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The interaction of Blasius boundary-layer flow
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We study the fluid–structure interaction (FSI) of a compliant panel with developing
Blasius boundary-layer flow. The linearised Navier–Stokes equations in velocity–
vorticity form are solved using a Helmholtz decomposition coupled with the dynamics
of a plate-spring compliant panel couched in finite-difference form. The FSI system
is written as an eigenvalue problem and the various flow- and wall-based instabilities
are analysed. It is shown that global temporal instability can occur through the
interaction of travelling wave flutter (TWF) with a structural mode or as a resonance
between Tollmien–Schlichting wave (TSW) instability and discrete structural modes
of the compliant panel. The former is independent of compliant panel length and
upstream inflow disturbances while the specific behaviour arising from the latter
phenomenon is dependent upon the frequency of a disturbance introduced upstream
of the compliant panel. The inclusion of axial displacements in the wall model
does not lead to any further global instabilities. The dependence of instability-onset
Reynolds numbers with structural stiffness and damping for the global modes is
quantified. It is also shown that the TWF-based global instability is stabilised as the
boundary layer progresses downstream while the TSW-based global instability exhibits
discrete resonance-type behaviour as Reynolds number increases. At sufficiently high
Reynolds numbers, a globally unstable divergence instability is identified when the
wavelength of its wall-based mode is longer than that of the least stable TSW mode.
Finally, a non-modal analysis reveals a high level of transient growth when the flow
interacts with a compliant panel which has structural properties capable of reducing
TSW growth but which is prone to global instability through wall-based modes.

Key words: boundary layer stability, flow–structure interactions, transition to turbulence

1. Introduction

This paper is motivated by the potential of compliant panels to interact favourably
with the dynamics of boundary-layer flows and thereby yield a reduction to
skin-friction drag. The investigation focuses upon instability mechanisms that can

† Email address for correspondence: k.tsigklifis@curtin.edu.au
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FIGURE 1. Schematic of the system studied with nomenclature.

lead to laminar-to-turbulent transition in low disturbance environments for zero
pressure gradient boundary-layer flow although the new modelling approach developed
is readily extended to the study of other wall-bounded mean shear flows with a
deformable boundary.

There exists a rich literature on the topic of ‘compliant walls for transition delay’
spanning the nearly sixty years since the pioneering experimental work of Kramer
(1957, 1960); this has been summarised periodically through review articles (Benjamin
1963; Bushnell 1977; Carpenter 1991; Gad-el-Hak 1998; Carpenter, Davies & Lucey
2001) that chronicle the development of the field of study. The principal engineering
outcome to date is that optimally designed compliant coatings could extend the length
of the linear transition regime by a factor of 5.7 (Dixon, Lucey & Carpenter 1994)
and the prediction, argued in Carpenter et al. (2001), that a series of compliant panels,
each with properties tailored to local mean flow, could theoretically postpone transition
indefinitely. In contrast, a focus over the last decade or so on establishing a theoretical
framework for compliant wall interactions with turbulent boundary layers (Rempfer
et al. 2001; Xu, Rempfer & Lumley 2003; Fukagata et al. 2008; Kim & Choi 2014;
Luhar, Sharma & McKeon 2015, 2016) to understand, inter alia, the experimentally
measured drag reductions in Choi et al. (1997) at present suggests that only limited
benefits are conferred by wall compliance. Competing passive technologies such as the
use of riblets currently offer a more practicable strategy for drag reduction in turbulent
boundary-layer flow. Nevertheless, the technological prospect of turbulent skin-friction
drag reduction using wall compliance remains an open question. However, the present
study returns to the theme of transition postponement and serves to yield a complete
understanding of the interaction of laminar boundary-layer flow with compliant panels,
i.e. compliant coatings of finite streamwise extent. A schematic of the system studied
is presented in figure 1.

