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On Riemannian and Ricci curvatures of
homogeneous Finsler manifolds

A. Tayebi

Abstract. The famous Cheng-Shen’s conjecture in Riemann-Finsler geometry claims that every
n-dimensional closed W-quadratic Randers manifold is a Berwald manifold. In this paper, first we
study the Riemann and Ricci curvatures of homogeneous Finsler manifolds and obtain some rigidity
theorems. Then, by using this investigation, we construct a family of W-quadratic Randers metrics
which are not R-quadratic nor strongly Ricci-quadratic.

1 Introduction

In [5], Cheng and Shen studied the flag curvature of Finsler metrics and made the
following conjecture:

Conjecture Every W-quadratic Randers metric on a closed manifold is a Berwald
metric.

To answer Cheng-Shen’s conjecture, one should find some hidden relations
between the Riemann and Berwald curvatures of Finsler metrics. For this aim, we
need to understand some important notions in Finsler geometry. In 1926, L. Berwald
introduced a connection with two curvature tensors – namely, Riemann curvature
R and Berwald curvature B [4]. For a Finsler manifold (M , F), the second variation
of geodesics gives rise to a family of linear maps Ry ∶ Tx M → Tx M, at any point
y ∈ Tx M. The quantity Ry is called the Riemann curvature in the direction y. The
Riemann curvature in Finsler geometry is not only a function of position but also
depends on direction, while in Riemann geometry, it only depends on position. This
situation complicates the understanding of Riemann curvature in Finsler geometry.
A Finsler space is said to be R-quadratic if its Riemann curvature Ry is quadratic in
y ∈ Tx M. It is well-known that every flat Finsler metric (R = 0) and Berwald metric
(B = 0) are R-quadratic.

The notion of flag curvature is a natural extension of the Riemannian sectional
curvature to Finsler manifolds. For a Finsler manifold (M , F), the flag curvature is a
function K = K(Π, y) of tangent planes Π ⊂ Tx M and directions y ∈ Π. F is said to be
of scalar flag curvature if the flag curvature K(Π, y) = K(x , y) is independent of flags
Π which are associated with any fixed flagpole y. Finsler metrics of scalar curvature
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are the natural extension of Riemannian metrics of isotropic sectional curvature. F is
said to be of sectional flag curvature if its flag curvature depends only on the section.
In this case, the flag curvature is independent of the choice of the flagpole y ∈ Π; that
is, K(Π, y) = K(Π).

Nowadays, the R-quadratic metrics problem is an important part of Finsler geom-
etry, and there are many types of research about it [3][11][12]. This notion was
introduced by Bácsó-Matsumoto in [3]. They studied R-quadratic Randers metrics.
In [12], Mo proved that R-quadratic metrics have vanishing H-curvature. In [11], Li-
Shen characterized R-quadratic Randers metrics and showed that these metrics must
have constant S-curvature. However, up to now, very little attention has been paid to
the subject of homogeneous R-quadratic metrics. Homogeneous Finsler manifolds are
those Finsler manifolds (M , F) that the orbit of the natural action of I(M , F) on M at
any point of M is the whole M. Then, M is the quotient manifold I(M , F)/H, where
H is the stabilizer subgroup at a point in M. In this paper, we study homogeneous
R-quadratic Finsler metrics and prove the following.

Theorem 1.1 Let (M , F) be a homogeneous Finsler manifold of scalar flag curvature
or sectional flag curvature. Then, F is R-quadratic if and only if it is Riemannian or
locally Minkowskian.

The Ricci curvature is the trace of Riemann curvature Ric(y) ∶= trace(Ry). A
Finsler space is said to be strongly Ricci-quadratic if its Ricci curvature Ricy is
quadratic in y ∈ Tx M – namely, Ric = Rm

i m j(x)y i y j . By definition, every R-quadratic
metric and Berwald metric is strongly Ricci-quadratic. In general, it is quite challeng-
ing to characterize strongly Ricci-quadratic metrics [11]. In [9], Hu-Deng proved that
a homogeneous Randers metric is Ricci-quadratic if and only if it is a Berwald metric.
Here, we prove the following.

Theorem 1.2 Let (M , F) be a homogeneous Finsler manifold of scalar flag curvature.
Then F is strongly Ricci-quadratic if and only if it is Riemannian or locally Minkowskian.

Every two-dimensional Finsler manifold is of scalar flag curvature. Then, the
special case n = 2 of Theorem 1.2 is an extension of Hu-Deng’s theorem in [9], which
has been proved for Randers metrics only. Our approach is completely different from
theirs. Also, by Theorems 1.1 and 1.2, we conclude that a homogeneous Finsler metric
of scalar flag curvature is R-quadratic if and only if it is strongly Ricci-quadratic. As an
interesting application of Theorems 1.1 and 1.2, we construct a family of homogeneous
W-quadratic Randers surfaces which are not R-quadratic nor strongly Ricci-quadratic
(see Example 6).

A Finsler metric that is not Riemannian nor locally Minkowskian is called non-
trivial. We study the Weyl curvature of homogeneous Finsler manifolds and prove
the following rigidity result.

Theorem 1.3 Every nontrivial homogeneous Randers surface is a W-quadratic metric
which is not R-quadratic nor strongly Ricci-quadratic.

Then, we study homogeneous Finsler metrics on closed connected surfaces and
prove the following.
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Theorem 1.4 Every homogeneous Finsler metric on a closed connected surface must
be Riemannian or locally Minkowskian.

In the final section, using Theorems 1.1–1.4 and the Zermelo navigation problem,
we will construct three counterexamples for Cheng-Shen’s conjecture. Example 4
is a four-dimensional Randers metric, and Examples 5 and 6 are two-dimensional
W-quadratic Randers metrics which are not Berwaldian.

