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1. Introduction. I t is well known that a characteristically-simple finite group, that
is, a group having no characteristic subgroup other than itself and the identity sub-
group, must be either simple or the direct product of a number of isomorphic simple
groups. I t was suggested to the author by Prof. Hall that finite groups possessing
exactly one proper characteristic subgroup would repay attention. We shall call
a finite group having a unique proper characteristic subgroup a 'UCS group'. In the
present paper we first give some results on direct products of isomorphic UCS groups,
and then we consider in more detail one of the types of UCS groups which can exist,
that consisting of groups whose orders are divisible by exactly two distinct primes.

Let K be a proper characteristic subgroup of a group G. Then any characteristic
subgroup of K is characteristic in G; and if LDK and is such that L\K is charac-
teristic in G\K, then L is characteristic in G. Hence a necessary condition for K to
be the unique proper characteristic subgroup of G is that K and GjK should be
characteristically-simple. If either K or GjK is the direct product of simple groups of
composite order, then G is insoluble; on the other hand, if both K and GjK are elemen-
tary Abelian groups of prime-power order, then G is soluble (and in fact is Abelian
or metabelian). In the former case, the order (G) of G is divisible by at least three
distinct primes, and in the latter case by at most two. There are two main classes of
soluble UCS groups, namely groups of prime-power order and groups in which the
order of the characteristic subgroup is prime to its index.

A soluble UCS group of the second kind will be an A -group of order prqs, where
p, q are distinct primes, and its characteristic subgroup will be a Sylow subgroup N,
of order pr (say). There must be more than one Sylow subgroup of order q8, for other-
wise G would have two distinct proper characteristic subgroups. If M is any of the
Sylow ^-subgroups, then M is a complement of N in G and we may writeJ

where # is the homomorphism of M into 9l(iV) defined by

nd(m) _ m-inm (m<=M, neN). (1-1)

The characteristic subgroup N is the derived subgroup of G, and the centre of G is the
identity. (This is a simple example of a general property of A -groups (l, 2).) I t follows
that •& must be an isomorphism, for any element of its kernel permutes with every
element of N and hence belongs to the centre of G. Since further N is characteristic
and M belongs to a characteristic class of conjugate subgroups, we have precisely

J Here we use the notation of (3)—subsequently referred to as 'R'.
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26 D. R. TAUNT

the situation considered in R, § 3, and we shall apply results obtained there to groups
of this kind.

The prime-power UCS groups can be further subdivided into two types, comprising
groups all of whose elements other than the identity are of prime order, and groups
having some elements of order the square of a prime. We hope to return to the con-
sideration of such groups later.

2. Direct products of UCS groups. The direct product of a number of isomorphic
characteristically-simple groups is itself characteristically-simple. The corresponding
result for UCS groups is not true without reservation. In the following theorem we
give conditions under which the result does hold; we shall show by examples that the
removal of the conditions may invalidate the conclusion.

THEOREM 2-1. Let Gbea UCS group with proper characteristic subgroup N, satisfying
the following conditions:

(i) no element of G other than 1 is invariant under every automorphism of G;
(ii) no element of GjN other than NjN is invariant under every automorphism of GjN

induced by an automorphism of G.
Then the direct product of a finite number of groups, each isomorphic to G, is itself a

UCS group.
Proof. Let G1*1 be the group whose elements are all the rows x = (xltx2, ...,o;fc) of

k elements of G, with multiplication denned by xy = z, z{ = x^^, this group has
identity 1 = (1,1,...,1), and x" 1 = (xf1,x%1, ..^x^1). I t suffices to prove that, for
any k, G^ is a UCS group, since any direct product of k groups, each isomorphic to G,
is isomorphic to G1*1.

If H is any subgroup of G, we denote by Hf (1 =% i ^ k) that subgroup of G*1 consisting
of all elements x with x^H and xt = 1 if j+i. Then HxHz...Hk = H\k\

The automorphism group of G1*1 contains elements of two special kinds (but is not,
in general, generated by them). If n is any permutation of the set 1,2,..., k, mapping
i onto TT{I), then the (1,1) mapping dn of G-k] onto itself defined by

is an automorphism. Also, if <f>etyL(G), then for each i satisfying l < i < & an auto-
morphism <f>t of G17^ is defined by x̂ « = (x1} ...,a;i_1, x$,xi+v ...,xk).

Now let K be a characteristic subgroup of G™, If 4= {1}, and let xt be a non-identical
component of an element x.eK. If 0e9l(G), then y = T&txr1e.K; we have yt = x\x^x,
2/^=1 if j 4= i. If x^N, we can (by hypothesis (ii)) choose <j> so that Nx\ 4= Nxt, whence
yi£N; if xteN, we can (by hypothesis (i)) choose <f> so that ^4=1- If the smallest
characteristic subgroup of G containing yt is H, then H^K; hence HjQK for each
j and so W^CK. Thus if xrfN, we have G™ = Kiifx^N, then F ' C Z . But if for
every x e Z w e have xteN for each i, then K C N1® and we deduce K = N1®. Thus the
only possible proper characteristic subgroup of G™ is JV1*1; and the fact that this is
indeed characteristic follows at once, because G5*1 is certainly not characteristically-
simple.

