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Abstract
Pareto distribution is an important distribution in extreme value theory. In this paper, we consider parallel systems
with Pareto components and study the effect of heterogeneity on skewness of such systems. It is shown that, when the
lifetimes of components have different shape parameters, the parallel system with heterogeneous Pareto component
lifetimes is more skewed than the system with independent and identically distributed Pareto components. However,
for the case when the lifetimes of components have different scale parameters, the result gets reversed in the sense of
star ordering. We also establish the relation between star ordering and dispersive ordering by extending the result of
Deshpande and Kochar [(1983). Dispersive ordering is the same as tail ordering. Advances in Applied Probability
15(3): 686–687] from support (0,∞) to general supports (𝑎,∞), 𝑎 > 0. As a consequence, we obtain some new
results on dispersion of order statistics from heterogeneous Pareto samples with respect to dispersive ordering.

1. Introduction

Skewness is a measure of the degree of asymmetry in the distribution. Although symmetric distributions
can be easily distinguished from the nonsymmetric ones, it is usually difficult to adjudge whether one
nonsymmetric distribution is more skewed as compared with another. One approach to deal with this
is to make use of various partial orders that have been introduced to compare the relative skewness of
probability distributions. In this regard, van Zwet [21] introduced a convex transform order, and Oja
[19] proposed a weaker ordering, known as a star order (see Section 2 for definitions). These orderings
play an important role in reliability theory as they reflect whether one distribution ages faster than the
other in some stochastic sense.

In the literature [6,8,10,11,12,13], the stochastic comparison of series and parallel systems has been
effectively done through order statistics, which refers to an ordered arrangement of random variables
(r.v.s) 𝑋1, 𝑋2, . . . , 𝑋𝑛. It is denoted by 𝑋1:𝑛 ≤ 𝑋2:𝑛 ≤ · · · ≤ 𝑋𝑛:𝑛, where 𝑋1:𝑛 and 𝑋𝑛:𝑛 are the smallest
and the largest order statistics representing the lifetime of series and parallel systems, respectively. While
studying the effect of heterogeneity on the skewness of order statistics, Kochar and Xu [14] established
that the largest order statistics from heterogeneous exponential samples are more skewed than the one
from homogeneous exponential samples in the sense of the convex transform order, and consequently,
the Lorenz order. Da et al. [3] pointed out that an analogous result for general order statistics (i.e., 𝑘th
order statistic) also holds in the sense of Lorenz ordering.

Recently, Fang and Zhang [7] extended these works by considering r.v.s with Weibull distributions as
it includes exponential distributions. They proved that the smallest order statistics from heterogeneous

© The Author(s), 2021. Published by Cambridge University Press

https://doi.org/10.1017/S0269964821000176 Published online by Cambridge University Press

https://orcid.org/0000-0002-3659-0212
https://orcid.org/0000-0002-1562-7549
mailto:sameen@math.iith.ac.in
mailto:mathdwy@hotmail.com
mailto:zhaop@jsnu.edu.cn
https://doi.org/10.1017/S0269964821000176


Probability in the Engineering and Informational Sciences 951

Weibull samples are more skewed than the one from homogeneous Weibull samples in the sense of
the convex transform order without any restriction on the parameters. Kochar and Xu [15] further
considered a general distribution framework and studied the skewness of order statistics from two
samples. Specifically, they established star ordering for the proportional hazard rate model under some
restrictions on parameters and presented results on Weibull and Pareto distributed samples. More
recently, Ding et al. [5] considered a scale model framework and examined the effect of heterogeneity
on the skewness of the largest order statistics from such samples in the sense of star ordering. They
proved that, without any restriction on the scale parameters, the skewness of the largest order statistics
from heterogeneous samples is more than that from homogeneous samples.

Thus, it can be observed from the above discussion that most of the works have compared order
statistics from heterogeneous exponential and Weibull samples. However, very little work has been
done, in this regard, on Pareto distribution which is an important distribution in actuarial science and
extreme value theory. This motivated us to study the effect of heterogeneity on the skewness of order
statistics from Pareto samples. An r.v. 𝑋 is said to follow the Pareto distribution with shape parameter
𝜆 and scale parameter 𝑏 (denoted by 𝑋 ∼ Pa(𝜆, 𝑏)) if its survival function is given by

𝐹̄ (𝑥) =

(
𝑏

𝑥

)𝜆
, 𝜆 > 0, 𝑥 ≥ 𝑏 > 0. (1)

In this paper, we compare the largest order statistics according to the convex transform order and the
star order. More precisely, we consider two different models: In the first model, we consider 𝑋1, . . . , 𝑋𝑛 as
independent Pareto r.v.s with different shape parameters 𝜆𝑖 , 𝑖 = 1, . . . , 𝑛, and the same scale parameter
𝑏, and 𝑌1, . . . , 𝑌𝑛 as a random sample from a Pareto distribution with shape parameter 𝜆 and scale
parameter 𝑏. We prove that

𝜆 ≥ 𝜆̄ ⇒ 𝑌𝑛:𝑛 ≤c 𝑋𝑛:𝑛, (2)

where 𝜆̄ = (1/𝑛)
∑𝑛

𝑖=1 𝜆𝑖 . In the second model, we consider 𝑋1, . . . , 𝑋𝑛 as independent Pareto r.v.s with
the same shape parameter 𝜆, and different scale parameters 𝑏𝑖 , 𝑖 = 1, . . . , 𝑛, and consider 𝑌1, . . . , 𝑌𝑛 as a
random sample from a Pareto distribution with shape parameter 𝜆 and scale parameter 𝑏. We prove that

𝑋𝑛:𝑛 ≤∗ 𝑌𝑛:𝑛 (3)

which is actually a correction of the result in [15] which establishes that 𝑌𝑛:𝑛 ≤∗ 𝑋𝑛:𝑛. The relationship
in (3) is actually interesting as it says that the largest order statistic from the homogeneous Pareto sample
is more skewed than the one from the heterogeneous Pareto sample in the sense of star ordering. We
further extend the second model to include different shape parameters 𝜆1 and 𝜆2, and show that

𝜆1 ≥ 𝜆2 ⇒ 𝑋𝑛:𝑛 ≤∗ 𝑌𝑛:𝑛 . (4)

Furthermore, it is well-known that there exists a connection between star ordering and dispersive
ordering, as claimed by Deshpande and Kochar [4]. However, their result focuses on distributions with
support (0,∞) and remains silent on distributions with general support (𝑎,∞), where 𝑎 > 0. Therefore,
we fill this gap in the literature by establishing sufficient conditions under which star ordering implies
dispersive ordering for distributions with support (𝑎,∞), 𝑎 > 0. As a consequence, we obtain results that
compare the largest order statistic from the heterogeneous Pareto sample with that from the homogeneous
Pareto sample in the sense of dispersive ordering.