2 Preliminaries

Let M be an n-dimensional C∞ connected manifold, TM = ⋃x∈M Tx M the tangent
bundle, and TM0 ∶= TM − {0} the slit tangent bundle. Let (M , F) be a Finsler
manifold and G = y i δ/δx i be its induced spray on TM which in a standard coordinate
(x i , y i) for TM0 is given by

G = y i ∂
∂x i − 2G i(x , y) ∂

∂y i , G i ∶= 1
4

g i l [ ∂2F2

∂xk ∂y l yk − ∂F2

∂x l ].

Then, for a vector y ∈ Tx M0, the Riemann curvature is a family of linear transforma-
tion Ry ∶ Tx M → Tx M which is defined by Ry(u) ∶= R i

k(y)uk ∂/∂x i , where

R i
k = 2 ∂G i

∂xk −
∂2G i

∂x j∂yk y j + 2G j ∂2G i

∂y j∂yk −
∂G i

∂y j
∂G j

∂yk .(2.1)

The family R ∶= {Ry}y∈T M0 is called the Riemann curvature. Let us put

R i
k l ∶=

1
3
{

∂R i
k

∂y l −
∂R i

l
∂yk }, R i

j k l ∶=
1
3
{

∂2R i
k

∂y j∂y l −
∂2R i

l
∂y j∂yk }.(2.2)

Then

R i
k = R i

j k l y j y l , R i
k l = R i

j k l y j , R i
j k l + R i

j l k = 0.(2.3)

Let (M , F) be an n-dimensional Finsler manifold. Put

Ric ∶=
n
∑

i , j=1
g i j(Ry(b i), b j),

where {b i} is a basis for Tx M, g i j ∶= g(b i , b j) and (g i j) ∶= (g i j)−1. Ric is a well-
defined scalar function on TM0. We call Ric the Ricci curvature. In a local coordinate
system,

Ric = g i jR i j = Rm
m .

For a flag Π ∶= span{y, u} ⊂ Tx M with flagpole y, the flag curvature K = K(Π, y)
is defined by

K(x , y, Π) ∶=
gy(u, Ry(u))

gy(y, y)gy(u, u) − gy(y, u)2 .(2.4)

The flag curvature K(x , y, Π) is a function of tangent planes Π = span{y, v} ⊂ Tx M.
This quantity tells us how curved the space is at a point. If F is a Riemannian metric,
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K(x , y, Π) = K(x , Π) is independent of y ∈ Π/{0}. A Finsler manifold (M , F) is said
to have scalar flag curvature if K(Πx , y) = K(x , y) is only a function of (x , y) ∈ TM0.
As a special case, (M , F) is called of weakly isotropic flag curvature if

K = 3θ
F
+ σ ,

where θ = θ i(x)y i is a 1-form and σ = σ(x) is a scalar function on M. Also, it is
called of isotropic flag curvature if K(Πx , y) = K(x) – namely, the flag curvature is
only a function of x ∈ M. (M , F) is said to have constant flag curvature if K(Πx , y) =
constant everywhere.

Let (M , F) be a Finsler manifold. The following quadratic form gy ∶ Tx M ×
Tx M → R is called fundamental tensor:

gy(u, v) = 1
2

∂2

∂s∂t
[F2(y + su + tv)]

s=t=0
, u, v ∈ Tx M .

Let x ∈ M and Fx ∶= F∣Tx M . To measure the non-Euclidean feature of Fx , one can
define Cy ∶ Tx M × Tx M × Tx M → R by

Cy(u, v , w) ∶= 1
2

d
dt
[gy+tw(u, v)]

t=0
, u, v , w ∈ Tx M .

The family C ∶= {Cy}y∈T M0 is called the Cartan torsion.
Let c = c(t) be a C∞ curve and U(t) = U i(t)∂/∂x i ∣c(t) be a vector field along c.

Define the covariant derivative of U(t) along c by

D ċU(t) ∶=
⎧⎪⎪⎨⎪⎪⎩

dU i

dt
(t) +U j(t)∂G i

∂y j (c(t), ċ(t))
⎫⎪⎪⎬⎪⎪⎭

∂
∂x i ∣c(t)

.

U(t) is said to be linearly parallel if D ċU(t) = 0.
For a vector y ∈ Tx M, define

Ly(u, v , w) ∶= d
dt
[Cσ̇(t)(U(t), V(t), W(t))]∣t=0 ,

where σ = σ(t) is the geodesic with σ(0) = x, σ̇(0) = y, and U(t), V(t), W(t) are
linearly parallel vector fields along σ with U(0) = u, V(0) = v , W(0) = w. We call Ly
the Landsberg curvature. The Landsberg curvature measures the rate of change of the
Cartan torsion along geodesics.

Define By ∶ Tx M × Tx M × Tx M → Tx M by By(u, v , w) ∶= B i
jk l(y)u jvkw l ∂/∂x i ∣x ,

where

B i
jk l ∶=

∂3G i

∂y j∂yk ∂y l .

The quantity B is called the Berwald curvature. F is called a Berwald metric if B = 0. In
this case, G i are quadratic in y ∈ Tx M for all x ∈ M; that is, there exists �i

jk = �i
jk(x)

such that

G i = �i
jk y j yk .
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Taking a trace of Berwald curvature B give us the mean of Berwald curvature E
which is defined by Ey ∶ Tx M × Tx M → R, where

Ey(u, v) ∶= 1
2

n
∑
i=1

g i j(y)gy(By(u, v , e i), e j).(2.5)

The family E = {Ey}y∈T M/{0} is called the mean Berwald curvature. In local coordi-
nates, Ey(u, v) ∶= E i j(y)u iv j , where

E i j ∶=
1
2

Bm
mi j .