In considering which UCS groups satisfy the hypothesis of the above theorem we
may ignore Abelian UCS groups, for which the direct-product theorem is trivially
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Finite groups having unique proper characteristic subgroups. I 27

true. An Abelian p-group G has characteristic subgroups C?w and G^, consisting
respectively of a l l^ th powers of elements of G, and of all elements whose orders divide
p8. If G is to be a UCS group we must have G™ = (?(0) = {1}, G™ = Gw, G<°> = Gi2) = G;
G has all its invariants equal to p2 and has proper characteristic subgroup Gm. Con-
versely, if G has invariants all equal to p2 it is a UCS group, and any direct product of
groups isomorphic to G has the same property. This incidentally shows that hypotheses
(i) and (ii) are not necessary, since the cyclic group of order 4 satisfies neither of
them.

Suppose now that G is a non-Abelian UCS group, with proper characteristic sub-
group N. If hypothesis (i) is not satisfied, there exists xeG invariant under every
automorphism of G. Then {x} is characteristic and can only be N; we deduce that
N is the centre of G and is of prime order. Similarly, if hypothesis (ii) does not hold there
exists x£ N such that Nx$ = Nx for all 0e 2I(6r). Then {N, x} is characteristic and must
be G, showing that G/N is cyclic and hence that N is of prime index in G. Although
neither of these conditions is sufficient for the corresponding hypothesis to be false,
each enables us to establish the truth of the hypothesis in important cases. For
example, if G is a non-Abelian ^-group, N must be the centre and hence of index at
least p2, showing that (ii) is true.

One of the hypotheses fails immediately if either N or G/N is of order 2. Examples
of UCS groups in which this occurs are the quaternion group Q of order 8, and the
symmetric group 8m of degree TO, where m = 3 or TO ̂  5. We shall show that in neither
case is the direct product of two isomorphic groups itself a UCS group.

If G is any non-Abelian UCS group, its centre Z is contained in its commutator
subgroup G'. The groups Q, Sm have the further property that each has a unique
minimal proper normal subgroup. If a group G has these two properties it is easy to
find all the automorphisms of G®\ If <9e W.(GM), endomorphisms 6t(i= 1,2,3,4) of G
are defined by (x, y)e = (x, l)e(l,y)8 = (a î,a^«) (y6*, y6*). Since 6 is homomorphic,
(x'x,yy'f = (x',y)e(x,y')e, implying that xPiy6* = y6^ and xPty8* = y6*^ for all
x, ye G. Conversely, if (for K i < 4) 6i is an endomorphism of G with kernel Ki and
image Ht, then the mapping 6 of G1® into itself defined by (x,y)e = (x°^ye'>,xe»ye^) is
an endomorphism of Ĝ 21 if [Hv H3] = [H2, H^] = {1} (where square brackets denote
commutators). Further, 6 is (1,1) if xPiy6* = xP'y6* = 1 implies x = y = 1. Necessary
conditions for this, obtained by setting y = 1 and x = 1 in turn, are

In the special case we are considering, these conditions are also sufficient. For now
Kxr\K2 = {1} implies that Kx = {1} or K2 = {1}. If Kx = {1}, then Hx = G, H3CZ,
K3*{1}, i£4 = {1}, H4 = G,H2C Z. Also H3CZ implies that K3DG'D Z, and similarly
K21>Z. But if zPiy0* = xPiy6* = 1, we have, since ^eZ, that x°ieZ, xeZ, xP* = 1,
y6* = l,y = l,x?i = l,x = 1; so $ is an automorphism. Similarly, 8 is an automorphism
if 62, 63€ SH(G) and Hlt H^ are contained in Z; and these two types exhaust the auto-
morphisms of G121.

Suppose now that G is the quaternion group Q, consisting of the 8 elements ± 1 , ± i,
±j, ±k with the rules of calculation i2 = j 2 = k2 = — 1, jk = —kj = i, etc. Then
N = G' = Z = {— 1}, and N1® is characteristic in G121, being both its centre and com-
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28 D. R. TAUNT

mutator subgroup. But also, if 6e ^(G1^), ( - 1, - I)9 = ( ( - 1)M~ I)6', ( - l)e* {-I)0*)
= (— 1, — 1), since (— l)e< has value — 1 or 1 according as di is an automorphism or a
proper endomorphism of G. Thus G1® has a characteristic subgroup of order 2 as well
as NlZi of order 4, and is therefore not a UCS group.

