
Proceedings of the Royal Society of Edinburgh, 150, 2216–2254, 2020

DOI:10.1017/prm.2019.6

Pointwise stability of reaction diffusion fronts

Yingwei Li
Indiana University, 831 East Third Street, Rawles Hall, Bloomington,
Indiana 47405, USA (YL37@umail.iu.edu)

(MS received 18 December 2016; accepted 12 January 2019)

Using pointwise semigroup techniques, we establish sharp rates of decay in space and
time of a perturbed reaction diffusion front to its time-asymptotic limit. This
recovers results of Sattinger, Henry and others of time-exponential convergence in
weighted Lp and Sobolev norms, while capturing the new feature of spatial diffusion
at Gaussian rate. Novel features of the argument are a pointwise Green function
decomposition reconciling spectral decomposition and short-time Nash-Aronson
estimates and an instantaneous tracking scheme similar to that used in the study of
stability of viscous shock waves.
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1. Introduction

In this paper, we revisit the problem of stability of reaction diffusion fronts treated
by Sattinger, Henry, and others [4,10,11] by essentially ODE methods, from the
viewpoint of the pointwise semigroup methods introduced in [8,13] for the study of
stability of viscous shock waves. For simplicity, we treat the semilinear case, with
Laplacian diffusion; however, our methods readily extend to the general second-
order quasilinear strictly parabolic case (see, e.g., [13] in the shock wave case).

From the ODE perspective, a stationary front solution of a spatially homoge-
neous parabolic system in one dimension is an equilibrium which, due to translation
invariance of the underlying system, is embedded in a one-parameter family of
nearby equilibria given by its translates. Assuming that the front is a transversal
connection of the associated standing-wave ODE, its linearized operator L has a
one-dimensional zero eigenspace precluding asymptotic stability. However, under
the assumption of a spectral gap, i.e., assuming that the rest of the spectrum has
strictly negative real part, one may hope to establish asymptotic orbital stabil-
ity with time-exponential convergence to an appropriate element of the family of
nearby fronts.

This is indeed what was shown (among a number of other things; see remark
1.1 below) by Sattinger [10], by what is essentially a stable manifold construc-
tion about the (normally hyperbolic) curve of equilibria. A particularly simple
alternative argument is sketched by Henry in [4, exercise 6, p. 108], based on a
normal-form reduction approximately decoupling the normal and tangential flows.
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Another approach, as described, e.g., in [11], is to ‘factor out’ the group symme-
try of translation, working effectively on the quotient space, and thereby reducing
orbital to asymptotic stability.

Remark 1.1. The main point of [10] was to treat spatially inhomogeneous systems
arising through the imposition of spatially-weighted norms on reaction-diffusion-
convection equation; for a thematically-related study in the finite-dimensional
setting, see the argument of Cronin [2, p. 198 ] for stability of time-periodic orbits,
featuring a similar stable-manifold construction on the nonautonomous system
obtained by Floquet transformation.

Each of these arguments is based ultimately on the standard spectral decomposi-
tion of the linearized solution operator S(t) := eLt into the projection Pf := φ〈ψ̃, f〉
onto KernelL, where φ and ψ̃ are right and left zero eigenfunctions, 〈ψ̃, φ〉 = 1,
with 〈·, ·〉 denoting L2 inner product, plus a time exponentially decaying portion
associated with the complementary eigenspace associated with the remaining stable
spectra, together with some form of Duhamel’s formula/variation of constants. That
is, they all effectively approximate the Green function G(x, t; y) of the linearized
equations with the kernel

k(x, y) : −φ(x)ψ̃(y) ∼ e−η±|x|−ν±|y| (1.1)

as |x|, |y| → ∞ of the translational projection P , for some η±, ν± > 0.
On the other hand, the Nash-Aronson bounds [1,9] of standard short-time

parabolic theory yield that the Green function is bounded above and below by
Gaussian distributions:

C1t
1/2 e−|x−y|2/M1t � |G(x, t; y)| � C2t

1/2 e−|x−y|2/M2t, (1.2)

where Mj > 0 constant, Cj > 0 are bounded above and below for any fixed time
interval 0 � t � T . Comparing the quadratic exponential decay of the Gaussian
with the linear exponential decay of k(·, ·), we see that (1.1), though optimal with
respect to time does not give an accurate picture of the spatial propagation of
data via Gaussian diffusion. Likewise, the bound (1.2) gives no information about
large-time asymptotics.

The goal of the present analysis, as we now describe, is to reconcile these two
points of view, obtaining estimates on linear and nonlinear behavior that are opti-
mal both in the large-t and large-x regimes; that is, to reconcile ODE and PDE
estimates to obtain sharp pointwise dynamics.

Consider a stationary front solution u(x, t) = ū(x), limz→±∞ ū(z) = u± of a
system of reaction diffusion equations

ut = uxx + f(u). (1.3)

For simplicity, take f ∈ C∞ throughout the paper. Obviously, ū satisfies

ūxx + f(ū) = 0. (1.4)

Linearizing (1.3) about ū, we have

vt = Lv := vxx +Df(ū)v. (1.5)
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The homogeneous linearized equation

vt − Lv = vt − vxx −Df(ū)v = 0, v|t=0 = g (1.6)

can be solved by

eLtg =
∫ +∞

−∞
G(x, t; y)g(y) dy (1.7)

where G(x, t; y) = S(t)δy(x) = eLtδy(x) is the Green function for (1.6).
Differentiating (1.4), we obtain the standard fact that the translational mode ū′

is a zero eigenfunction of the linearized operator L. Introduce the spectral stability
condition:

(D): The operator L has a simple eigenvalue at λ = 0 (with eigenfunction ū′),
with all other spectrums of L satisfying Reλ < −η for some η > 0.

Remark 1.2. This has the consequence that eigenvalues of Df(u±) have strictly
negative real parts, corresponding to the stability of the end states u± as equilibria
of the reaction ODE, u̇ = f(u), ignoring the effects of diffusion.

Assuming (D), we obtain in standard fashion that the limits u± as x→ ±∞ of
ū(x) are hyperbolic rest points of (1.4) and thus, by the Stable Manifold Theorem:

Proposition 1.3. Under assumption (D), there exists a constant C > 0 such that

|ū(x) − u±| � C e−η|x|, x ≷ 0. (1.8)

Our first result is a pointwise version of the standard approximation by (1.1):

Proposition 1.4. Under assumption (D), the Green function can be decomposed as

G(x, t; y) = E(x, t; y) + G̃(x, t; y), (1.9)

where

E(x, t; y) = ū′(x)e(y, t), (1.10)

e(y, t) = χ(t)ψ̃(y). (1.11)

Here, χ(t) is a C∞ cutoff function satisfying χ(t) ≡ 0 for 0 � t � 1 and χ(t) ≡ 1
for t � 2. ψ̃(y) is a left eigenvector of the linearized solution operator S(t) = eLt.

For any η0 satisfying 0 < η0 < min(η/4, η′), η′ as defined in proposition 4.1, there
exist positive constants C0, C1, C2 and C for which the following inequalities hold:

|G̃(x, t; y)| � C1t
−(1/2) e−η0t−((|x−y|2)/4C0t) + C2 e−η0(t+|x−y|), (1.12)

|G̃y(x, t; y)| � C1t
−1 e−η0t−((|x−y|2)/4C0t) + C2 e−η0(t+|x−y|), (1.13)

|e(y, t)| � C e−η0|y|, |ey(y, t)| � C e−η0|y|,

|et(y, t)| � C e−η0(t+|y|), |ety(y, t)| � C e−η0(t+|y|). (1.14)
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Our second result refines (1.1), capturing Gaussian spatial propagation of
perturbations:

Proposition 1.5. Under assumption (D), the Green function can be decomposed
as

G(x, t; y) = F (x, t; y) + H̃(x, t; y), (1.15)

where

F (x, t; y) = ū′(x)ẽ(x, t; y), (1.16)

ẽ(x, t; y) = χ(t)ψ̃(y)
(

errfn
(
x− y + t√

4t

)
− errfn

(
x− y − t√

4t

))
. (1.17)

Here, χ(t) and ψ̃(y) are the same as in proposition 1.4.
For 0 < η0 < min(η/4, η′, 1/16), and any integer k,m � 0, there exist constants

M,C,Cm > 0 sufficiently large such that

|H̃(x, t; y)| � Ct−(1/2) e−η0t−((|x−y|2)/Mt), (1.18)

|H̃y(x, t; y)| � Ct−1 e−η0t−((|x−y|2)/Mt), (1.19)

|∂k
t ∂

m
x ẽ(x, t; y)| � Cm e−η0|y|

∣∣∣∣∣e−(((x−y+t)2)/Mt)

√
t+ 1

− e−(((x−y−t)2)/Mt)

√
t+ 1

∣∣∣∣∣ . (1.20)

From proposition 1.4, we obtain the following theorem recovering the Lp

results of [4,10]. Let Lp0 , Lp, L∞ denote the space of functions with finite
‖ · ‖Lp0 , ‖ · ‖Lp , ‖ · ‖L∞ -norms in the space variable x ∈ R, and W 1,∞

t denote the
space of functions with finite ‖ · ‖W 1,∞-norm in the time variable t ∈ (0,∞).

Theorem 1.6 Nonlinear Stability. Assuming (D), for any p0 � 1, stationary solu-
tions ū(x) of (1.3) are nonlinearly stable in Lp0 ∩ L∞ and nonlinearly orbitally
asymptotically stable in Lp, p � p0, with respect to initial perturbations u0 that
are sufficiently small in Lp0 ∩ L∞. More precisely, there exist some C > 0 and
α ∈W 1,∞

t , such that

|ũ(x, t) − ū(x− α(t))|Lp(x) � C e−η0t|ũ− ū|Lp0∩L∞ |t=0,

|α̇(t)| � C e−η0t|ũ− ū|Lp0∩L∞ |t=0,

|α(t)| � C|ũ− ū|Lp0∩L∞ |t=0,

|ũ− ū|Lp(t) � C|ũ− ū|Lp0∩L∞ |t=0,

for all t � 0, p0 � p � ∞, for solutions ũ of (1.3) with |ũ− ū|Lp0∩L∞ |t=0 suffi-
ciently small.

From proposition 1.5, we obtain the following improved theorem describing at
once both time-exponential decay and Gaussian spatial diffusion of perturbations:
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Theorem 1.7 Pointwise Nonlinear Stability. Assume (D) and let ũ(x, t) be a solu-
tion of (1.3). There exist positive constants E0,M and a function α̃ = α̃(x, t) ∈
W 1,∞

t ((0,∞);W k,p
x (R)) for all k � 0, 1 � p � ∞ such that if

|u0(x)| = |ũ(x, 0) − ū(x)| � E0 e−(|x|2/M)

then ũ(x+ α̃(x, t), t), α̃(x, t) and its derivatives satisfy the following pointwise
bounds:

|ũ(x+ α̃(x, t), t) − ū(x)| � CE0(1 + t)−(1/2) e−(η0/2)t−(|x|2/(2M(1+t))),

|α̃(x, t)| � CE0

∣∣∣∣errfn( x+ t√
Mt

)
− errfn

(
x− t√
Mt

)∣∣∣∣ ,
|∂k

t ∂
m
x α̃(x, t)| � CE0(1 + t)−(1/2)

(
e−((|x+t|2)/Mt) + e−((|x−t|2)/Mt)

)
,

k +m � 1,

for some η0 > 0 small enough and C > 0 large enough.

Note that, differently than in theorem 1.6, the phase shift α̃(x, t) in theorem 1.7
is allowed to vary in x as well as t, paralleling the linear behaviour of ẽ.

From the bounds of theorem 1.6, the phase shift α(t) converges exponentially to
a constant shift α∞, yielding the standard result [4,10] that, for any 1 � p � ∞,
for small Lp perturbations, ũ converges time exponentially in Lp to a translate
ū(· − α∞) of the background travelling wave. Comparing the description of ũ in
theorem 1.7, we find therefore for small Gaussian perturbations that α̃(x, t) con-
verges pointwise uniformly time-exponentially to a constant value α̃∞ = α∞ on an
expanding cone C := {|x| � θt}, some θ > 0. (Indeed, this could be obtained directly
from the analysis as well, by the observation that ẽ(x, t; y) e−η0|y| converges time
exponentially to a constant on C.) This gives the refined, pointwise picture of conver-
gence to a constant shift on the parabolic domain of dependence of the perturbation
data, with falloff at Gaussian rate as x→ ±∞ toward the unperturbed travelling
wave ū.