Taking a horizontal derivation of the mean of Berwald curvature E gives us the H-
curvature H which is defined by Hy = H i jdx i ⊗ dx j , where

H i j ∶= E i j∣m ym .

Here, “∣” denotes the horizontal covariant differentiation with respect to the Berwald
connection.

3 Proof of Theorem 1.1

In this section, we are going to prove Theorem 1.1. For this aim, we will need some
useful geometrical and topological facts about the homogeneous Finsler manifolds.
In [17], by using the property of exponential map, the following is proved.

Lemma 3.1 [17] Every homogeneous Finsler manifold is complete.

Every two points of a homogeneous Finsler manifold (M , F) map to each other
under an isometry. This causes the norm of an invariant tensor under the isometries
of a homogeneous Finsler manifold to be a constant function on the manifold M, and
consequently, it has a bounded norm. Then, we have the following.

Lemma 3.2 [16] Let (M , F) be a homogeneous Finsler manifold. Then, every invari-
ant tensor under the isometries of F has a bounded norm with respect to it.

Now, we consider the flag curvature of homogeneous R-quadratic Finsler metrics
and prove the following.

Lemma 3.3 Every homogeneous R-quadratic Finsler metric of scalar flag curvature
has constant flag curvature.

Proof In [12], Mo proved that R-quadratic Finsler metrics satisfy H = 0. By
Akbar-Zadeh’s theorem, every Finsler metric of scalar flag curvature K = K(x , y)
has isotropic flag curvature K = K(x) if and only if H = 0. However, every scalar
function on M – namely, K = K(x) – which is invariant under isometries of (M , F)
is a constant function. Thus, the homogeneity of (M , F) and invariancy of the flag
curvature under isometries of F imply that K = constant. ∎
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Here, we give a relation between homogeneous R-quadratic metrics and Landsberg
metrics.

Lemma 3.4 Every homogeneous R-quadratic Finsler metric is a Landsberg metric.

Proof The following Bianchi identity for the Berwald connection of F holds:

Bh
m jk∣i − Bh

mi k∣ j = Rh
mi j,k .(3.1)

For more details, see page 136 in [14]. The R-quadratic Finsler metric is characterized
by Rh

mi j,k = 0. Then (3.1) reduces to

Bh
m jk∣i = Bh

mi k∣ j .(3.2)

Contacting (3.2) with yh y i yields

Lm jk∣i y i = 0.(3.3)

For any geodesic c = c(t) and any parallel vector field U = U(t) along c, we define

C(t) ∶= Cċ(U(t), U(t), U(t)), L(t) ∶= Lċ(U(t), U(t), U(t)).(3.4)

By (3.4) and the definition of Ly , we get

L(t) = C
′

(t).(3.5)

By (3.3), we obtain

L
′

(t) = 0.(3.6)

The equation (3.6) implies that

L(t) = L(0).(3.7)

Considering (3.5) and taking an integral of (3.7) yields

C(t) = L(0)t +C(0).(3.8)

By using Lemma 3.1, one can put t →∞ in (3.8) and then Lemma 3.2 implies L(0) = 0.
Therefore, F reduces to a Landsberg metric. ∎

Here, we consider homogeneous R-quadratic Randers metrics of nonzero flag
curvature and prove the following rigidity result.

Corollary 3.1 Let (M , F) be a homogeneous Randers space of R-quadratic type. If the
flag curvature of F is everywhere nonzero, then it is a Riemannian metric.

Proof By Lemma 3.4, F is a Landsberg metric. Every Randers metric with van-
ishing Landsberg curvature is a Berwald metric [15]. In [8], Deng-Hu proved that
a homogeneous Randers space of Berwald type with nonzero flag curvature is a
Riemannian metric. This completes the proof. ∎

By using the celebrated Akbar-Zadeh theorem for Finsler metrics of vanishing flag
curvature, we prove the following result which plays a key lemma in our investigation.

https://doi.org/10.4153/S0008439524000493 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000493


On Riemannian and Ricci curvatures of homogeneous Finsler manifolds 79

Lemma 3.5 Every homogeneous flat Finsler metric must be locally Minkowskian.

Proof Let (M , F) be a homogeneous Finsler manifold with vanishing flag curva-
ture. The well-known Akbar-Zadeh theorem stated that every positively complete
Finsler manifold with vanishing flag curvature must be locally Minkowskian if the
Cartan torsion and its vertical covariant derivative are bounded [1]. By Lemma 3.1,
(M , F) is a complete manifold. By Lemma 3.2, for homogeneous Finsler metrics,
the Cartan torsion and its vertical covariant derivative are bounded. Then, by Akbar-
Zadeh’s theorem, F is locally Minkowskian. ∎

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 The proof is divided into two main cases as follows:

Case (I): Let F be a homogeneous R-quadratic Finsler metric of scalar flag curvature
K = K(x , y). This case divided to two cases:

Case (a): n = 2. By Lemma 3.4, homogeneous R-quadratic metrics are Landsbergian.
In [18], it is proved that every homogeneous Landsberg surface is Riemannian or
locally Minkowskian.

Case (b): n ≥ 3. By Lemma 3.3, K = constant. This case is divided into two subcases
as follows:

Case (b1): Let K ≠ 0. According to the Numata theorem, every Landsberg metric of
nonzero scalar flag curvature is a Riemannian metric of constant sectional curvature
(see page 158 of [14]). By Lemma 3.4, we get the proof for this case.

Case (b2): Let K = 0. By Lemma 3.5, F is a locally Minkowskian metric.