The rest of the paper is organized as follows. In Section 2, we mention some relevant definitions on the
skewness and dispersive orders. Section 3 contains results on the two models stated above with specific
focus on the convex transform ordering and the star ordering. We then establish connection between the
star ordering and the dispersive ordering in Section 4 and also present some new results on dispersive
ordering among parallel systems from Pareto distributions. Finally, we present some applications in
Section 5 and provide a further discussion on this topic in Section 6.
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2. Preliminaries

In this section, we recall some notions of stochastic orders that will be used in the paper. Throughout
this paper, the terms increasing and decreasing imply nondecreasing and nonincreasing, respectively.
Let 𝑋 and 𝑌 be two non-negative r.v.s having distribution functions 𝐹 and 𝐺, survival functions 𝐹 and
𝐺, density functions 𝑓 and 𝑔, and failure rates 𝑟𝑋 and 𝑟𝑌 , respectively. Also, 𝐺−1 is the right continuous
inverse of 𝐺.

Definition 2.1. (i) 𝑋 is said to be smaller than 𝑌 in the convex transform order (denoted by 𝑋 ≤𝑐 𝑌 )
if, and only if, 𝐺−1𝐹 (𝑥) is convex in 𝑥 on the support of 𝑋 .

(ii) 𝑋 is said to be smaller than 𝑌 in the star order (denoted by 𝑋 ≤∗ 𝑌 ) if 𝐺−1𝐹 (𝑥) is starshaped in
𝑥, that is, 𝐺−1𝐹 (𝑥)/𝑥 is increasing in 𝑥 on the support of 𝑋 .

(iii) 𝑋 is said to be smaller than 𝑌 in the Lorenz order (denoted by 𝑋 ≤Lorenz 𝑌 ) if

1
𝐸 (𝑌 )

∫ 𝐺−1 (𝑢)

0
𝑥 𝑑𝐺 (𝑥) ≤

1
𝐸 (𝑋)

∫ 𝐹−1 (𝑢)

0
𝑥 𝑑𝐹 (𝑥), ∀𝑢 ∈ (0, 1] .

The relation 𝑋 ≤𝑐 𝑌 means that 𝑋 is less skewed than 𝑌 [16]. Moreover, the convex transform order
is also called the more 𝐼𝐹𝑅 order in reliability theory, and thus, 𝑋 ≤𝑐 𝑌 implies that 𝑋 ages faster than
𝑌 in some sense. In reliability theory, the star order is also called the more 𝐼𝐹𝑅𝐴 (increasing failure
rate in average) order, and thus, 𝑋 ≤∗ 𝑌 can be interpreted in terms of average failure rates, that is,

𝑟𝑋 (𝐹
−1(𝑢))

𝑟𝑌 (𝐺−1(𝑢))

is increasing in 𝑢 ∈ (0, 1], where 𝑟𝑋 (𝑥) = − ln 𝐹 (𝑥)/𝑥 and 𝑟𝑌 (𝑥) = − ln 𝐺 (𝑥)/𝑥 are the average failure
rates of 𝑋 and 𝑌 , respectively.

The above partial orders are scale invariant. From [16], it is known that

𝑋 ≤𝑐 𝑌 ⇒ 𝑋 ≤∗ 𝑌 ⇒ 𝑋 ≤Lorenz 𝑌 ⇒ 𝑐𝑣(𝑋) ≤ 𝑐𝑣(𝑌 ),

where 𝑐𝑣(𝑋) =
√

Var(𝑋)/𝐸 (𝑋) is the coefficient of variation of 𝑋 . Another important concept is of
dispersive ordering which is useful for comparing spread among probability distributions.

Definition 2.2. 𝑋 is said to be smaller than 𝑌 in the dispersive order (denoted by 𝑋 ≤disp 𝑌 ) if

𝐹−1(𝛽) − 𝐹−1(𝛼) ≤ 𝐺−1(𝛽) − 𝐺−1(𝛼),

where 0 < 𝛼 ≤ 𝛽 < 1, and 𝐹−1 and 𝐺−1 are the right continuous inverses of 𝐹 and 𝐺, respectively.

This definition implies that the difference between any two quantiles of 𝐹 is smaller than the difference
between the corresponding quantiles of 𝐺. It can be easily seen that 𝑋 ≤disp 𝑌 if, and only if,

𝑔(𝐺−1𝐹 (𝑥)) ≤ 𝑓 (𝑥), ∀𝑥 > 0.

For an extensive and comprehensive discussion on the theory of the above partial orders, one may
refer to [2,16,20]. The following lemmas will be useful in proving the main result.

Lemma 2.3 [2 p. 120]. Let 𝑊 (𝑥) be a Lebesgue–Stieltjes measure, not necessarily positive, for which∫ 𝑡

−∞
𝑑𝑊 (𝑥) ≥ 0, for all 𝑡, and let ℎ(𝑥) ≥ 0 be decreasing. Then,∫ ∞

−∞

ℎ(𝑥) 𝑑𝑊 (𝑥) ≥ 0.
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Lemma 2.4 [17 p. 36]. If 𝒂 = (𝑎1, . . . , 𝑎𝑛) and 𝒃 = (𝑏1, . . . , 𝑏𝑛) are two real sequences such that
𝑎1 ≤ · · · ≤ 𝑎𝑛 and 𝑏1 ≤ · · · ≤ 𝑏𝑛, or 𝑎1 ≥ · · · ≥ 𝑎𝑛 and 𝑏1 ≥ · · · ≥ 𝑏𝑛, then the following inequality is
true:

𝑛∑
𝑗=1

𝑎 𝑗

𝑛∑
𝑗=1

𝑏 𝑗 ≤ 𝑛
𝑛∑
𝑗=1

𝑎 𝑗𝑏 𝑗 .