2. Discussion

Stability of reaction diffusion fronts has been much studied, by a variety of tech-
niques. Indeed, the bounds on G̃ stated in proposition 1.4 may be recognized as
exactly what one expects for a sectorial ordinary differential operator possessing an
exponential dichotomy, or, equivalently, a spectral gap, and could be obtained by a
number of different (standard) methods. They serve here, along with the argument
for theorem 1.6, as a bridge linking such standard methods with the approach used
to establish proposition 1.5 and theorem 1.7, which represent the novel aspects of
this work. To our knowledge, no such results have up to now been obtained, despite
the long history of the subject, and the naturality of the question they answer:
of how PDE properties such as parabolicity intervene in the ODE-like asymptotic
behaviour of the solution.

The latter is obtained by suitable adaptations of the ‘pointwise semigroup’ meth-
ods introduced in [8,13] for the treatment of the neutral case of stability of viscous
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shock waves, for which the associated linearized operator does not possess a spec-
tral gap; see [7,12] for particularly accessible accounts specializing to the scalar
case. The treatment here of the more standard case with spectral gap both illumi-
nates the method, and shows that it can give new details even in the background of
strong, time-exponential decay. In the pointwise semigroup method, the resolvent
and solution operators are replaced by their kernels, which may then be studied
separately in different (x, y, t) domains; this is particularly natural for questions as
addressed here of behaviour in specific asymptotic situations.

Note that, in the nonlinear part of the argument, we have generalized the
approach of [8,13] by allowing phase shifts depending on x as well as t. This
is similar to, and motivated by, techniques introduced for the study of stability
of periodic travelling wave [5,6], where it is crucial for completion of a nonlinear
stability argument. Our results here show that, also in the travelling front or pulse
case, where it is not needed in order to close a nonlinear stability argument, allow-
ing α to depend on x is a useful tool, that can be used to obtain additional details
about behaviour.

Note, finally, that the Green function bounds of proposition 1.5 both recover
and extend the classical Nash-Aronson bounds, identifying a ‘parabolic’ regime
|x− y| � t on which they dominate behaviour, including, but not limited to the
classical bounded-time regime.

Outline of Proof: We will give a motivation of the pointwise semigroup methods
in § 3. In § 4, we will show that the operator A(x;λ) associated with the eigenvalue
equation of the linearized operator L of equation (1.3) is asymptotically constant
in x when |x| → ∞, and we will give a construction of the resolvent kernel Gλ in
§ 5, then we use this construction to give bounds on the resolvent kernel in §§ 6 and
7. After that, in §§ 8 and 9, we use these bounds on the resolvent kernel to get the
bounds on the Green function, proving propositions 1.4 and 1.5. With the Green
function kernel estimates in hand, we can go on to prove some Lp → Lp estimates
on the Green function G(x, t; y) in § 10. With all these preparations done, we define
and prove estimates on the time-dependent translate α(t) in §§ 11 and 12, proving
theorem 1.6. In § 13, we define the time and space dependent translate α̃(x, t); its
estimates as well as estimates on the perturbation v(x, t) are given in §§ 14 and 15,
proving theorem 1.7.

Notation: We use C to denote a universal constant that may change from line
to line but is independent of parameters, initial data, space, or time. We use the
notation f = O(g) to mean that |f | � C|g|.

3. Pointwise semigroup methods

We study the resolvent kernel Gλ(x, y), defined formally by

Gλ(·, y) := (L− λI)−1δy,

or equivalently (L− λI)−1f(x) =
∫
Gλ(x, y)f(y) dy, that is, the elliptic Green func-

tion associated with (L− λI). At an isolated eigenvalue λ0 of L, the spectral
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projection operator can be defined by

Pλ0 = Resλ0(L− λI)−1.

The operator L is sectorial, so we have the spectral resolution formula,

eLt =
1

2πi

∫
Γ

eλt(L− λI)−1 dλ, (3.1)

for the solution operator eLt of vt = Lv; v(0) = v0, where Γ is the boundary of
an appropriate sector {λ : Reλ < θ1 − θ2|Imλ|} containing the spectrum of L, θ1,
θ2 > 0 are constants. We have assumed in assumption (D) that L has an isolated
simple eigenvalue at λ = 0, the rest of the spectrum is separated by a positive
spectral gap η > 0, σ(L) \ {0} ⊂ {λ : Reλ � −η}. Defining Γ̃ as the boundary of the
set Ω := {λ : Reλ < θ1 − θ2|Imλ|} ∩ {λ : Reλ � −η/2}, we have by (3.1), together
with Cauchy’s theorem, that

eLt = Res0 eλt(L− λI)−1 +
1

2πi

∫
Γ̃

eλt(L− λI)−1 dλ.

Applying both sides of the above equation to δy(x) gives

G(x, t; y) = ū′(x)

(
1

2πi

∫
∂B(0,ε)

eλt

λ
dλ

)
ψ̃(y) +

1
2πi

∫
Γ̃

eλtGλ(x, y) dλ

= ū′(x)ψ̃(y) +
1

2πi

∫
Γ̃

eλtGλ(x, y) dλ

= ū′(x)χ(t)ψ̃(y) + ū′(x)(1 − χ(t))ψ̃(y) +
1

2πi

∫
Γ̃

eλtGλ(x, y) dλ

= ū′(x)e(y, t) + G̃(x, t; y),

where we have defined e(y, t) = χ(t)ψ̃(y), and

G̃(x, t; y) = ū′(x)(1 − χ(t))ψ̃(y) +
1

2πi

∫
Γ̃

eλtGλ(x, y) dλ.

The cutoff function χ(t) ∈ C∞(R+) is identically 0 for 0 � t � 1, and identically 1
for t � 2.

4. The asymptotic eigenvalue equations

The eigenvalue equation Lw = λw associated with (1.5) is

wxx +Df(ū)w = λw. (4.1)

Written as a first-order system in the variable W = (w,w′)t, this becomes

W ′ = A(x;λ)W, (4.2)
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where A(x;λ) :=
(

0 I
−(λI +Df(ū)) 0

)
. We begin by studying the limiting, con-

stant coefficient systems L±w = λw of (4.1) at x = ±∞,

wxx +Df(u±)w = λw, (4.3)

or, written as a first-order system,

W ′ = A±(λ)W, (4.4)

where A±(λ) :=
(

0 I
−(λI +Df(u±)) 0

)
.

The normal modes of (4.4) are V ±
j eμ±

j x, j = 1, 2, . . . , 2n, where μ±
j , V ±

j are
the eigenvalues and eigenvectors of A±; these are easily seen to satisfy V ±

j =(
v±j
μ±

j v
±
j

)
, v±j ∈ C

n and [(μ±
j )2I + λI +Df(u±)]v±j = 0. Let σ±

1 , σ
±
2 , . . . , σ

±
n be the

eigenvalues of Df(u±). Then we have the equation (μ±
j )2 + λ = −σ±

j , and solve

for μ±
j to get μ±

j = ±
√
−σ±

j − λ. Since we have assumed that Reσ±
j < 0 for all

j = 1, 2, . . . , n, and λ is on a contour which lies completely in the half plane
{Reλ < 0}, then one of

√
−σ±

j − λ and −
√

−σ±
j − λ has positive real part while

the other has negative real part. After some rearrangement we have the following:

Proposition 4.1. For some η′ > 0, there locally exist analytic choices
Reμ±

1 , . . . ,Reμ±
n � −η′ < 0 < η′ � Reμ±

n+1, . . . ,Reμ±
2n, and V ±

1 , . . . , V ±
2n for the

eigenvalues and eigenvectors of A±(λ), satisfying −Reμ±
j = Reμ±

n+j � η′ > 0 for
j = 1, 2, . . . , n and

μ±
j (λ) = − γ±j − a±j λ− b±j λ

2 + O(λ3), μ±
n+j(λ) = γ±j + a±j λ+ b±j λ

2 + O(λ3),

V ±
j (λ) =

(
r±j + O(λ) − γ±j r

±
j + O(λ)

)
, V ±

n+j(λ) =
(

r±j + O(λ)
γ±j r

±
j + O(λ)

)
.

as λ→ 0, where γ±j , a
±
j and b±j are some constants such that Reγ±j � η′ > 0 for

j = 1, 2, . . . , n. r±j are the right eigenvectors of Df(u±) corresponding to eigenvalues
σ±

j .

Lemma 4.2. The adjoint of the operator Lw = wxx +Df(ū)w is L∗z = zxx +
zDf(ū).

Proof. Let A(x) = Df(ū(x)), then the conclusion follows from

〈Lw, z〉 =
∫
zLw dx =

∫
z(wxx +Aw) dx =

∫
zwxx dx+

∫
zAw dx

=
∫
zxxw dx+

∫
zAw dx =

∫
(zxx + zA)w dx = 〈w,L∗z〉. �

(Note: Here, w is an n-dimensional column vector and z is an n-dimensional row
vector.)
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Lemma 4.3. Let Hλ(x, y) denote the Green function for the adjoint operator
(L− λI)∗ of L− λI. Then, Hλ(x, y) = Gλ(y, x)∗, where M∗ denotes M t for a com-
plex matrix M . In particular, for y �= x and x fixed, the matrix z(y) = Gλ(x, y)
satisfies

zyy + zDf(ū(y)) = λz. (4.5)

Consider (4.5) as an ODE for general row vector z, or, written as a first order
system,

Z ′ = ZÃ(x;λ), (4.6)

where Z = (z, z′) and Ã(x;λ) :=
(

0 −(λI +Df(ū))
I 0

)
.

Lemma 4.4. Z is a solution of (4.6) if and only if ZSW ≡ Constant for any

solution W of (4.2), where S =
(

0 I
−I 0

)
.

Proof.

(ZSW )′ = (−z′w + zw′)′ = −z′′w − z′w′ + z′w′ + zw′′

= −z′′w + zw′′ = −(λz − zA)w + z(λw −Aw)

= −λzw + zAw + λzw − zAw = 0.
�

Similarly, we define the adjoint asymptotic matrices

Ã±(λ) :=
(

0 −(λI +Df(u±))
I 0

)
.

Proposition 4.5. Under assumption (D), |A(x;λ) − A±(λ)| � C e−η|x| as x→
±∞ and |Ã(x;λ) − Ã±(λ)| � C e−η|x| as x→ ±∞.

Proof. This follows immediately from (1.8). �

5. Construction of the resolvent kernel

Define

W+
1 (x;λ),W+

2 (x;λ), . . . ,W+
2n(x;λ)

and

W−
1 (x;λ),W−

2 (x;λ), . . . ,W−
2n(x;λ)

as two bases of solutions to (4.2), and

W̃+
1 (x;λ), W̃+

2 (x;λ), . . . , W̃+
2n(x;λ)

and

W̃−
1 (x;λ), W̃−

2 (x;λ), . . . , W̃−
2n(x;λ)
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as two bases of solutions to the adjoint first order ODE (4.6), satisfying the relations

W̃+
j SW+

k = δj
k

W̃−
j SW−

k = δj
k

(5.1)

Applying the Gap Lemma of [3,13] relating variable- to constant-coefficient
solutions, we obtain:

Proposition 5.1. We have the following asymptotic description of W̃±
j and W±

k :

W̃±
j (x;λ) = Ṽ ±

j (λ) e−μ±
j (λ)x(1 + O(e−(η/2)|x|)), for j = 1, 2, . . . , 2n;

W±
k (x;λ) = V ±

k (λ) eμ±
k (λ)x(1 + O(e−(η/2)|x|)), for k = 1, 2, . . . , 2n,

where V ±
j , μ±

j are as in proposition 4.1.