In our other example G = Sm, with m = 3 or m ^ 5, N = G' = Am, the alternating
group of degree m, and Z = {1}. Then NlZi is the commutator subgroup of G^ and is
therefore characteristic, of index 4. The only automorphisms of Gm are of form
(x,y)e = (x6^, y6*) or (x,y)e = (y0*,^*), where ^ie2l((?). If we regard Gl2] as an intran-
sitive permutation group of degree 2m, we see that it has a subgroup K of index 2,
consisting of all the even permutations. But (x, y) is even if either both or neither of
x, y is even, and this property is evidently preserved under any of the automorphisms
of Gm. I t follows that K is characteristic but distinct from N1®, and again G is not a
UCS group. We remark that (G) has two distinct prime factors, or more than two,
according as m = 3 or m ^ 5, so that we have counter-examples from two of our main
types of group.

Another simple example of this phenomenon (with N of index 3 in (?) is afforded
by the group G = {x,y}, where x7 = y3 = 1, y~xxy = x2. If de%(G), then it is easily
seen that x° = xr, ye = x*y, where r, s are integers and r is not a multiple of 7. The
subgroup of Gt21 consisting of all elements of form (xa y°, xby°) is characteristic and of
index 3, while Nl2i is characteristic and of index 9.

3. Criterion for A-group to have unique characteristic subgroup. Let p, q be distinct
primes. Then any UCS group G of order prqs, having characteristic subgroup of order
pr, is expressible as Gp{if, N, &}, where M, N are elementary Abelian groups of orders
qs, pr respectively, and •& is an isomorphism of M onto a subgroup 2JI of 21(2 )̂. Con-
versely, for any such isomorphism #, Gp{M", N, •&} is an A -group in which N is the
characteristic Sylow ^-subgroup and M belongs to the transitive characteristic class
of Sylow g-subgroups. We have seen (R, (3-4), special case (a)), that, for given M, N,
two groups constructed thusf are isomorphic if and only if the corresponding images
of M are conjugate subgroups of 2t(iV). The isomorphism problem which arises when-
ever groups are constructed is therefore solved in this case; we are left with the problem
of finding necessary and sufficient conditions on d- for G = Gp{Jf, N, •&} to be a UCS
group. Since the group is known if the conjugacy class of ffl in 1l(N) is known, the
conditions can be given in terms of 9JI.

Let the group of automorphisms of G be denoted by 21(6?), and the subgroup of
those automorphisms which map M onto itself by §. If #e3t(6r), then by Sylow's
Theorem M° is conj ugate in G to M, and we can therefore find an element k e N such that
M° = M^, where <f> is the inner automorphism of G defined by g$ = k^gk. Then
r̂ = d^>~1e^, 6 = xlr(j), and <j> leaves every element of N unchanged. The effect of 6

on a subgroup of N is therefore identical with the effect of ft. Again, if K D N then K
is normal in G (since G\N is Abelian), whence Ke = K if and only if & = K. I t
follows that a subgroup of G which is contained in or contains N is characteristic in
G if and only if it is invariant under every i/refQ.

X If we identify M with OT we may regard O as a subgroup of the holomorph of N. The
results we quote could of course be readily established from this point of view.
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Suppose now that it is known that the only proper characteristic subgroup of G
contained in or containing N is N itself. If K is characteristic, so also are Kd N and
EN. If KnN = N, then KDN; if EN = N, then ECN; if neither occurs, then
E(~\ N = {1} and EN = G. But hi this last case we should have (E) = qs and G would
be Abelian, a contradiction of the definition of G. Hence if K is any proper character-
istic subgroup, K = N. Combining this result with that of the previous paragraph
shows that G is a UCS group if and only if the only proper subgroup contained in or
containing N which is invariant under every xjrc $$ is N itself.

Any ^"e§ induces automorphisms x, °> of M, N respectively, which together define ty.
The necessary and sufficient condition that given ;\;e2l(M) and a)e%(N) should be
induced by some element of § is

•&(mx) = w-i&im) w for all me M, (3-1)

as we see by writing #x = #2 = •& hi equation (3-2) of R. We may interpret (3-1) thus:
an automorphism w of N can be extended to an automorphism of G (which can be
taken to belong to § if desired) if and only if it lies in the normalizer 31 of 3R in 9I(iV);
an automorphism ^ of Jf is extensible to an automorphism of G (which must lie in §)
if and only if the corresponding automorphism x — •9-~1X^ °f ^ *s °f form T(W),
i.e. can be obtained by transformation by an element w of 31. (We note that, for any
automorphism T(W) of 9Dt defined by an a>e3l, x = •&r((o)-d-~1e St(Jf) and satisfies (3-1).)

A subgroup of N is characteristic in G, therefore, if and only if it is invariant under
every element of 31. Hence {1} and N are the only subgroups with this property if and
only if 91 is an irreducible subgroup of 9I(iV).

Any subgroup ED N is expressible hi the form LN, where L = K(~\ M C M; K is
characteristic hi G if and only if L& = L for every i/re §, i.e. if and only if Lx = L for
every %e2l(Jf) which satisfies (3-1) for some we^l. Let L9 = Q C W; then L = Lx]£
and only if £ = £x = M-^W. Thus K is characteristic if and only if 8 is normal hi 5J.
Hence no subgroup of G lying strictly between N and G can be characteristic if and
only if 90t is a minimal normal subgroup of 31. We sum up in the following criterion:

THEOREM 3-2. Let M, N be elementary Abelian groups of orders qs, pr respectively,
p, q being different primes, and let •& be an isomorphism of M onto the subgroup 9K of
SH{N). Then G = Gp{if, N, #} is a UCS group if and only if (i) the normalizer 31 of
SOt in 5t(2V) is irreducible, and (ii) W is a minimal normal subgroup of 31.