3. Main results

In this section, we establish the relation between the largest order statistics from heterogeneous Pareto
samples and the one from homogeneous Pareto samples based on skewness orders (convex transform
order and star order). Here, we focus on two different models: the first model considers the Pareto dis-
tribution with different shape parameters, while the second one covers results on the Pareto distribution
with different scale parameters. To do so, we divide this section into two subsections that deal separately
with the above-stated two models.

3.1. Model 1

Kochar and Xu [15] proved the following result on comparing two parallel systems in the sense of star
ordering when the underlying r.v.s follow the Pareto distribution and their shape parameters are different.

Theorem 3.1. Let 𝑋1, . . . , 𝑋𝑛 be independent Pareto r.v.s with shape parameter 𝜆𝑖 , 𝑖 = 1, . . . , 𝑛, and
the same scale parameter 𝑏 > 0. Let 𝑌1, . . . , 𝑌𝑛 be a random sample from a Pareto distribution with
shape parameter 𝜆 ≥ 𝜆̃ = (

∏𝑛
𝑖=1 𝜆𝑖)

1/𝑛 and scale parameter 𝑏 > 0. Then,

𝑌𝑛:𝑛 ≤∗ 𝑋𝑛:𝑛 .

In the next theorem, we extend the above result to the case when the two parallel systems are compared
in the sense of stronger skewness ordering, that is, convex transform ordering.

Theorem 3.2. Let 𝑋1, . . . , 𝑋𝑛 be independent Pareto r.v.s with the different shape parameters 𝜆𝑖 ,
𝑖 = 1, . . . , 𝑛, and the same scale parameter 𝑏 > 0. Let 𝑌1, . . . , 𝑌𝑛 be a random sample from a Pareto
distribution with shape parameter 𝜆 ≥ 𝜆̄ = (1/𝑛)

∑𝑛
𝑖=1 𝜆𝑖 and scale parameter 𝑏 > 0. Then,

𝑌𝑛:𝑛 ≤c 𝑋𝑛:𝑛 .

Proof. For 𝑥 ≥ 𝑏, the distribution function of 𝑋𝑛:𝑛 is

𝐹 (𝑥) = 𝑃(𝑋𝑛:𝑛 ≤ 𝑥) =
𝑛∏
𝑖=1

[
1 −

(
𝑏

𝑥

)𝜆𝑖
]

,

with the density function as

𝑓 (𝑥) =
1
𝑥

𝑛∑
𝑖=1

𝜆𝑖 (𝑏/𝑥)
𝜆𝑖

1 − (𝑏/𝑥)𝜆𝑖

𝑛∏
𝑖=1

[
1 −

(
𝑏

𝑥

)𝜆𝑖
]

.

Similarly, the distribution function of 𝑌𝑛:𝑛, for 𝑥 ≥ 𝑏, is

𝐺 (𝑥) = 𝑃(𝑌𝑛:𝑛 ≤ 𝑥) =

[
1 −

(
𝑏

𝑥

)𝜆]𝑛
,
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with the density function as

𝑔(𝑥) = 𝑛
𝜆

𝑥

(
𝑏

𝑥

)𝜆 [
1 −

(
𝑏

𝑥

)𝜆]𝑛−1

.

To prove 𝑌𝑛:𝑛 ≤c 𝑋𝑛:𝑛, it suffices to show that 𝐺−1(𝐹 (𝑥)) is concave on 𝑥. Differentiating

𝐺−1𝐹 (𝑥) = 𝑏(1 − 𝐹1/𝑛 (𝑥))−1/𝜆 = 𝑏

��1 −

𝑛∏
𝑖=1

[
1 −

(
𝑏

𝑥

)𝜆𝑖
]1/𝑛���

−1/𝜆

with respect to 𝑥, we obtain

𝑓 (𝑥)

𝑔(𝐺−1𝐹 (𝑥))
=

1
𝑥

∑𝑛
𝑖=1

𝜆𝑖 (𝑏/𝑥)
𝜆𝑖

1−(𝑏/𝑥)𝜆𝑖
𝑛𝜆
𝑏 (1 −

∏𝑛
𝑖=1 [1 − ( 𝑏𝑥 )

𝜆𝑖 ]1/𝑛)1/𝜆 (
∏𝑛

𝑖=1 [1 − ( 𝑏𝑥 )
𝜆𝑖 ]−1/𝑛 − 1)

. (5)

To show that (5) is further decreasing in 𝑥, it is equivalent to proving that

𝜙′
1(𝑥)𝜙2 (𝑥) ≤ 𝜙1(𝑥)𝜙

′
2 (𝑥), (6)

where

𝜙1(𝑥) =
1
𝑥

𝑛∑
𝑖=1

𝜆𝑖 (𝑏/𝑥)
𝜆𝑖

1 − (𝑏/𝑥)𝜆𝑖
; 𝜙′

1(𝑥) = −
1
𝑥2

𝑛∑
𝑖=1

𝜆𝑖 (𝑏/𝑥)
𝜆𝑖

1 − (𝑏/𝑥)𝜆𝑖
−

1
𝑥2

𝑛∑
𝑖=1

𝜆2
𝑖 (𝑏/𝑥)

𝜆𝑖

(1 − (𝑏/𝑥)𝜆𝑖 )2 ,

and

𝜙2(𝑥) =

��1 −

𝑛∏
𝑖=1

[
1 −

(
𝑏

𝑥

)𝜆𝑖
]1/𝑛���

1/𝜆 
��
𝑛∏
𝑖=1

[
1 −

(
𝑏

𝑥

)𝜆𝑖
]−1/𝑛

− 1��� ;

𝜙′
2(𝑥) = −

1
𝑛𝑥


��1 −

𝑛∏
𝑖=1

[
1 −

(
𝑏

𝑥

)𝜆𝑖
]1/𝑛���

1/𝜆
𝑛∑
𝑖=1

𝜆𝑖 (𝑏/𝑥)
𝜆𝑖

1 − (𝑏/𝑥)𝜆𝑖

⎡⎢⎢⎢⎢⎣
1
𝜆
+

𝑛∏
𝑖=1

[
1 −

(
𝑏

𝑥

)𝜆𝑖
]−1/𝑛⎤⎥⎥⎥⎥⎦ .