Definition 5.2. We define the decaying modes of (4.2) as

Φ+ = (φ+
1 , . . . , φ

+
n ) = (W+

1 , . . . ,W
+
n ),

Φ− = (φ−1 , . . . , φ
−
n ) = (W−

n+1, . . . ,W
−
2n).

and the growing modes of (4.2) as

Ψ+ = (ψ+
1 , . . . , ψ

+
n ) = (W+

n+1, . . . ,W
+
2n),

Ψ− = (ψ−
1 , . . . , ψ

−
n ) = (W−

1 , . . . ,W
−
n ).

Similarly we define the growing modes of (4.6) as

Φ̃+ = (φ̃+
1 , . . . , φ̃

+
n )t = (W̃+

1 , . . . , W̃
+
n )t,

Φ̃− = (φ̃−1 , . . . , φ̃
−
n )t = (W̃−

n+1, . . . , W̃
−
2n)t.

and the decaying modes of (4.6) as

Ψ̃+ = (ψ̃+
1 , . . . , ψ̃

+
n )t = (W̃+

n+1, . . . , W̃
+
2n)t,

Ψ̃− = (ψ̃−
1 , . . . , ψ̃

−
n )t = (W̃−

1 , . . . , W̃
−
n )t.

From this definition we have,

φ̃±j Sφ±k = δj
k;φ̃±j Sψ±

k = 0,

ψ̃±
j Sφ±k = 0;ψ̃±

j Sψ±
k = δj

k.
(5.2)

or written as matrix form
(

Φ̃±

Ψ̃±

)
S(Φ±,Ψ±) = I.

Lemma 5.3. [
Gλ Gλ,y

Gλ,x Gλ,xy

]
(y)

=
(

0 −I
I 0

)
= S−1,

where [h(x)](y) denotes the jump in h(x) at x = y, and S is as in lemma 4.4.
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Proof. Expanding δy(x) = (L− λI)Gλ = Gλ,xx +AGλ − λGλ, and comparing
orders of singularity, we find that Gλ,xx(x, y) = δy(x) and AGλ − λGλ = 0, thus

Gλ,x = Hy(x) =
{
I, for x � y;
0, for x < y.

This gives [Gλ,x](y) = I and [Gλ](y) = 0. Differentiating [Gλ](y) in y, we obtain

[Gλ,x](y) + [Gλ,y](y) =
d
dy

[Gλ](y) = 0,

thus [Gλ,y](y) = −I. Differentiating again we find that

[Gλ,xy](y) = −1
2
(
[Gλ,xx](y) + [Gλ,yy](y)

)
.

Finally we can determine [Gλ,xx](y) and [Gλ,yy](y) by Gλ,xx = λGλ −AGλ,
Gλ,yy = λGλ −GλA. It is easy to find that [Gλ,xx](y) = 0 and [Gλ,yy](y) = 0, thus
[Gλ,xy](y) = 0. �

From (L− λI)Gλ(x, y) = δy(x)I, (L− λI)∗Hλ(x, y) = δy(x)I we know that(
Gλ(x, y)
Gλ,x(x, y)

)
viewed as a function of x satisfies (4.2)(differentiating with respect

to x), while (Gλ(x, y), Gλ,y(x, y)) viewed as function of y satisfies (4.6) (differenti-
ating with respect to y). Furthermore, note that both Gλ(x, ·) and Gλ(·, y) decay
at ±∞ for λ on the resolvent set, since |(L− λI)−1| <∞ and |(L− λI)∗−1| <∞
imply ‖Gλ(·, y)‖L1(x) <∞ and ‖Gλ(x, ·)‖L1(y) <∞ respectively. Combining, we
have the representation(

Gλ Gλ,y

Gλ,x Gλ,xy

)
=
{

Φ+(x;λ)M+(λ)Ψ̃−(y;λ) for x > y;
−Φ−(x;λ)M−(λ)Ψ̃+(y;λ) for x < y,

(5.3)

where matrices M±(λ) are to be determined.
Combining lemma 5.3 and (5.3), we have

(
Φ+(y),Φ−(y)

)(M+(λ) 0
0 M−(λ)

)(
Ψ̃−(y)
Ψ̃+(y)

)
= S−1, or

(
M+(λ) 0

0 M−(λ)

)
=
(
Φ+(y),Φ−(y)

)−1 S−1

(
Ψ̃−(y)
Ψ̃+(y)

)−1

=
((

Ψ̃−(y)
Ψ̃+(y)

)
S (Φ+(y),Φ−(y)

))−1

=
(

Ψ̃−SΦ+ Ψ̃−SΦ−

Ψ̃+SΦ+ Ψ̃+SΦ−

)−1

(y)
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=
(

Ψ̃−SΦ+ 0
0 Ψ̃+SΦ−

)−1

(y)

=
(

(Ψ̃−SΦ+)−1 0
0 (Ψ̃+SΦ−)−1

)
,

thus M+(λ) = (Ψ̃−SΦ+)−1, M−(λ) = (Ψ̃+SΦ−)−1.

Proposition 5.4. On Ω,(
Gλ Gλ,y

Gλ,x Gλ,xy

)
=
∑
j,k

M+
jk(λ)φ+

j (x;λ)ψ̃−
k (y;λ) (5.4)

for y � 0 � x,(
Gλ Gλ,y

Gλ,x Gλ,xy

)
=
∑
j,k

d+
jk(λ)φ−j (x;λ)ψ̃−

k (y;λ) +
∑

k

ψ−
k (x;λ)ψ̃−

k (y;λ) (5.5)

for y � x � 0, where

M+ = (I, 0)(Φ+,Φ−)−1Ψ−, d+ = −(0, I)(Φ+,Φ−)−1Ψ− (5.6)(
Gλ Gλ,y

Gλ,x Gλ,xy

)
= −

∑
j,k

M−
jk(λ)φ−j (x;λ)ψ̃+

k (y;λ) (5.7)

for x � 0 � y,(
Gλ Gλ,y

Gλ,x Gλ,xy

)
=
∑
j,k

d−jk(λ)φ−j (x;λ)ψ̃−
k (y;λ) −

∑
k

φ−k (x;λ)φ̃−k (y;λ) (5.8)

for x � y � 0, where

M− = Φ̃−
(

Ψ̃−

Ψ̃+

)−1(
0
I

)
, d−(λ) = Φ̃−

(
Ψ̃−

Ψ̃+

)−1(
I
0

)
Proof. Here we only prove the cases for y � 0 � x and y � x � 0, the cases for
x � 0 � y and x � y � 0 can be derived similarly.

For y � 0 � x, according to (5.3),(
Gλ Gλ,y

Gλ,x Gλ,xy

)
=

n∑
i=1

n∑
j=1

M+
ij (λ)φ+

i (x;λ)ψ̃−
j (y;λ) (5.9)

We may express M+ using the duality relation (5.1) as

M+ = (I, 0)(Φ+,Φ−)−1S−1

(
Ψ̃−

Φ̃−

)−1(
I
0

)

= (I, 0)(Φ+,Φ−)−1

((
Ψ̃−

Φ̃−

)
S
)−1(

I
0

)
= (I, 0)(Φ+,Φ−)−1(Ψ−,Φ−)

(
I
0

)
= (I, 0)(Φ+,Φ−)−1Ψ−.
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Next, for y � x � 0, expressing each φ+
i (x;λ) as a linear combination of basis

elements at −∞,

φ+
i (x;λ) =

n∑
j=1

a+
ji(λ)φ−j (x;λ) +

n∑
j=1

b+ji(λ)ψ−
j (x;λ), (5.10)

we plug this into (5.9) to derive

n∑
i=1

n∑
l=1

M+
il (λ)φ+

i (x;λ)ψ̃−
l (y;λ)

=
n∑

i=1

n∑
l=1

M+
il (λ)

n∑
j=1

a+
ji(λ)φ−j (x;λ)ψ̃−

l (y;λ)

+
n∑

i=1

n∑
l=1

M+
il (λ)

n∑
j=1

b+ji(λ)ψ−
j (x;λ)ψ̃−

l (y;λ)

=
n∑

j=1

n∑
l=1

(
n∑

i=1

a+
ji(λ)M+

il (λ)

)
φ−j (x;λ)ψ̃−

l (y;λ)

+
n∑

j=1

n∑
l=1

(
n∑

i=1

b+ji(λ)M+
il (λ)

)
ψ−

j (x;λ)ψ̃−
l (y;λ)

=
n∑

j=1

k∑
l=1

d+
jl(λ)φ−j (x;λ)ψ̃−

l (y;λ) +
n∑

j=1

n∑
l=1

e+jl(λ)ψ−
j (x;λ)ψ̃−

l (y;λ).

Here we are defining

d+
jl(λ) :=

n∑
i=1

a+
ji(λ)M+

il (λ), d+ = a+M+;

e+jl(λ) :=
n∑

i=1

b+ji(λ)M+
il (λ), e+ = b+M+.

where a, b, d, e are all n× n matrices.

Rewriting (5.10) as Φ+ = Φ−a+ + Ψ−b+ = (Φ−,Ψ−)
(
a+

b+

)
, and using the rela-

tion
(

Φ̃−

Ψ̃−

)
S(Φ−,Ψ−) = I, we have

(
a+

b+

)
= (Φ−,Ψ−)−1Φ+ =

(
Φ̃−

Ψ̃−

)
SΦ+.

Finally, if we write Π+ = (Φ+, 0)(Φ+,Φ−)−1 and Π− = I − Π+ then(
d+

e+

)
=
(
a+

b+

)
M+ =

(
Φ̃−

Ψ̃−

)
SΦ+(I, 0)(Φ+,Φ−)−1Ψ−

=
(

Φ̃−

Ψ̃−

)
S(Φ+, 0)(Φ+,Φ−)−1Ψ−

= (Φ−,Ψ−)−1Π+Ψ−
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= (Φ−,Ψ−)−1(I − Π−)Ψ−

= (Φ−,Ψ−)−1(I − (0,Φ−)(Φ+,Φ−)−1)Ψ−

= (Φ−,Ψ−)−1Ψ− − (Φ−,Ψ−)−1(0,Φ−)(Φ+,Φ−)−1Ψ−

= (Φ−,Ψ−)−1(Φ−,Ψ−)
(

0
I

)
− (Φ−,Ψ−)−1(Φ−,Ψ−)

(
0 I
0 0

)
(Φ+,Φ−)−1Ψ−

=
(

0
I

)
−
(

0 I
0 0

)
(Φ+,Φ−)−1Ψ− �

Thus we have d+ = −(0, I)(Φ+,Φ−)−1Ψ−, e+ = I, and so we can rewrite (5.9) as(
Gλ Gλ,y

Gλ,x Gλ,xy

)
=
∑
j,k

d+
jk(λ)φ−j (x;λ)ψ̃−

k (y;λ) +
∑

k

ψ−
k (x;λ)ψ̃−

k (y;λ).

6. Low and bounded frequency bounds on the resolvent kernel

Lemma 6.1. Under assumption (D), for |λ| � R, any R > 0,

|M±
jk(λ)|, |d±jk(λ)| � C, (6.1)

for a constant C > 0 depending only on R.

Proof. Expanding M+ = (I, 0)(Φ+,Φ−)−1Ψ− using Cramer’s rule, and setting
x = 0, we obtain M+

jk = D−1C+
jk, where C+ = (I, 0)(Φ+,Φ−)adjΨ− and D =

det(Φ+,Φ−). It is evident that |C+| is uniformly bounded and therefore |M+
jk| �

C1|D|−1 � C by (D), where C is a uniform constant. Similar bounds hold for M−
jk

and d±jk. �

Proposition 6.2. Assuming (D), for |λ| � R, any R > 0, the resolvent kernel Gλ

satisfies the estimates

|Gλ(x, y)| � C e−η′(|x|+|y|). (6.2)

where η′ is as defined in proposition 4.1 and C > 0 is a constant which depends
only on R.

