmax)/t̂0. This temporal scale is also used
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for ts. The numerical method is coded in Fortran 90 for implementation on a shared-
memory architecture, using Open Multi-Processing (OpenMP). The code is run on
the supercomputer ARCHER (Cray XC30 Supercomputer) using a 2.7 GHz, 12-core
E5-2697 v2 (Ivy Bridge) series processor for a typical simulation.

3. Experiments
3.1. Experimental apparatus

An experimental apparatus was designed to measure the profile of evaporating drops
using optical techniques. A schematic of the set-up is presented in figure 1(b).
Very small drops (V̂0 ∼ 10 µl) of distilled water were gently deposited on a heated
substrate, allowed to evaporate, and simultaneously recorded from the side by a CCD
camera and from the top by an infrared (IR) camera. The substrate was a copper
cylinder of dimensions 3.8 cm diameter and 3.8 cm length. This was maintained at
constant temperature, T̂w, by means of a cartridge heater inserted within the cylinder
from below (Omega CSS-10120/120V, 20W, 2.54 cm length and 0.64 cm diameter),
a PID controller ±0.2 ◦C (Omega CN77544-A2) and a K-type thermocouple located
in a small hole 6 mm below the substrate’s upper surface. Copper and the cylinder
dimensions were chosen to provide a substrate with very high thermal conductivity as
well as very large thermal mass so that the surface remains isothermal throughout the
evaporation process. To ensure a smooth finish, the copper substrate was progressively
ground, and polished (with 0.05 µm colloidal alumina suspension in the final stage).
The emissivities for water and polished copper are ε = 0.96 and 0.03, respectively,
which results in high-contrast IR images wherein the interface temperature and contact
line are sharply defined.

The size of the drops was controlled via the pipette tip size, tube diameter, and
peristaltic pump speed. In order to avoid imprecision in assessing the composition
(physical properties), and relative humidity (driving force) of the air surrounding the
drop, the substrate and dosing mechanism were placed within a closed, acrylic cubic
chamber (dimensions 20 × 20 × 20 cm and 0.54 cm wall thickness) maintained at
atmospheric pressure. A system of valves was attached to this chamber to allow the
replacement of the ambient air by pure nitrogen (N2). The use of a closed chamber
also guaranteed that the evaporation process was not distorted by externally induced
convection currents and that the IR readings were not contaminated by radiation from
the surroundings, since acrylic is opaque in the spectrum range of our IR camera.
Inner reflections were also minimized by painting the interior of the chamber with
black paint, except for two small gaps on opposite sides to allow the CCD recording
and back-lighting of the drop, respectively.

The drop profiles were captured with a CCD camera (900 pixel × 600 pixel,
9 µm pixel−1), capable of recording up to 30 frames per second (f.p.s.), connected
to a video-digitizer board (frame grabber). LED back-lighting was employed to
improve the video’s contrast without raising the temperature. The recorded side
images were later post-processed using the Droplet Shape Analyser from Krüss (DSA
v1.9, Krüss GmbH, Hamburg, Germany) in order to obtain the instantaneous height
Ĥ, contact angle θ , base radius R̂ and volume V̂ throughout the evaporation process.
Simultaneously, a midwave IR camera mounted directly above the substrate and facing
vertically downwards onto the drop (FLIR Silver SC5600, spectrum range 3–5 µm,
640 pixel × 512 pixel, 100 f.p.s.) was used to record the interface temperature field
and contact-line dynamics.
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A cylindrical black body, as described in Kim et al. (2012), was used to calibrate
the IR readings. Before every experimental run, N2 was blown through the chamber
for a sufficiently long period of time to make sure that this was the only gas present
within the test cell. The inlet and outlet valves were then closed and the system was
allowed to reach equilibrium. Steady state was recognized by means of a secondary
thermocouple located in the gas, 3.5 cm above the heated substrate, which also
provided the real ‘bulk’ or ‘ambient’ temperature, T̂a. Only after the system reached
equilibrium, detected when T̂a became steady, was a single drop released onto the
heated surface and the recording process started. This procedure was repeated for
every drop in this investigation to ensure consistency.

3.2. Results
The evaporation of water drops on a heated copper substrate is presented for
T̂w = 40, 55, and 70 ◦C. The average initial volume and contact angle were
V̂0 = 10.4 µl ± 4.7 % and θ0 = 84◦ ± 1.6 %, respectively. This led to drops whose
initial height and base radius were Ĥ0= 1.55 mm± 1.5 % and R̂0= 1.86 mm± 2.4 %,
respectively. Drops outside this range of parameters were dismissed. For each value
of T̂w, the experiment was repeated at least five times to ensure reproducibility. Under
terrestrial gravity, the capillary length λ̂c =

√
σ̂0/ĝρ̂l for water is 2.73 mm. Since Ĥ0

is well below λ̂c, it may be concluded that capillary stresses are dominant over gravity
forces and therefore the drops take the shape of spherical caps. The same conclusion
is drawn by examining the static Bond number Bo = ρ̂lĝĤ2

0/σ̂0 = 0.3, which, given
its small value, denotes the dominance of surface tension. The analysis of the drop
profiles recorded by the CCD camera allowed us to estimate quantitatively the effect
of gravity in a maximum θ deviation of 4◦ (t̂= 0) between the typical experimental
drop (θ0 = 84◦) and a perfect spherical cap with the same V̂ and R̂ (θ0 = 80◦).
Note that this deviation is further minimized in time given that Ĥ decreases due to
evaporation.

Independently of T̂w, the typical evaporation process comprises two well-defined
stages, as shown in figure 2. Initially, and for most of their lifetime, all drops
evaporate according to the CR mode. Both CCD and IR recordings show that the
contact line remains circular in its original position while Ĥ and θ progressively
decrease (see figure 2a–c). This first stage is followed by a second phase wherein
the drop evaporates according to the SS mode. Once the contact angle reaches a
certain critical value θ = θc, the drop experiences a sudden readjustment process to
regain equilibrium in which its contact surface undergoes a significant reduction (see
figure 2c,d). Normally, a segment of the triple line depins (bottom-right section in
figure 2d) while the rest remains anchored to its original location (top-left section in
figure 2d). The location of the pinned section appears to be random and is related to
microscopic surface heterogeneities in the surface roughness. This stick–slip process
usually repeats itself several times before the drop dries out. Once the depinning of
the contact line takes place for the first time, interface sphericity is lost for all the
cases studied. These observations are in line with the previous studies available in the
literature, e.g. Crafton & Black (2004), Orejon et al. (2011), Shanahan et al. (2011)
or Nguyen et al. (2012).