Substituting these values in (6), we obtain[
𝑛∑
𝑖=1

𝜆𝑖 (𝑏/𝑥)
𝜆𝑖

1 − (𝑏/𝑥)𝜆𝑖
+

𝑛∑
𝑖=1

𝜆2
𝑖 (𝑏/𝑥)

𝜆𝑖

(1 − (𝑏/𝑥)𝜆𝑖 )2

] ⎡⎢⎢⎢⎢⎣1 −

𝑛∏
𝑖=1

[
1 −

(
𝑏

𝑥

)𝜆𝑖
]1/𝑛⎤⎥⎥⎥⎥⎦

≥
1
𝑛𝜆

(
𝑛∑
𝑖=1

𝜆𝑖 (𝑏/𝑥)
𝜆𝑖

1 − (𝑏/𝑥)𝜆𝑖

)2 ⎡⎢⎢⎢⎢⎣𝜆 +

𝑛∏
𝑖=1

[
1 −

(
𝑏

𝑥

)𝜆𝑖
]1/𝑛⎤⎥⎥⎥⎥⎦

⇐⇒

[
𝑛∑
𝑖=1

𝜆𝑖𝑧
𝜆𝑖

(1 − 𝑧𝜆𝑖 )2 (1 − 𝑧𝜆𝑖 + 𝜆𝑖)

] [
1 −

𝑛∏
𝑖=1

(1 − 𝑧𝜆𝑖 )1/𝑛

]
≥

1
𝑛

(
𝑛∑
𝑖=1

𝜆𝑖𝑧
𝜆𝑖

1 − 𝑧𝜆𝑖

)2 [
1 +

1
𝜆

𝑛∏
𝑖=1

(1 − 𝑧𝜆𝑖 )1/𝑛

]
, (7)
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where 𝑧 = 𝑏/𝑥. From Lemma 2.4 and Cauchy–Schwarz inequality, it follows that,

𝑛∑
𝑖=1

𝜆𝑖𝑧
𝜆𝑖

(1 − 𝑧𝜆𝑖 )2 (1 − 𝑧𝜆𝑖 + 𝜆𝑖) ≥
1
𝑛

𝑛∑
𝑖=1

𝜆𝑖𝑧
𝜆𝑖

(1 − 𝑧𝜆𝑖 )2

𝑛∑
𝑖=1

(1 − 𝑧𝜆𝑖 + 𝜆𝑖)

and
𝑛∑
𝑖=1

𝜆𝑖𝑧
𝜆𝑖

(1 − 𝑧𝜆𝑖 )2

𝑛∑
𝑖=1

𝜆𝑖𝑧
𝜆𝑖 ≥

(
𝑛∑
𝑖=1

𝜆𝑖𝑧
𝜆𝑖

1 − 𝑧𝜆𝑖

)2

.

On applying these two inequalities on left- and right-hand side of (7), we obtain

1
𝑛

𝑛∑
𝑖=1

𝜆𝑖𝑧
𝜆𝑖

(1 − 𝑧𝜆𝑖 )2

𝑛∑
𝑖=1

(1 − 𝑧𝜆𝑖 + 𝜆𝑖)

[
1 −

𝑛∏
𝑖=1

(1 − 𝑧𝜆𝑖 )1/𝑛

]
≥

1
𝑛

𝑛∑
𝑖=1

𝜆𝑖𝑧
𝜆𝑖

(1 − 𝑧𝜆𝑖 )2

𝑛∑
𝑖=1

𝜆𝑖𝑧
𝜆𝑖

[
1 +

1
𝜆

𝑛∏
𝑖=1

(1 − 𝑧𝜆𝑖 )1/𝑛

]
⇐⇒

𝑛∑
𝑖=1

(1 − 𝑧𝜆𝑖 + 𝜆𝑖)

[
1 −

𝑛∏
𝑖=1

(1 − 𝑧𝜆𝑖 )1/𝑛

]
≥

𝑛∑
𝑖=1

𝜆𝑖𝑧
𝜆𝑖

[
1 +

1
𝜆

𝑛∏
𝑖=1

(1 − 𝑧𝜆𝑖 )1/𝑛

]
⇐⇒

𝑛∑
𝑖=1

(1 − 𝑧𝜆𝑖 )(1 + 𝜆𝑖) ≥

𝑛∏
𝑖=1

(1 − 𝑧𝜆𝑖 )1/𝑛

[
𝑛∑
𝑖=1

(
𝜆𝑖

𝜆
− 1

)
𝑧𝜆𝑖 +

𝑛∑
𝑖=1

(1 + 𝜆𝑖)

]
⇐⇒

𝑛∑
𝑖=1

(1 + 𝜆𝑖) ≥

𝑛∑
𝑖=1

(
𝜆𝑖

𝜆
− 1

)
𝑧𝜆𝑖 +

𝑛∑
𝑖=1

(1 + 𝜆𝑖), (8)

where the last inequality follows from Lemma 2.4 and arithmetic–geometric mean inequality, that is,

𝑛∑
𝑖=1

(1 − 𝑧𝜆𝑖 )(1 + 𝜆𝑖) ≥
1
𝑛

𝑛∑
𝑖=1

(1 − 𝑧𝜆𝑖 )

𝑛∑
𝑖=1

(1 + 𝜆𝑖) ≥

𝑛∏
𝑖=1

(1 − 𝑧𝜆𝑖 )1/𝑛
𝑛∑
𝑖=1

(1 + 𝜆𝑖).

Also, note that (8) holds if
𝑛∑
𝑖=1

(
1 −

𝜆𝑖

𝜆

)
𝑧𝜆𝑖 ≥ 0. (9)

Here, for 𝑧 ∈ (0, 1), ℎ(𝑥) = 𝑧𝑥 is a decreasing function in 𝑥, and for 𝑗 ∈ {1, . . . , 𝑛},
∑ 𝑗

𝑖=1(1−𝜆𝑖/𝜆) ≥ 0
since 𝜆 ≥ (1/𝑛)

∑𝑛
𝑖=1 𝜆𝑖 . Thus, it follows from Lemma 2.3 that (9) holds true, and the desired result

follows immediately. �

The following result, which establishes star ordering between the largest order statistics in a general
scenario, is an extension of Theorem 3.1. The proof is trivial and is so omitted.

Theorem 3.3. Let 𝑋1, . . . , 𝑋𝑛 be independent Pareto r.v.s with different shape parameters 𝜆𝑖 ,
𝑖 = 1, . . . , 𝑛, and the same scale parameter 𝑏1. Let 𝑌1, . . . , 𝑌𝑛 be a random sample from a Pareto
distribution with shape parameter 𝜆 ≥ 𝜆̃ and scale parameter 𝑏2. Then, 𝑌𝑛:𝑛 ≤∗ 𝑋𝑛:𝑛.