4. Irreducible subgroups of ^(N). Let »x,z2, ...,xr be an arbitrary but fixed basis
of N, an elementary Abelian group of order pT. The general element x ofN has a unique
expression hi the form zf1,^1, ...,ofy, where E>ieGF(p) for each i, and x may therefore
be specified by the ( lx r ) matrix (or row-vector) X = (^,£2, •••,£,.)• The set of all
vectors X forms a vector space V of dimension r over GF(p), and x<^X is an isomor-
phism between N and the additive group of V. A (1,1) correspondence between linear
transformations 6 of V and (r x r) matrices 0 over GF(p) is defined by Xe = XQ;
and 6 is an automorphism of V if and only if 0 is non-singular, hi which case
0e5t = GLr(p). From the natural isomorphism between the automorphism groups

and 3t( V) we deduce an isomorphism between ^.(N) and 51, in which the auto-

https://doi.org/10.1017/S0305004100029881 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004100029881


30 D. R. TAUNT
r

morphism 6 of N defined by x\ = n *?<* corresponds to the matrix 0 = (dtj) of 91. I t

is convenient to identify N with F and 91(1̂ ) with 91; then a subgroup 9JI of 5l(iV)
may be regarded as a subgroup of 91, and irreducibility has its usual matrix sense—
the non-existence of any proper subspace of V invariant under all the matrices of 9JI.
This identification of 931 with a subgroup of matrices depends on the particular choice
of basis xx,x2, ...,xr, but no specialization is introduced since we are concerned only
with the conjugacy class of 3R in 9I(iV).

An imprimitive matrix F of GLr{p) is defined thus: there is an integer I > 1 such that
r = kl, and F may be divided up into P blocks, each (k x k), in such a way that there is
precisely one non-zero matrix in each row and in each column of blocks. The non-
singularity of F implies that each non-zero block is itself non-singular, and hence is
an element oiGLk(p). We shall call the (I x 1) permutation matrix, obtained from F by
replacing each zero block by 0 and each non-zero block by 1, the skeleton of F.

LEMMA 4-1. Let r = kl, and let S be a subgroup of GLk(p) with the property that no
non-zero k-vector is left invariant by every element of ®. Let 9t be a subgroup of 91 — GLr(p)
with the following properties:

(i) each element of fit is imprimitive, and the skeletons of elements of dl form a transi-
tive group % of (Ix I) permutation matrices;

(ii) 9t contains every matrix of form diag {Al5 A2,..., A;} with Afe ® for each i ;
(iii) for each i, the matrices occurring as non-zero blocks in the i-th diagonal position of

elements of fit form an irreducible group.
Then 9t is irreducible.
Proof. The r-dimensional vector space F over GF(p) which is the substratum of 91

may be expressed as a direct sum V = U^ © U2 © ... © Ut, where TJj is the ^-dimensional
subspace of all vectors X = (^) such that ^ = 0 unless k( j — 1) < i ̂  kj. Each Uj has
a basis naturally derived from that of F, and may be regarded as a substratum for
GLk(p). The set Ux, Uz,..., Vl exhibits the imprimitivity of 91 and acts as a carrier
for %. Suppose that U is a non-zero subspace of F invariant under 91, and let X be
a non-zero vector of V. We may write X = X1 + X2+ ... +Xj, where X^e Up and we
may assume .X̂  + 0. By hypothesis, there is an element Ae® such that Z^A^X^;
then, by (ii), F = diag{A1; A2,..., AJe9t, where Af = A, A, = lfc if j=H. Then
XT — X — .X^A — Xte U, so that U contains a non-zero element of U^ By (iii), U
contains the whole of Ui; and since (by (i)) % is transitive, U contains each TJy Hence
U = F and 91 is irreducible.

COROLLARY 4-2. Suppose that ® is normal in the irreducible subgroup S of GLk(p),
and (®) > 1. Let fit C GLr(p) consist of every imprimitive matrix whose skeleton lies in
a certain transitive group %of (Ix I) permutation matrices, and whose non-zero blocks all
belong to the same coset of ® in 2- Then fH is irreducible.

Proof. The conditions (i), (ii) and (iii) of the lemma are clearly satisfied, the irre-
ducible group of (iii) being Q. I t remains to be shown that $t satisfies the hypothesis on
invariant vectors. Let U be the subspace of all k-vectors X such that XA = X for
every A e ®. Then U is invariant under £. For if 0 e S, A e S, X e U, 0A = A'0 for some
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A'ef and we have (X0) A = (XA')0 = X®, XQe U. Since £ is irreducible, U = 0
or U contains every ^-vector X. In the latter case we should have $ = {lk}, precluded
by hypothesis. Hence U = 0 and SR is irreducible by Lemma 4-1.