The IR recordings reveal that the interface temperature follows a concentric
distribution, from a value close to T̂w near the contact line to a colder T̂ at the
apex (see figure 2 bottom). The dot observed at the centre of the interface is the
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FIGURE 2. (Colour online) Evaporation of a water drop into N2 simultaneously recorded
with a CCD camera from the side (top row) and with an IR camera from the top (bottom
row) with T̂w = 40 ◦C and 1T̂ = 14.6 ◦C. The typical evaporation time is t̂tot = 835 s
(t/ttot = 0 (a), 0.40 (b), 0.80 (c), 0.85 (d)).

reflection of the IR camera. No thermal motion in either the azimuthal or the radial
direction is observed. This is in agreement with the work by Sefiane et al. (2008),
who discovered significant temperature instabilities in drops of ethanol, methanol,
and FC-72, but not water. The difference between the interface and substrate
temperature is maximum at the start of the experiment. As the drop evaporates
and Ĥ decreases, the radial temperature gradient becomes less pronounced until the
interface temperature eventually increases to almost reach T̂w (figure 2c). Hence, the
Marangoni flow within the drop weakens as the drop becomes thinner, given that
the radial temperature gradient is the driving force. The readings of the secondary
thermocouple, located above the drop, indicate that ambient temperature T̂a is not
constant as is often assumed. The temperature T̂a rises with T̂w, which means that
the effective temperature difference in the vertical direction, 1T̂ = T̂w − T̂a, is, in
general, smaller than when this is evaluated with a fixed room temperature. In our
experiments, T̂a = 25.4 ◦C (1T̂ = 14.6 ◦C), 26.3 ◦C (28.7 ◦C), and 30.2 ◦C (39.8 ◦C) for
T̂w = 40, 55, and 70 ◦C, respectively. These readings are used in the accompanying
simulations to model the surrounding gas more realistically.

The evolution in time of θ , Ĥ, R̂, and V̂ over the range of T̂w is depicted in figure 3.
The evaporation time required for complete dry-out decreases with increasing T̂w:
t̂tot = 835, 354, and 180 s for T̂w = 40, 55, and 70 ◦C, respectively, with a standard
deviation <7 % in all cases. The initial (equilibrium) contact angle θ0 = 84 ± 1.6◦

seems weakly affected by T̂w; slightly larger degrees of hydrophobicity are found with
colder substrates, which is due to a decrease of surface tension with temperature. A
similar but significantly more pronounced variation in θ0 due to T̂w was observed by
Mollaret et al. (2004) with water on aluminium. Figure 3(a) shows that θ decreases at
a progressively increasing rate until the three-dimensional motion of the drop begins to
recover equilibrium at a new position. Simultaneously, Ĥ registers an equivalent type
of non-linear evolution: see figure 3(b). At higher T̂w, the transition from the initial
CR to the final SS mode is very well defined. This occurs at θc= 22± 3◦ (t̂= 248 s)
and 26± 3◦ (125 s) for T̂w= 55 and 70 ◦C, respectively, which compares well with the
20–40◦ range reported by Crafton & Black (2004) for 60 ◦C 6 T̂w 6 95 ◦C. However,
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FIGURE 3. (Colour online) Instantaneous evolution of (a) contact angle θ , (b) maximum
height Ĥ, (c) contact radius R̂ and (d) volume V̂ for a water drop evaporating into N2

placed on a heated substrate at various temperatures T̂w.

when the substrate is colder, T̂w = 40 ◦C, the drop goes through a transition stage
wherein the evaporation mechanism is actually a combined mode. This occurs just
before the first contact-line jump at θc = 10± 2◦ (t̂= 701 s). Figure 3(a,c) illustrates
how both θ and R̂ decrease simultaneously between t̂ ∼ 580–701 s, which suggests
that this intermediate stage fits neither the CR nor the CA pure modes of evaporation.
Thus, the transition from the CR to the SS mode is not instantaneous as for T̂w = 55
or 70 ◦C. This behaviour was observed in all five runs.

While the drop is pinned, the instantaneous V̂ is essentially linear for any T̂w: see
figure 3(d). Hence, the resulting evaporation rate, m̂(t̂)=−dV̂/dt̂, is almost constant
in the CR mode, which is in agreement with previous works, e.g. Picknett & Bexon
(1977), Bourgès-Monnier & Shanahan (1995), Mollaret et al. (2004), Cazabat &
Guena (2010) and Shanahan et al. (2011). During this phase, the experiments show
that the average evaporation rate is m̂(t̂)= 0.0135± 7.5× 10−4, 0.0340± 1.4× 10−3,
and 0.0698 ± 1.8 × 10−3 µl s−1 for T̂w = 40, 55, and 70 ◦C, respectively. Deviations
from the linear behaviour of m̂(t̂) are noted with T̂w = 40 ◦C when the drop is
subjected to the combined evaporation mode, t̂ ∼ 580–701 s. In all cases, after the
contact-line readjustment, m̂(t̂) is lower than that prior to the drop depinning because
the contact line length and the liquid–gas interfacial area have decreased.

4. Axisymmetric drops: model validation
We start the modelling work by considering axisymmetric pinned drops, i.e. CR

mode. This is consistent with the evaporation process observed during most of
the drop’s lifetime (70 %). In all cases investigated experimentally (figure 3), the
maximum deviation (R̂0 − R̂)/R̂0 after this time is 63 %, and is therefore assumed
to be negligible in order to keep the mathematical problem as simple as possible.
The initial height and base radius of the drop for the simulations are those from the
experiments, i.e. Ĥ0=1.55 mm (H0=1) and R̂0=1.86 mm (R0=1.2), respectively. In
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Water (liquid) Water (vapour) N2

ρ̂ (kg m−3) 997 0.736 1.14
µ̂ (Pa s) 8.90× 10−4 9.97× 10−6 1.73× 10−5

k̂ (W m−1 K−1) 0.607 1.86× 10−2 2.57× 10−2

ĉp (J kg−1 K−1) 4180 1864 1040

M̂ (g mol−1) 18.02 28.01
σ̂ (N m−1) 7.27× 10−2

γ̂ (N m−1 K−1) 1.71× 10−4

1ĥv (J kg−1) 2.40× 106

D̂ (m2 s−1) 2.84× 10−5 a

TABLE 1. Physical properties of distilled water (liquid and vapour) and nitrogen gas at
T̂ = 25 ◦C. The empirical coefficients for the Antoine equation log10(p̂s)= Â− B̂/(Ĉ+ T̂),

with p̂s in (Pa) and T̂ in (◦C), are Â= 8.0557, B̂= 1723.6, and Ĉ= 233.08.
aUpdated for T̂ = 40 ◦C.

what follows, the discussion is restricted to drops at moderate heating, i.e. T̂w= 40 ◦C
and 1T̂ = 14.6 ◦C, for the most part.

The physical properties of distilled water and nitrogen are listed in table 1. In the
range considered, the variations of these properties due to T̂ are negligible for the
liquid (<3 %) and gases (<5 %) with the exception of the coefficient of binary mass
diffusion D̂ (13 % higher at 40 ◦C) and liquid viscosity µ̂l (27 % lower). For the
former, we employ the corrected value given that the evaporation rate m̂(t̂) is very
sensitive to it. For the latter, our tests show that reducing µ̂l increases exponentially
the computational difficulty of the problem without revealing any significant changes
in the two-phase dynamics of the flow for the purpose of this investigation. Note that
µ̂2

l appears in the denominator of Re. This also provides a rationale for focusing on
moderate heating. The governing dimensionless groups become Re= 4830, We= 19.4,
Pr = 6.1, Ja = 0.025, Sc = 0.032, Γρ = 870, Γµ = 50, Γk = 24, Γcp = 4, Ωρ = 1350,
Ωµ = 90, Ωk = 33, Ωcp = 2.2, M = 6.433 × 10−1, and P = 7.632 × 10−2. These
dimensionless numbers are maintained for the simulation of non-spherical drops
presented in § 5 as well as for the drops evaporating with a moving contact line
examined in § 6.