Case (II): Now, suppose that F is a homogeneous R-quadratic Finsler metric of
sectional flag curvature K = K(Π). In [19], Wu proved that every Landsberg metric
of nonzero sectional flag curvature must be Riemannian. Then, by the same method
used for the case of Finsler metrics of scalar flag curvature – namely, Case (I) – we get
the proof. ∎

The condition of scalar flag curvature in Theorem 1.1 cannot be ignored. For
example, see the following.

Example 1 Let G/K be an irreducible symmetric space of compact type (i.e., it
has compact G and K). Any G-invariant metric on G/K is Berwaldian, so it is R-
quadratic. Suppose G/K is not of rank 1. Since the rank of G/K is bigger than 1, it
admits G-invariant Finsler metrics which are not Riemannian or locally Minkowski.
Those metrics are not of scalar flag curvature.

Also, in Theorem 1.1, the condition R-quadratic is necessary. Here, we give an
example that certifies our claim.

Example 2 The Bao-Shen’s Randers metrics on S
3 are of constant flag curvature

(see page 31 in [14]) which are not R-quadratic. These metrics are not Riemannian
nor locally Minkowskian.
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We must mention that Theorem 1.1 does not hold for non-homogeneous Finsler
metrics. See the following example.

Example 3 Let us consider the following Randers metric defined nearby the origin
in R

n :

F ∶=
√
∣y∣2(1 − ∣xA∣2) + ⟨y, xA⟩2

1 − ∣xA∣2 − ⟨y, xA⟩
1 − ∣xA∣2 ,

where ∣.∣ and ⟨, ⟩ denote the Euclidean norm and inner product in R
n , respectively,

and A ∶= (a i
j) is a nonzero and anti-symmetric matrix. F is a R-quadratic and is of

scalar flag curvature [11]. However, it is not Riemannian nor locally Minkowskian.

Here, we give another alternative proof for a special case of Theorem 1.1 which is
independent of Numata’s Theorem.

Proposition 3.1 Let (M , F) be a homogeneous Finsler manifold of scalar flag curva-
ture. Suppose that the flag curvature of F is everywhere nonzero. Then F is R-quadratic
if and only if it is a Riemannian metric.

Proof Suppose that the flag curvature of F is nonzero everywhere. We just need
to prove F = F(x , ⋅) is Euclidean when restricted to each tangent plane P in Tx M.
We restrict the Riemann curvature to P (i.e., (Ry)∣P ∶ P → P) for y ∈ Tx M0. For
y ∈ P − {0} with F(y) = 1, y is an eigenvector of (Ry)∣P for the 0 eigenvalue; another
eigenvalue of (Ry)∣P is nonzero. The corresponding eigenvector is tangent to the
indicatrix at y. Using the quadratic property of R, one can determine the ODE for
F = 1 in P, which integral curve must be an ellipsoid centered at 0. To summarize,
F∣P is Euclidean for each P, so the Cartan tensor Cy(v , v , v) = 0 for all y and all v
gy-orthogonal to y. Thus, C = 0 (i.e., F is Riemannian). The converse is trivial. ∎

Randers metrics are special (α, β)-metrics [5]. As an interesting result, we study
homogeneous R-quadratic (α, β)-metrics and prove the following.

Corollary 3.2 Every homogeneous (α, β)-metric on a manifold of dimension n ≥ 3 is
R-quadratic if and only if it is a Berwald metric.

Proof According to Lemma 3.4, F is a Landsberg metric. In [15], it is proved
that every regular (α, β)-metric on a manifold of dimension n ≥ 3 with vanishing
Landsberg curvature is a Berwald metric. This gives us the proof. ∎

Let (M , F) be an n-dimensional Finsler manifold, TM its tangent bundle, and
(x i , y i) the coordinates in a local chart on TM. Let F be a scalar function on TM
defined by F = m

√
A, where A is given by A ∶= a i1 . . . im(x)y i1 y i2 . . . y im , with a i1 . . . im

symmetric in all its indices. F is called an m-th root Finsler metric.
An m-th root Finsler metric F = m

√
a i1 . . . im(x)y i1 y i2 . . . y im is regarded as a direct

generalization of Riemannian metric in the sense that the second root metric is a Rie-
mannian metric F =

√
a i j(x)y i y j . The fourth root metrics F = 4

√
a i jk l(x)y i y j yk y l
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are called quartic metric. The special 4-th root metric – namely, Berwald-Moór metric
– plays an important role in the theory of space-time structure, gravitation, and
general relativity.

Corollary 3.3 Every homogeneous fourth root metric has weakly isotropic flag curva-
ture if and only if it is locally Minkowskian.

Proof For a fourth root Finsler metric F = 4
√

A on an open subset U ⊂ Rn , let us
put A i j = [A]y i y j . Suppose that the matrix (A i j) defines a positive definite tensor and
(Ai j) denotes its inverse. Then the spray coefficients G i of F are given by following:

Gk = 1
2
(A0 j − Ax j)Ak j ,(3.9)

where Ax i = [A]x i and A0 l ∶= Ax m y l ym . By (3.9), it follows that the spray coefficients
of fourth root Finsler metrics are rational functions in y. Therefore, the Riemannian
curvature R and Ricci curvature Ric are rational functions in y. By assumption, F has
weakly isotropic flag curvature. Thus, we have

R i
j = (

3θ
F
+ σ) F2h i

j ,(3.10)

where θ = θ i(x)y i is a 1-form and σ = σ(x) and is a scalar function on M. Taking a
trace of (3.10) yields

σF2 + 3θF − 1
n − 1

Ric = 0.(3.11)

We have two main cases as follows:

Case (i): Let at a point x0 ∈ M, we have σ(x0) = 0. In this case, (3.11) reduces to

Ric(x0 , y) = 3(n − 1)θ(x0 , y)F2(x0 , y), ∀y ∈ Tx0 M .(3.12)

The left side of (3.12) is a rational function in y, while the right side is an irrational
function in y. Thus, θ(x0 , y) = 0 and, by considering (3.10), F∣x0 reduces to a R-flat
metric.