Hitherto, theoretical studies of laminar boundary-layer flow over a compliant wall
have been undertaken mainly using two-dimensional (2-D) (Carpenter & Garrad 1985,
1986; Sen & Arora 1988) or three-dimensional (3-D) (Joslin, Morris & Carpenter
1991; Joslin & Morris 1992; Yeo 1992; Zengl & Rist 2012) linear temporal or
spatial local stability analyses based on the assumption of a compliant wall of infinite
extent. Numerical simulations of compliant panels interacting with laminar shear
flow have been performed for linear (Davies & Carpenter 1997b) and nonlinear
(Wiplier & Ehrenstein 2000, 2001; Pavlov 2006) system perturbations but these have
been limited by the choice of type and frequency of the initial disturbance and
therefore their results pertain to a limited domain within the overall stability space.
Emphasis has been placed on the effect of surface-based or volume-based isotropic
and anisotropic compliant walls (Yeo & Dowling 1987; Yeo 1988, 1990; Carpenter
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The interaction of Blasius boundary-layer flow with a compliant panel 157

& Morris 1990; Pavlov 2006; Zengl & Rist 2012) on both 2-D and 3-D instabilities
in order to identify rationally coating parameters (Carpenter 1993; Dixon et al. 1994)
that are suitable for postponing the onset of spatially growing instabilities to higher
Reynolds numbers (hence distance downstream of the leading edge in applications)
or reducing their amplification. Using the aforementioned techniques, three types of
instability have been identified and categorised as: (i) flow-based instabilities, (ii)
flow-induced wall-based instabilities and (iii) instabilities arising from linear modal
interactions. These types of instability are each expanded upon in the following three
paragraphs.

Amplifying Tollmien–Schlichting Waves (TSWs) (Schlichting 1979) comprise
the main flow-based instability; these are also responsible for natural transition
to turbulence in flat-plate boundary-layer flow over rigid walls in low disturbance
environments. However, in a convective 2-D boundary-layer flow, an additional
flow-based transient mechanism exists, namely the Orr instability (Orr 1907; Butler
& Farrell 1992; Åkervik et al. 2007), which extracts energy from the mean shear by
transporting momentum downstream through the action of the perturbation Reynolds
stress. Disturbances, which are tilted against the shear first rise to an upright position
while drawing energy from the mean flow after which energy is returned to the mean
flow further downstream. This energy transfer mechanism can potentially precipitate
transition to turbulence, bypassing the TSW route in natural transition.

The flow-induced wall-based instabilities principally comprise travelling wave flutter
(TWF) (Carpenter & Garrad 1986; Yeo 1988) and static divergence (SD). TWF is the
destabilisation of free surface wave modes of the compliant wall through the fluid
loading and takes the form of a wave propagating downstream with a phase speed
close to that of the free-stream flow. In contrast, SD (Lucey & Carpenter 1992; Pitman
& Lucey 2009) occurs when the hydrodynamic forces generated by a wall deformation
exceed the associated restorative forces in the compliant wall and manifests itself as a
slow downstream-travelling wave. Like TSWs, TWF is a convective instability with a
wave amplifying only as it propagates away from the initiating source of disturbance,
while SD is considered an absolute instability because the wave grows in time at
all spatial locations of the domain. Even though the mechanism underlying TWF
is essentially inviscid, the Orr–Sommerfeld equation can accurately predict its onset
Reynolds number and subsequent propagation. However, it largely fails to predict
the absolute SD (Carpenter & Morris 1990) because exactly at onset the instability
is static and therefore the wave-based assumption of the Orr–Sommerfeld equation
is essentially invalid. A further flow-induced surface instability, associated with the
tangential (axial) wall motion, was discovered by Shankar & Kumaran (2002) when
studying the local temporal stability and asymptotic analysis of Couette flow past a
flexible surface. This instability occurs through energy transfer to the wall caused by
the interaction of the fluctuating (fluid) shear stress and the axial motion of the wall
at the fluid–solid interface. However, less is known about the character of this new
instability – whether it is convective or absolute – and its interaction with structural
modes or the TSW or TWF instabilities in a fluid–structure interaction (FSI) system
of finite length.

The third category of instability includes transitional instability (Sen & Arora 1988)
which is generated by the coalescence of TWF and TSWs and the instability caused
by the coalescence of the evanescent waves and a TSW (Wiplier & Ehrenstein 2001).
These instabilities are identified in a local stability analysis as a pinching of the
different instability branches in the wavenumber (α) plane for positive imaginary part
of the frequency (ω) or, equivalently, as a cusp in the frequency plane (Yeo, Khoo &
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Zhao 1996; Wiplier & Ehrenstein 2001) at the frequency where the coalescence of
the two modal branches takes place. These are both absolute instabilities and, along
with SD, must be avoided in compliant wall design because their occurrence is likely
to result in a significant modification to the base flow (Carpenter & Morris 1990;
Wiplier & Ehrenstein 2001) and/or premature boundary-layer transition.

