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Abstract. In this article we prove a Chern—Lashof inequality for immersions of manifolds &ith
spherical ends. Related to this inequality we discuss different types of tightness. In particular we shall
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1. Introduction

The starting point for the theory of tightness was the so-callbdrn—Lashof
inequality[4], [5]. This inequality gives a lower estimate (tMorse numberjor
the total absolute curvaturef an immersionF: Y — R™, whereY denotes a
compact manifold. The Morse number itself is bounded below bytdtsd Betti
number as elementary Morse Theory shows.

One calls such an immersiaight if the Chern—Lashof inequality is in fact an
equality. This geometric condition can also be expressed in terms of homology
([3]). For two-dimensional closel tightness is equivalent to the so-callsab-
piece-propert(TPP), i.e. every hyperspace cuts the manifold into at most two
pieces.

The concept of tightness had been mainly restricted to immersions of compact
manifolds for a long time. In [9] this was extended to certain immersions of
noncompact manifolds, tévintgen immersionsf manifolds with finitely many
ends. For such immersions there is a hierarchy of tightness condistnag
tightness, tightnesandweak tightness

In this paper we consider almost arbitrary immersions (we shall call sesni-
Wintgen immersionsof noncompact manifolds. We restrict our consideration to
manifolds withH-spherical endsi.e. each end is an homology sphere. The most
popular example of this type of manifolds are obtained by removing finitely many
points from a compact manifold.

We shall extend the Chern—Lashofinequality stated in [9] to immersions of such
manifolds. We shall prove in Section 3 the following inequality:
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18 MARTIN VAN GEMMEREN
tad X, F) > f(X) —1, if X hasoneend

and
tad X, F) > (X) — 2, if X has at least two ends

where ta¢X, F') denotes the total absolute curvature ahd’) the total Betti
number. Thus we have to distinguish the discussion by the number of ends of the
manifold.

This inequality yields to another tightness condititotal tightnessi.e. the
inequality above is an equality.

We examine these different conditions of tightness (mentioned above) in detalil
in Section 4. The main result is there that a submanifold with at leastHwo
spherical ends is total tight only if the ends are of a certain geometric\yipégen
immersion in other words there are only finitely many direction along which the
immersion moves to infinity. These directions are cadlilmit directions In detail,
we shall prove the following relations for an immersiBnX — R™ of a manifold
with H-spherical ends:

In the case of exactly one end we have the following implications:

strong tight <= tight <= weak tight A 5,_1(X) =0
and
total tight = F' is not a Wintgen immersion
In the case of at least two ends the following holds:
strong tight = total tight <= tight <= weak tight A vol (C) = ¢in—1
and in particular
total tight = F' is a Wintgen immersian

(vol(Cs = VoI(S™ 1) means that the convex hull of limit directions fills in the
sphere.) In the sequel every manifold and every function is supposed to be smooth.
A manifoldis an unbounded manifold with finitely many ends in the sense of
Freudenthal (see e.g. [9]). For basic results in topology we refer to [6] and [7]. For
basic results in differential topology and Morse Theory we refer to [14] resp. [13].

The related topic of tautness in the noncompact case is considered in [2].

We shall restrict our considerations to a certain type of homology at infinity of
X. For this we recall the definition of the homology at the ends [9]:
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PROPOSITION and DEFINITION 1.1. (Det (U, ) be a countable base of punc-
tured neighbourhoods of the end,,. Let H, be a homology theory. Then the
definition of thehomology of the endo,

H,(ook) := invlim ,enH, (U,)

does not depend on the choicebF)).

(i) We call X a manifold with H-spherical endf H, () := ®,H,(00,) is
trivial for everyv # 0,n — 1.

Proof. See [9]. O

EXAMPLE 1.2. If one removes finitely many points from a compact manifold one
obtains a manifold wittH -spherical ends.

We shall examine th&otal absolute curvaturef immersionsF: X — R™ of
manifoldsX with H-spherical ends.

DEFINITION 1.3. LetF: X — R™ be a proper immersion.