Case (ii): Let at a point x0 ∈ M, σ(x0) ≠ 0 holds. In this case, (3.11) is written as
follows:

σ(x0)F2(x0 , y) + 3θ(x0 , y)F(x0 , y) − 1
n − 1

Ric(x0 , y) = 0.(3.13)

For a fourth root metric F, we have F(x0 ,−y) = F(x0 , y). By assumption, F is R-
quadratic and then R i

j(x ,−y) = R i
j(x , y). It follows that Ric(x0 ,−y) = Ric(x0 , y).

Thus, y → −y in (3.13) gives us

σ(x0)F2(x0 , y) − 3θ(x0 , y)F(x0 , y) − 1
n − 1

Ric(x0 , y) = 0.(3.14)

By (3.13) and (3.14), we get

F2(x0 , y) = 1
(n − 1)σ(x0)

Ric(x0 , y).(3.15)
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According to (3.15), we find that F2∣x0 is rational in y which is a contradiction. Thus,
only the case (i) holds, and by Lemma 3.5, F is locally Minkowskian. The converse is
trivial. ∎

4 Proof of Theorems 1.2, 1.3, and 1.4

In this section, we are going to prove Theorems 1.2, 1.3, and 1.4. To prove Theorem
1.2, we need to extend Mo’s result in [12] to strongly Ricci-quadratic metrics. More
precisely, we show that every strongly Ricci-quadratic Finsler metric satisfies H = 0.
Our approach is completely different from Mo. For this aim, we need the structure
equations of the Berwald connection.

Throughout this paper, we use the Berwald connection on Finsler manifolds. Let
{e j} be a local frame for π∗TM, {ω i , ωn+i} be the corresponding local coframe for
T∗(TM0), and {ω i

j} be the set of local Berwald connection forms with respect to
{e j}. Then the connection forms of the Berwald connection are characterized by the
following structure equations:
• Torsion freeness:

dω i = ω j ∧ ω i
j .(4.1)

• Almost metric compatibility:

dg i j − g jk Ωk
i − g i k Ωk

j = −2L i jk ωk + 2C i jk ωn+k ,(4.2)

where ω i ∶= dx i , ωn+k ∶= d yk + y jωk
j , and Ω i

j are the curvature forms of the
Berwald connection defined by following:

Ω i
j = dω i

j − ωk
j ∧ ω i

k ∶=
1
2

R i
jk l ω

k ∧ ω l − B i
jk l ω

k ∧ ωn+l .(4.3)

The horizontal and vertical covariant derivations with respect to the Berwald connec-
tion are denoted by “∣” and “, ” respectively. Thus,

g i j∣k = −2L i jk , g i j,k = 2C i jk .

For more details, one can see [14].

Lemma 4.1 Every strongly Ricci-quadratic Finsler metric satisfies H = 0.

Proof Differentiating (4.2) yields the following Ricci identity:

gp jΩp
i − gpi Ωp

j = −2L i jk∣l ωk ∧ ω l − 2L i jk , l ωk ∧ ωn+l − 2C i j l ∣k ωk ∧ ωn+l

−2C i j l ,k ωn+k ∧ ωn+l − 2C i j pΩp
l y l .(4.4)

It follows from (4.4) that

C i j l ∣k + L i jk , l =
1
2

gp jBp
i k l +

1
2

g i pBp
jk l .(4.5)
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Contracting (4.5) with y j yields

L jk l = −
1
2

ym g im B i
jk l .(4.6)

Differentiating of (4.3) implies that

dΩ j
i − ω k

i ∧Ω j
k + ω j

k ∧Ω k
i = 0.(4.7)

Define B i
jk l ∣m and B i

jk l ,m by

dB i
jk l − B i

mkl ω
m
i − B i

jml ω
m
k − B i

jkm ωm
l + B i

jk l ω
i
m ∶= B i

jk l ∣m ωm + B i
jk l ,m ωn+m .

(4.8)

Similarly, one can define R i
jk l ∣m and R i

jk l ,m by following

dR i
jk l − R i

mkl ω
m
i − B i

jml ω
m
k − R i

jkm ωm
l + R i

jk l ω
i
m ∶= R i

jk l ∣m ωm + R i
jk l ,m ωn+m .

(4.9)

By (4.7), (4.8), and (4.9), one obtains the following Bianchi identities:

Rh
mi j∣k + Rh

m jk∣i + Rh
mki∣ j = −Bh

mir Rr
jk − Bh

m jr Rr
k i − Bh

mkr Rr
i j ,(4.10)

B i
jk l ∣m − B i

jkm∣l = R i
jk l ,m ,(4.11)

B i
jk l ,m = B i

jkm , l .(4.12)

Letting i = k in (4.11) yields

Bk
jk l ∣m − Bk

jkm∣l = Rk
jk l ,m .(4.13)

F is a strongly Ricci-quadratic metric; then from (4.13), we get

Bk
jk l ∣m = Bk

jkm∣l .(4.14)

Multiplying (4.14) with ym implies that

H jk = E jk∣m ym = 0.