When selecting the domain size, it must be noted that m(t) decreases asymptotically
for increasing size. We conducted tests with Lr = Lz = 10R0, 20R0, 50R0, and 100R0,
where Lr and Lz are the two-dimensional domain components in the radial and
axial directions, respectively. Taking the previous smaller domain as reference, m(t)
decreases 3.7 %, 1.5 %, and ∼0 % for 20R0, 50R0, and 100R0, respectively. The m(t)
variation from 20R0 to 50R0 (1.5 %) is acceptable, so we selected Lr = Lz = 20R0 for
our simulations in order to minimize the computational cost. Thus the domain size is
much larger than the drop and the evaporation process becomes independent of the
vertical and upper boundary conditions. Note that Hu & Larson (2002) arrived at the
same conclusion in terms of the domain size for the non-heated case. The domain
is discretized by means of a structured mesh of 250× 250 elements with finer and
uniform resolution around the drop, i.e. 125× 125 for r, z< 1.5R0, and geometrically
decreasing resolution for increasing r and z, with common ratio 1.0321. This grid is
chosen based on the results from mesh dependence tests. The selected time-step size
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FIGURE 4. (Colour online) Comparison between experiments and numerical simulations
for a water drop evaporating into N2 placed on a heated substrate at T̂w = 40 ◦C with
1T̂=14.6 ◦C. (a) Contact angle θ , (b) drop height H, (c) contact radius R, and (d) volume
V . The vertical dashed lines separate the evaporation modes observed experimentally: see
§ 3.2.

is 1t = 5 × 10−3. The discussion continues in the dimensionless framework in the
following sections.

4.1. Comparisons with experiments
The validation of the numerical solutions is more challenging than in the non-heated
configuration. This is not only because of the notable numerical difficulty associated
with solving seven fully coupled non-linear PDEs, but also due to the large thermal
gradients arising at the interface. Given that ps grows exponentially with T , deviations
as small as ±2 ◦C at high temperatures lead to substantial changes in m(t).

Initially, the flow undergoes a transient process wherein the drop heats up and
the vapour disperses in the gas. Simultaneously, the Marangoni effect drives fluid
from the contact-line region (hot) towards the apex (cold) and therefore induces
convection currents in both phases. This transient phase is examined in more
detail in § 4.2. After this stage, the flow reaches a quasi-steady state wherein the
two-phase flow characteristics evolve more gradually with t in accordance with the
evaporation time scale. The instantaneous evolution of θ , H, R and V obtained
with the simulations is compared with the experimental data in figure 4. Excellent
agreement between experiments and simulations is observed in the initial CR stage.
The average numerical evaporation rate is m(t) = 1.963 × 10−6, 2.7 % lower than
that experimentally observed, i.e. 2.017 × 10−6. The deviation increases slightly for
t > 10.5 × 105, when the experimental drop evaporates according to the combined
CA + CR and SS modes. This is to be expected, as in the simulations the drop
remains perfectly pinned and therefore the evaporation modes are not comparable at
this stage. A more detailed discussion examining the instantaneous m(t) is presented
in § 6.

The second key point in the validation is the comparison between the experimental
and numerical interface temperature, shown in figure 5(a). Overall, there is again
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FIGURE 5. (Colour online) Water drop evaporating into N2 with T̂w = 40 ◦C. (a)
Comparison between the experimental and numerical interface temperature with H = 0.6,
(b) liquid–gas temperature, and (c) vapour mass fraction in the initial stages of the
evaporation process.

good qualitative and quantitative agreement. The only discrepancies are found at
the contact line, but these result from the fact that the IR emissions are distorted
due to the transition from water (high emissivity) to polished copper (very low).
As the contact line is approached, the accuracy of the T readings diminishes due
to the transition to a different emissivity; otherwise T ' 1 should be observed at
the contact line with the IR camera. Figure 5(b) shows the distribution of T in the
bulk of the liquid and gas. The flow and liquid temperature is qualitatively similar
to that previously presented by other authors (Mollaret et al. 2004; Hu & Larson
2005a; Girard et al. 2006; Yang et al. 2014). The gas temperature, not available in
the literature, reveals a colder area above the drop due to the evaporative cooling.
This thermal dip is progressively corrected as we move away from the drop until,
at a certain distance (r > 6), T becomes r-independent and decreases uniformly for
increasing z. The vapour distribution is presented in figure 5(c).

4.2. Initial drop heating
To conclude this section on axisymmetric drops, we provide insights into such
fundamental questions as how a water drop heats up when placed on a hot substrate.
This initial stage has received very little attention in the literature. Note that Hu &
Larson (2002, 2005a,b, 2006), Girard et al. (2006, 2008a,b) and Girard & Antoni
(2008) described the transient drop evolution as a sum of steady-state solutions and
therefore could not capture the dynamics of the initial stage.

The evolution in time of the two-phase flow velocity is presented in figure 6.
During the initial transient phase, the liquid and gas velocities are comparable and
significantly larger than those of the quasi-steady equilibrium; this is due to the
severe thermal gradients resulting from considering an initially cold drop. As the
flow converges to the equilibrium state, the gas velocity decreases more rapidly
than that of the liquid and ultimately becomes significantly lower (figure 6e). The
coupled evolution of the thermal field is depicted in figure 7 for T̂w = 40 and 70 ◦C
to illustrate how the increasing role of the Marangoni effect influences the dynamics
of the process. The strength of thermocapillarity is measured by the Marangoni
number, Ma = γ̂ R̂01T̂∗/(µ̂lα̂l), where α̂l is the liquid thermal diffusivity and 1T̂∗
is the temperature difference between the contact line and the apex. Calculation
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FIGURE 6. Initial evolution of the two-phase velocity for a water drop placed on a heated
substrate at T̂w= 40 ◦C with 1T̂= 14.6 ◦C. (a) Initial conditions, t= 0, (b) t= 750 (0.42 s),
(c) t= 1.5× 103 (0.83 s), (d) t= 2.25× 103 (1.25 s), and (e) quasi-steady state, t= 3× 104

(16.7 s).
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FIGURE 7. (Colour online) Transient heating of a water drop at T̂a placed on a heated
substrate at T̂w. (a–e) T̂w = 40 ◦C with 1T̂ = 14.6 ◦C: (a) initial conditions, t= 0, (b) t=
750 (0.42 s), (c) t= 1.5× 103 (0.83 s), (d) t= 2.25× 103 (1.25 s), (e) quasi-steady state,
t= 3× 104 (16.7 s). (f –j) T̂w = 70 ◦C with 1T̂ = 39.8 ◦C: (f ) initial conditions, t= 0, (g)
t = 750 (0.15 s), (h) t = 1.5 × 103 (0.30 s), (i) t = 2.25 × 103 (0.46 s), (j) quasi-steady
state, t= 3× 104 (6.08 s).