Proof. We only prove the case where y � 0 � x, the rest is similar. According to
proposition 5.4, the Green kernel can be written as∑

j,k

M+
jk(λ)φ+

j (x;λ)ψ̃−
k (y;λ) =

∑
j,k

M+
jk(λ)W+

j (x;λ)W̃−
k (y;λ)

=
∑
j,k

M+
jk(λ)V +

j (λ) eμ+
j (λ)x

(
1 + O(e−(η/2)|x|)

)
Ṽ −

k (λ) e−μ−
k (λ)y
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×
(
1 + O(e−(η/2)|y|)

)
=
∑
j,k

M+
jk(λ)V +

j (λ)Ṽ −
k (λ) e−γ+

j x eγ−
k y
(
1 + O(e−(η/2)|x|)

)(
1 + O(e−(η/2)|y|)

)
� C e−(γ+

j −η′)x e(γ−
k −η′)y e−η′x eη′y � C e−η′x eη′y = C e−η′(|x|+|y|). �

7. High frequency bounds on the resolvent kernel

Define Ωθ = {λ : Re(λ) � −θ1 − θ2|Im(λ)|}, for θ = (θ1, θ2) with θ1, θ2 > 0. Assum-
ing (D), we have the following estimates for Gλ(x, y), given in [13].

Proposition 7.1 Proposition 7.3, [13]. Under assumption (D), it follows that
for R0 > 0 sufficiently large and θ1, θ2 > 0 sufficiently small there exist constants
C, β > 0 such that

|Gλ(x, y)| � C|λ|−1/2 e−β−1/2|λ|1/2|x−y|,

|Gλ,x(x, y)|, |Gλ,y(x, y)| � C e−β−1/2|λ|1/2|x−y|;
(7.1)

for all λ ∈ Ωθ \B(0, R0).

8. Pointwise bounds on the Green function

Now we prove the pointwise bounds for G̃(x, t; y) and e(y, t) stated in proposi-
tion 1.4.

Proof of proposition 1.4. To derive the bounds on G̃(x, t; y), we consider two cases
depending on the scale of (|x− y|)/t (figure 1).

We define the contour Γ̃ as the union of bounded-λ part Γ̃1 and large-λ part
Γ̃2, where Γ̃1 is the line segment connecting −(η/2) − κi and −(η/2) + κi, Γ̃2 is
the boundary of the sector Ωθ = {λ : Re(λ) � −θ1 − θ2|Im(λ)|}, θ1 = (η/4), θ2 =
(η/4κ) outside the ball B(0,

√
(η/2)2 + κ2).

Case I. (((|x− y|)/t large). We first derive the bounds for the Green kernel
G̃(x, t; y) in the rather trivial case that

|x− y|
t

� S (8.1)

for some S > 0 sufficiently large, the regime in which standard short-time parabolic
theory applies. Set

ᾱ :=
|x− y|

2βt
, R := βᾱ2 =

√(η
2

)2

+ κ2, (8.2)

where β, R0 are as in proposition 7.1 and S is sufficiently large that R > R0, and
consider again the representation of G̃:

G̃(x, t; y) = ū′(x)(1 − χ(t))ψ̃(y) +
1

2πi

∫
Γ̃

eλtGλ(x, y) dλ.
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Figure 1. Contour of integration

By the large |λ| estimates of proposition 7.1, we have for all λ ∈ Γ̃2 that

|Gλ(x, y)| � C|λ|−1/2 e−β−(1/2)|λ|1/2|x−y|. (8.3)

Further, we have

Reλ = − η

2
, λ ∈ Γ̃1, (8.4)

Reλ = Reλ0 − θ2(|Imλ| − |Imλ0|), λ ∈ Γ̃2, (8.5)

for R sufficiently large, where λ0 and λ∗0 are the two points of intersection of Γ̃1

and Γ̃2.
Combining (6.2) and (8.4), we obtain∣∣∣∣∫

Γ̃1

eλtGλ(x, y) dλ
∣∣∣∣ � C

∣∣∣∣∫ κ

−κ

e(−(η/2)+ξi)t e−η′(|x|+|y|) dξ
∣∣∣∣ � C e−η0(t+|x−y|).

Likewise,∣∣∣∣∫
Γ̃2

eλtGλ(x, y) dλ
∣∣∣∣

�
∫

Γ̃2

C|λ|−(1/2)e(Reλ)t−β−(1/2)|λ|1/2|x−y||dλ|

� CeRe(λ0)t−β−(1/2)|λ0|1/2|x−y|
∫

Γ̃2

|λ|−(1/2) e(Reλ−Reλ0)t|dλ|

� C e−βᾱ2t

∫
Γ̃+

2

|Imλ− Imλ0|−(1/2) e−θ2(Imλ−Imλ0)t|d(Imλ− Imλ0)|

= C e−βᾱ2t

∫ +∞

0

s−(1/2) e−θ2ts ds = Ct−(1/2) e−βᾱ2t,
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which by (8.2) may be bounded by Ct−(1/2) e−η0t e−(((x−y)2)/8βt) for η0 > 0
independent of ᾱ.

Finally, since (1 − χ(t)) = 0 for t � 2, |ū′(x)| � C e−η0|x|, and |ψ̃(y)| � C e−η0|y|,
we have evidently |ū′(x)(1 − χ(t))ψ̃(y)| � C e−η0(t+|x−y|).

Combining the above three estimates, we have

|G̃(x, t; y)| �
(
C1t

−(1/2) e−η0t e−((|x−y|2)/4C0t) + C2 e−η0(t+|x−y|)
)

for C0 sufficiently large.
Case II. ((|x− y|)/t bounded). In order to derive the bounds on G̃(x, t; y) in

this regime, we again recall the representation formula

G̃(x, t; y) = ū′(x)(1 − χ(t))ψ̃(y) +
1

2πi

∫
Γ̃

eλtGλ(x, y) dλ,

1
2πi

∫
Γ̃

eλtGλ(x, y) dλ =
1

2πi

∫
Γ̃1

eλtGλ(x, y) dλ+
1

2πi

∫
Γ̃2

eλtGλ(x, y) dλ.

First, we estimate the Γ̃2 part of G̃,∣∣∣∣ 1
2πi

∫
Γ̃2

eλtGλ(x, y) dλ
∣∣∣∣

� C

∫
Γ̃2

e(Reλ)t|Gλ||dλ| � C

∫
Γ̃2

e(Reλ0)t−θ2(|Imλ−Imλ0|)t|λ|−(1/2)|dλ|

� C e−(1/2)ηt

∫
Γ̃2

|Imλ− Imλ0|−(1/2) e−θ2(|Imλ−Imλ0|)t|d(Imλ− Imλ0)|

= 2C(θ2t)−(1/2) e−(1/2)ηtΓ
(

1
2

)
= C1t

−(1/2) e−(1/2)ηt

� C2t
−(1/2) e−η0t e−((|x−y|2)/4C0t).

for C0 > 0 large enough.
Next we estimate the Γ̃1 part of G̃,∣∣∣∣ 1

2πi

∫
Γ̃1

eλtGλ(x, y) dλ
∣∣∣∣ � C

∣∣∣∣∫ κ

−κ

e(−(η/2)+ξi)t e−η′(|x|+|y|) dξ
∣∣∣∣

= C e−(η/2)t e−η′(|x|+|y|)
∣∣∣∣∫ κ

−κ

eiξt dξ
∣∣∣∣

� C e−(η/2)t−η′(|x|+|y|)

� C e−η0(t+|x|+|y|).

for 0 < η0 less than η/2 and η′.
Finally, we have as in the previous case |ū′(x)(1 − χ(t))ψ̃(y)| � C e−η0(t+|x−y|).

Thus we know that G̃(x, t; y) is bounded by C1t
−(1/2) e−η0t−((|x−y|2)/4C0t) +

C2 e−η0(t+|x−y|) in both (|x− y|)/t large and bounded cases.
This completes the proof of bounds on G̃(x, t; y). The bounds on G̃y(x, t; y) can

be derived similarly. We just need to notice that in the estimate of Gλ,y(x, y) for
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large-λ is different from the same estimate of Gλ(x, y) by a factor of |λ|1/2, thus
the large-λ (Γ̃2) part of the bounds on G̃y(x, t; y) is different from the G̃(x, t; y) one
by a factor of t−(1/2), while the bounded-λ (Γ̃1) part stays the same.

Next we move on to estimate e(y, t). Recall that we have e(y, t) = χ(t)ψ̃(y), along
with the estimates

χt(t) � C e−η0t, for t � 0,

ψ̃(y) � C e−η|y|, for y ≷ 0,

ψ̃y(y) � C e−η|y|, for y ≷ 0.

Combining, we get the stated bounds for e(y, t). �

9. Improved pointwise bounds on the Green function

Next we prove the bounds stated in proposition 1.5.

Proof of proposition 1.5. We first derive the bounds for the total Green kernel
G(x, t; y) in the rather trivial case that ((|x− y|)/t) � S, S sufficiently large as
defined in (8.1), the regime in which standard short-time parabolic theory applies.
Set

ᾱ :=
|x− y|

2βt
, R := βᾱ2, (9.1)

where β, R0 are as in proposition 7.1 and S is sufficiently large that R > R0, and
consider the representation of G (following from (3.1) and Cauchy’s theorem):

G(x, t; y) =
1

2πi

∫
Γ1∪Γ2

eλtGλ(x, y) dλ,

where Γ1 := ∂B(0, R) ∩ Ω̄θ and Γ2 := ∂Ωθ \B(0, R). Note that the intersection of
Γ with the real axis is λmin = R = βᾱ2. By the large |λ| estimates of proposition
7.1, we have for all λ ∈ Γ1 ∪ Γ2 that

|Gλ(x, y)| � C|λ|−1/2 e−β−(1/2)|λ|1/2|x−y|. (9.2)

Further, we have

Reλ � R(1 − η2ω
2), λ ∈ Γ1, (9.3)

Reλ � Reλ0 − θ2(|Imλ| − |Imλ0|), λ ∈ Γ2, (9.4)

for R sufficiently large, where ω is the argument of λ and λ0 and λ∗0 are the two
points of intersection of Γ1 and Γ2, for some η2 > 0 independent of ᾱ. Combining
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(9.2), (9.3) and (9.1), we obtain∣∣∣∣∫
Γ1

eλtGλ(x, y) dλ
∣∣∣∣ � ∫

Γ1

C|λ|−(1/2)e(Reλ)t−β−(1/2)|λ|1/2|x−y||dλ|

� C

∫
Γ1

R−(1/2) eR(1−η2ω2)t−β−(1/2)R1/22βᾱt|dλ|

= CR1/2 e−βᾱ2t

∫ +M

−M

e−Rη2tω2
dω

� Ct−(1/2) e−βᾱ2t.

Likewise,∣∣∣∣∫
Γ2

eλtGλ(x, y) dλ
∣∣∣∣ �

∫
Γ2

C|λ|−(1/2)e(Reλ)t−β−(1/2)|λ|1/2|x−y||dλ|

� CeRe(λ0)t−β−(1/2)|λ0|1/2|x−y|
∫

Γ2

|λ|−(1/2) e(Reλ−Reλ0)t|dλ|

� CeRt−β−(1/2)R1/22βᾱt2
∫

Γ+
2

|λ|−(1/2) e−θ2(Imλ−Imλ0)t|dλ|

� C e−βᾱ2t

∫ +∞

0

s−(1/2) e−θ2ts ds = Ct−(1/2) e−βᾱ2t.

Combining these last two estimates, and recalling (9.1), we have

|G(x, t; y)| � Ct−(1/2) e−(βᾱ2t/2) e−(((x−y)2)/8βt) � Ct−(1/2) e−η2t e−(((x−y)2)/8βt),

for η2 > 0 independent of ᾱ, hence |G(x, t; y)| � Ct−(1/2) e−η0t e−((|x−y|2)/4C0t) for
((|x− y|)/t) � S and C0 sufficiently large.