In the energy classification of Benjamin (1963), TSWs are found to be a Class
A instability because their activation energy (energy relative to the quiescent system
state) is negative and they are therefore destabilised by structural damping since it
removes energy from the FSI system. These waves are equivalently termed negative
energy waves (NEWs) in, for example, Crighton & Oswell (1991), this description
having been adopted from the plasma physics community. TWF is a Class B instability
because its activation energy is positive (hence a positive energy wave in Crighton
& Oswell 1991) and is therefore attenuated by the action of structural damping.
Finally, Class C comprises waves that are destabilised independently of whether
there is irreversible energy transfer from/to the FSI system. Kelvin–Helmholtz (called
modal coalescence flutter in the hydro-elasticity of flexible panels and walls) and
the transitional instabilities belong to this class of instability. The SD waves have
been predicted to be Class A when modelled using an infinitely long domain (e.g.
Crighton & Oswell 1991; Davies & Carpenter 1997a) because structural damping is
required to precipitate the instability. However, for compliant panels of finite length
it has been shown (Lucey & Carpenter 1992; Pitman & Lucey 2009) that structural
damping reverts to its conventional role and reduces the amplification of SD waves at
post-critical flow speeds. In addition, its mechanism is principally due to conservative
energy exchanges thereby suggesting that it is more likely to be a Class C instability.

Although local stability analyses have revealed the main physics behind the
rich range of phenomena supported by the FSI system, there remain drawbacks
arising from the local nature of the analysis. Specifically, it is difficult to model the
boundary conditions of a compliant wall of finite extent because the analysis assumes
homogeneity in the streamwise direction. The non-trivial effect on the system’s
stability due to panel edges which can reflect incident waves has been emphasised
by several investigations both in the potential (Lucey & Carpenter 1992; Peake
2004; Pitman & Lucey 2009) and viscous (Davies & Carpenter 1997b; Wiplier &
Ehrenstein 2001; Stewart, Waters & Jensen 2009) flow regimes. For potential flow,
Peake (2004) showed that a long but finite plate possesses resonant solutions and
that the temporal instability is present in the absence of structural damping on the
finite plate even for cases where a local analysis predicts that the flow is stable. This
finding agreed with the theoretical ideas of Lucey & Carpenter (1993) and were
confirmed by numerical simulations of the system by Lucey & Carpenter (1992).
Stewart et al. (2009) demonstrated that a local analysis gives only limited insight
into the properties of the global system because wave reflections at boundaries played
a vital role in the growth of mode-1 oscillations in their finite-length compliant
insert in the wall of a two-dimensional channel. However, it is not known whether
higher-order eigenmodes of the finite structure can interact with modes of the viscous
flow and whether this interaction might be identified in a local stability analysis. In
addition, to study absolute instabilities that may exist in the system, the frequency
must be varied in order to reveal the entire unstable wavenumber spectrum, α(ω),
and identify the different instability branches for a specific Reynolds number and
their possible pinching; this proves to be a daunting task (Yeo et al. 1996; Wiplier
& Ehrenstein 2001). In parallel, it has been shown through a multiple-scale analysis
(Yeo, Khoo & Chong 1994) that the incorporation of non-parallel effects due to
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The interaction of Blasius boundary-layer flow with a compliant panel 159

boundary-layer growth (clearly omitted in a local analysis) are destabilising for TSW
and TWF instabilities for Blasius flow over a compliant wall. The modelling approach,
built on global stability considerations, developed and deployed in the present paper
serves to overcome the limitations of local analyses.

We acknowledge that the stability of finite-length flexible plates subjected to
boundary-layer flow at transonic and low subsonic flow speeds, for which plate
flutter is usually the critical instability, has been well studied. Dowell (1971, 1973)
modelled the effects of a laminar boundary layer analytically while more recent work
by Hashimoto, Aoyama & Nakamura (2009) and Alder (2015, 2016) incorporated the
effects of turbulent boundary layers by solving the Reynolds-averaged Navier Stokes
equations. The overall findings of these studies are that the boundary layer exercises
a stabilising effect, as compared with potential flow predictions, on panel flutter at
low supersonic Mach numbers. However, the present work represents the first fairly
complete stability analysis of boundary-layer flow over a finite compliant panel at
low, incompressible, flow speeds.