Proof. Let 𝑍1, . . . , 𝑍𝑛 be independent Pareto r.v.s with different shape parameters 𝜆𝑖 , 𝑖 = 1, . . . , 𝑛, and
the same scale parameter 𝑏2. Since 𝜆 ≥ 𝜆̃, we know from Theorem 3.1 that 𝑌𝑛:𝑛 ≤∗ 𝑍𝑛:𝑛. Now, to prove
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the assertion that 𝑌𝑛:𝑛 ≤∗ 𝑋𝑛:𝑛, it suffices to show that 𝑍𝑛:𝑛 ≤∗ 𝑋𝑛:𝑛. Assume that the r.v.s 𝑋𝑛:𝑛 and 𝑍𝑛:𝑛
have distribution functions 𝐹 and 𝐻, and right continuous inverses 𝐹−1 and 𝐻−1, respectively. Note that

𝑃

(
𝑏1

𝑏2
𝑍𝑖 > 𝑡

)
= 𝑃

(
𝑍𝑖 >

𝑏2

𝑏1
𝑡

)
=

(
𝑏1

𝑡

)𝜆𝑖

= 𝑃(𝑋𝑖 > 𝑡).

This implies that (𝑏1/𝑏2)𝑍𝑖
𝑑
= 𝑋𝑖 , where 𝑑

= denotes equality in distribution. It is easy to verify that
𝐻−1𝐹 (𝑥)/𝑥 is a constant, which leads to the conclusion that 𝑍𝑛:𝑛 ≤∗ 𝑋𝑛:𝑛. Consequently, 𝑌𝑛:𝑛 ≤∗

𝑋𝑛:𝑛. �

This result also justifies the fact that the star ordering is scale invariant. In a similar vein, we have the
following result which follows from Theorem 3.2 and can be proved in the same way as above.

Theorem 3.4. Let 𝑋1, . . . , 𝑋𝑛 be independent Pareto r.v.s with different shape parameters 𝜆𝑖 ,
𝑖 = 1, . . . , 𝑛, and the same scale parameter 𝑏1. Let 𝑌1, . . . , 𝑌𝑛 be a random sample from a Pareto
distribution with shape parameter 𝜆 ≥ 𝜆̄ and scale parameter 𝑏2. Then, 𝑌𝑛:𝑛 ≤c 𝑋𝑛:𝑛.

3.2. Model 2

Kochar and Xu [15] claimed that if 𝑋𝑖’s are independent Pareto r.v.s with the same shape parameter 𝜆,
and different scale parameters 𝑏𝑖 , 𝑖 = 1, . . . , 𝑛, and 𝑌𝑖’s, 𝑖 = 1, . . . , 𝑛, is a random sample from a Pareto
distribution with shape parameter 𝜆 and scale parameter 𝑏, then 𝑌𝑛:𝑛 ≤∗ 𝑋𝑛:𝑛. However, we found that
the correct result should be as follows:

Theorem 3.5. Let 𝑋1, . . . , 𝑋𝑛 be independent Pareto r.v.s with the same shape parameter 𝜆, and different
scale parameters 𝑏𝑖 , 𝑖 = 1, . . . , 𝑛. Let 𝑌1, . . . , 𝑌𝑛 be a random sample from a Pareto distribution with
shape parameter 𝜆 and scale parameter 𝑏. Then,

𝑋𝑛:𝑛 ≤∗ 𝑌𝑛:𝑛 .

Proof. For 𝑥 ≥ max{𝑏1, . . . , 𝑏𝑛}, the distribution function of 𝑋𝑛:𝑛 is,

𝐹 (𝑥) = 𝑃(𝑋𝑛:𝑛 ≤ 𝑥) =
𝑛∏
𝑖=1

[
1 −

(
𝑏𝑖

𝑥

)𝜆]
,

and, for 𝑥 ≥ 𝑏, the distribution function of 𝑌𝑛:𝑛 is

𝐺 (𝑥) = 𝑃(𝑌𝑛:𝑛 ≤ 𝑥) =

[
1 −

(
𝑏

𝑥

)𝜆]𝑛
.

To prove 𝑋𝑛:𝑛 ≤∗ 𝑌𝑛:𝑛, it suffices to show that

𝐺−1𝐹 (𝑥)

𝑥
=

𝑏

𝑥


��1 −

𝑛∏
𝑖=1

[
1 −

(
𝑏𝑖

𝑥

)𝜆]1/𝑛���
− 1

𝜆
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Figure 1. Plot of ℎ(𝑥) for different values of 𝑥 ∈ (2, 20).

is increasing in 𝑥 ≥ max{𝑏1, . . . , 𝑏𝑛}, which is equivalent to showing that

1
𝑛

𝑛∑
𝑖=1

(𝑏𝑖/𝑥)
𝜆

1 − (𝑏𝑖/𝑥)𝜆
≥

𝑛∏
𝑖=1

[
1 −

(
𝑏𝑖

𝑥

)𝜆]−1/𝑛

− 1

⇐⇒
1
𝑛

𝑛∑
𝑖=1

[
1 −

(
𝑏𝑖

𝑥

)𝜆]−1

≥

𝑛∏
𝑖=1

[
1 −

(
𝑏𝑖

𝑥

)𝜆]−1/𝑛

.

This holds true from arithmetic–geometric mean inequality, and hence, the result follows. �

The above result is of interest as it claims that the largest order statistic from the homogeneous Pareto
sample is more skewed than the one from the heterogeneous Pareto sample in the sense of star ordering.
In fact, a reverse relation holds true in case of exponential and Weibull samples [14,15]. The possible
explanation for this difference is due to the fact that the range of Pareto distribution depends upon the
scale parameter, whereas the other distributions considered in the literature, such as exponential and
Weibull, have ranges independent of the parameter. It is for the same reason Pareto distribution should
be studied separately, and not under the general setup of scale or proportional hazard rate models. The
following example illustrates the application of Theorem 3.5.

Example 3.6. Assume that 𝑋1, 𝑋2, 𝑋3, 𝑋4 are independent Pareto r.v.s Pa(2.5, 0.4), Pa(2.5, 1.2),
Pa(2.5, 1.5), and Pa(2.5, 0.9), respectively, and 𝑌1, 𝑌2, 𝑌3, 𝑌4 is a random sample from Pa(2.5, 1.8).
It can be seen from Figure 1 that ℎ(𝑥) = 𝐺−1𝐹 (𝑥)/𝑥 is increasing in 𝑥 ≥ max{0.4, 1.2, 1.5, 0.9}, and
thus verifies 𝑋4:4 ≤∗ 𝑌4:4.