Secondly, to prove the bound stated for H̃, recall that

F (x, t; y) = E(x, t; y)
(

errfn
(
x− y + t√

4t

)
− errfn

(
x− y − t√

4t

))
,

E(x, t; y) − F (x, t; y) = E(x, t; y)
(

1 − errfn
(
x− y + t√

4t

)
+ errfn

(
x− y − t√

4t

))
.

and

H̃(x, t; y) = G(x, t; y) − F (x, t; y), (9.5)

H̃(x, t; y) = G̃(x, t; y) + (E(x, t; y) − F (x, t; y)). (9.6)

Here is the plan of the proof: For the case (|x− y|)/t � S for some large enough
S defined in (8.1), we use (9.5) with the bound on the total Green function
G(x, t; y) above and the bound on F (x, t; y) that we are about to show. For the
case (|x− y|)/t � S, we use (9.6) with the bound on G̃(x, t; y) derived in the proof
of proposition 1.4 and the bound on E(x, t; y) − F (x, t; y) we are going to derive.
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Case I. (|x− y|)/t � 1/2. In this situation, we have |x− y| � 1
2 t, so

1
4

√
t � x− y + t√

4t
� 3

4

√
t

−3
4

√
t � x− y − t√

4t
� − 1

4

√
t

Recall that errfn(x) := (1/
√
π)
∫ x

−∞ e−z2
dz. From this we get

1 − errfn
(
x− y + t√

4t

)
+ errfn

(
x− y − t√

4t

)

=
1√
π

∫ +∞

−∞
e−z2

dz − 1√
π

∫ ((x−y+t)/
√

4t)

−∞
e−z2

dz +
1√
π

∫ ((x−y−t)/
√

4t)

−∞
e−z2

dz

=
1√
π

(∫ +∞

−∞
e−z2

dz −
∫ ((x−y+t)/

√
4t)

−∞
e−z2

dz

)
+

1√
π

∫ ((x−y−t)/
√

4t)

−∞
e−z2

dz

=
1√
π

∫ +∞

((x−y+t)/
√

4t)

e−z2
dz +

1√
π

∫ ((x−y−t)/
√

4t)

−∞
e−z2

dz,

and then∣∣∣∣1 − errfn
(
x− y + t√

4t

)
+ errfn

(
x− y − t√

4t

)∣∣∣∣
� 1√

π

∫ +∞

(1/4)
√

t

e−z2
dz +

1√
π

∫ −(1/4)
√

t

−∞
e−z2

dz = erfc
(

1
4

√
t

)
� e−(1/16)t,

where we have used the fact that for the complementary error function erfc(x) :=
(2/

√
π)
∫ +∞

x
e−z2

dz, there is the estimate erfc(x) � e−x2
. Together with the

fact that E(x, t; y) = ū′(x)e(y, t) = χ(t)ū′(x)ψ̃(y), and |ū′(x)| � C e−η|x|, |ψ̃(y)| �
C e−η|y| for some η > 0, we can derive that

|E(x, t; y) − F (x, t; y)|

=
∣∣∣∣E(x, t; y)

(
1 − errfn

(
x− y + t√

4t

)
+ errfn

(
x− y − t√

4t

))∣∣∣∣
� C e−η|x| e−η|y| e−(1/16)t � C e−η|x−y|−(1/16)t

= Ct1/2 eη0t+((|x−y|2)/Mt2)t−η((|x−y|)/t)t−(1/16)t · t−(1/2) e−η0t−((|x−y|2)/Mt2)t

= Ct1/2 e−((1/16)−η0−((|x−y|2)/Mt2)+η((|x−y|)/t))t · t−(1/2) e−η0t−((|x−y|2)/Mt2)t

� Ct−(1/2) e−η0t−((|x−y|2)/Mt),

for 0 < η0 < (1/16) and M > 0 large enough because (|x− y|)/t is bounded.
Together with the estimate |G̃(x, t; y)| � Ct−(1/2) e−η0t−((|x−y|2)/Mt) for G̃(x, t; y),
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as follows from e−η|x−y| � e−((|x−y|2)/(St/η0)) for (|x− y|)/t < S, we derive that
|H̃(x, t; y)| � Ct−(1/2) e−η0t−((|x−y|2)/Mt).

Case II. 1/2 � ((|x− y|)/t) � S.

|E(x, t; y) − F (x, t; y)|

=
∣∣∣∣E(x, t; y)

(
1 − errfn

(
x− y + t√

4t

)
+ errfn

(
x− y − t√

4t

))∣∣∣∣
� C e−η|x| e−η|y| � C e−η|x−y|

= Ct1/2 eη0t+((|x−y|2)/Mt2)t−η((|x−y|)/t)t · t−(1/2) e−η0t−((|x−y|2)/Mt2)t

= Ct1/2 e−(η((|x−y|)/t)−η0−((|x−y|2)/Mt2))t · t−(1/2) e−η0t−((|x−y|2)/Mt2)t

� Ct−(1/2) e−η0t−((|x−y|2)/Mt),

for 0 < η0 < (1/2)η and M > 0 large enough because (|x− y|)/t is bounded.
Together with the estimate |G̃(x, t; y)| � Ct−(1/2) e−η0t−((|x−y|2)/Mt) for G̃(x, t; y),
as follows from e−η|x−y| � e−((|x−y|2)/(St/η0)) for ((|x− y|)/t) < S, we derive that
|H̃(x, t; y)| � Ct−(1/2) e−η0t−((|x−y|2)/Mt).

Case III. (|x− y|)/t � S.

|F (x, t; y)| =
∣∣∣∣E(x, t; y)

(
errfn

(
x− y + t√

4t

)
− errfn

(
x− y − t√

4t

))∣∣∣∣
� C e−η|x| e−η|y| 1√

π

∫ ((x−y+t)/
√

4t)

((x−y−t)/
√

4t)

e−z2
dz

� C e−η|x−y|√tmax
(
e−(((x−y+t)2)/4t), e−(((x−y−t)2)/4t)

)
� C e−η((|x−y|)/t)tt1/2 max

(
e−(((x−y+t)2)/4t), e−(((x−y−t)2)/4t)

)
� Ct−(1/2) e−η0t−((|x−y|2)/Mt).

S > η0/η and M > 0 large enough. In the second inequality above, note that
(x− y + t)/

√
4t and (x− y − t)/

√
4t have the same sign, so we can esti-

mate
∫ ((x−y+t)/

√
4t)

((x−y−t)/
√

4t)
e−z2

dz by the width
√
t of domain of integration times

the maximum of integrand. Together with the estimate for the total Green
function, |G(x, t; y)| � Ct−(1/2) e−η2t e−(((x−y)2)/8βt), we derive that |H̃(x, t; y)| �
Ct−(1/2) e−η0t−((|x−y|2)/Mt).

The proof of (1.20) is omitted (direct calculation). �

10. Estimates on the Green kernel

Now we are ready to carry out the Lp → Lp estimation on the Green function
G(x, t; y).
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Proposition 10.1. Under assumption (D), the Green function G decomposes
as G(x, t; y) = ū′(x)e(y, t) + G̃(x, t; y), where for some C > 0, and all t > 0,
1 � p � ∞, ∣∣∣∣∫ +∞

−∞
G̃(x, t; y)h(y) dy

∣∣∣∣
Lp(x)

� C e−η0t|h|Lp , (10.1)

∣∣∣∣∫ +∞

−∞
G̃y(x, t; y)h(y) dy

∣∣∣∣
Lp(x)

� Ct−(1/2) e−η0t|h|Lp , (10.2)

and ∣∣∣∣∫ +∞

−∞
e(y, t)h(y) dy

∣∣∣∣ � C|h|Lp ,

∣∣∣∣∫ +∞

−∞
ey(y, t)h(y) dy

∣∣∣∣ � C|h|Lp , (10.3)∣∣∣∣∫ +∞

−∞
et(y, t)h(y) dy

∣∣∣∣ � C e−η0t|h|Lp ,

∣∣∣∣∫ +∞

−∞
ety(y, t)h(y) dy

∣∣∣∣ � C e−η0t|h|Lp ,

(10.4)

for any h ∈ Lp(R).

Proof. First, we carry out the proof of (10.1). Using proposition 1.4, we have the
following estimates on |G̃(x, t; y)|L1(x):∫ +∞

−∞
t−(1/2) e−η0t−((|x−y|2)/4C0t) dx = t−(1/2) e−η0t

∫ +∞

−∞
e−((|x−y|2)/4C0t) dx = C e−η0t,

and ∫ +∞

−∞
e−η0(t+|x−y|) dx = e−η0t

∫ +∞

−∞
e−η0|x−y| dx

= e−η0t

(
2
∫ +∞

0

e−η0ξ dξ
)

= C e−η0t,

thus

|G̃(x, t; y)|L1(x) � C
∣∣∣t−(1/2) e−η0t−((|x−y|2)/4C0t)

∣∣∣
L1(x)

+ C
∣∣∣ e−η0(t+|x−y|)

∣∣∣
L1(x)

� C e−η0t.

This implies that∣∣∣∣∫ +∞

−∞
G̃(x, t; y)h(y) dy

∣∣∣∣
Lp(x)

� sup
y

|G̃(x, t; y)|L1(x)|h|Lp � C e−η0t|h|Lp ,

which completes the proof of (10.1).

https://doi.org/10.1017/prm.2019.6 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.6


2238 Yingwei Li

Next, in order to prove (10.3) and (10.4), we note that e(y, t) = χ(t)ψ̃(y) and
|ψ̃(y)|L1∪L∞ is bounded, so that gives us for q = (p/(p− 1)),∣∣∣∣∫ +∞

−∞
e(y, t)h(y) dy

∣∣∣∣ = ∣∣∣∣∫ +∞

−∞
χ(t)ψ̃(y)h(y) dy

∣∣∣∣ � C|ψ̃|Lq |h|Lp � C|h|Lp ,∣∣∣∣∫ +∞

−∞
ey(y, t)h(y) dy

∣∣∣∣ = ∣∣∣∣∫ +∞

−∞
χ(t)ψ̃y(y)h(y) dy

∣∣∣∣ � C|ψ̃y|Lq |h|Lp � C|h|Lp ,∣∣∣∣∫ +∞

−∞
et(y, t)h(y) dy

∣∣∣∣ = ∣∣∣∣∫ +∞

−∞
χt(t)ψ̃(y)h(y) dy

∣∣∣∣ � C e−η0t|ψ̃|Lq |h|Lp

� C e−η0t|h|Lp ,∣∣∣∣∫ +∞

−∞
ety(y, t)h(y) dy

∣∣∣∣ = ∣∣∣∣∫ +∞

−∞
χt(t)ψ̃y(y)h(y) dy

∣∣∣∣ � C e−η0t|ψ̃y|Lq |h|Lp

� C e−η0t|h|Lp . �

Proposition 10.2. Under assumption (D), the Green function G decomposes as
G(x, t; y) = ū′(x)ẽ(x, t; y) + H̃(x, t; y), where for some C > 0, all t > 0, 1 � p � ∞,
and 1 � p0 � p, ∣∣∣∣∫ +∞

−∞
H̃(x, t; y)h(y) dy

∣∣∣∣
Lp(x)

� C e−η0t|h|L1 , (10.5)

∣∣∣∣∫ +∞

−∞
H̃(x, t; y)h(y) dy

∣∣∣∣
Lp(x)

� C e−η0t|h|Lp , (10.6)

∣∣∣∣∫ +∞

−∞
H̃(x, t; y)h(y) dy

∣∣∣∣
Lp(x)

� C e−η0t|h|Lp0 , (10.7)

∣∣∣∣∫ +∞

−∞
H̃(x, t; y)h(y) dy

∣∣∣∣
Lp(x)

� C e−η0t|h|L2 , (10.8)

and ∣∣∣∣∫ +∞

−∞
∂tẽ(x, t; y)h(y) dy

∣∣∣∣
Lp(x)

� C(1 + t)−(1/2)(1−(1/p))−(1/2)|h|L1 ,

∣∣∣∣∫ +∞

−∞
∂t∂

m
x ẽ(x, t; y)h(y) dy

∣∣∣∣
Lp(x)

� C(1 + t)−(1/2)(1−(1/p))−((m+1)/2)|h|L1 ,

(10.9)

∣∣∣∣∫ +∞

−∞
∂tẽ(x, t; y)h(y) dy

∣∣∣∣
Lp(x)

� C(1 + t)−(1/2)|h|Lp ,

∣∣∣∣∫ +∞

−∞
∂t∂

m
x ẽ(x, t; y)h(y) dy

∣∣∣∣
Lp(x)

� C(1 + t)−((m+1)/2)|h|Lp ,

(10.10)
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−∞
∂tẽ(x, t; y)h(y) dy

∣∣∣∣
Lp(x)

� C(1 + t)−(1/2)((1/p0)−(1/p))−(1/2)|h|Lp0 ,

∣∣∣∣∫ +∞

−∞
∂t∂

m
x ẽ(x, t; y)h(y) dy

∣∣∣∣
Lp(x)

� C(1 + t)−(1/2)((1/p0)−(1/p))−((m+1)/2)|h|Lp0 ,

(10.11)∣∣∣∣∫ +∞

−∞
∂tẽ(x, t; y)h(y) dy

∣∣∣∣
Lp(x)

� C(1 + t)−(1/2)((1/2)−(1/p))−(1/2)|h|L2 ,

∣∣∣∣∫ +∞

−∞
∂t∂

m
x ẽ(x, t; y)h(y) dy

∣∣∣∣
Lp(x)

� C(1 + t)−(1/2)((1/2)−(1/p))−((m+1)/2)|h|L2 ,

(10.12)
for all h in the respective spaces L1, Lp, Lp0 and L2 on the right-hand-side of each
inequality.