Advances in algorithms for the numerical solution of large non-symmetric complex
generalised eigenvalue problems have resulted in the ability to extend local stability
theory to two inhomogeneous directions with one homogeneous direction and this
defines the term ‘bi-global’ stability. In this approach, the time asymptotic and
transient behaviour for a wide variety of 2-D and 3-D flows has become attainable
(Theofilis 2003, 2011). Based on the analysis of Cossu & Chomaz (1997) and
Chomaz (2005), Ehrenstein & Gallaire (2005) investigated the convective mechanism
of the classical flat-plate boundary layer by means of an appropriate superposition
of two-dimensional global modes. They found that a superposition of the damped
temporal global TSW eigenmodes gave rise to a localised wave packet at the inflow
boundary. The wave packet would then grow while being advected downstream,
in close agreement with direct numerical simulation results. However, the transient
growth in energy was only of one order in magnitude. However, Åkervik et al.
(2007), who identified all the modal branches, found that for a slightly non-parallel
flow, many eigenmodes are needed in order to obtain a converged transient energy
result and that it is the combination the Orr and TSW mechanisms which yielded the
potential for large downstream amplification through transient growth.

The first study of the global stability of 2-D disturbances in plane Poiseuille flow
over a compliant wall with periodic boundary conditions was conducted by Pitman &
Lucey (2010), using a velocity–vorticity formulation of the Navier–Stokes equations
(Davies & Carpenter 2001) combined with the vortex-source sheet boundary-integral
method. They found that a flexible wall with structural damping improved the global
system’s temporal stability by 4 % at Re = 6000 and that a compliant wall with the
properties of Davies & Carpenter (1997b) results in a significant deterioration of
system stability.

The present work extends the velocity–vorticity formulation combined with the
generalised Helmholtz decomposition (Wu & Thompson 1973; Kempka et al. 1995) to
the global stability of the Blasius flow over a compliant wall taking into account both
vertical and axial structural displacements. This is used to investigate the asymptotic
and transient behaviour of the FSI system to 2-D incident disturbances. Local spatial
stability analysis is also conducted in order to validate the global stability model
but also to reveal the spatial characteristics of the predicted temporal instabilities.
Inhomogeneity in the streamwise direction due to the boundary conditions of the
compliant panel and boundary-layer growth are incorporated in the model. All of the
flow and structural eigenfrequencies and the different instability branches are obtained

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

45
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.453


160 K. Tsigklifis and A. D. Lucey

through the solution of a generalised eigenvalue problem. In this way, it is possible
to investigate the interaction between modes and identify the conditions for temporal
instability in the FSI system.

In addition, the evaluation of all eigenmodes in the present study permits the
transient response of the FSI system to incident 2-D disturbances to be studied.
This reveals the potential of the compliant panel either to damp out disturbances
in the convectively unstable boundary-layer flow or to amplify them by transferring
a significant amount of energy as they travel downstream, thereby enhancing the
conditions for bypass transition. A similar investigation was conducted by Zengl &
Rist (2012) for isotropic and anisotropic compliant wall materials for 3-D disturbances
via a local stability analysis. They found that in addition to the main mechanism for
the transient growth of disturbances over a rigid wall, another oscillatory mechanism
coexists in the presence of an anisotropic compliant wall but that the maximum
transient growth and the time of its occurrence are hardly affected.

This paper is laid out as follows. The problem formulation is presented in § 2,
where the equations for the mean Blasius flow, the 2-D flow field for the disturbances,
the Helmholtz decomposition and the linear model of the compliant wall’s structural
dynamics are developed for both global and local stability analyses. Thereafter, the
equations that describe the linear global transient response of the FSI system to
2-D disturbances, are presented and finally the discretisation of the equations using
the boundary-integral vortex-source sheet method are presented. In § 3 the choice
of parameters is justified and results from global and local stability investigations
are presented and discussed. Particular focus is placed upon interactions between the
different types of flow- and wall-based modes for a compliant wall model that permits
only vertical structural displacements. The effect of both vertical and axial structural
displacements is then considered as a modification to the main stability results. The
global transient response of the FSI system to 2-D incident disturbances is then
presented. In § 4 we provide a summary of the main findings of the investigation and
draw conclusions. Finally, we remark that the theoretical approach and the discovery
of two types of global instability were presented orally at an IUTAM symposium in
2014 with a summary published (Tsigklifis & Lucey 2015) in a special issue that
recorded the outcomes of the symposium. The present paper provides a complete
description of the theoretical methods with a full investigation, including parametric
dependence, of globally unstable modes, their relationships to local modes, and
transient effects in boundary-layer flow over a compliant panel.