Now, we prove the next result that extends Theorem 3.5 to a more general situation.

Theorem 3.7. Let 𝑋1, . . . , 𝑋𝑛 be independent Pareto r.v.s with the same shape parameter 𝜆1, and
different scale parameters 𝑏𝑖 , 𝑖 = 1, . . . , 𝑛. Let 𝑌1, . . . , 𝑌𝑛 be a random sample from a Pareto distribution
with shape parameter 𝜆2 and scale parameter 𝑏. If 𝜆1 ≥ 𝜆2, then 𝑋𝑛:𝑛 ≤∗ 𝑌𝑛:𝑛.

Proof. For 𝑥 ≥ max{𝑏1, . . . , 𝑏𝑛}, the distribution function of 𝑋𝑛:𝑛 is,

𝐹 (𝑥) = 𝑃(𝑋𝑛:𝑛 ≤ 𝑥) =
𝑛∏
𝑖=1

[
1 −

(
𝑏𝑖

𝑥

)𝜆1
]

.
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Similarly, the distribution function of 𝑌𝑛:𝑛, for 𝑥 ≥ 𝑏, is

𝐺 (𝑥) = 𝑃(𝑌𝑛:𝑛 ≤ 𝑥) =

[
1 −

(
𝑏

𝑥

)𝜆2
]𝑛

.

To prove 𝑋𝑛:𝑛 ≤∗ 𝑌𝑛:𝑛, it suffices to show that

𝐺−1𝐹 (𝑥)

𝑥
=

𝑏

𝑥


��1 −

𝑛∏
𝑖=1

[
1 −

(
𝑏𝑖

𝑥

)𝜆1
]1/𝑛���

−1/𝜆2

is increasing in 𝑥 ≥ max{𝑏1, . . . , 𝑏𝑛}, which is equivalent to proving that

𝜆1

𝜆2

1
𝑛

𝑛∑
𝑖=1

(𝑏𝑖/𝑥)
𝜆1

1 − (𝑏𝑖/𝑥)𝜆1
≥

𝑛∏
𝑖=1

[
1 −

(
𝑏𝑖

𝑥

)𝜆1
]−1/𝑛

− 1. (10)

Since 𝜆1 ≥ 𝜆2, it follows that 𝜆1/𝜆2 ≥ 1, and therefore,

𝜆1

𝜆2

1
𝑛

𝑛∑
𝑖=1

(𝑏𝑖/𝑥)
𝜆1

1 − (𝑏𝑖/𝑥)𝜆1
≥

1
𝑛

𝑛∑
𝑖=1

(𝑏𝑖/𝑥)
𝜆1

1 − (𝑏𝑖/𝑥)𝜆1
.

Using this in (10), we get

1
𝑛

𝑛∑
𝑖=1

[
1 +

(𝑏𝑖/𝑥)
𝜆

1 − (𝑏𝑖/𝑥)𝜆

]
≥

𝑛∏
𝑖=1

[
1 −

(
𝑏𝑖

𝑥

)𝜆]−1/𝑛

⇐⇒
1
𝑛

𝑛∑
𝑖=1

[
1 −

(
𝑏𝑖

𝑥

)𝜆]−1

≥

𝑛∏
𝑖=1

[
1 −

(
𝑏𝑖

𝑥

)𝜆]−1/𝑛

which is guaranteed by arithmetic–geometric mean inequality. �

Till now, we focussed only on the two particular models wherein either shape parameters or scale
parameters were different. In the next result, we focus on a much more general setting where both shape
and scale parameters are different, or is a combination of the previous two models.

Theorem 3.8. Let 𝑋1, . . . , 𝑋𝑛 be independent Pareto r.v.s with different shape parameters 𝜆𝑖 , 𝑖 =
1, . . . , 𝑛, and the same scale parameter 𝑏. Let 𝑌1, . . . , 𝑌𝑛 be independent Pareto r.v.s with the same
shape parameter 𝜆 ≥ 𝜆̃ and different scale parameters 𝑏𝑖 , 𝑖 = 1, . . . , 𝑛. Then,

𝑌𝑛:𝑛 ≤∗ 𝑋𝑛:𝑛 .

Proof. Let 𝑍1, . . . , 𝑍𝑛 be independent Pareto r.v.s with shape parameter 𝜆 and scale parameter 𝑏. Then,
we know from Theorem 3.5 that 𝑌𝑛:𝑛 ≤∗ 𝑍𝑛:𝑛. Furthermore, as 𝜆 ≥ 𝜆̃, it follows from Theorem 3.1 that
𝑍𝑛:𝑛 ≤∗ 𝑋𝑛:𝑛. These observations complete the proof. �

4. Dispersion

Deshpande and Kochar [4] provided the following connection between the star ordering and the
dispersive ordering.
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Theorem 4.1. Let 𝑋 and𝑌 be two r.v.s having distribution functions 𝐹 and 𝐺 such that 𝐹 (0) = 𝐺 (0) = 0
and density functions 𝑓 and 𝑔 such that 𝑓 (0) ≥ 𝑔(0) > 0. Then,

𝑋 ≤∗ 𝑌 =⇒ 𝑋 ≤disp 𝑌 .

It can be seen that the above result holds only for distributions having support (0,∞), and neglects
the distributions like Pareto by not focussing on general supports (𝑎,∞), 𝑎 > 0. In this regard, we prove
the following result which establishes the relation between the star ordering and the dispersive ordering
in a general situation.

Theorem 4.2. Let 𝑋 and 𝑌 be two non-negative r.v.s having supports (𝑎,∞) and (𝑏,∞), respectively,
such that 𝑏 ≥ 𝑎 > 0. Then,

𝑋 ≤∗ 𝑌 =⇒ 𝑋 ≤disp 𝑌 .