Proof. First, we prove inequality (10.5). Recall that H̃ has the bound

|H̃(x, t; y)| � Ct−(1/2) e−η0t−((|x−y|2)/Mt),

we have the following estimate on |H̃(x, t; y)|Lp ,

(∫ +∞

−∞

(
t−(1/2) e−η0t−((|x−y|2)/4C0t)

)p

dx
)1/p

= t−(1/2) e−η0t

(∫ +∞

−∞
e−((p|x−y|2)/4C0t) dx

)1/p

= t−(1/2) e−η0t

(
2
∫ +∞

0

e−(pξ2/4C0t) dξ
)1/p

= t−(1/2) e−η0t21/p

(∫ +∞

0

e−ζ2
dζ
)1/p

(√
4C0t

p

)1/p

= Ct−(1/2)(1−(1/p)) e−η0t � C e−η0t,

for t � 1. This implies that∣∣∣∣∫ +∞

−∞
H̃(x, t; y)h(y) dy

∣∣∣∣
Lp(x)

� sup
y

|H̃(x, t; y)|Lp(x)

∣∣∣∣∫ +∞

−∞
|h(y)|dy

∣∣∣∣ � C e−η0t|h|L1 ,

proving (10.5). Inequality (10.6) can be proved similarly, and inequality (10.7) can
be obtained through Lp-interpolation.

https://doi.org/10.1017/prm.2019.6 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.6


2240 Yingwei Li

Next, let us move on to the estimate of ẽ(x, t; y). It can be shown that
∂t∂

m
x ẽ(x, t; y) has the form

χ(t)ψ̃(y)
((

Cm+1
(x− y + t)m(x− y − t)

tm+1+(1/2)
+ · · ·

)
e−(((x−y+t)2)/4t)

+
(
C ′

m+1

(x− y − t)m(x− y − 3t)
tm+1+(1/2)

+ · · ·
)

e−(((x−y−t)2)/4t)

)
,

for t � 1 and m ∈ N, we compute the following integral,(∫ +∞

−∞

(
t−(m+1+(1/2))|x− y + t|m+1 e−(((x−y+t)2)/4t)

)p

dx
)1/p

= t−(m+1+(1/2))

(∫ +∞

−∞
|x− y + t|mp+p e−((p(x−y+t)2)/4t) dx

)1/p

= t−(m+1+(1/2))

(
2
∫ +∞

0

ξmp+p e−(pξ2/4t) dξ
)1/p

= t−(m+1+(1/2))21/p

(∫ +∞

0

ζmp+p e−ζ2
dζ
)1/p(√

4t
p

)m+1+(1/p)

= Ct−(1/2)(1−(1/p))−((m+1)/2) � C(1 + t)−(1/2)(1−(1/p))−((m+1)/2),

and similarly(∫ +∞

−∞

(
t−(m+1+(1/2))|x− y − t|m+1 e−((|x−y−t|2)/4t)

)p

dx
)1/p

� C(1 + t)−(1/2)(1−(1/p))−((m+1)/2),

thus we have ∣∣∣∣∫ +∞

−∞
∂t∂

m
x ẽ(x, t; y)h(y) dy

∣∣∣∣
Lp(x)

� sup
y

|∂t∂
m
x ẽ(x, t; y)|Lp(x)

∣∣∣∣∫ +∞

−∞
|h(y)|dy

∣∣∣∣
� C(1 + t)−(1/2)(1−(1/p))−((m+1)/2)|h|L1 ,

proving (10.9). Inequality (10.10) can be proved similarly, and inequality (10.11)
can be obtained through Lp-interpolation. �

11. Integral representation for Lp iteration scheme

Letting ũ be a second solution of (1.3), define the perturbation

u(x, t) := ũ(x+ α(t), t) − ū(x) (11.1)
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as the difference between a translate by α(t) of ũ and the background wave ū. This
yields after a brief computation the perturbation equation

ut − Lu = f(u+ ū) + ūxx −Df(ū)u+ α̇(t)(ux + ūx)

= f(u+ ū) − f(ū) −Df(ū)u+ α̇(t)(ux + ūx)

=: N(u, ū) + α̇(t)(ux + ūx)

(11.2)

where Lu = uxx +Df(ū)u and N(u, ū) = f(u+ ū) − f(ū) −Df(ū)u.
We next choose α implicitly so as to ensure decay of u, i.e., to cancel the non-

decaying linear translational effects encoded in term ū′(x)e(y, t) of the Green kernel.
Noting that e(y, 0) = 0, we set α(0) = 0. Applying Duhamel’s principle to (11.2),
we thus obtain

u(x, t) =
∫ +∞

−∞
G(x, t; y)u0(y) dy

+
∫ t

0

∫ +∞

−∞
G(x, t− s; y)[N(u, ū) + α̇(ux + ūx)](y, s) dy ds

=
∫ +∞

−∞
G(x, t; y)u0(y) dy

+
∫ t

0

∫ +∞

−∞
G(x, t− s; y)[N(u, ū)(y, s) + α̇(s)ux(y, s)] dy ds

+ α(t)ū′(x)

where u0(x) := u(x, 0). Here, we have used∫ +∞

−∞
G(x, t− s; y)ū′(y) dy = eLtū′(x) = ū′(x)

and the normalization α(0) = 0. Expanding G(x, t; y) using (1.9), we obtain

u(x, t) =
∫ +∞

−∞
(ū′(x)e(y, t) + G̃(x, t; y))u0(y) dy

+
∫ t

0

∫ +∞

−∞
(ū′(x)e(y, t− s) + G̃(x, t− s; y))[N(u, ū)(y, s)

+ α̇(s)ux(y, s)] dy ds+ α(t)ū′(x)

=
∫ +∞

−∞
G̃(x, t; y)u0(y) dy

+
∫ t

0

∫ +∞

−∞
G̃(x, t− s; y)[N(u, ū)(y, s) + α̇(s)ux(y, s)] dy ds

+ ū′(x)
(
α(t) +

∫ +∞

−∞
e(y, t)u0(y) dy

+
∫ t

0

∫ +∞

−∞
e(y, t− s)[N(u, ū)(y, s) + α̇(s)ux(y, s)] dy ds

)
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Thus, if we define α(t) as

α(t) = −
∫ +∞

−∞
e(y, t)u0(y) dy

−
∫ t

0

∫ +∞

−∞
e(y, t− s)[N(u, ū)(y, s) + α̇(s)ux(y, s)] dy ds

= −
∫ +∞

−∞
e(y, t)u0(y) dy −

∫ t

0

∫ +∞

−∞
e(y, t− s)N(u, ū)(y, s) dy ds

+
∫ t

0

∫ +∞

−∞
ey(y, t− s)α̇(s)u(y, s) dy ds,

(11.3)

we obtain the integral representations

u(x, t) =
∫ +∞

−∞
G̃(x, t; y)u0(y) dy +

∫ t

0

∫ +∞

−∞
G̃(x, t− s; y)N(u, ū)(y, s) dy ds

−
∫ t

0

∫ +∞

−∞
G̃y(x, t− s; y)α̇(s)u(y, s) dy ds

(11.4)
and

α̇(t) = −
∫ +∞

−∞
et(y, t)u0(y) dy −

∫ t

0

∫ +∞

−∞
et(y, t− s)N(u, ū)(y, s) dy ds

+
∫ t

0

∫ +∞

−∞
ety(y, t− s)α̇(s)u(y, s) dy ds.

(11.5)

Note that (11.3) yields α(0) = 0, consistent with the derivation, hence (11.4)–(11.5)
are indeed equivalent to the original PDE.

12. Lp nonlinear iteration and Lp nonlinear stability

Associated with the solution (u, α̇) of the integral system (11.3) and (11.4), we
define

ζ(t) := sup
0�s�t,p0�p�∞

(|u(x, s)|Lp(x) + |α̇(s)|) eη0s. (12.1)

Lemma 12.1. For all t � 0 for which ζ(t) is finite, we have the estimate

ζ(t) � C(E0 + ζ(t)2) (12.2)

for some constant C > 0, so long as E0 is sufficiently small, where E0 is defined as

E0 := |u0|Lp0∩L∞ = |u(x, 0)|Lp0 (x)∩L∞(x) = |ũ− ū|Lp0∩L∞ |t=0.

Proof. Use Taylor expansion of f(u+ ū) in N(u, ū) = f(u+ ū) − f(ū) −Df(ū)u
to derive N(u, ū) = O(|u|2).
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We have then the following estimates of |N(u, ū)|Lp(s) and |α̇(s)u(y, s)|Lp(y),

|N(u, ū)(y, s)|Lp(y) � C|u|Lp(s)|u|L∞(s) � Cζ2(s) e−2η0s

|α̇(s)u(y, s)|Lp(y) � C|u|Lp(s)|α̇(s)| � Cζ2(s) e−2η0s

Using these together with our bounds on G̃ and e, we can now estimate |u(·, t)|Lp(x).
Using the representation (11.4) of u(x, t) together with estimates (10.1) and (10.2),

|u(·, t)|Lp(x) � C e−η0tE0 + C

∫ t

0

e−η0(t−s)|N(u, ū)|Lp(s) ds

+ C

∫ t

0

e−η0(t−s)|α̇(s)u(y, s)|Lp(s) ds

� C e−η0tE0 + Cζ2(t)
∫ t

0

e−η0(t−s) e−2η0s ds

+ Cζ2(t)
∫ t

0

(t− s)−(1/2) e−η0(t−s) e−2η0s ds

� C(E0 + ζ(t)2) e−η0t.

Similarly, for |α̇(t)|, using (11.5) together with (10.4) we have,

|α̇(t)| � C e−η0tE0 + C

∫ t

0

e−η0(t−s)|N(u, ū)|Lp(s) ds

+ C

∫ t

0

e−η0(t−s)|α̇(s)u(y, s)|Lp(s) ds

� C e−η0tE0 + Cζ2(t)
∫ t

0

e−η0(t−s) e−2η0s ds

+ Cζ2(t)
∫ t

0

e−η0(t−s) e−2η0s ds

� C(E0 + ζ(t)2) e−η0t.

Rearranging the above two estimates together we obtain (12.2). �

Finally, we give a proof of theorem 1.6.

Proof of theorem 1.6. The first two bounds are proved by continuous induction.
Taking E0 < (1/4C2), we have that ζ(t) < 2CE0 whenever ζ(t) � 2CE0, and so the
set of t � 0 for which ζ(t) < 2CE0 is equal to the set of t � 0 for which ζ(t) � 2CE0.
Recalling that ζ is continuous wherever it is finite, we find that the set of t � 0
for which ζ(t) < 2CE0 is both open and closed. Taking without loss of generality
C > 1/2, so that t = 0 is contained in this set, then the set is nonempty. It follows
that ζ(t) < 2CE0 for all t � 0, yielding the first two bounds.
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The third follows using (11.3) together with (10.3),

|α(t)| � CE0 + C

∫ t

0

|N(u, ū)|Lp(s) ds+ C

∫ t

0

|α̇(s)u(y, s)|Lp(s) ds

� CE0 + Cζ2(t)
∫ t

0

e−2η0s ds+ Cζ2(t)
∫ t

0

e−2η0s ds

� CE0 + C1E
2
0 � C2E0.