of this group shows that Ma is 2.5 times larger for T̂w = 70 ◦C, i.e. the strength
of thermocapillarity increases for increasing T̂w. Figure 7(a, f ) shows the initial
conditions (cold drop) while figure 7(e,j) illustrates the quasi-steady T field found
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after the initial abrupt heating. Between these states, the drop warms up very quickly
due to the heat transported from the substrate, across the solid–liquid interface, and
surrounding gas, across the liquid–gas interface (see figure 7b,g). Some of the latter
is absorbed by evaporation, which is strongest at the beginning given that ωt=0 = 0,
while the rest begins to increase the interface temperature. The temperature, T , drops
rapidly in the surrounding gas (its thermal diffusivity is two orders of magnitude
larger than that of the liquid) and a thermal gradient arises along the interface
triggering the Marangoni convection. Fluid from the contact-line region (at higher T)
is driven along the interface to the apex, which is cooler due to evaporation, and
then recirculated vertically downward towards the centre of the drop. At high T̂w, the
amount of heat associated with this Marangoni convection is significant and leads to
the drop being heated through its core, as shown in figure 7(g–i). Figure 7(h,i) reveals
that, rather than its centre, the coldest part of the drop is a toroidal-like region whose
cross-section is approximately centred at (r, z)= (0.8, 0.3). At high T̂w, therefore, the
drop reaches thermal equilibrium by means of interior heating due to the prominent
role of advection. At lower T̂w, on the other hand (see figure 7b–d), the role played
by the Marangoni effect is less significant and consequently the drop increases its
temperature through its periphery via conduction. In this case the coldest region
coincides with the drop’s core. Independently of T̂w, the initial thermal adjustment
takes place in <3 % of the drop’s lifetime, after which the drop enters a quasi-steady
phase wherein the flow characteristics evolve very slowly.

5. Non-spherical drops
In this section we consider the dynamics of evaporating, non-axisymmetric drops.

As discussed above, the time scale associated with the transport of vapour away
from the interface is O(102) larger than those associated with the Marangoni-related
phenomena that determine the flow dynamics in the drop and surrounding gas.
Hence, the system quickly reaches a quasi-steady state wherein the characteristics
of the two-phase flow evolve very slowly in time. We exploit this to reduce the
computational cost of the three-dimensional simulations. Rather than resolving the
complete domain (20R0), which in three dimensions is prohibitively costly, we
consider smaller subdomains containing the drop and surrounding gas. To close the
problem, we make use of our two-dimensional computations to prescribe the flow
conditions in the vertical and upper boundaries. Using this strategy, we can efficiently
simulate the quasi-steady drop flow at any point with no need to compute the previous
stages that led to it in three dimensions.

Typically a drop in real-life situations is non-spherical from its inception until dry-
out. However, there is a second common scenario that leads to deformed drops. As
shown in the experiments (see figure 2d), initially spherical drops are also most likely
to become non-spherical after the first contact-line jump occurring towards the end
of their lifetime. These two situations are examined in §§ 5.1 and 5.2, respectively.
The discussion is supported by comparisons with the axisymmetric flow for H= 0.98
and 0.3 presented in § 4. The former, H= 0.98, represents the ideal case wherein the
drop generated is perfectly spherical, and serves to compare with the more realistic
situation wherein the drop is deformed from the beginning. For the sake of simplicity,
we examine the flow once this has passed the initial transient phase, which provides a
rationale for choosing the point with H= 0.98 instead of 1. This analysis is presented
in § 5.1. The latter, H= 0.3, illustrates the drop just before the first contact-line jump
and serves to compare with the flow found immediately after the first depinning event.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

22
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.224


724 P. J. Sáenz, K. Sefiane, J. Kim, O. K. Matar and P. Valluri

Section 5.2 is devoted to this study. It should be noted that these two spherical cases
used as reference have also been simulated in three dimensions to make sure that the
results are the same as with the axisymmetric version of the code. The domain size
is Lx= Ly= 2Lz= 3R0 for H= 0.98 and Lx= Ly= 4Lz= 3R0 for H= 0.3. The vertical
length of the domain is associated with height of the drop investigated in each case.
A uniformly distributed mesh of 250× 250× 125 elements is employed in both cases.
The time-step size is 1t= 5× 10−4. The scalings and governing groups are the same
as for the case with T̂w = 40 ◦C (1T̂ = 14.6 ◦C) presented in § 4.

5.1. Elliptical contact area
Perfectly perpendicular dosing is key to generating spherical drops. However, in most
real configurations the drop deposition is not exactly perpendicular to the substrate.
A broad range of factors can be the cause of this, e.g. vertical dosing onto inclined
substrates or drops released at a certain angle due to set-up configurations or even
convection currents in the gas. In such cases, and assuming that the drop deposition
is not violent, the resulting contact area is elliptical rather than circular. We therefore
define the initial drop shape in Cartesian coordinates as follows:

x2

a2
+ y2

b2
+ z2

c2
= 1, (5.1)

where a, b, and c are the semi-axis lengths along the x, y, and z directions,
respectively. The volume of a semi-ellipsoid Ve is given by

Ve = 2
3πabc, (5.2)

while the base circumference Ce can be estimated according to Ramanujan’s second
approximation, i.e.

Ce ≈π(a+ b)
(

1+ 3h
10+√4− 3h

)
, (5.3)

where h= (a− b)2/(a+ b)2. It is known that the overall evaporation rate of a sessile
drop is proportional to its volume (or contact angle) and to the length of its contact
line, e.g. Birdi et al. (1989), Rowan et al. (1995) and Hu & Larson (2002). Thus,
a, b and c are selected so that the resulting ellipsoidal geometry provides the same
volume and base perimeter as those for the spherical drop used as reference, i.e. Ve=
πH(3R2+H2)/6 and Ce=2πR, where H=0.98 and R=1.2. Equations (5.2) and (5.3)
form a set of two relations with three unknowns. The missing expression necessary
to complete an independent system is provided by the degree of deformation in the
horizontal direction, Λ = a/b, which is chosen to be Λ = 3/2. It follows that the
resulting ellipsoidal geometry is defined by a= 1.4260, b= 0.9505, and c= 0.9815.