Proof. Assume that 𝑋 ≤∗ 𝑌 . We know, by Definition 2.2, that

𝑋 ≤∗ 𝑌 ⇐⇒
𝐺−1𝐹 (𝑥)

𝑥
is increasing in 𝑥 on the support of 𝑋

⇐⇒
𝑓 (𝑥)

𝑔(𝐺−1𝐹 (𝑥))
≥

𝐺−1𝐹 (𝑥)

𝑥
,

where the last step follows on differentiation. Note that

lim
𝑥→𝑎

𝐺−1𝐹 (𝑥)

𝑥
=

𝐺−1(0)
𝑎

≥ 1

since 𝐺−1(0) = 𝑏 ≥ 𝑎. Thus, using this and the fact that 𝐺−1𝐹 (𝑥)/𝑥 is increasing in 𝑥 on the support of
𝑋 , it follows that

𝑓 (𝑥) ≥ 𝑔(𝐺−1𝐹 (𝑥)), 𝑥 ∈ (𝑎,∞)

⇐⇒ 𝑋 ≤disp 𝑌 .

These observations complete the proof. �

As mentioned in the previous section, we first consider the results of Model 1. It is known that if
an r.v. 𝑋 follows the Pareto distribution with shape parameter 𝜆 and scale parameter 𝑏, then its support
depends upon the scale parameter. Thus, the first result here involves two different scale parameters 𝑏1
and 𝑏2, and consequently, the supports of 𝑋𝑛:𝑛 and 𝑌𝑛:𝑛 are (𝑏1,∞) and (𝑏2,∞), respectively. The proof
is omitted as it directly follows on employing Theorems 3.3 and 4.2.

Corollary 4.3. Let 𝑋1, . . . , 𝑋𝑛 be independent Pareto r.v.s with different shape parameter 𝜆𝑖 ,
𝑖 = 1, . . . , 𝑛, and the same scale parameter 𝑏1. Let 𝑌1, . . . , 𝑌𝑛 be a random sample from a Pareto
distribution with shape parameter 𝜆 ≥ 𝜆̃ and scale parameter 𝑏2. Then,

𝑏1 ≥ 𝑏2 =⇒ 𝑌𝑛:𝑛 ≤disp 𝑋𝑛:𝑛 .

It can be easily seen that the above result also holds true when 𝑏1 = 𝑏2 = 𝑏, that is, with the same
scale parameter 𝑏. Now, we come to our second model and obtain the following result as a direct
consequence of Theorem 3.7, and by employing Theorem 4.2.
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Corollary 4.4. Let 𝑋1, . . . , 𝑋𝑛 be independent Pareto r.v.s with the same shape parameter 𝜆1, and
different scale parameters 𝑏𝑖 , 𝑖 = 1, . . . , 𝑛. Let 𝑌1, . . . , 𝑌𝑛 be a random sample from a Pareto distribution
with shape parameter 𝜆2 (≤ 𝜆1) and scale parameter 𝑏. Then,

𝑏 ≥ max{𝑏1, . . . 𝑏𝑛} =⇒ 𝑋𝑛:𝑛 ≤disp 𝑌𝑛:𝑛 .

Similarly, it is straightforward to see that this result holds when 𝑋𝑖’s and 𝑌𝑖’s have the same shape
parameter, that is, 𝜆1 = 𝜆2 = 𝜆. The following corollary, which is based on a general model, can be seen
to easily follow from Theorems 3.8 and 4.2.

Corollary 4.5. Let 𝑋1, . . . , 𝑋𝑛 be independent Pareto r.v.s with different shape parameters 𝜆𝑖 , 𝑖 =
1, . . . , 𝑛, and the same scale parameter 𝑏. Let 𝑌1, . . . , 𝑌𝑛 be a random sample from a Pareto distribution
with shape parameter 𝜆 ≥ 𝜆̃ and scale parameter 𝑏𝑖 , 𝑖 = 1, . . . , 𝑛. Then,

𝑏 ≥ max{𝑏1, . . . 𝑏𝑛} =⇒ 𝑌𝑛:𝑛 ≤disp 𝑋𝑛:𝑛 .

5. Applications

In this section, we first present some applications of the results derived in the paper. Recall that the
Pareto distribution is often used to describe the allocation of wealth among individuals as in any society,
a large portion of the wealth is in hands of a small percentage of people in that society. It is also useful in
analyzing stock price fluctuations, studying the claim amounts in insurance companies and in comparing
different systems [1,18]. Below, we discuss two such applications:

(i) Consider an insurance company which is interested to know the maximum claim amount in 10
cities. For this purpose, the insurer divides the operators based on their gender and wishes to know
whether the maximum claim for male operators is larger than that of female operators. Let
𝑋1, . . . , 𝑋10 and 𝑌1, . . . , 𝑌10, respectively, denote the claims for female and male operators in those
10 cities. It is reasonable to assume that 𝑋1, . . . , 𝑋10 (and/or, 𝑌1, . . . , 𝑌10) are independent r.v.s as
they represent different cities. The results in our study would help the insurer in determining how
the maximum claim amount 𝑋10:10 and 𝑌10:10 are ordered.

(ii) For a design engineer, finding out the best scheme for assembling a parallel system is of great
interest. Suppose there are two sets of components 𝐴𝑖 , 𝑖 = 1, 2, 3, following Pa(𝜆𝑖 , 𝑏), 𝑏 > 0, and
𝐵𝑖 , 𝑖 = 1, 2, 3, following Pa(𝜆, 𝑏), 𝑏 > 0. Thus, if 𝜆 ≥ 𝜆, the engineer can claim that the assembly
of a parallel system using components of set A is better than that of set B by applying Theorem 3.2.
Let the failure times of 𝐴1, 𝐴2, and 𝐴3 be Pa(2.5, 1), Pa(3.2, 1), and Pa(1.7, 1), respectively.
Furthermore, let the failure times of 𝐵1, 𝐵2, and 𝐵3 follow Pa(3, 1). Clearly, 𝜆 ≥ 𝜆. Thus, it
follows from Theorem 3.2 that system A is preferable as System B ages faster than System A.

6. Discussion

Now, we turn our attention to star ordering results established between parallel systems for Model 2 (see
Section 3). A natural question that arises is if we can strengthen these results by establishing the convex
transform order between parallel systems. The answer to this is negative and will be evident from the
following counter-example.