COROLLARY 4-3. / / $t is irreducible and ($) > 1, and if 3t consists of all imprimitive
matrices with skeletons in the transitive group % and with non-zero blocks in ®, then SR
is irreducible.

This is the special case of Corollary 4-2 in which $ = 2. We mention that, for given
groups $ and %, the conditions $ irreducible, ($) > 1, £ transitive are necessary
for the irreducibility of fft defined thus (assuming that I > 1).

5. Elementary Abelian subgroups of GLr(p). We wish to find conjugacy classes in
31 = GLr(p) of elementary Abelian subgroups 9Ji of order qs, q being a prime distinct
from p. Any such class may be regarded as a class of equivalent faithful representa-
tions, of degree r over GF(p), of an abstract group M which is elementary Abelian of
order qs. We use two well-known results from representation theory which are valid
whenever the order of the finite group G represented is not a multiple of the charac-
teristic of the underlying field K: every representation of G by matrices with elements
in K is completely reducible, and every irreducible representation occurs as a com-
ponent of the regular representation. Algebraic closure of K is not necessary, so we
may apply these results in the case K = GF(p), G = M.

Let p belong to exponent e mod*?; this means that e is the smallest positive integer
such that pe= 1 (modg). Then q \pe— 1 and e | q— 1. Any primitive qth root of unity
(i (mod^>) lies in GF(pe) but in no Galois field of smaller order. Thus JJ, is a root of a
polynomial P(x) = x? + Ae_1x?~1+... +A1a;-|-A0, which is irreducible relative to the
field GF(p) in which all the coefficients lie; the other roots of P(x) are/tp,/ip2, ...,/i'pe'1.
The matrix / 0 0 0 _AQ

1 0 ... 0 -A,
A = | . . . . | (5-1)

0 0 ... 1 -

lies in GLe(p) (since Ao =f= 0) and has characteristic equation P{x) = 0, and every matrix
with this characteristic equation is conjugate in GLe(p) to A. (See, for example,
(4), § 111.) Since P(x) is irreducible, so is A; since each characteristic root is a gth root
of unity, A is of order q.

Now p is a primitive eth root of unity (mod q), and q — 1 — ef for some integer /.
Let us write n e GF(q) for the congruence class of p (mod q); then we can find a primitive
(q— l)th root of unity in GF(q), say /?, such that n = fif, and every non-zero element a
of GF(q) is of form fih, with 0 < h < q - 2. Since A, A", A"2, ..., A**"1 are conjugate in
GLe(p), the matrices Â A and A& are conjugate if and only if h =j (mod/). The powers
of A (other than A0 = le) may thus be classified into / conjugacy classes, each con-
taining e distinct powers, and we may take as representatives of the several classes
the matrices A, A?, ..., APf~\

If H = {x} is a cyclic group of order q, the mapping x->Aa gives an irreducible
representation of H, of degree e over GF(p), for each non-zero aeGF(q). We get /
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inequivalent representations by taking for a the values 1, /?, /?2,. • • > fif~x. Together with
the identical representation these must exhaust the irreducible representations of H,
since the total of their degrees is ef+ 1 = q, the order of H. Each of these representa-
tions must occur once only in the regular representation of H.

A representation of an elementary Abelian group M of order qs can be obtained as
the product of a homomorphism of M onto a cyclic group H of order q, and a repre-
sentation of H. There are (qs— l)/(g —1) = m distinct subgroups of M of order q3'1

to serve as kernel of the homomorphism, and so we get in this way fm irreducible and
inequivalent representations, each of degree e. If we include the identical representa-
tion we have accounted for distinct irreducible representations of total degree
1 + efm = qs, so every irreducible representation is equivalent to one of these. Using
the property of complete reducibility, we may summarize our conclusions in the
following form, adapted to the problem under consideration:

LEMMA 5-2. Any elementary Abelian subgroup 9J£ of 21 = GLr(p), of order a power
of q, is conjugate in 21 to a subgroup each of whose elements is of form

diag{A«i,A«*,...,A"sl(}, (5-3)

where each a.ie0F{q), A is given by (5-1), and r = ce + t. (Here t is the same for all
elements of the group. We may suppose that, for each i, at is non-zero for some matrix
of the group, since otherwise we could expunge the ith block and change t to t + e.)

COROLLARY 5-4. If e>l and SOi is cyclic of order q, then the normalizer ^lof^Stin%
contains the centralizer of 9K properly.

Proof. We may assume that 951 = {©}, where 0 is of form (5-3). Since A is conjugate
in GLe(p) to AP, there is an element 2 of GLe(p) such that S^AS = A». Then, if
T = diag{2,2, . . . ,S , 1,}, Y- 1 ©^ = ©*>, Ye9?. B u t 0 = 0» would imply p= 1 (mod?),
that is, e = 1; hence if e > 1, Y does not belong to the centralizer of W.