Our simulations show that an ellipsoid is not a possible shape for a sessile
drop with an elliptical pinned contact line. The initial drop geometry (arbitrarily
selected) undergoes a rapid change as surface tension enforces interface surface-area
minimization for the given volume. Figure 8 illustrates the initial shape together with
the final quasi-steady drop profile. The pinned contact line impedes the formation of
a sphere but surface tension drives the interface shape to reach the closest possible
configuration. In an attempt to even out the different axis lengths, there is interface
pulling along the longest axis, x (figure 8a), while the interface expands in the other
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FIGURE 8. (Colour online) Initial semi-ellipsoidal interface (dashed line) and final drop
shape (solid line) along the principal (a) xz and (b) yz planes for the drop with deformed
contact area. This drop is defined by the semi-axis lengths of its elliptical contact area,
a = 1.4260 and b = 0.9505, and its volume, V = πH(3R2 + H2)/6 with H = 0.98 and
R= 1.2.
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FIGURE 9. (Colour online) (a) Elliptical contact area of the deformed drop (solid line)
along with that of the spherical drop (dashed line) employed for comparison. (b) Contact-
angle θ and horizontal-curvature 1/Rxy distribution along the elliptical contact line. This
is given in terms of the azimuthal angle ψ defined as shown in (a). Here, θmax= 94◦ and
θmin = 59◦.

two directions, y and z (figure 8b). The interface surface area of the resulting drop
is smaller than the area of the ellipsoid but larger than the area of the spherical cap
by 1.2 %, with the same volume and base perimeter. It should be noted that this
initial shape adjustment is not caused by evaporation. The time interval in which this
adjustment takes place is sufficiently short that the volume difference between the
initial and the spherical drop shape is negligible (1V ≈ 0.1 %).

Figure 9(a) depicts how the resulting elliptical contact line of the deformed drop
compares with the circular contact line of the reference drop, while figure 9(b) shows
the contact-angle distribution along the triple line, which is not constant as in the
spherical case. The position along the contact line is given in terms of the azimuthal
angle, ψ , defined as shown in figure 9(a). The contact angle varies between θmin= 59◦
for the longest horizontal axis (ψ = 0◦ and 180◦) and θmax= 94◦ for the other (ψ = 90◦
and 270◦). The average contact angle θ̄ = ∫CL θ dl/

∫
CL dl is 82◦. For a given V , the

range of contact angle variation throughout the base line, 1θ = θmax − θmin, increases
for increasing deformation Λ. Note that 1θ = 35◦ with Λ = 3/2 while 1θ = 0◦
for Λ = 1 (spherical cap). In addition, for a given Λ, 1θ decreases in time due to
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evaporation. For instance, when the drop has half of the original volume, i.e. V=Ve/2,
we find that 1θ = 62◦ − 31◦ = 31◦ and θ̄ = 50◦. Note that in the limit V→ 0 then
1θ→ 0. In other words, the conclusions are: (i) the more deformed the drop is the
larger the range of θ , and (ii) evaporation makes the contact-angle distribution more
homogeneous with time.

It is important to note that the contact-angle distribution is inversely related to the
horizontal contact-line curvature 1/Rxy = |(∇H · n)|z=0, where ∇H = ∇ − nz(nz · ∇)
is the horizontal gradient operator, and n and nz are the unit vectors normal to the
interface and to the lower boundary, respectively. Figure 9(b) illustrates the evolution
of 1/Rxy between its maximum found at the ends of longest axis (ψ = 0◦ and 180◦),
where 1/Rxy = a/b2 = 1.58, and minimum at the shortest (ψ = 90◦ and 270◦), where
1/Rxy = b/a2 = 0.47. The higher 1/Rxy at a certain point, the more this point behaves
like a ‘corner’ and, as a result, experiences a greater degree of pulling, resulting in
lower θ . To understand the physical mechanism behind this phenomenon, we need to
examine the Young–Laplace equation, 1p= σ(1/R1 + 1/R2). Since gravity has been
neglected, the pressure in the liquid and gas are different but essentially constant and
therefore 1p should be equal across any point along the interface. This imposes the
constraint that if the contact-line curvature is large at one point (1/R1), the second
principal curvature (1/R2), which dictates θ in this case, has to be smaller (larger θ ) in
order to maintain a constant 1p. Note that, thanks to the drop symmetry, the principal
radii of curvature of the interface at the extreme points A and B coincide with radii
of curvature of the contact line and the interface contained in the principal vertical
plane across the point (directly connected to θ ). This singularity may not occur for
the intermediate points, a consideration which is revisited in the more complex case
presented in § 5.2.

As was mentioned above, the evaporation rate m(t) in spherical drops is known
to be dependent on the length of the base circumference Ce and volume V , which
is similar to saying that m(t) depends on Ce and θ . It is evident that the spherical
condition together with Ce and V lead to a unique interface surface area and therefore
to a characteristic m(t). Not surprisingly, this consideration does not hold for deformed
drops given that the interface area is not uniquely defined with Ce and V only. It is
found that m(t) is 2.3 % larger than that for the reference spherical drop even though
Ce and V are the same in both cases, which is in accordance with the order of surface
area increment reported above. This finding is also consistent with the experimental
observations by Jansen et al. (2014), who recently reported higher evaporation rates
for more elongated droplets.

Figure 10 depicts T along the interface. The temperature ranges from T = 1 at the
triple line to T = 0.77 at the apex. Given the elliptical contact area, one might have
expected T to follow rather closely a distribution of concentric ellipses of decreasing
size for increasing z. This is not what is observed in the simulations, however. The
irregular drop shape leads to the thermal field being deformed in the z direction,
as shown in figure 10(b). Following the interface shape, the isotherms are stretched
downwards along the longest axis. Hence, their vertical location varies depending
on the azimuthal position. The curvature and path length towards the apex are also
different at each point. This combination of factors gives rise to azimuthal thermal
gradients along the interface.

Figure 11 shows the three-dimensional (3D) flow within the drop by means of
streamlines coloured by the local T . The flow repeats itself periodically at each
quadrant even though the data are from a three-dimensional simulation of the
complete drop. Flow is driven from the contact line to the apex along the interface
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FIGURE 10. (Colour online) Interface temperature for the drop with elliptical contact area.
The solid black lines are contours of constant z coordinate. (a) Front and (b) side views.
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FIGURE 11. (Colour online) Three-dimensional flow within the drop with elliptical contact
area defined in figure 9. The interface and streamlines are coloured by temperature. (a) 3D,
(b) top, (c) front and (d) side views. The solid and dashed arrows indicate the direction
of the primary interface flow and secondary azimuthal currents, respectively.

and then recirculated through the drop core back towards the contact line. However,
the streamlines along the interface are bent towards the ends of the longest axis, as
shown in figure 11(b), due to the azimuthal dependence of ∇sT; the dashed arrows
show the direction of the emerging azimuthal velocity components. This effect also
induces azimuthal currents in the interior of the drop, which have been isolated
for the first quadrant in figure 11 for clarity of presentation. At each quarter, the
current’s origin coincides with the centre of the vortex at the vertical plane across the
shortest axis of the ellipse, i.e. the yz plane (figure 11d), and flows into the centre
of the second fundamental vortex generated along the longest axis, i.e. the xz plane
(figure 11c). Each stream, therefore, is a bent toroidal-like feature, transporting liquid
from areas located in perpendicular planes and at different heights.