Example 6.1. Let 𝑋1, . . . , 𝑋5 and𝑌1, . . . , 𝑌5 are independent r.v.s with 𝑋𝑖 ∼ Pa(𝜆, 𝑏𝑖) and𝑌𝑖 ∼ Pa(𝜆, 𝑏),
𝑖 = 1, . . . , 5, respectively. Suppose 𝑏1 = 0.5, 𝑏2 = 0.2, 𝑏3 = 0.3, 𝑏4 = 0.4, 𝑏5 = 0.9, 𝑏 = 1, and 𝜆 = 6.
Then, ℎ(100) = 1.44169, ℎ(120) = 1.44886, and ℎ(200) = 1.41019, where ℎ(𝑥) = (𝐺−1𝐹 (𝑥))′. It is
clear that the values of the function ℎ(𝑥) are not monotonically decreasing, and consequently, one cannot
establish the convex transform ordering between 𝑋𝑛:𝑛 and 𝑌𝑛:𝑛 when 𝑋𝑖 ∼ Pa(𝜆, 𝑏𝑖) and 𝑌𝑖 ∼ Pa(𝜆, 𝑏),
𝑖 = 1, . . . , 𝑛.
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Moreover, we have not been able to claim whether such an ordering holds for the other case when
𝑋𝑖 ∼ Pa(𝜆1, 𝑏𝑖) and 𝑌𝑖 ∼ Pa(𝜆2, 𝑏), 𝑖 = 1, . . . , 𝑛, and it remains an open problem.

Another interesting problem is if we assume 𝑋1, . . . , 𝑋𝑛 and 𝑌1, . . . , 𝑌𝑛 as independent r.v.s with
𝑋𝑖 ∼ Pa(𝜆𝑖 , 𝑏𝑖) and 𝑌𝑖 ∼ Pa(𝜆, 𝑏𝑖), 𝑖 = 1, . . . , 𝑛, then under what restrictions on the parameters, the
largest order statistics will be ordered with respect to star ordering and/or convex transform ordering,
that is, 𝑌𝑛:𝑛 ≤∗,𝑐 𝑋𝑛:𝑛. To prove this, one can consider 𝑍𝑖 ∼ Pa(𝜆𝑖 , 𝑏), 𝑖 = 1, . . . , 𝑛. It can be seen from
Theorem 3.8 that 𝑌𝑛:𝑛 ≤∗ 𝑍𝑛:𝑛. Thus, what remains to prove is that 𝑍𝑛:𝑛 ≤∗ 𝑋𝑛:𝑛. Although it is possible
that the result may hold true, it remains as an open problem.

In order to further justify that probability distributions with supports involving parameters should be
treated separately, we now discuss results on series systems with component lifetimes having a Power
law distribution. An r.v. 𝑋 is said to follow a Power Law distribution with shape parameter 𝛼 and scale
parameter 𝛽 (denoted by 𝑋 ∼ 𝑃𝑜𝑤 (𝛼, 𝛽)) if its survival function is given by

𝐹̄ (𝑥) =

(
𝑥

𝛽

)𝛼
, 𝛼 > 0, 0 < 𝑥 < 𝛽. (11)

It is well-known that the Power law distribution is an inverse of Pareto distribution. So, to prove the
following result, we adopt the methodology given in [9] see Lem. 3.2 and [22] see Lem. 4.12 for the
proportional reversed hazard rate model and apply it to our inverse model.

Theorem 6.2. Let 𝑋1, . . . , 𝑋𝑛 be independent Power r.v.s with the same shape parameter 𝛼 > 0 and
different scale parameters 𝛽𝑖 , 𝑖 = 1, . . . , 𝑛. Let 𝑌1, . . . , 𝑌𝑛 be a random sample from a Power Law
distribution with shape parameter 𝛼 > 0 and scale parameter 𝛽. Then,

𝑌1:𝑛 ≤∗ 𝑋1:𝑛.

Proof. Define 𝑋 ′
𝑖 = 1/𝑋𝑖 and 𝑌 ′

𝑖 = 1/𝑌𝑖 , 𝑖 = 1, . . . , 𝑛. Then, 𝑋1:𝑛 = 1/𝑋 ′
𝑛:𝑛 and 𝑌1:𝑛 = 1/𝑌 ′

𝑛:𝑛. Note

𝐹𝑋1:𝑛 (𝑥) = 𝑃(𝑋1:𝑛 ≤ 𝑥) = 𝑃

(
1

𝑋 ′
𝑛:𝑛

≤ 𝑥

)
= 𝑃

(
𝑋 ′
𝑛:𝑛 ≥

1
𝑥

)
= 𝐹𝑋 ′

𝑛:𝑛

(
1
𝑥

)
Similarly, 𝐹𝑋1:𝑛 (𝑥) = 𝐹𝑌 ′

𝑛:𝑛 (1/𝑥). Furthermore, it is easy to check that

𝐹−1
𝑋1:𝑛

𝐹𝑌1:𝑛 (𝑥)

𝑥
=

1

𝐹
−1
𝑋 ′
𝑛:𝑛

𝐹𝑌 ′
𝑛:𝑛 (

1
𝑥 )𝑥

=
1

𝐹−1
𝑋 ′
𝑛:𝑛

𝐹𝑌 ′
𝑛:𝑛 (

1
𝑥 )𝑥

.

Then,

𝐹−1
𝑋1:𝑛

𝐹𝑌1:𝑛 (𝑥)

𝑥
increases in 𝑥 ⇐⇒ 𝐹−1

𝑋 ′
𝑛:𝑛

𝐹𝑌 ′
𝑛:𝑛

(
1
𝑥

)
𝑥 decreases in 𝑥

⇐⇒
𝐹−1
𝑋 ′
𝑛:𝑛

𝐹𝑌 ′
𝑛:𝑛 (𝑥)

𝑥
increases in 𝑥

which is true from Theorem 3.5. �

On similar lines, we have the next result which follows on employing Theorem 3.1.

Theorem 6.3. Let 𝑋1, . . . , 𝑋𝑛 be independent Power r.v.s with shape parameter 𝛼𝑖 , 𝑖 = 1, . . . , 𝑛, and
the same scale parameter 𝛽 > 0. Let 𝑌1, . . . , 𝑌𝑛 be a random sample from a Power Law distribution
with shape parameter 𝛼 > 0 and scale parameter 𝛽 = 𝛽 = (

∏𝑛
𝑖=1 𝛽𝑖)

1/𝑛. Then,

𝑋1:𝑛 ≤∗ 𝑌1:𝑛 .
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As it can be seen, the results on star ordering follow the same pattern as that of parallel systems with
Pareto components. Although we have provided the results on star ordering only, we believe that results
on other dispersion orderings would follow a similar pattern and are left as open problems.
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