2. Problem formulation

As illustrated in figure 1, a Blasius boundary layer progresses over a rigid wall
section of length L′w1 onto a compliant panel of length L′c comprising a spring-backed
flexible plate (that may include a dashpot-type damping) with which it interacts,
and finally over a rigid wall section of length L′w2. Here and hereafter, ′ denotes a
dimensional quantity. At entry and exit (respectively distances x′s and x′o downstream
from the origin of the growing boundary layer) to the domain the Reynolds number
(based upon free-stream flow speed U′

∞
, fluid density ρ ′l and dynamic viscosity µ′l,

and boundary-layer displacement thickness δ′) are respectively Res and Reo; ω′s and
ω′o are the radian frequencies of perturbation waves that satisfy the Orr–Sommerfeld
equation that serve as entry and exit conditions to the system domain.
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2.1. Mean flow field
The displacement thickness δ′s at the entrance x′s (from the origin of the boundary
layer) of the flow domain modelled provides the characteristic length scale and the
free-stream flow speed, U′

∞
, gives the characteristic speed (hence the characteristic

time is δ′s/U
′

∞
). The local Rex at a position x of the flow field relates to the Res at

the entrance of the domain through Rex= γ
√

xRes wherein Res= ρ
′

lU
′

∞
δ′s/µ

′

l and γ =
1.7208 for the Blasius boundary layer. The horizontal and vertical velocity components
of the mean flow are given by

Ux =
d f
dH

and Uz =
γ

2
√

xRes

(
H

d f
dH
− f
)
, (2.1a,b)

where H = z/(γ
√

x/Res) and f (H) satisfies the Blasius equation,

2
d3f
dH3
+ γ 2f

d2f
dH2
= 0, (2.2)

subject to the boundary conditions f (0)= df /dH(0)= 0 and df /dH→ 1 as H→∞.

2.2. Perturbation fields
Starting from the 2-D velocity–vorticity disturbance formulation of the Navier–Stokes
equations (Davies & Carpenter 2001) and retaining only the linear velocity and
vorticity terms, the evolution of perturbations to the mean flow is governed by

∂ωy

∂t
+ ux

∂Ωy

∂x
+ uz

∂Ωy

∂z
+Ux

∂ωy

∂x
+Uz

∂ωy

∂z
=

1
Res

(
∂2ωy

∂x2
+
∂2ωy

∂z2

)
, (2.3)

∇
2u=−∇× (ωyey), (2.4)

where mean flow variables appear in capitals, while perturbations to the mean flow
quantities are in lower case; ux and uz are the horizontal and vertical components
of the velocity disturbance, while Ωy and ωy are respectively the mean flow and
disturbance vorticity in the direction perpendicular to the x- and z-axes. Instead
of solving the vector Poisson equation (2.4), we make use of the Helmholtz
decomposition (Wu & Thompson 1973; Kempka et al. 1995) and express the
disturbance flow field as the sum of its rotational and irrotational parts respectively
constructed using distributions of line-vortex and source–sink elements; thus the
perturbation velocity is written as

u(x) =
∫

R 6=Rb

∇G(x, x′′)×ωy(x′′)ey dR(x′′)+
∫

Rb

∇G(x, x′′)×ωy(x′′)ey dR(x′′)

−

∫
S
σ(x′′)∇G(x, x′′) dS(x′′), (2.5)

where, G= (1/2π) log(1/|x− x′′|) is the 2-D infinite domain Green’s function and σ
the strength of the source–sink sheet applied to the flow boundary. We remark that
the source–sink elements on the boundary surface are used to enforce the no-flux
condition when the flow is perturbed and therefore their strengths, like those of the
line-vortex elements, are variables in the calculation of the perturbed flow field. For
arbitrarily deforming walls, the use of source–sink boundary elements to enforce no

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

45
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.453


162 K. Tsigklifis and A. D. Lucey

flux is far more convenient than the commonly used vortex images in vortex methods.
In the above integral expressions the double prime indicates a dummy variable, while
R and S respectively denote integration in the fluid domain and on the boundary
surface. The rotational part is divided into boundary-flow field, Rb, and the interior
to this boundary, R 6= Rb, contributions in order to apply the tangential and normal
boundary conditions at the boundary cells and surfaces.