In order to characterize the torroidal currents more quantitatively, the local
volumetric helicity H = u · (∇ × u) is presented in figure 12. Note that H is large
when the flow velocity u and the vorticity (∇×u) are not only large but also parallel,
which makes H a very useful variable to provide a measure of the current’s azimuthal
strength. At the vertical planes H = 0 because the u components perpendicular to the
planes are 0. Note that for each plane the perpendicular velocity on one side is in the
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FIGURE 12. (Colour online) Local volumetric helicity H = u · (∇× u) for the azimuthal
current emerging in the deformed drop with elliptical contact area. The arrow shows the
direction of motion.

opposite direction to the perpendicular velocity from the other side. For instance, at
the yz plane, (u · nx)

x<0
x→0=−(u · nx)

x>0
x→0, and therefore (u · nx)x=0= 0. Similarly for the

xz plane, (u ·ny)y=0= 0 given that (u ·ny)
y<0
y→0=−(u ·ny)

y>0
y→0. As the fluid departs from

the yz plane, there is an increment in the flow’s H until it reaches a maximum and
then decays to become 0 again at the xz plane. Thus, a particle following this path
will probably accelerate during the first stage and slow down at the end. The speed
of these currents is approximately one order of magnitude lower than the maximum
flow speed, which is found at the interface, and therefore comparable to the speed of
the flow in the drop’s core.

5.2. Irregular contact area
We now study the case wherein an evaporating spherical drop becomes deformed after
the first contact-line jump, which is typically observed in the experiments at t= 0.7ttot.
In the range of temperatures investigated in the laboratory, the contact-line motion
begins when a certain critical disequilibrium point is reached in the dynamics. The
critical conditions change slightly with T̂w but, in the range of temperatures examined
in the laboratory (40◦ 6 T̂w 6 70◦), these fall into the range 22◦ 6 θc 6 26◦, which in
terms of drop height becomes 0.37 mm 6 Ĥc 6 0.44 mm (figure 3), and 0.24 6 Hc 6
0.28 in dimensional and dimensionless forms, respectively. For the sake of simplicity,
we round Hc and consider that the drop depinning occurs when H = 0.3.

The experiments show that during the three-dimensional contact-area motion, a
section of the triple line remains anchored to its original position (top-left quadrant
in figure 2d) while the rest suddenly moves to regain equilibrium by reducing the
contact area. In our simulations, we generate the deformed drop in a similar way
(see figure 13a). Starting from an axisymmetric flow with H = 0.3 and R = 1.2 in
three dimensions (dashed line in figure 13a), the contact line is allowed to move
freely everywhere except in the second quadrant, 90◦ 6ψ 6 180◦, where it is pinned.
Consequently, surface tension brings the MCL towards its new pinned position
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FIGURE 13. (Colour online) (a) Irregular contact area of the deformed drop found after
the first contact jump (solid line) compared with that of its precursor spherical drop
(dashed line) with H= 0.3 and R= 1.2. (b) Contact-angle θ and horizontal-curvature 1/Rxy
distribution along the contact line. This is given in terms of the azimuthal angle ψ defined
as shown in (a). Here, θmax = 64◦ and θmin = 51◦. The key points are A (ψA = 82◦), B
(ψB = 135◦), C (ψC = 188◦) and D (ψD = 315◦).

(solid line in figure 13a) to satisfy interface area minimization. The new pinned
position has been selected to approximate experimental observations, and the model
implemented to allow contact-line motion is described in § 6. To maintain the focus of
the investigation, this is not presented here. Note that the focus here is on elucidating
the dynamics of evaporation from a deformed drop; thus modelling the complex
motion of the contact line that brings about this deformation is beyond the scope of
this work.

Contrary to the previous drop geometry with elliptical contact area, this more
irregular drop only presents one vertical plane of symmetry, namely that across
points B and D in figure 13(a). The resulting θ distribution, shown in figure 13(b),
is more intricate but follows similar principles. During the readjustment, θ increases
from 28◦ (spherical drop) to 51◦ 6 θ 6 64◦, which is in excellent agreement with the
range recorded experimentally, as shown in figure 3(a). Once again, θ is related to
the contact-line curvature 1/Rxy as the points of minimum θ coincide fairly well with
the locations where 1/Rxy is maximum, i.e. points A and C, and vice versa. Note that
θ and 1/Rxy are perfectly in phase at B and D whereas there is a small mismatch for
A and C. The reason lies in the drop symmetry. The angles θB and θD result from
the equilibrium of interfacial forces acting on each side of the line BD, which are
symmetric. In the case of A and C, however, the interface forces on each side of
the line that connects these points are different due to the drop shape. Note that Rxy

corresponds to one of the principal interface radii of curvature for B and D but not
necessarily for A and C.

The depinning of the drop occurs when it is sufficiently out of equilibrium, that
is, when its interface surface area is very large in comparison with its volume. We
find that for the same V , the geometric readjustment leads to an interface whose
area is significantly smaller (30.4 %) than the interface area of the spherical drop
found right before the depinning event. In a similar manner, the evaporation rate m(t)
decreases by the same order of magnitude: m(t) is 20.3 % lower after the contact-area
jump. The reasons why there is a relative mismatch between the change of surface
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FIGURE 14. (Colour online) Three-dimensional flow and temperature distribution in the
irregular drop found after the first contact-line jump defined in figure 13. (a) 3D, (b) top,
(c) side and (d) front views. The arrows illustrate the direction of motion.

area and evaporation rate appear to be associated with the rapid transient nature of
the flow. Careful analysis of the instantaneous m(t) reveals that, during the transient
stage, m(t) in the irregular drop decreases at a rate O(1) faster than that in the
spherical drop used as reference. This indicates that the deviation between the change
in area and evaporation rate (10.1 %) is being corrected with time and therefore is
probably a short-term consequence of the complex transient flow. It should be noted
that a complete correction is unlikely given that the contact-line motion also entails a
significant redistribution of drop’s thermal field, along with a change in the strength
of the Marangoni effect. Hence, a residual mismatch is expected but, once again, the
surface area appears to be the leading factor in dictating changes in m(t).

During the contact-line jump, the interface motion severely deforms the preceding
axisymmetric flow. This loses its quasi-steady condition, triggering a rapid transient
stage until another equilibrium state is achieved for the new geometric configuration.
The three-dimensional streamlines and T distribution within the drop during this
transitional phase are illustrated in figure 14. The Marangoni force develops a
preferential direction, line BD in figure 13(a), along which warm liquid is transported
from D towards B, and then recirculated downward and back along the periphery via
the points A and C. Consequently, a pair of counter-rotating vortices emerge in the
bulk flow: see figure 14. These are centred in the colder regions and are essentially
parallel to the horizontal plane. The strength of these vortices diminishes with time
as the interface temperature is homogenized by the central stream of warm fluid as
well as by the heat being transported towards the cold vortices from the contact line
due to both conduction and convection. Eventually the vortices disappear, along with
the preferential direction of the Marangoni convection, and the drop reaches its new
quasi-steady equilibrium wherein the apex is the coldest region and the interface flow
is mainly radial towards the apex. Azimuthal components also emerge in this new
quasi-steady equilibrium, but these are weaker than those reported for the drop with
an elliptical contact area given that the interface geometry is less deformed. The
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FIGURE 15. (Colour online) Interface temperature showing the pair of counter-rotating
vortices emerging during the rapid thermal adjustment in an irregular drop: (a) simulations,
(b) IR image showing experimentally the emergence of counter-rotating vortices in
evaporating drops with T̂0 = 10 ◦C and T̂w = 70 ◦C.

interface temperature distribution during the intermediate transient stage is depicted
in figure 15(a). Capturing these vortices in the laboratory is very difficult due to
the relatively small range of the T and because the transient stage after depinning
for our chosen experiment lasts a very short period of time (∼0.8 s). Note that
the drop volume at this point is quite small and thus any imbalance is quickly
corrected by the substrate, whose dominance over the drop’s thermal field increases
for decreasing V . However, similar vortices are clearly observed during the initial
transient stage of irregularly shaped colder drops placed on the heated substrate: see
figure 15(b). By reducing the initial liquid temperature, the vortices emerge more
vigorously and persist for longer times, which makes it easier to record them in the
laboratory. The qualitative agreement between the numerical simulations (figure 15a)
and the experiments (figure 15b) is excellent. Given the importance of these vortices
in regulating the initial dynamics of evaporating drops, a follow-up investigation is
being undertaken, the focus of which is on the detailed numerical and experimental
study of these and similar three-dimensional features emerging in non-spherical drops
with more diverse and complex contact areas.