This completes the proof. ∎

Generally, two-dimensional Finsler metrics have some different special Rieman-
nian and non-Riemannian curvature properties from the higher dimensions. In [20],
Yan-Deng studied homogeneous Einstein (α, β)-metrics and proved that any homo-
geneous Ricci-flat (α, β)-metric with vanishing S-curvature must be a Minkowski
space. Here, we prove the following.

Lemma 4.2 A homogeneous Finsler surface is Ricci-flat if and only if it is locally
Minkowskian.

Proof Every Finsler surface has scalar flag curvature K = K(x , y) – namely, F
satisfies

R i
j = KF2h i

j .(4.15)
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Taking a trace of (4.15) implies that Ric = KF2. From the assumption, we find that
K = 0 and then F is a R-flat Finsler metric. By Lemma 3.5, we get the proof. ∎

Lemma 4.3 Every homogeneous strongly Ricci-quadratic metric of isotropic flag
curvature is a Riemannian metric or locally Minkowskian.

Proof Let F be a homogeneous Finsler metric of isotropic flag curvature K = K(x).
Thus, we have R i

j = KF2h i
j and taking a trace of it yields

Ric = (n − 1)KF2 .(4.16)

By assumption, F is strongly Ricci-quadratic

Ric = Rm
m = Rm

j ml(x)y j y l .(4.17)

Comparing (4.16) and (4.17) implies that

KF2 = 1
n − 1

Rm
j ml(x)y j y l .(4.18)

Let at a point x0 ∈ M, K(x0) = 0 holds. In this case, the homogeneousness of (M , F)
implies that K(x) = 0,∀x ∈ M. By (4.16), F is Ricci-flat. By assumption, we get R i

j = 0.
Then, Lemma 3.5 implies that F is locally Minkowskian.

Now, let K(x) ≠ 0, ∀x ∈ M. Then (4.18) yields

F =
√

1
(n − 1)K Rm

i m j y i y j .

In this case, F is Riemannian. ∎

Proof of Theorem 1.2 Let (M , F) be an n-dimensional strongly Ricci-quadratic
Finsler manifold of scalar flag curvature K = K(x , y). By Lemma 4.1 and Akbar-
Zadeh’s theorem, we find that F has isotropic flag curvature K = K(x). By Lemma 4.3,
we get the proof. ∎

A Finsler metric F on an n-dimensional manifold M is called an Einstein metric
if its Ricci curvature satisfies Ric = (n − 1)μF2, where μ = μ(x) is a scalar function
on M. In [7], Deng-Hou proved that a homogeneous Einstein-Randers space with
negative Ricci curvature is Riemannian. Here, an extension of their result to two-
dimensional homogeneous metrics is presented.

Corollary 4.1 Every homogeneous negatively curved Einstein Finsler surface is a
Riemannian metric of constant sectional curvature or locally Minkowskian.

Proof Every Finsler surface of scalar flag curvature K = K(x , y) satisfies R i
j =

KF2h i
j . Taking a trace of it yields

Ric = KF2 .(4.19)

By assumption, F is an Einstein Finsler metric

Ric = μF2 ,(4.20)
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where μ = μ(x) is a scalar function on M. By considering (4.19) and (4.20), we get
K = μ(x) (i.e., F is of isotropic flag curvature). Every scalar function on M which is
invariant under isometries of (M , F) is a constant function. Thus, the homogeneity
of (M , F) and invariancy of the flag curvature under isometries of F imply that K =
constant. If K = 0, then by Lemma 3.5, F is locally Minkowskian. If K < 0, then by
Lemmas 3.1 and 3.2, and Akbar-Zadeh’s theorem in [1], F reduces to a Riemannian
metric. This completes the proof. ∎

In [20], Deng-Yan proved that a homogeneous (α, β)-space with vanishing S-
curvature and negative Ricci curvature must be Riemannian. As a rigidity result,
they showed that a homogeneous Ricci-flat (α, β)-space with vanishing S-curvature
must be locally Minkowskian. Here, we extend their theorem for the Finsler metric
satisfying H = 0 and prove the following.

Corollary 4.2 A homogeneous Finsler surface of non-positive Ricci curvature has
vanishing H-curvature if and only if it is Riemannian or locally Minkowskian.

Proof By Akbar-Zadeh’s theorem, every Finsler metric of scalar flag curvature
K = K(x , y) has isotropic flag curvature K = K(x) if and only if H = 0. By the same
argument used in Corollary 4.1, we get K = constant. Every Finsler surface satisfies
Ric = KF2, which by considering the assumption, we get K ≤ 0. For homogeneous
Finsler metrics, we find that F is Riemannian (if K < 0) or locally Minkowskian (if
K = 0). ∎

The 4-th Hilbert problem is to characterize Finsler metrics on an open subset in
R

n whose geodesics are straight lines. Such Finsler metrics are called projectively flat
Finsler metrics. For homogeneous locally projectively flat Randers surfaces, we prove
the following.

Corollary 4.3 Every homogeneous locally projectively flat Randers surface of constant
Ricci curvature is Riemannian surface of negative constant sectional curvature or locally
Minkowskian.

Proof Let F = α + β be a locally projectively flat Randers metric on an n-
dimensional manifold M. Suppose that it has constant Ricci curvature

Ric = (n − 1)cF2 ,(4.21)

where c = constant. In this case, it is proved that c ≤ 0 (see Theorem 8.1.2 in [5]).
However, every projectively flat Finsler metric is of scalar flag curvature – namely, it
satisfies R i

j = KF2h i
j , where K = K(x , y) is a scalar function on TM. Taking a trace of

it yields

Ric = (n − 1)KF2 .(4.22)

By (4.21) and (4.22), it follows that K = c. If c = 0, then by Lemma 4.2, F is locally
Minkowskian. If c < 0, then by Akbar-Zadeh’s theorem, F reduces to a Riemannian
metric. ∎
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As the final conclusion of Section 4, we consider three-dimensional homogeneous
Randers metrics and prove the following.