(i) The determinant of the shape operatarBX — R is called theLipschitz—
Killing curvature defined as a function on thenit normal bundleBX. L is the
Gaussian curvature in the case of hypersurfaces.

In the case of orientabl& the normalized Lebesgue integral

tad X, F) = - 11 /BX |L|dA, ¢, 1= Vol(S™7Y),

where 4 is the induced volume element @& X is called thetotal absolute
curvature of F. S™~1 denotes the sphere of unit vectors at the origiiih For
non-orientableX one defines the total absolute curvature by using the orientable
double covering. For more details of these definitions see [3], [8].

(i) For e € S™~1 we call the mapping

he: X — R, x — (F(x),e)

thee-height functior.,. with respect tee and F'.
(ii) For f: X — R,v € Nthevth Morse number of, i1, (f), is defined by

wy(f) == {z € X|z is a non— degenerate critical point fgf of indexv}.

The(total) Morse number of is defined by:
u(f) = Z pw (f)-
v=0

Bu() = dim(H,( )) is called thevth Betti numberandg( ) := >, 5,( ) the
total Betti number
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2. Morse Theory and generalized Morse inequality

In this section we generalize the Morse inequality given in [9] to a wider class
of functions. We shall considéiorse—Palais—Smale functigrise. functions that
obey the following definition:

DEFINITION 2.1. We call a differentiable functiofi: X — R Morse—Palais—
Smale—functioif f satisfies thévlorse conditiorand thePalais—Smale conditian

The Morse condition requires thahas only finitely many critical points, in the
sense of Braess [1]. The Palais—Smale condition (or condition C, [19]) is satisfied,
if there is no sequende,) € X" such that

(z,) — o0, df (z,) — O, |f(x,)]is bounded

E.g. the Palais—Smale condition is satisfied for prgper

If the Morse—Palais—Smale functigrhas critical points we denote the smallest
critical value byr; € R, otherwiser; := 0. The setE; = f~((—oo,ry)) is
called thelower end off.

The Palais—Smale condition requires that there is no critical point at ‘infinity’.
Note, we do not clainf to be bounded, in contrast to [17], [18] and [19]. This will
change essentially the Morse inequalities.

Let us recall the Main Theorem for Morse—Palais—Smale functions:

THEOREM 2.2.Let f: X — R be a Morse—Palais—Smale function. Then the
homotopy type of theublevelsetsf —1((—oo,t]), t € R changes exactly at the
critical levels. Indeed, at a critical value the homotopy type changes by adding a
cell of the same dimension as the index of the corresponding critical point.

Proof. See [10]. O

Now we can state a very first version of the desired inequality:

COROLLARY 2.3.Letf: X — R be a Morse—Palais—Smale function. Then
o (f) = Bu(X, Ef) forveN
Proof.We get by Theorem 2.2:
/J'V(f) > ﬁV(X\E*f? Ef)a
asin ([19] or [13]). Furthermore
H.(X\E_y) = H.(X).
Therefore we get by considering the exact sequence of theXpdir_;, X
H,.(X,X\E_;) = {0}.
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We conclude with the exact sequence of the triple X\ E_;, X:
H*(X\E_f,Ef)gﬂ*(X,Ef) a

This inequality together with the following homology inequality enables us to state
the desired lower bound for tax, F').

LEMMA 2.4.Let X have H-spherical ends ang: X — R be a Morse—Palais—
Smale function. Then

%(B(XaEf)"i_/B(XvE*f))>/B(X)_1a ifk:]_,

LB(X, By) + BX.E_ ) > 3 8(X) = 36, (s0)| = B(X) = 2,if k > 2.
v=0

Moreover, equality in the second case implies thatu E_; is a punctured
neighbourhood of every end: {lenotes the number of endsXf)

Proof. In the case of a surfac¥, i.e.n = 2, we get by the exact sequence of
the pairEy, X:

Bi(X, Ef) > Pi(X) — Bu(Er) — Bo(X) + Bo(Ef)
> f1(X) — 14 Bo(Ef) — B(Ef),

if £y # 0, otherwise

ﬁu(Xa Ef) = /BU(X)

This shows the assertion.
Let nown > 3. LetUs,..., U, be disjoint connected neighbourhoods of the
endsooy, . .., 00k. We define:

Ef = Ef\ UUNQE_f:@ UK,? E*f = E*f\ UU,.yﬂEf:@ UK,?

whereE; UE_; C Uf_ U, wlog. IfE; =0orE_; =0,ie. EfUE_sisa
punctured neighbourhood of every end, the proof can be finished as in [9].