6. General results on UCS groups of order prq3.

THEOREM 6-1. Let G be a UCS group of order prqs, having characteristic subgroup N
of order pr. Then the direct product of a number of groups each isomorphic to G is itself
a UCS group, except possibly if s = 1 and q | p — 1.

Proof. Since the centre of G is the identity, the hypothesis (i) of Theorem 2-1 cer-
tainly holds, and our result follows from that theorem if (ii) also holds. We may assume
5 = 1 , since if s ^ 2 (ii) certainly holds. Then if the exponent e of p (modq) exceeds 1,
Corollary 5-4 shows that there are elements of 31 which transform 9Ji non-identically.
Hence there are non-identical automorphisms of M, and so also of GjN, which can be
extended to automorphisms of G. Since GjN is of prime order, no element other than
NjN can be invariant under any such automorphism, and so (ii) is satisfied if s = 1,
e > 1. We shall see in § 8 that the conclusion is certainly false if r = s = 1 and q\p—l;
the examples at the end of § 2 are special cases illustrating this phenomenon.

For given p, q, the simplest example of a UCS group with order of form prqs is a
certain group G1 of order peq. This is the group defined by the elementary Abelian
group Nt of order pe, and the cyclic subgroup 3R1 = {A} of 2^ = GLe(p), of order q
(where A is given by (5-1)). The normalizer ^ of ^ in 2tx is irreducible, since Wtx
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itself is so; and 9)^ is a minimal normal subgroup of 921; being of prime order. Hence
Gx is a UCS group. We may specify Gx explicitly as {xlt x2, • • •, xe, y}, where the generators
satisfy the relations xv _ xv = _ = xv — ifl = 1, 1

y-lxlV = x ~ \ J (6-2)
y-% y = a;i_1a;e-

A'- (2 ̂  i ̂  e). J
The fundamental role played by this group is shown by the next theorem.

THEOBEM 6-3. Suppose that G is a UCS group of order prqs, having characteristic
subgroup of order pr. Then, if the exponent of p (mod*?) is e,

(i) r = cefor some integer c, and s^c;
(ii) G is isomorphic to a subgroup of the direct product G^f\ where Gx is the UCS group

defined by (6-2);
(iii) if e > 1, this direct product is itself a UCS group.
Proof. For given pT, G is determined by the conjugacy class to which the subgroup

9J2 of 21 = GLr(p) belongs. By Lemma 5-2, we may assume that 9J2 consists of elements
of form (5-3). The integer t is the dimension of the subspace U, of the underlying
r-dimensional space V, consisting of all vectors X such that X0 = X for every 0 e 9ft,
and we see (as in the proof of Corollary 4-2) that U is an invariant subspace for 9c.
Hence i f l ^ f^ r— l,9Hs reducible; the case t = r merely yields 9J2 = {lr}. For non-
trivial ffl with irreducible normalizer 91 we therefore have t = 0, r = ce. Thus 9)2 is
a subgroup of the group 9Jic = 9JCicl, of order q°, consisting of all matrices of form
diag{Aai, A**, ...,Aac}, with a^GFiq). The group G constructed from 9Ji is therefore
isomorphic to a subgroup of that constructed from 9ttc, and this is clearly Gl£]. The
final clause of the theorem is immediate from Theorem 6-1.

THEOREM 6-4. Let Gbea UCS group of order prqs, defined by the subgroup 9Jc (elemen-
tary Abelian of order qs) of GLr(p); and let k be an integer exceeding 1. Let 9Ji* be that sub-
group of GLkr(p) which consists of the q3 elements diag {0,0, . . . ,©}, where 0 e 9Jc. Then
the group G* of order p^q3 defined by 9Ji* is a UCS group.

Proof. The hypothesis implies that 9K is a minimal normal subgroup of its nor-
malizer 92, which is irreducible. We show that the same is true of 9JI* and its nor-
malizer 91*. Let the centralizer of 9J2 be the normal subgroup © of 92. The effect on
any element of 9J2 of transformation by an element F of 92 is determined by the coset
of S to which F belongs. Hence 92* certainly contains the group 9t* consisting of every
imprimitive matrix all k of whose non-zero blocks belong to the same coset of £.
Since (£D9J2 we have ((£)> 1, so all the hypotheses of Corollary 4-2 are satisfied.
Therefore 5R* is irreducible, and hence 92* is irreducible. A subgroup $* of 9J2* must
consist of all elements diag {0,0,...,©} with 0 in some subgroup § of 9J2; 92* contains
every matrix diag{F, V,..., F} with re92, so that £>* normal in 92* would imply §
normal in 92, and so § = {lr} or § = 9J2. Thus 9J2* is a minimal normal subgroup of the
irreducible 92*, and G* is a UCS group.