To show the last inequality, notice that

ũ(x, t) − ū(x) = u(x− α(t), t) − (ū(x) − ū(x− α(t))),

so that |ũ(·, t) − ū| is controlled by the sum of |u| and ū− ū(x− α(t)) =
O(α(t)|ū′(x)|), hence remains � CE0 for all t � 0, for E0 sufficiently small. �

Corollary 12.2. The translate function α(t) in (11.3) converges to a limit α∞ as
t→ ∞, and we have the following estimates,

|α(t) − α∞| � C e−η0t|ũ− ū|Lp0∩L∞ |t=0,

|ũ(x, t) − ū(x− α∞)|Lp(x) � C e−η0t|ũ− ū|Lp0∩L∞ |t=0.

Proof. Take a sequence 0 < t0 < t1 < · · · < tn < tn+1 < · · · such that limn→∞ tn =
∞, then we have for m < n,m, n ∈ N,

|α(tn) − α(tm)| � |α̇((1 − θ)tm + θtn)||tn − tm|
� C e−η0((1−θ)tm+θtn)|tn − tm| → 0

as m,n→ ∞, thus {α(tn)} is a Cauchy sequence hence there exist a α∞ such that

lim
n→∞α(tn) = α∞.

This shows the existence of α∞, then we prove the first inequality. Indeed,

|α(t) − α∞| =
∣∣∣∣∫ ∞

t

α̇(s) ds
∣∣∣∣ � ∣∣∣∣∫ ∞

t

CE0 e−η0s ds
∣∣∣∣ � C3E0 e−η0t.

The second inequality follows using theorem 1.6,

|ũ(x, t) − ū(x− α∞)|Lp(x)

� |ũ(x, t) − ū(x− α(t)) + ū(x− α(t)) − ū(x− α∞)|Lp(x)

� |ũ(x, t) − ū(x− α(t))|Lp(x) + |ū(x− α(t)) − ū(x− α∞)|Lp(x)

= |ũ(x, t) − ū(x− α(t))|Lp(x) + |ū′(xθ)(α(t) − α∞)|Lp(x)

� CE0 e−η0t + C4E0 e−η0t � CE0 e−η0t.

This completes the proof of the Corollary. �
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13. Integral representation for HK and pointwise iteration schemes

Let ũ(x, t) be a solution of the system of reaction diffusion equations

ut = uxx + f(u)

and define u(x, t) = ũ(x+ α̃(x, t), t) for some unknown function α̃ : R
2 → R to be

determined later. Moreover, let ū(x) be a stationary solution and define

v(x, t) = u(x, t) − ū(x) = ũ(x+ α̃(x, t), t) − ū(x) (13.1)

Lemma 13.1. For v, u as above, we have

ut − uxx − f(u) = (∂t − L) ū′(x)α̃(x, t) + ∂xR

+ (∂t + ∂2
x)S + (f(v(x, t) + ū(x)) − f(ū(x))) α̃x,

(13.2)

where

R : = vα̃t + vα̃xx + (ūx(x) + vx(x, t))
α̃2

x

1 + α̃x

= O
(
|v|(|α̃t| + |α̃xx|) +

( |ūx| + |vx|
1 − |α̃x|

)
|α̃x|2

)
and

S := −vα̃x = O (|v| · |α̃x|) .
Proof. Using the fact that ũt − ũxx − f(ũ) = 0, it follows by a straightforward
computation that

ut − f(u) − uxx = ũxα̃t − ũtα̃x − (ũxα̃x)x + f(ũ)α̃x, (13.3)

where it is understood that the argument of the function ũ and its derivatives
appearing on the right-hand side are evaluated at (x+ α̃(x, t), t). Moreover, by
another direct calculation, using the fact that

L(ū′(x)) =
(
∂2

x +Df(ū)
)
ū′(x) = 0,

by translation invariance, we have

(∂t − L) ū′(x)α̃ = ūxα̃t − (ūxα̃x)x − ūxxα̃x = ūxα̃t − (ūxα̃x)x + f(ū)α̃x.

Subtracting, and using the facts that, by differentiation of (ū+ v)(x, t) =
ũ(x+ α̃, t),

ūx + vx = ũx(1 + α̃x),

ūt + vt = ũt + ũxα̃t,
(13.4)

so that

ũx − ūx − vx = −(ūx + vx)
α̃x

1 + α̃x
,

ũt − ūt − vt = −(ūx + vx)
α̃t

1 + α̃x
,

(13.5)
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we obtain

ut − f(u) − uxx = (∂t − L)ū′(x)α̃+ vxα̃t − vtα̃x − (vxα̃x)x

+
(

(ūx + vx)
α̃2

x

1 + α̃x

)
x

+ (f(v + ū) − f(ū)) α̃x,

yielding (13.2) by vxα̃t − vtα̃x = (vα̃t)x − (vα̃x)t and (vxα̃x)x = (vα̃x)xx −
(vα̃xx)x. �

Corollary 13.2. The nonlinear residual v defined in (13.1) satisfies

(∂t − L) v = (∂t − L) ū′(x)α̃+Q+Rx + (∂2
x + ∂t)S + T, (13.6)

where

Q := f(v(x, t) + ū(x)) − f(ū(x)) −Df(ū(x))v = O(|v|2), (13.7)

R := vα̃t + vα̃xx + (ūx + vx)
α̃2

x

1 + α̃x
, (13.8)

S := −vα̃x = O(|v||α̃x|), (13.9)

and

T := (f(v + ū) − f(ū)) α̃x = O(|v||α̃x|). (13.10)

Proof. Straightforward Taylor expansion comparing (13.2) and ūt − f(ū) − ūxx = 0.
�

Using corollary 13.2 and applying Duhamel’s principle, taking α̃(·, 0) = 0 simi-
larly as before, we obtain the integral (implicit) representation

v(x, t) = ū′(x)α̃(x, t) +
∫ ∞

−∞
G(x, t; y)v0(y) dy

+
∫ t

0

∫ ∞

−∞
G(x, t− s; y)

(
Q+Ry + (∂2

y + ∂s)S + T
)
(y, s) dy ds

for the nonlinear perturbation v. Thus, if we define α̃ implicitly via the formula

α̃(x, t) := −
∫ ∞

−∞
ẽ(x, t; y)v0(y) dy

−
∫ t

0

∫ ∞

−∞
ẽ(x, t− s; y)

(
Q+Ry + (∂2

y + ∂s)S + T
)
(y, s) dy ds,

(13.11)

we obtain the integral representation

v(x, t) =
∫ +∞

−∞
H̃(x, t; y)v0(y) dy

+
∫ t

0

∫ +∞

−∞
H̃(x, t− s; y)

(
Q+Ry + (∂2

y + ∂s)S + T
)
(y, s) dy ds.

(13.12)
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Moreover, differentiating and recalling that ẽ(x, t; y) = 0 for 0 < t � 1 we obtain

∂k
t ∂

m
x α̃(x, t) := −

∫ +∞

−∞
∂k

t ∂
m
x ẽ(x, t; y)v0(y) dy

−
∫ t

0

∫ +∞

−∞
∂k

t ∂
m
x ẽ(x, t− s; y)

× (Q+Ry + (∂2
y + ∂s)S + T

)
(y, s) dy ds. (13.13)

Together, (13.12)–(13.13) form a complete system in the variables (v, ∂k
t α̃, ∂

m
x α̃),

0 � k � 1, 0 � m � K + 1, k +m � 1, where K � 2 is a constant. (Note, again,
that (13.11) gives α̃(·, 0) = 0, justifying our derivation.) Given a solution of system
(13.12)–(13.13), we may recover the shift function α̃ by integrating α̃x with respect
to x and using limx→±∞ α̃(x, t) = 0.

Now, from the original differential equation (13.6) together with (13.13), we
readily obtain short-time existence and continuity with respect to t of solution
(v, α̃t, α̃x) ∈ HK by a standard contraction-mapping argument treating the linear
Df(ū)v term of the left-hand side along with Q,R, S, T, α̃ū′ terms of the right-hand
side as sources in the heat equation.

Notation. The Sobolev space HK(R) is defined as

HK(R) = {u ∈ L2(R) : Dβu ∈ L2(R),∀|β| � K}

equipped with the norm

‖u‖HK(R) :=

⎛⎝ ∑
|β|�K

‖Dβu‖2
L2(R)

⎞⎠1/2

.

14. HK nonlinear iteration

Associated with the solution (u, α̃t, α̃x) of the integral system (13.12)–(13.13), we
define

ζ1(t) := sup
0�s�t

(
‖v‖HK(x;R)(s) eη0s + ‖(α̃t, α̃x)‖HK(x;R)(s)(1 + s)3/4

)
. (14.1)

By short timeHK(R) existence theory, the quantities ‖v‖HK(R) and ‖(α̃t, α̃x)‖HK(R)

are continuous so long as they remain small. Thus, ζ1 is a continuous function of t
as long as it remains small. We now use the linearized Green function estimates of
§ 10 to prove that if ζ1 is initially small then it must remain so.

Lemma 14.1. For all t � 0 for which ζ1(t) is finite, we have the estimate

ζ1(t) � C
(
E0 + ζ1(t)2

)
for some constant C > 0, so long as E0 := ‖v(·, 0)‖L1(R)∩HK(R) is sufficiently small.
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Proof. To begin, notice that by the descriptions of Q, T , R, and S in corollary 13.2
we have that

‖Q(·, t)‖L1(R) � ‖v‖2
HK(x;R) � Cζ1(t)2 e−2η0t

‖Ry(·, t)‖L1(R) � ‖v‖HK(x;R)‖(α̃t, α̃x)‖HK+1(x;R)

� Cζ1(t)2 e−η0t(1 + t)−(3/2)

‖T (·, t)‖L1(R) � ‖v‖HK(x;R)‖(α̃t, α̃x)‖HK+1(x;R)

� Cζ1(t)2 e−η0t(1 + t)−(3/2)

‖(∂t + ∂2
x)S(·, t)‖L1(R) � ‖v‖HK(x;R)‖(α̃t, α̃x)‖HK+1(x;R)

� Cζ1(t)2 e−η0t(1 + t)−(3/2)

so long as ‖(vx, α̃x)(·, t)‖L∞(R) � ‖(v, α̃x)‖HK(x;R)(t) � ζ1(t) remains bounded.
Thus, applying the bounds (10.5) and (10.9) of proposition 10.2 to representations

(13.12)–(13.13), we obtain for any 2 � p � ∞ the bound

‖v(·, t)‖Lp(R) �C e−η0tE0

+ Cζ2
1 (t)

∫ t

0

e−η0(t−s)
(
e−2η0s + e−η0s(1 + s)−(3/2)

)
ds

�C
(
E0 + ζ1(t)2

)
e−η0t,

(14.2)

and similarly using (10.9) we have

‖(α̃t, α̃x)(·, t)‖W K+1,p(x;R) � C(1 + t)−(1/2)(1−(1/p))−(1/2)E0

+ Cζ1(t)2
∫ t

0

(1 + t− s)−(1/2)(1−(1/p))−(1/2)

×
(
e−2η0s + e−η0s(1 + s)−(3/2)

)
ds

� C
(
E0 + ζ1(t)2

)
(1 + t)−(1/2)(1−(1/p))−(1/2),

(14.3)

yielding in particular that ‖(α̃t, α̃x)‖HK+1 is arbitrarily small if E0 and ζ1(t) are,
thus verifying the hypothesis of proposition 14.2 below. By the nonlinear damping
estimate given in proposition 14.2, therefore, the size of v in HK(R) can be con-
trolled by its size in L2(R) together with HK estimates on the derivatives of the
phase function α̃. In particular, we have for some positive constants θ1 and θ2

‖v(·, t)‖2
HK(R)

� C e−θ1tE2
0 + C

(
E0 + Cζ1(t)2

)2 ∫ t

0

e−θ2(t−s)

×
(
e−2η0s + (1 + s)−(3/4)

)
ds
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� C e−θ1tE2
0 + C

(
E0 + ζ1(t)2

)2
e−2η0t

� C
(
E0 + ζ1(t)2

)2
e−2η0t.