Supposel??f £ 0 andE_f # (. (That means there are ends which are cut into at
least two pieces. The homology of these end pieces is arbitrary, in general. But the
homology differs from the homology of the ends which are cut in exactly one piece
by vanishing of thgn — 1)th homology. Therefore we shall distinguish between
these two types.)
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Consider the following diagram:

A |

— H,(Ef) — H,(Ef) — H,(Ey,Ef) — H, 1(Ef) —
H,,(X', Ey)
HI,(X:, Ey)
vH, 1(E;) — H, 1(Ef) — ufl(éfaEAf) — H, 3(Ef) —

Forv #1,2,n — 1,n we get

Hu(Ef’ Ef) = {0}5

Hu—l(EfaEf) = {O}a
therefore

BV(Xa Ef) = /BU(Xa Ef)
The diagram gives also:
Bu(X, Ef) + Bu-1(Ey, Ef) + Bn-1(X, Ef) = Bu(X, Ey) + Bu-1(X, Ey),

for this we used3, (E;, E;) = 0 (sincef,-1(E;) = 0). By the same argument
we get by considering the next exact sequence

— Hn(Ef,Ef) — Hn_l(Ef) — Hn_l(Ef) —

— Hn_l(Ef,Ef) — Hn_z(Ef) E} Hn_z(Ef) —,
the following equality

Bu-1(Ey) = Bu-1(Ey, Ey).
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Thus, sinces, (X, ) = 0, we obtain:

Bu-1(E) + Bn-1(X, Ep) = Bu(X, Ef) + Bu-1(X, Ey). (*)
In the case of three-dimensionglthe exact sequence of the pair £, resp.
X, By,

— H,(Ey) = H,(X) = H,(X, Ey) -,
— H,(Ef) = H,(X) = H,(X, Ef) —
shows the equalities
X(X) =x(X,Ey) + x(Ey)

and

3
ZBV(XaEf) = ZﬂZ(XaEf)_X(XaEf)
v=0
= 26:(X,Ey) — x(X, Ey) — x(Ey) + x(Ey)

3

= S B(X, By) + 2a(X, Ey) — Bo(X, Ey)
v=0

+Bo(Ey) — BL(Ey) + Bo(Ey) — Po(Ey) + Bu(Ey)

3
" Bu(X,Ey) + 2(Ba(X, Ef) — Bo(X, Ey) + 2B2(Ey)
v=0

3
D S B,(X, By) + 265(X, By). )
v=0

—~

Let nown > 4. We get again by the diagram above:
BL(Ey, Er) — Bo(Er) + Bo(Ey) — Bo(Ey, Ef) =0,
Bo(Ey, Ep) + Bu(X, Ef) + B2(X, Ef) = Ba(X, Ey) + Bu(Ey, Ey) + Bu(X, Ey),
therefore

BuX, Ey) + Ba(X, Ef) + Bo(Ey) = Bo(X, Ey) + Bu(X, Ef) + Bo(Ey)
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Altogether forn > 4
S B(X,Ep) = > Bu(X, Ey) — Bu(X, Ey) — Bo(X, Ey) — Bu-a(X, Ey)
v=0 v=0
+01(X, Ey) + f2(X, Ef) + B 1(X, Ef) + Bu(X, Ef)

= 3" Bu(X, By) + 260(X, By) + 2065(X, By) — (X, By)).
v=0

The five Lemma applied to the following diagram:

—Hy(Ef) — Hp(X) — Ha(X, Ef) — Hi(Ej) — Hi(X) —

14
14
14
14

— Hy(Ey) — Hy(X) — Ho(X,Ey) — Hy(Ef) — Hy(X) —
giVESﬂz(X, Ef) = ﬁz(X, Ef). Thus
S BUX.E) =Y Bu(X,Ef) + 28,(X, Ey), (+ * %)
v=0 v=0

which is valid forv > 3 (see(xx)).
We denote the ends which have a nonvoid intersection Wijtlor £_; by co,
i.e.