Corollary 4.4 Let (M , F) be a three-dimensional homogeneous negatively curved
Randers metric. Then the followings hold:
(i) If F is an Einstein metric, then it is Riemannian or locally Minkowskian;
(ii) If F is of sectional flag curvature, then it is Riemannian or locally Minkowskian.

Proof Let F = α + β be a homogeneous negatively curved Randers metric on a
three-dimensional manifold M. In [13], Robles showed that a three-dimensional
Randers metric is an Einstein metric if and only if it is of constant flag curvature.
Also, Chen-Zhao proved that an n-dimensional Randers metric (n ≥ 3) is of sectional
flag curvature if and only if it is of constant flag curvature (see page 88 in [5]). By
considering the assumption, in both cases (i) and (ii) of this corollary, F has non-
positive constant flag curvature. Then, by Akbar-Zadeh’s theorem and Lemma 3.5, F
is Riemannian or locally Minkowskian. ∎

It is interesting to characterize Einstein metrics with quadratic Ricci curvature.
Then, we prove the following.

Corollary 4.5 Every n-dimensional Einstein metric is strongly Ricci-quadratic if and
only if it is a Riemannian or Ricci-flat metric. In the case of n = 2, F is Riemannian or
locally Minkowskian.

Proof Let F be an Einstein metric

Ric = (n − 1)λF2 ,(4.23)

where λ = λ(x) is a scalar function on M. By (4.23), we have

λ = 1
n − 1

Ric
F2 ,

which shows that λ is invariant under isometries. According to the assumption, F is
strongly Ricci-quadratic. Thus,

Ric = Rm
j ml(x)y j y l .(4.24)

Let at a point x0 ∈ M, λ(x0) = 0 holds. In this case, the homogeneousness of (M , F)
and the invariant property of λ imply that λ(x) = 0, ∀x ∈ M. In this case, F reduces
to a Ricci-flat metric. Now, suppose that λ(x) ≠ 0,∀x ∈ M. Then by (4.23) and (4.24),
we get F =

√
a i j(x)y i y j , where

a i j ∶=
1

(n − 1)λ Rm
i m j(x).

It shows that F is Riemannian. In the case of dim(M) = 2, by Lemma 4.2, we get the
result. ∎

For 4-th root Finsler surfaces of Einstein-type, we get the following.
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Corollary 4.6 Let F = 4
√

A be a non-Riemannian homogeneous fourth root surface.
Then F is an Einstein metric if and only if it is locally Minkowskian.

Proof According to the argument used in Corollary 3.3, the Ricci curvature Ric of
a 4-th root Finsler metric is a rational function in y. By assumption, we have Ric =
c(x)F2, where c = c(x) is a scalar function on M. The left side of this relation is a
rational function in y, while the right side is an irrational function in y. Thus, c = 0,
and F is a Ricci-flat metric. By Lemma 4.2, F is locally Minkowskian. The converse is
trivial. ∎

An (α, β)-metric is called of polynomial-type if ϕ(s) = ck sk + ck−1sk−1 +⋯+ c1s +
1, where 2 ≤ i ≤ k are real constants, ck ≠ 0 and k ≥ 2. The well-known square metric
F = (α + β)2/α2 is a special polynomial-type (α, β)-metric. Here, we prove the
following.

Corollary 4.7 Every two-dimensional non-Riemannian homogeneous (α, β)-metric
of polynomial-type is an Einstein metric if and only if it is locally Minkowskian.

Proof Let F = αϕ(s), s = β/α, be an (α, β)-metric on an n-dimensional manifold
M with n ≥ 2. Suppose ϕ = ϕ(s) is a polynomial in s of degree k (k ≥ 2). In [6], it is
proved that if F is an Einstein metric, then it is Ricci-flat. Then, by Lemma 4.2, we get
the proof. ∎

Let (M , F) be an n-dimensional Finsler manifold. For a nonzero vector y ∈ Tx M,
define the Weyl tensor Wy ∶ Tx M → Tx M by Wy(u) ∶=W i

j (y)u j∂/∂x i ∣x , where

W i
j ∶= Ai

j −
1

n + 1
∂Ak

j

∂yk y i ,(4.25)

and

Ai
j ∶= R i

j − Rδ i
j , R ∶= 1

n − 1
Rm

m .

Then, F is called a Weyl metric if W = 0. It is well-known that a Finsler metric is of
scalar flag curvature K = K(x , y) if and only if it is a Weyl metric. A Finsler metric F
is said to be W-quadratic if W i

k are quadratic in y. Every Weyl metric is a trivial W-
quadratic metric. Also, R-quadratic Finsler metrics are W-quadratic. But the converse
may not hold. In [11], Li and Shen find the necessary and sufficient condition under
which a Randers metric F = α + β is W-quadratic.

A Finsler metric is called a generalized Douglas-Weyl metric if its Douglas tensor
satisfies D i

jk l ∣m ym = Tjk l y i for some tensor Tjk l . All Douglas and Weyl metrics are
generalized Douglas-Weyl metrics [5]. Here, we prove Theorem 1.3.

Proof of Theorem 1.3 Every two-dimensional Finsler metric is of scalar flag curva-
ture and then is a generalized Douglas-Weyl metric. However, by Theorem 5.4.1 and
Corollary 6.3.1 in [5], we find that every generalized Douglas-Weyl Randers metric is
W-quadratic. Then by Theorems 1.1 and 1.2, we get the proof. ∎
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In the class of non-homogeneous Finsler metrics, we have many W-quadratic
Finsler metrics on a closed manifold. Indeed, by the uniformization theorem, every
closed surface with genus > 1 admits a Riemannian metric of constant negative
sectional curvature. So, by perturbing it, we can get non-Riemannian Randers metrics
of negative curvature. Using the same argument in Theorem 1.3, we find that these
metrics are W-quadratic metrics.