7. UCS groups of order prq. For given^j, q, a complete account of the UCS groups of
orders prq3, with r = ce and s^c, would require knowledge of which subgroups of 9J2C

had irreducible normalizers in which they were minimal normal subgroups. In this
section we give the answer in the case s = 1; here the minimal property of 9J2 is auto-
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matic and we have to consider only the irreducibility of 5K. If 9J£ = {0}, where
0 = diag {A*i, Aaa,..., Aac}, a necessary condition for this is that, for each i, cci is a non-
zero element of GF(q). Using the notation of § 5 we may therefore write at = /?ft», where
0 5% ht ^ q — 2, and 0 is specified by the c-row (h1; h2,..., hc). Then 0^" is similarly speci-
fied by (h1 + u,h2 + u, ...,hc + u). The element O of 9#c determined by (jx, j 2 , . . . , jc)
is conjugate in 91 to 0 if and only if the j / s can be reordered to form a row (j[, j ' 2 , . . . , j'c)
such that j'fshf (mod/) for each i, where ef = q— 1. We may therefore assume that
0 satisfies 0 = hx ̂  h2 < ... < hc </— 1, since in any case some power 0^" is conjugate
to an element with this property which generates a cyclic subgroup conjugate to SUi.

LEMMA 7-1. Letf = It. Then the cyclic subgroup {A} ofWz, where
A = diag {A, A?,..., A^"1"},

has irreducible normalizer in GLu{p).
Proof. Let 1 < v < I - 1, and let r e GLe(p) be any matrix such that T^AI1 = A? = A"";

then r - W " r = APM)t. Define
/o . . . o r .

0

1-

0

0

0

0

r
o

\ 0 ... le 0 ... 0 /

where F occurs v times and le(l — v) times. We see that

Hence SB lies in the normalizer of {A}, which also contains Wt and hence the group 91
generated by 30?, and the Ew's (for each v). But the conditions of Lemma 4-1 are satisfied
by 91 (with k = e and ® = SJ^ = {A}), and therefore the normalizer of {A} is irreducible.

THEOREM 7-2. Let p, q be distinct primes and let the exponent of p (modi?) be e. Then
the number of distinct UCS groups of order prq, with characteristic subgroup of order pr,
is equal to the number of factors of(r,q — \) which are multiples ofe, and each of the groups%
is isomorphic to a group defined thus:

Letq— 1 = ef, r = ce, and suppose l\(c,f); then write c = hl,f = It. Define

0t = diag {A,..., A, A*,..., A/", AT,..., A/"'"1"},
where A is the irreducible (e x e) matrix given by (5-1), each term A?' occurs k times, and
fi is a primitive (q— \)th root of unity in GF(q) such that fif = n, the residue class of p
(mod q). Define a group of order prq by taking 9Ji = {0J as subgroup of 31.

Proof. The fact that, for any 11 (c,/), the group constructed from {0Z} is a UCS
group follows at once from Lemma 7-1 and Theorem 6-4. Also {0Z} is not conjugate to
{0j-} if 14= I', so that there are as many distinct groups constructed in this way as there
are factors of (c,/) (or factors of (r, q— 1) which are multiples of e). I t remains to be
shown that any cyclic subgroup of 9KC with irreducible normalizer is conjugate in 91
to {®i} for some factor I of (c, / ) .

I If r is not a multiple of e, there are no such groups (Theorem 6-3).
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Suppose that 0 is specified by the c-row (h^h2, ...,hc); as we have seen, we may
assume that 0 = A ^ A ^ . . . ^Ac</—1. The elements a of GF(q) such that 0 a is
conjugate to 0 form a subgroup (necessarily cyclic) of the multiplicative group of
GF(q), which certainly contains fif since Qfif = Qp is conjugate to 0. The group is
therefore of form {/?"} where u \ f; say / = mu. Then the elements of 3RC specified by
(hvh2, ...,hc) and {h1+ju,hi+ju,...,hc+ju) are conjugate for each j satisfying
0 < j ^ m — 1. It follows that each of the numbers ju, 0 ̂  j ^ m — 1, must occur equally
often in the row (h1; h2,..., hc); and ifh1 = k2= ... = hk = 0, hk+1 > 0, then each occurs
k times. Thus km of the c numbers are accounted for, and if km = c we have 0 = 0m,
m | (c,f). We complete the proof by showing that, if km<c, then the normalizer of
{©} is reducible.

If km<c, 0 is conjugate to an element 3>e9J2c, where <f> = diag{Aa», Aaa,..., Aa«}
with ô  = /?"«, the gr/s satisfying gt = 0 (modu) if 1 ^i<fern, gr^0 (modit) if km<i^c.
If F is any element of the normalizer of {O}, then F<I> = O°T, where a = /?nu for some n.
Let F be divided into c2 blocks Fw, each (e x e); our equation gives r^Aai = Aaa»r{j-
for all i, j . Now a,- = fi9i, oux,t = y?»«+»t; and so Aaj, Aaat are conjugate if and only if
gj^nu+gi (mod/), which demands g^g^ (mod«). But ifj^hn, i>km, or j>krn,
i^km, g^gi (modw) and A"i, Aaa> are not conjugate. But this implies by Schur's
Lemma (in the form given in (5), Lemma (3- 1-D), p. 83) that r{j- = 0, and we thus have
a direct demonstration of the reducibility of the normalizer of {0} and hence of {©}.