S0 = Up,.ne;#0Ux Yu.ne_ 0 Uk-

Consider the next diagram:

— H, (X, &%) — H,(%) —2— H,(X) —— H,(X,%0) —

IR

J2

IR
.
=

— Hyy1(X, &) — Hy, (S0, By) =2+ H,(X, Bf) — H,(X,50) —
Diagram chasing ([7]) shows:
ker(j2) = i1(ker(j1)).
We receive

B,(X) < Bu(X,E;) forv+#n-—1,0,
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becausé; = j; = 0forv #n — 1,0.
We conclude:

Zﬁu(XaEf) + Z/BU(XaEff) - ZZBV(X) +2
v=0 v=0 v=0

n

=Y B(X,Ep)+ > Bu(X,E_y)

v=0 v=0
+260(X, Ef) + 26,(X, E_f) =2 B, (X) + 2
v=0

(e

2 Baoa(X,By) + foa(X, B f) = 2602(X)
1 26,(X, By) + 26, (X, E_)

(%)

> Bn-1(Ef) — fpn-1(X) + Bn-1(X, Ey)
+Bn-1(E_f) = Bn-1(X) + Bn-1(X, E_y)

>0,

at the last step we used the exact sequence of thefpaik resp.E_;, X. This
shows the assertion fdt = 1. For the casé& > 2 we finish by showing the
following inequality:

BX)—1> Y |B,(X) — 3B,(c0)| = B(X) — 2
v=0

(Thus equality in the desired inequality may only appear if every end is cut in

exactly one piece.)
The exact sequence of the pair, X:

{0} = H,(X,00) = Hp_1(c0) = Hp1(X) = Hp1(X,00) —
together withs, (X, oo) = 1 proves:

1+ Bn-1(X) > Bp-1(00).
Thus we get fok > 2

anl(X) = I@LlTw

This completes the proof. O
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COROLLARY 2.5.Let X have H-spherical ends ang: X — R be a Morse—
Palais—Smale function. Then the following Morse inequality holds:

p(f) =2 B(X) =1, ifk=1,

and
u(f) 2 3 1B (X) = 3B,(c0)| = BX) —2, ifk>2
v=0

Proof. Combine Lemma 2.4 and Corollary 2.3. O

3. Total absolute curvature and tightness

We are interested in a lower bound of the total absolute curvature of an immersion
F: X — R™. The total absolute curvature is equal to the expectation value of
critical points of a random non-degenerate height function. Therefore, we need an
lower bound of the number of critical points of such an height function. For this we
shall use the inequalities of Section 2. Thus we have to guarantee that almost every
height function is a Morse—Palais—Smale function, i.e. we shall consider only those
immersions that corresponding height functions are Morse-Palais-Smale functions:

DEFINITION 3.1. We call an immersiof: X — R™ semi-Wintgen immersion if

almost every height function with respectiibis a Morse—Palais—Smale function.
F'is called Wintgen immersion if there are only finitely many limit direction

corresponding td?. (A limit direction is a directiorw € S™~1 such that there

exists a sequende, ) € X with lim,,_, % = [9], [21].)

In a geometric sense semi-Wintgen immersion are immerions whose corre-
sponding normal vectors at infinity have measure zero as a subS&tdf Rather
odd example show that this does not have to be the case in general, however for
our purpose this will be the case,see below.

Every Wintgen immersion is a semi-Wintgen immersion.

PROPOSITION 3.2Let F': X — R™ be a proper immersiort’ is a semi-Wintgen
immersion ify, is almost everywhere continuous.