6. Drop evaporation with a moving contact line
In general, the simulation of moving contact lines is rather complicated. The

state of the art of the subject has been recently reviewed by Sui et al. (2014).
To date, only Murisic & Kondic (2011), via the lubrication approximation, and
Karapetsas et al. (2012) have numerically considered the evaporating sessile drops
with a moving contact line, but as pointed out by Sui et al. (2014), they used a
finite-element method for a single fluid with a free surface. Thus, DNS of a fully
coupled two-phase flow with a moving contact line and phase change remains a
challenge (Sui et al. 2014). In addition, it should be noted that Karapetsas et al.
(2012) examined an intermediate pinned-receding contact-line configuration rather
than the pure CA mode, which makes their results inadequate for comparison with
either of the limiting modes. The versatility of the DI method allows simulation of
the pure CA mode with minor changes as the interface thickness circumvents the
stress singularity at the MCL (Seppecher 1996; Jacqmin 2000). Here, we present
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FIGURE 16. Interface evolution for a drop evaporating according to the (a) CR and (b)
CA pure modes with T̂w = 40 ◦C and 1T̂ = 14.6 ◦C. The time interval between interface
snapshots is 1t = 7.5 × 104. (c) Ratio of the evaporation rate to the contact-line speed
(dV/dt)/(dR/dt) versus instantaneous base radius R for the drop evaporating in the CA
mode (logarithmic scales).

DNS of our fully coupled two-phase model for a drop evaporating in the pure CA
mode, and compare the results with those of the same drop evaporating according to
the CR mode. The latter correspond to those presented during the model validation
against the experimental data in § 4. The governing groups, mesh, initial conditions,
etc., are kept the same as those listed in § 4. The interface evolution in the CR and
CA modes is presented in figures 16(a) and 16(b), respectively. In what follows, the
initial transient stage (<3 % of ttot) is left out for the sake of simplicity, restricting
the discussion to the quasi-steady flow

In other typical MCL problems, such as drop coalescence or drop spreading,
predicting the contact-line motion is a challenge intimately related to the flow

regime given by the Ohnesorge number Oh = µ̂l/

√
ρ̂lσ̂0R̂0. Very low values of Oh

denote flows wherein inertia and/or surface-tension forces are dominant over viscous
stresses. Under such conditions, use of the currently available MCL models is justified
provided the grid spacing in the contact line region is small enough for the viscosity
and surface tension to be the dominant forces. In other words, the mesh must be
able to resolve the flow not only on the macroscale but also simultaneously on the
microscale, which is easily below O(10−4) of the macroscale (Sui et al. 2014). The
reader should note, however, that this is not necessary to solve the CA evaporation
mode under consideration. The generally tremendous complexity of predicting the
contact-line motion is greatly simplified here due to the fact that this is very slow
and a direct consequence of evaporation only, even though the Oh=O(0.001) number
suggests an inertial-capillary regime. This is demonstrated as follows. It is trivial to
show that the volume of a spherical cap (0◦< θ 6 90◦) can be calculated in terms of
R and θ as V =πC1(3+C2

1)R
3/6, where C1= (1− cos θ)/ sin θ . Since C1 is constant

in the CA mode, it follows that (dV/dt)/(dR/dt) = C2R2, with C2 = πC1(3 + C2
1)/2.

In other words, the representation of the ratio of evaporation rate to contact-line
speed, (dV/dt)/(dR/dt), versus the instantaneous base radius, R, should be linear in
logarithm scale. Figure 16(c) shows that this is effectively observed in the CA case
under consideration. Also, if evaporation dictates the contact-line movement, when
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FIGURE 17. (Colour online) Instantaneous drop parameters for a water drop evaporating
according to the CR and CA pure modes with T̂w= 40 ◦C with 1T̂ = 14.6 ◦C. (a) Contact
angle θ , (b) drop height H, (c) contact radius R, and (d) volume V .

(dV/dt)→ 0 then (dR/dt)→ 0. This criterion is employed to numerically test that
a drop wherein the liquid loss is artificially switched off (S = 0 in (2.8)) results in
a motionless contact line. Hence, it is concluded that the inertial-capillary regime
suggested by the Ohnesorge number in the context of spreading/coalescence is not
applicable for sessile drops evaporating slowly in the CA mode. It is therefore not
necessary to go to the microscale in order to predict the contact-line motion.

The instantaneous drop evolution for the CR and CA modes is compared in
figure 17. Figure 17(a) demonstrates the capacity of the DI model to maintain θ
constant (CA mode) while R recedes in a weakly non-linear fashion (figure 17c).
The height H decays more progressively in the CA mode than in the CR mode
(figure 17b). As Picknett & Bexon (1977) predicted for the isothermal problem, the
drops have almost an identical volume V during a relatively large period of time,
t∼ 6× 105, after which the deviation in V becomes more evident. The CA mode leads
to lower evaporation rates and therefore longer lifetimes, once again in agreement
with Picknett & Bexon (1977) and subsequent works.

At first sight, the volume V seems to vary linearly in the CR mode. However,
a detailed analysis of the curves shows that V(t) is non-linear for both the CR
and CA cases. The variation of the evaporation rate m(t) with time is depicted in
figure 18(a). In agreement with Picknett & Bexon (1977), we find that, in the CA
mode, the rate is less and declines much more evenly over the entire lifetime of the
drop. In the CR mode, however, Picknett & Bexon (1977) predicted an essentially
linear evolution of m(t) in time (for the range of θ considered here) based purely
on geometric factors. Our computations, which also include non-isothermal dynamics,
clearly reveal a non-linear tendency. Comparatively, we find that the initially linear
m(t) decay is mitigated towards the end of the drop’s lifetime, suggesting that there
is some temperature-associated phenomenon becoming more relevant at later times
which contributes positively to m(t).