Considering Cheng-Shen’s conjecture, another question arises:

Is there any homogeneous closed W-quadratic surface that is not of Berwald-
type?

Here, we show that there is not any pure homogeneous two-dimensional W-
quadratic metric on a closed surface. More precisely, we prove Theorem 1.4 as follows.

Proof of Theorem 1.4 Denote the surface as G/H in which G is the connected
isometry group. Then G is compact with 2 ≤ dim(G) ≤ 3. When dim(G) = 3, then
it is a standard Riemannian sphere of constant curvature. When dim(G) = 2, then G
is Abelian and the metric reduces to a locally Minkowskian metric. ∎

5 Counterexamples to the Cheng-Shen conjecture

In [2], Atashafrouz-Najafi constructed a three-dimensional homogeneous W-
quadratic Randers metric which is not Berwald-type. Here, by using the navigation
problem, we construct a four-dimensional W-quadratic Randers metric on a closed
manifold which is nontrivial in the sense that it is not a Weyl metric.

Example 4 (four-dimensional W-quadratic Randers Metric) Any Randers metric
F = α + β on the manifold M is a solution of the following Zermelo navigation
problem:

h(x , y
F
−Wx) = 1,

where h =
√

h i j(x)y i y j is a Riemannian metric andW =Wi(x)∂/∂x i is a vector field
such that

h(x ,−Wx) =
√

h i j(x)Wi(x)W j(x) < 1.

In fact, α and β are given by

α =
√

λh2 +W0

λ
, β = −W0

λ
,

respectively, and moreover, λ = 1 − ∥W∥2
h and W0 = h i jW

i y j [5]. Now, F can be
written as follows:

F =

√
λh2 +W2

0

λ
− W0

λ
.(5.1)

In this case, the pair (h,W) is called the navigation data of F. On the Lie group G =
SU(2) × S1, we can find a non-Riemannian bi-invariant Randers metric F which is
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induced by navigation from a bi-invariant Riemannian metric h on G and the vector
field W = c∂/∂t from S

1. Then F is a Douglas metric because it is of Berwald-type.
Thus, it is W-quadratic. However, F is not of scalar flag curvature – namely,

W ≠ 0.

At any point x ∈ G, linearly independent vectors y, z ∈ Tx G are tangent to the SU(2)
factor, and the nonzero vector w ∈ Tx G is tangent to the R-factor. Then, we get

K(x , y, y ∧ z) > 0, K(x , y, y ∧w) = 0.

It follows that F is not projectively flat.

In the following example, we quote the well-known classification of two-
dimensional Lie groups which admits a left invariant Randers metric.

Example 5 (two-dimensional W-quadratic Randers Metrics) It is well-known that
there are only two non-isomorphic Lie algebras in dimension two: one is commu-
tative, and the other one has a basis {e1 , e2} such that [e1 , e2] = e1. Each Lie algebra
corresponds to a unique connected and simply connected Lie group. So, there are
essentially two Lie groups in dimension two. On any given Lie group G, a left invariant
metric can be defined by assigning a Minkowski norm on its Lie algebra TeG, and then
left translating it to other points. Therefore, every Lie group G admits a left invariant
Randers metric because one can freely assign a Randers norm to Te G. These Randers
metrics are W-quadratic which are not R-quadratic nor strongly Ricci-quadratic.

Maybe, other than Example 5, there exist nontrivial homogeneous W-quadratic
metrics of dimension n ≥ 3. During the preparation of this paper, Libing Huang
informed me that Lun Zhang classified all three-dimensional Lie groups which admit
a left invariant Randers metric of scalar flag curvature. His result shows that there are
only three possibilities:
(i) The group E(2) of all Euclidean motions on the plane with a locally Minkowski

metric;
(ii) The group SU(2) or SO(3) with Bao-Shen metrics;
(iii) The hyperbolic model of a Riemannian space of constant sectional curvature -1,

with a Randers metric, is given by this Riemannian metric plus a left invariant
closed one-form.

Case (iii) of the above classification certifies our claim. It is remarkable that Zhang has
excluded the trivial case of a commutative group R

3, with Minkowski metric. Case (i)
can also be found by Huang (for more details, see Section 5.1 in [10]).

By considering Theorem 1.3, an interesting question arises:

Is there any homogeneous W-quadratic surface that is not R-quadratic?

Here, by using Theorems 1.1 and 1.2, we construct a family of two-dimensional
homogeneous W-quadratic metrics that are not trivial.
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Example 6 (A family of W-quadratic Randers metrics) Let G be a two-dimensional
connected and simply connected Lie group which is not Abelian. Then G admits a
left invariant Riemannian metric α =

√
a i j(x)y i y j with constant curvature Kα = −1.

Let β = b i(x)y i be a nonzero left invariant one-form on G. Then for t ∈ R sufficiently
close to 0, Ft = α + tβ is a family of non-Riemannian left invariant Randers metrics
on G. When t is sufficiently close to 0, Ft has negative flag curvature, so they are
not locally Minkowskian. However, by applying the same argument used in Theorem
1.3, we find that {Ft}t∈R are W-quadratic. Then, by using Theorems 1.1 and 1.2, we
conclude that {Ft}t∈R is a family of W-quadratic Randers metrics which are not R-
quadratic nor strongly Ricci-quadratic.
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