Proof. For the definition ofu, see Definition 1.3(iii).. is almost everywhere
continuous if and only if: is almost everywhere locally constant, i.e. if for almost
everye € S™~! there is a neighbourhood "~ where, is constant. This is
equivalent to the situation that there is a closed zerolset 5™~ such tha: is
local constant in the complement 4f

The Gauss map is regular outside a closed zeralset S™~1 (Sard’s Theo-
rem). Thus for everyin the complementafl’ there is a neighbourhodd c §™ 1
such that the preimage 6f under the Gauss map consists0k..) diffeomorphic
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subsets of the unit normal bundle which are disjoinCioNow, if 4 is almost
everywhere constant we may assum# be constant i/. That means all the
height functions corresponding td satisfy the Palais—Smale condition. (For this
lete € U suchthat, fails the Palais—Smale condition. Thus there existsaadr ,
andR € R, another directior’ € S™~* such that the corresponding height func-
tion possesses a singularity outside the ball of rali@d||¢’ — ¢|| < &, i.e. the
singularity lies outside the preimage @fbute’ € U, w.l.o.g. Thush. possesses
more tharu(h.) singularities. Contradiction.) O

We are interested in the concept of tightness of noncompact submanifolds. Obvi-
ously tightness implies at least that almost every height function has the same
number of critical points (see [3]), i.g.is almost everywhere constant. Thus the
restriction to semi-Wintgen immersions is redundant for our purpose.

THEOREM 3.3Let F: X — R™ be a semi-Wintgen immersion. Then
tad X, F) > p(X) -1, ifk=1,

and
@A, F) > 3 |5,(X) — 16, (00)| = BX) ~ 2, Tk >2
v=0

with equality in the second case onlyfifis a Wintgen immersion.

Proof. The integral of total absolute curvature is equal to the expectation value
of the number of critical points of a random non-degenerate height function [3],
[8]. Thus with the Morse inequality in Corollary 2.5 in turn we get the stated
inequalities, where in the second case equality holds only if for almost every height
function the corresponding (lower and upper) ends are neighbourhoods of every
end of X. The last is only the case if almost every direction is not perpendicular
to the set of limit directions, i.e. if there is only one limit direction w.r.t. each end.
ThusF has to be a Wintgen immersion. O

According to the compact case we define in the next setbi@h tightnessas the
case of equality.
4. Different types of tightness

We discuss different types of tightness: strong tightness, tightness, weak tightness
andtotal tightness

DEFINITION 4.1. LetX haveH-spherical ends. We call a semi-Wintgen immer-
sion F: X — R™ total tightif the Chern—Lashof inequality of Theoren®33s in
fact an equality forF".

https://doi.org/10.1023/A:1000301702170 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000301702170

28 MARTIN VAN GEMMEREN
From ([9]) we recall:

DEFINITION 4.2.Let F: X — R™ be a Wintgen immersion.
(i) Fis calledweak tightif for v € N for almost every € §™1
Hi(X¢, En,) = Hi(X, Ep,)

is injective forr € R.
(i) F is calledtight if for v € N for almost every € S™~1

Hi(X") & Hi(X",) — H;(X") & H;(X",)

isinjective forevery, ' € R,r < r' oris surjective forevery,r’ € R,r < r’.
(iii) F is calledstrong tightif for v € N for almost every: € §™~1

Hi(X7) — Hi(X)
is injective forr € R.

Note, that in this definitio# is required to be a Wintgen immersion in contrast
to Definition 4.1.

In accord to Theorem 3.3 we have to distinguish the discussion between the
cases of exactly one end and at least two ends.

THEOREM 4.3Let X haveH-spherical ends and: X — R™ be a semi-Wintgen
immersion. Then in the case of only one end:

—if F is total tight ' cannot be a Wintgen immersion,

— Fis tight if and only ifF' is strong tight, this is only the case if tire — 1)-th
Betti number ofX vanishes. If3,_1(X) = 0then (strong) tightness and weak
tightness are equivalent.

In the case of at least two endsis total tight if and only ifF' is tight. Thus in this
case total tightness impligs is a Wintgen immersion.

Proof. The first part follows by comparing the Chern—-Lashof inequality for
Wintgen immersions in [9] and the Chern—-Lashof inequality in Section 3. The
second part follows from the second part of Theorem 3.3. O

We give some examples for the first part of the theorem:

EXAMPLE 4.4. () R* C R™ is total tight but no Wintgen immersion. Despite
there exists a tight immersion.