Figure 18(b) illustrates the instantaneous area-averaged interface temperature T̄i =∫
Tiri dli/

∫
ri dli for the CR and CA modes, where Ti is the interface temperature
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FIGURE 18. (Colour online) Instantaneous drop evaporation in the CR versus CA modes
with T̂w= 40 ◦C and 1T̂ = 14.6 ◦C. (a) Evaporation rate m(t). (b) Area-averaged interface
temperature T̄i, and interface surface area Ai.

at the radial coordinate ri over a differential interface arc of length dli. As assumed,
in the CR mode the average interface temperature T̄i increases as the drops become
thinner, and consequently the local saturation pressure ps is higher on average. Given
that ps is an exponential function of T , the rate of decay in m(t) due to the geometric
readjustment is partially counteracted by the evaporation-rate enhancement associated
with the transient thermal field. This appears to be a reasonable explanation for the
final flattening of m(t), but a more detailed parametric investigation is necessary to
provide a conclusive answer to this conjecture.

However, it is very important to realize that, in the CA mode, the average interface
temperature essentially remains constant (T̄i = 0.819) as the drop reduces in size
(figure 18b). Although this might not be intuitive at first, it is logical if we bear
in mind that the MCL in the CA mode leads to intermediate drop profiles which
maintain the same geometric ratio. It follows that, in essence, the rate of decay
in m(t) in the CA mode is due to geometric factors alone, and is not affected by
transient changes in the thermal field as in the CR mode. Hence, transient thermal
changes during the drop evaporation contribute to increase m(t) in the CR mode (the
average drop temperature rises) but are irrelevant in the CA mode (the average drop
temperature remains constant), which allows us to reach a conclusion that Picknett
& Bexon (1977) could not provide: the higher the substrate temperature, the larger
the difference between the lifetimes in the CA (longer) and CR (shorter) evaporation
modes. In other words, for increasing temperature, the evaporation rate increases
more rapidly in the CR mode than in the CA mode.

To conclude, we also present in figure 18(b) the instantaneous interface surface
area Ai. In the CR mode, Ai decreases non-linearly, approaching asymptotically the
theoretically final interface area, which is finite, i.e. as V→ 0 then Ai→πR2

0. In the
CA mode, on the other hand, the Ai decay is more pronounced, effectively linear, and
approaches zero, i.e. as V→ 0 then Ai→ 0.

7. Conclusions
Despite the fact that most evaporating sessile drops in real-life applications

are non-spherical or display a number of three-dimensional phenomena, e.g. the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

22
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.224


Evaporation of sessile drops 735

thermocapillary instabilities recently reported by Sefiane et al. (2008), the theoretical
and numerical work available in the literature has been restricted to the two-
dimensional axisymmetric problem for the sake of simplicity. It should be noted that
Karapetsas et al. (2012) examined the instabilities reported by Sefiane et al. (2008),
but their study was restricted to linear theory in three dimensions. In this investigation
we present a novel fully coupled two-phase model based on the DI method to conduct
three-dimensional direct numerical simulations of deformed drops evaporating on a
heated substrate. In addition, both the pinned and MCL configurations are addressed.
To the best of our knowledge, this is the first time such an investigation has been
presented.

The discussion begins in § 4 with the model validation against the data from a set
of experiments, presented in § 3, wherein the evaporation of water drops in controlled
environments is investigated by means of optical and IR techniques. The substrate
temperature is varied in the range 40–70 ◦C. Good quantitative agreement is achieved
for the instantaneous drop parameters (figure 4) as well as the interface temperature
(figure 5). The initial transient heating in the two-dimensional axisymmetric problem
is compared for different levels of temperature. It is observed that, as the temperature
increases, the increasing prominence of the Marangoni convection leads the heating
of the drop to occur through its core, a mechanism referred to as interior heating in
§ 4.2. At moderate heating, on the other hand, the mechanism of heat transfer is not
significantly affected by the Marangoni effect and the drop reaches thermal (quasi-)
equilibrium via peripheral conduction.

The body of this study is concerned with the analysis of irregular drops in three
dimensions, a discussion which is presented in § 5. Two scenarios are studied. First we
consider the case of a drop that is deformed at its inception due to non-perpendicular
dosing onto the substrate, i.e. the drop’s contact area is elliptical. The resulting drop
geometry is very complex and its interface thermal distribution leads to the emergence
of Marangoni stresses perpendicular to the radial direction across the apex. As a result,
azimuthal currents develop in the drop’s bulk flow (figure 11). These drive liquid
to the centres of recirculation vortices established on the vertical plane across the
longest ellipse’s axis from the centres of the vortices appearing on the other principal
vertical plane. In a second case, we examine the dynamics of the typical irregular
drop resulting from the first contact-line depinning undergone by an initially spherical
drop. This phenomenon is typically observed in the experiments towards the end of the
drop’s lifetime. The abrupt contact-line readjustment experienced by the drop to regain
equilibrium induces an intermediate transient stage in the flow. This rapidly evolves
to reach a different quasi-steady-state equilibrium for the new geometric configuration
at the next pinning location. During this stage, the Marangoni convection adopts a
preferential direction, which induces a pair of self-excited counter-rotating vortices
within the drop (figure 14). These vortices play a prominent role in the bulk velocity
field and transient mechanism of heat transfer. The drop displays two lateral cold
spots (centred at the vortices) until the new thermal equilibrium is attached and the
apex once again becomes the coldest location. These previously unknown phenomena
present excellent agreement with the experimental observations, where the emergence
of the vortices is captured by the IR camera (figure 15). Given the importance of these
transient features, a parallel investigation is being undertaken, the focus of which is
on the vortices’ emergence and dynamics.

For a given level of heating, it is known that the evaporation rate of a spherical
drop depends on its volume and base-perimeter length. Unsurprisingly, this conclusion
does not hold for deformed drops, as the length of the base perimeter and volume are
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not enough to define a unique drop interface. The evaporation rate is found to change
in the same order of magnitude as the interface-surface area even when the volume
and/or circumference are maintained. In addition, deformed drops display intricate
wettability distributions (see figures 9 and 13) wherein the local contact angle in one
drop can vary in a broad range (up to ∼40◦ in the cases studied here). It is shown
that these distributions are intimately related to the curvature of the contact line,
which provides an easy criterion to quickly estimate the local wettability distribution
of complex three-dimensional drops. In general, the curvature is inversely proportional
to the contact angle, i.e. points where the contact angle is minimum for the points
where the contact-line curvature is maximum and vice versa. Other conclusions are
that (i) the more deformed the contact-area, the wider the range of its contact angle,
and (ii) the contact-angle distribution becomes more homogeneous in time due to
evaporation.

To conclude, § 6 is devoted to comparing the instantaneous evolution of a pinned
drop with that of the same drop evaporating according to the pure CA mode and
therefore with a moving contact line. This serves to demonstrate the versatility and
capacity of our two-phase three-dimensional model to address contact-line dynamics
with minor modifications. Examining the isothermal problem, Picknett & Bexon
(1977) concluded that the CA mode leads to a lower evaporation rate and therefore
a longer lifetime. The same is true in the heated problem. However, it is found that
the average interfacial temperature remains constant for most of the drop lifetime
in the CA mode, while this increases in the CR mode as the drop becomes thinner.
Thus, it is concluded that, for increasing temperature, the evaporation rate increases
more rapidly in the CR mode than in the CA mode, which means that the difference
between the lifetime of the former (shorter) and latter (longer) modes increases with
heat.
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