8. The special case q | p — 1. The results we have obtained may be extended slightly
if q \p— 1, i.e. if e = 1. This implies that p^ 3, which we assume throughout this
section. In place of the matrix A we now merely have an element XeGF(p) with
A8 = 1, A=)= 1. Also c = r, / = q— 1, and the group 2J2r C 21 = GLr(p) consists of the qr

diagonal matrices whose non-zero elements are all of form Aa< with aieGF{q). We may
rule out the trivial case r = 1, for then 21 is cyclic of order p — 1 and has a unique sub-
group of order q; there is a single UCS group of order pq. So we suppose that r > 2.

The group 21 has two important normal subgroups. Its centre 3 is cyclic of order
p — 1, and consists of all scalar matrices /tlr. The matrices of 21 having determinant 1
form a normal subgroup U of index (p — 1) with cyclic quotient group. If the normalizer
of 3Ji in 21 is 31, then SUin 3 and 9Jln U are also normal in Sft; if ffl is a minimal normal
subgroup of %l, then each coincides either with 9Ji or with {lr}. The case 9ftn 3 = 9Jt
yields 9JIC 3 ; 901 is the unique subgroup of 3 of order q, 92 = 21, and we always get a.
UCS group of order prq. (It is in fact the group obtained from that of order pq by the
process described in Theorem 6-4.) So we shall assume -Din 3 = {!»•}•

Suppose now that we also have 2Kn II = {lr}. Then 9J2 is cyclic, and no two elements
of ffi have the same determinant; so 92 is the centralizer of 9JI. But if 9J2 = {0}, 0 is
diagonal and its diagonal elements are not all equal; it is easily seen that its centralizer
is reducible, whence 92 is reducible. We must therefore have the other alternative,
9J2CU. Thus 9J2fC9J2 = 9J2rntt, the subgroup of all matrices diag{Aai, Aa«,..., Aa'}
with a1 + a2 + ...+ocr = 0; 9J2f is of order qr~1. Thus every 9J2 not lying in 3 which gives
a UCS group is conjugate to a subgroup of 5D2f, and every UCS group constructed from
such 9J2 is isomorphic to a subgroup of G\, of order jfq''1, constructed from 9Rf.

The effect on a diagonal matrix of transformation by a monomial matrix is that of
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a permutation of its diagonal elements. The normalizer 9 i | of 9Jlf therefore contains
every monomial matrix of 3t, and so must be irreducible. (Apply Corollary 4-3 with
® = GL^p); ($) > 1 since p ^ 3.) For 50lfto be minimal normal in 9lf it is necessary
t h a t ? = r = 2org-f?-;forifg|?-,9}itn3containsdiag{Aa

)A
a,...)A

a}foreachae(?JP(g')
and is a proper subgroup of SDJf unless r = 2, q = 2. In this trivial case Gf is the UCS
group of order 2p2; otherwise q \ r implies that 6r| is not a UCS group. We finally show
that \iq\r, then G\ is a UCS group: SJtf is minimal normal in 9£f.

We may take as generators of SJij the (r— 1) matrices

diagfA,! , . . . , !^-1} , diag {1, A,...,1,A"1}, ..., diag{l,..., 1, A^"1}.
By what we have shown about 5R| it is clear that any normal subgroup of 9lf containing
any one of the generators contains them all. Let £ be a normal subgroup of -ftf.
SC9Jt|, and let diag{Aas A"*, ...,Aa'-} be an element of £ distinct from the identity.
If q\r the a/s cannot be all equal, and we may assume ax^=ar, since any element
obtained by permuting the a /s also belongs to 8. Then also

diag{Aa<-, A"a,..., A^-i, Aai}e£,

and on division we have diag{\ai~ar, 1,..., 1, Aa<-~ai}eS. Since ocj^ + a,,., this shows that
diag {A, 1,..., 1, A^jeS, 2 = 9Kt> 2Kt is a minimal normal subgroup of 3l-\; Gf is a
UCS group i£q\r. We sum up our conclusions in the following theorem, which in the
case e = 1 supersedes Theorem 6-3.

THEOREM 8-1. Suppose that q\p — l, that AeGF(p) is a primitive q-th root of unity,
and that G is a UCS group of order prqs, having characteristic subgroup of order pr. Then
either (i) s = 1 and G is defined by the generating relations

xf = xl= ... =x? = y*=l, y-^y^x^ (i = 1,2, ...,r);

or (ii) s 4: r — 1 and G is isomorphic to a subgroup of the group 6?f, of order pTqr~l, defined
by the relations

xf = x$ = ... = x» = yl = ... = */<?_! = 1,

( A if i=j>
xi if i +J and i < r>
A ' if i = r-

The group G'\ is a UCS group if' q\r or if' q = r = 2, but otherwise is not.

I should like to express my gratitude to Prof. Hall for stimulating my interest in
these problems, and for his most helpful comments on a preliminary draft of this
paper.
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