(ii) Consider the projective spa€#™ as the subset of the euclidean space given
by the hermitian mappings a@”t*. (CP" is the subset given by the orthogonal
projection with respect to a direction). The stereographic projection with respect to
an element oE P™ gives a total tight immersion of the punctured projective space,
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since every height function possesses only singularities of even index. Evidently,
this is no Wintgen immersion.

(iii) Consider the two-dimensional Clifford-torus immersed $3. Stereo-
graphic projection w.r.t. an element of the torus gives a total tight immersion
of the punctured torus. But the punctured torus cannot be tightly immersed since
01 # 0. For a visualization see [11].

(iv) One can generalize the examples above by taking a compact taut mani-
fold. We may assume that such a submanifold is a subset of a Euclidean sphere.
Stereographic projection yields to a total tight immersion.

In the case of one end the types tight and total tight are excluding each other
on the other end tightness, weak tightness and strong tightness only differ by the
topology of X. This situation is completely different i has at least two ends.
Then tightness and total tightness are the same and there is a hierarchy of strong
tightness, tightness and weak tightness. The difference between strong tightness
and tightness only depends on the topologyXof[9]). The difference between
tightness and weak tightness is more subtle. In order to describe this difference we
need the convex cone of limit directions, mentioned by [21]:

DEFINITION 4.5. LetF: X — R™ be a Wintgen immersion. We call the set

Co(F) = {e € S™ there is one limit direction such thate, v) > 0,
there is another limit directiom such thate, w) < 0}

theconvex cone of limit directions
The volume of this convex cone is a useful measure for the grade of tightness
of a weak tight immersion:

PROPOSITION 4.6Let X haveH-spherical ends and’: X — R™ be a Wintgen
immersion.Ther is weak tight if and only if

tad X, F) = B(X) —

cm,l\/OI(C"O)'

Proof.In the case of weak tightness a bounded height function possesses exactly
B(X) singularities since in this case the condition of weak tightness becomes
the ‘common’ condition for height function on compact manifolds. We close the
proof by proving that an unbounded height function possesses ex#ctly —

2 singularities. For this lek,. be an unbounded height function. Consider the
following homology sequence:

— Hy1(Ep,) = Hyp1(X) = Hyp1(X, Ep,) —
— H,(Ey,) —» H,(X)— H,(X,E},,) —
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Thus
Bu(X)=0u(X,E,) forveN1l<v<n-—1, (%)

sinceH, (E, ) = {0}.
X is noncompact, thereforg,(X) = 0. This together withs,,_»(E;.) = 0

shows:

Br(X, Ep.) = Bn-1(En,) + Bn-1(X) = Bn-1(X, Ej, ). ()
In addition:

X(X, Ep,.) + Xx(En,) = x(X). (3 %)

(x) and(* = %) prove:
Fo(X) = B1(X) + (=1)" *Bn-1(X) + (=1)" Ba(X)
~Bo(En,) = (=)™ *Ba-1(En,)
= Po(X, En,.) — fu(X, Ep, )
+(=1)" " B1(X, En.) + (=1)"Bu(X, Ey,).

Ey, # 0 givesfo(X, Ey, ) = 0 (X is supposed to be connected).
Now with (kx):

B1(X, Ey,) = B1(X) + Bo(Ep,) — Bo(X),

B(X, Ep,) = B(X) — 24 Bo(En,) + 26 (X, Ep,) — Bn-1(Ep,)-
The ends ofX are H-spherical. This impliego(E},,) = Bn_1(E}, ). Therefore:
B(X, Ep,) = B(X) — 2+ 208,(X, Ep, ).
We conclude by proving,, (X, Ej_) = 1if he is unbounded below ang}, (X, Ey,.)
= 0if h, is unbounded above.
We may assume that has exactly one maximumii, is bounded above arig
has no maximum, otherwise. For this consider the double of the bounded manifold

Y i=ho(rn, —t—rn_, +1]) (tERy)

and apply [15].
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Now, we get by the discussion of Linking-Type and Non-Linking-Type singu-
larities [16]