This estimate together with (14.3) in the case p = 2 completes the proof. �

Proposition 14.2. Assuming (D), let v(·, 0) ∈ HK(R) (for v as in (13.1)) and
suppose that for some T > 0 the HK(R) norm of v and the HK+1(R) norms of
α̃t(·, t) and α̃x(·, t) remain bounded by a sufficiently small constant for all 0 � t � T .
Then there are constants θ1, θ2, C > 0 such that

‖v(·, t)‖2
HK(R) �C e−θ1t‖v(·, 0)‖2

HK(R)

+ C

∫ t

0

e−θ2(t−s)
(
‖v(·, s)‖2

L2(R) + ‖(α̃t, α̃x)(·, s)‖2
HK(R)

)
ds.

for all 0 � t � T .

Proof. Subtracting from the equation (13.3) for u the equation for ū, we may write
the nonlinear perturbation equation as

vt −Df(ū)v − vxx = Q+ ũxα̃t − ũtα̃x − (ũxα̃x)x + f(ũ)ψx, (14.4)

where it is understood that derivatives of ũ appearing on the right-hand side are
evaluated at (x+ α̃(x, t), t). Using (13.5) to replace ũx and ũt respectively by ūx +
vx − (ūx + vx)(α̃x/(1 + α̃x)) and ūt + vt − (ūx + vx)(α̃t/(1 + α̃x)), and moving the
resulting vtα̃x term to the left-hand side of (14.4), we obtain

(1 + α̃x)vt − vxx = −Df(ū)v +Q+ (ūx + vx)α̃t

− ((ūx + vx)α̃x)x +
(
(ūx + vx)

α̃2
x

1 + α̃x

)
x

+ f(ũ)α̃x

(14.5)

Taking the L2 inner product in x of
∑K

j=0(((−1)j∂2j
x v)/(1 + α̃x)) against (14.5),

integrating by parts, and rearranging the resulting terms, we arrive at the inequality

∂t‖v(·, t)‖2
HK(R)

� −θ‖∂K+1
x v(·, t)‖2

L2(R) + C
(
‖v(·, t)‖2

HK(R) + ‖(α̃t, α̃x)(·, s)‖2
HK(R)

)
,

for some θ > 0, C > 0, so long as ‖ũ‖HK(R) remains bounded, and ‖v(·, t)‖HK(R) and
‖(α̃t, α̃x)(·, t)‖HK+1(R) remain sufficiently small. Using the Sobolev interpolation
‖g‖2

HK(R) � C̃−1‖∂K+1
x g‖2

L2(R) + C̃‖g‖2
L2(R) for C̃ > 0 sufficiently large, we obtain

∂t‖v(·, t)‖2
HK(R)(t)

� −θ̃‖v(·, t)‖2
HK(R) + C

(
‖v(·, t)‖2

L2(R) + ‖(α̃t, α̃x)(·, s)‖2
HK(R)

)
from which the desired estimate follows by Gronwall’s inequality. �
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15. Pointwise nonlinear iteration and pointwise bound on the
perturbation

In this section, we give a proof of the theorem 1.7 using the improved pointwise
bounds stated in proposition 1.5. Associated with the solution (u, α̃) of the integral
system (13.12) and (13.13), we define

ζ2(t) := sup
0�s�t,y∈R

(
(|v(y, s)| + |vx(y, s)| + |vxx(y, s)|)(1 + s)1/2 e(η0/2)s+(|y|2/2Ms)

+‖α̃‖W 3,∞(x;R)(s) + ‖(α̃t, α̃x)‖W 3,∞(x;R)(s)(1 + s)1/2
)
.

(15.1)

Lemma 15.1. For all t � 0 for which ζ2(t) is finite, we have the estimate

ζ2(t) � C(E0 + ζ2(t)2) (15.2)

for some constant C > 0, so long as E0 := ‖v(·, 0)‖L1(R)∩HK(R) > 0 is sufficiently
small.

Proof. Let us recall the definition of the Gaussian probability density function

K(x, t) = (2πt)−(1/2) e−(x2/2t),

and the semigroup property K(·, t1) ∗K(·, t2) = K(·, t1 + t2).
If we define

KM (x, t) = t−(1/2) e−(x2/Mt),

we represent it in terms of K as

KM (x, t) =
√
πM

(
2π
(
Mt

2

))−(1/2)

e−(|x|2/2(Mt/2)) =
√
πM ·K

(
x,
Mt

2

)
.

The semigroup property becomes KM (·, t1) ∗KM (·, t2) =
√
πM ·KM (·, t1 + t2).

Using the representations on Q,R, S and T , we can conclude that

|Q(y, s)| � Cζ2
2 (t)(1 + s)−1 e−η0s−(|y|2/Ms)

� Cζ2
2 (t)(1 + s)−(1/2)s−(1/2) e−η0s−(|y|2/Ms),

|Ry(y, s)| � Cζ2
2 (t)(1 + s)−(1/2)−(1/2) e−(η0/2)s−(|y|2/2Ms)

� Cζ2
2 (t)(1 + s)−(1/2)s−(1/2) e−(η0/2)s−(|y|2/2Ms),

|(∂2
y + ∂s)S(y, s)| � Cζ2

2 (t)(1 + s)−(1/2)−(1/2) e−(η0/2)s−(|y|2/2Ms)

� Cζ2
2 (t)(1 + s)−(1/2)s−(1/2) e−(η0/2)s−(|y|2/2Ms),

|T (y, s)| � Cζ2
2 (t)(1 + s)−(1/2)−(1/2) e−(η0/2)s−(|y|2/2Ms)

� Cζ2
2 (t)(1 + s)−(1/2)s−(1/2) e−(η0/2)s−(|y|2/2Ms),

for 0 < s � t.
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From (13.12), using the pointwise bound (1.18) on H̃ and the four estimates
above we can derive that

|v(x, t)| � CE0

∫ +∞

−∞
e−η0t e

−((|x−y|2)/Mt)

√
t

· e
−(|y|2/M)

√
1

dy

+ Cζ2
2 (t)

∫ t

0

∫ +∞

−∞
(1 + s)−(1/2) e−η0(t−s) e−((|x−y|2)/(M(t−s)))

√
t− s

· e−η0s e−(|y|2/Ms)

√
s

dy ds

+ Cζ2
2 (t)

∫ t

0

∫ +∞

−∞
(1 + s)−(1/2) e−η0(t−s) e−((|x−y|2)/(M(t−s)))

√
t− s

· e−(η0/2)s e−(|y|2/2Ms)

√
s

dy ds

� CE0

∫ +∞

−∞
e−η0tKM (x− y, t) ·KM (y, 1) dy

+ Cζ2
2 (t)

∫ t

0

∫ +∞

−∞
e−η0t(1 + s)−(1/2)KM (x− y, t− s)

·KM (y, s) dy ds

+ Cζ2
2 (t)

∫ t

0

∫ +∞

−∞
e−η0t+

η0
2 s(1 + s)−(1/2)K2M (x− y, t− s)

·K2M (y, s) dy ds

� C
√
πME0 e−η0tKM (x, t+ 1)

+ C
√
πMζ2

2 (t) e−η0t

∫ t

0

(1 + s)−(1/2)KM (x, t) ds

+ C
√

2πMζ2
2 (t) e−η0t

∫ t

0

e(η0/2)s(1 + s)−(1/2)K2M (x, t) ds

� CE0 e−η0tKM (x, t+ 1) + Cζ2
2 (t)2

√
t e−η0tKM (x, t)

+ Cζ2
2 (t) e−(η0/2)tK2M (x, t)

� C(E0 + ζ2
2 (t))(1 + t)−(1/2) e−(η0/2)t−(|x|2/2Mt),

and using the pointwise bound (1.20) on ∂k
t ∂

m
x ẽ(x, t; y),

|∂k
t ∂

m
x α̃(x, t)| � CE0

∫ +∞

−∞
(1 + t)−((τ(m+k))/2) e−η0|y| e−(|y|2/M) dy

+ Cζ2
2 (t)

∫ t

0

∫ +∞

−∞
(1 + t− s)−((τ(m+k))/2) e−η0|y|
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× e−η0s(1 + s)−(1/2) e−(|y|2/Ms)

√
s

dy ds

+ Cζ2
2 (t)

∫ t

0

∫ +∞

−∞
(1 + t− s)−((τ(m+k))/2) e−η0|y|

× e−(η0/2)s(1 + s)−(1/2) e−(|y|2/2Ms)

√
s

dy ds

� CE0(1 + t)−((τ(m+k))/2)

+ Cζ2
2 (t)

∫ t

0

(1 + t− s)−((τ(m+k))/2)(1 + s)−(1/2) e−η0s

×
(∫ +∞

−∞
e−η0|y| e

−(|y|2/Ms)

√
s

dy

)
ds

+ Cζ2
2 (t)

∫ t

0

(1 + t− s)−((τ(m+k))/2)(1 + s)−(1/2) e−(η0/2)s

×
(∫ +∞

−∞
e−η0|y| e

−(|y|2/2Ms)

√
s

dy

)
ds

�
{
C(E0 + ζ2

2 (t))(1 + t)−(1/2) for m+ k � 1;
C(E0 + ζ2

2 (t)) for m+ k = 0.

where τ(m+ k) = 1 for m+ k � 1 and 0 otherwise. Thus the Lemma follows. �

Finally, we give the proof of theorem 1.7.

Proof of theorem 1.7. By continuous induction, we have that ζ2(t) � 2CE0. Hence
the stated estimate on v(x, t) = ũ(x+ α̃(x, t), t) − ū(x) follows. Now we prove the
other two bounds on α̃ and ∂k

t ∂
m
x α̃. From the formula (13.13) for ∂k

t ∂
m
x α̃ and the

bounds on Q,Ry, (∂2
y + ∂s)S, T , the pointwise bound (1.20) on ∂k

t ∂
m
x ẽ(x, t; y), we

obtain for t � 1, k +m � 1 (α̃(x, t) = 0 when 0 < t < 1),

|∂k
t ∂

m
x α̃(x, t)|

� CE0

∫ +∞

−∞

∣∣∣∣∣e−(((x−y+t)2)/Mt)

√
t

− e−(((x−y−t)2)/Mt)

√
t

∣∣∣∣∣ e−η|y| e−(|y|2/M) dy

+ CE0

∫ t

1

∫ +∞

−∞

∣∣∣∣∣e−(((x−y+(t−s))2)/(M(t−s)))

√
t− s

− e−(((x−y−(t−s))2)/(M(t−s)))

√
t− s

∣∣∣∣∣
× s−1/2 e−η|y|−η0s−(|y|2/Ms) dy ds

� CE0

∫ +∞

−∞
(KM (x+ t− y, t) +KM (x− t− y, t))KM (y, 1) e−η|y| dy
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+ CE0

∫ t

1

∫ +∞

−∞
KM (x+ (t− s) − y, t− s)KM (y, s) e−η|y|−η0s dy ds

+ CE0

∫ t

1

∫ +∞

−∞
KM (x− (t− s) − y, t− s)KM (y, s) e−η|y|−η0s dy ds

� CE0 (KM (x+ t, t+ 1) +KM (x− t, t+ 1))

+ CE0

∫ t

1

KM (x+ t, t) e−η0s ds+ CE0

∫ t

1

KM (x− t, t) e−η0s ds

� CE0t
−1/2

(
e−((|x+t|2)/Mt) + e−((|x−t|2)/Mt)

)
� CE0

(
e−((|x+t|2)/Mt) + e−((|x−t|2)/Mt)

)
.

The bound on α̃ can be obtained by integrating the bound on α̃x(x, t) from x to
±∞, using limx→±∞ α̃(x, t) = 0. This completes the proof of theorem 1.7. �
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