Bn(XaEhe) =0

if h. is unbounded above.
If h is bounded above we g8} (X, Ej,, ) < 1sincethereis only one maximum.
By Theorem 2.2:

H,.(X,Ey,) = H,.(Y,0Y).
And for the doublé” Uy Y of Y
H,.(Y,0Y) = H,(Y Uy Y,Y),

by the Excision axiom.
The double oft” is a compact-dimensional manifold. Therefore

Hn(Y Ua Y) 7& {O}a

by the Poinca duality.
The exact sequence of the p&irY Uy Y

— Hy(Y) > Hy(YUsY) = Hy(Y Uy YY) —
givesH, (Y Uy Y,Y') # {0}. This proves the assertion. O

COROLLARY 4.7.A weak tight immersion is (total) tight if and only if the convex
cone of limit directions fills in the unit sphereX (is supposed to have at least two
H-spherical ends).

Proof. Follows by the proposition above and the Chern—Lashof inequality in
Section 3. O

References

1. Braess, D.: Morse-Theorié@rfberandete MannigfaltigkeiteMath. Ann.208 (1974) 133-148.
2. Cecil, T.E.: Taut immersions of non-compact surfaces into a Euclidean 3-spabé$erential
Geometryll (1976) 451-459.

3. Cecil, T.E. and Ryan, P.Jight and Taut Immersions of Manifold2itman, London, 1985.

4. Chern, S.-s. and Lashof, R.K.: On the total curvature of immersed manifodasdr. J. Math.
79 (1957) 396-398.

5. Chern, S.-s. and Lashof, R.K.: On the total curvature of immersed manifoldscH, J. Math.
5(1958) 5-12.

6. Dold, A.:Lectures on Algebraic Topolog$pringer, Berlin, 1980.

7. Eilenberg, S. and Steenrod, Raundations of Algebraic topolog¥rinceton University Press,
1952.

https://doi.org/10.1023/A:1000301702170 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000301702170

32 MARTIN VAN GEMMEREN

8. Ferus, D.Totale Absolutkimmung in Differentialgeometrie und -topologs® p., Lecture Notes
in Mathematics 66, Springer, Berlin-Heidelberg, New York, 1968.
9. van Gemmeren, MTotal Absolute Curvature and Tightness of Noncompact manjfptegrint

1995, to appear in Trans. Amer. Math. Soc.

10. van Gemmeren, MAn extrinsic generalization of the Gauss-Bonnet formptaprint 1995.

11. Hilbert, D. and Cohn-Vossen, &eometry and the Imagination€helsea, New-York 1952.

12. Hirsch, M.W.:Differential Topology Graduate Texts in Mathematics 33, Springer, Berlin, Hei-
delberg, New York, 1976, p. 221.

13. Milnor, J.W.:Morse TheoryAnn. Math. Stud. 51, Princeton Univ. Press, 1963, p. 153.

14. Milnor, J.W.:Topology from the Differentiable Viewpojrtharlottesville, University Press of
Virginia, 1965.

15. Morse, M.: The existence of polar non-degenerate functions on differentiable manifofds,
Math. 71 (1960), 352—-383.

16. Morse, M. and Cairns, SCritical Point Theory in Global Analysis and Differential Topology
Academic Press, New York, 1969.

17. Palais, R.S.: Morse theory on Hilbert manifol@ispology2 (1963) 299-340.

18. Palais, R.S. and Smale, S.: A generalized Morse th&uy, Amer. Math. Soc70 (1964)
165-172. Springer 1988.

19. Palais, R.S. and Terng, C.-ICritical Point Theory and Submanifold Geometkycture Notes
in Mathematics 1353, Springer 1988.

20. Sulanke, R. and Wintgen, Rifferentialgeometrie und Faseiiinde| Birkhauser, Berlin, Basel,
Stuttgart, 1972.

21. Wintgen, P.: On total absolute curvature of nonclosed submanifatas,Global Anal. Geon®2
(1984) 55-87.

https://doi.org/10.1023/A:1000301702170 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000301702170