Following Ehrenstein & Gallaire (2005), we make use of the Robin boundary
conditions at the entrance xs and exit xo of the fluid domain

∂ωy

∂x
= iαωy,

∂uz

∂x
= iαuz. (2.6a,b)

The complex wavenumber α in the above is that of the most unstable Tollmien–
Schlichting wave found using the Orr–Sommerfeld equation (over a rigid wall) for a
given frequency ωs at the entrance and similarly at ωo = (Reo/Res)ωs at the exit of
the fluid domain. The effect of this choice of ωs is discussed in § 3.

The boundary conditions ux(x, 0, t) = uz(x, 0, t) = 0 are applied at the rigid wall
portions. On the compliant panel section the velocity and stress components are
continuous between fluid and solid. Thus, the linearised boundary conditions for the
velocity are

ux(x, 0, t)+ ηz(x, t)
∂Ux

∂z
(x, 0)=

∂ηx

∂t
(x, t), uz(x, 0, t)=

∂ηz

∂t
(x, t), xcs 6 x 6 xco,

(2.7a,b)
where ηx(x, t) and ηz(x, t) are the non-dimensional plate axial and vertical displacement
of the compliant panel, respectively. If the model allows only vertical displacements
of the compliant panel, the right-hand side of the first equation of (2.7) becomes
zero.

The pressure perturbation (non-dimensionalised using the free-stream dynamic
pressure) that drives the compliant panel motion is obtained by integrating the
linearised z-momentum equation of the Navier–Stokes equations between the
fluid–solid interface and infinity and enforcing that the pressure perturbation vanishes
at infinity; thus

p(x, 0, t) =
∫ LH

0

(
∂uz

∂t
+
∂Uz

∂x
ux +

∂Uz

∂z
uz +Ux

∂uz

∂x
+Uz

∂uz

∂z

)
γ

√
x

Res
dH

+

∫ LH

0

1
Res

∂ωy

∂x
γ

√
x

Res
dH, (2.8)

where LH is the total height of the computational domain, made large enough to ensure
that

ωy(x, LH, t)= 0, uz(x, LH, t)= 0. (2.9a,b)

Note that the perturbation pressure, defined by (2.8), is dependent upon flow
perturbation terms that are themselves dependent upon the boundary conditions
of the deformed wall through (2.7).

For the compliant wall dynamics, we use the one-dimensional beam equation with
additional terms to account for a dashpot-type structural damping and a uniformly
distributed spring foundation, combined with the normal and the tangential force
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balance on the compliant wall (Shankar & Kumaran 2002). Keeping only O(ε) terms,
we obtain,

n · T · n = −p(x, 0, t)+
2

Res

∂uz

∂z
(x, 0, t)−

2
Res

(
∂Ux

∂z
(x, 0)+

∂Uz

∂x
(x, 0)

)
∂ηz

∂x

= CI
∂2ηz

∂t2
+CDz

∂ηz

∂t
+CB

∂4ηz

∂x4
+CKηz, (2.10)

t · T · n =
1

Res

(
∂uz

∂x
(x, 0, t)+

∂ux

∂z
(x, 0, t)

)
= CI

∂2ηx

∂t2
+CDx

∂ηx

∂t
−CA

∂2ηx

∂x2
, (2.11)

where, n=−(∂ηz/∂x)ex + ez, t= ex + (∂ηz/∂x)ez are the unit vectors normal and the
tangential to the compliant panel respectively, and T =−PI + (1/Res)[∇U + (∇U)T]
is the total stress tensor of the fluid on the compliant wall. The non-dimensional
coefficients of inertia, damping, flexural rigidity, in-plane stiffness (the resistance of
the compliant wall to the change of the axial deformations) and spring foundation
stiffness respectively, are defined by

CI =
ρ ′mh′m
ρ ′lδ
′
s

, CDz =
D′z
ρ ′lU′∞

, CDx =
D′x
ρ ′lU′∞

, (2.12a−c)

CB =
B′

ρ ′lU′∞
2δ′s

3 , CA =
E′h′m

(1− ν2)ρ ′lU′∞
2δ′s
, CK =

K ′δ′s
ρ ′lU′∞

2 , (2.13a−c)

with ρ ′m and h′m being the material density and thickness respectively, and B′ =
E′h′m

3
/[12(1− ν2)] wherein E′ is the elastic modulus and ν the Poisson ratio of the

wall material.
Hinged boundary conditions are applied at the leading and trailing edges of the

compliant panel, hence

ηz(xcs, t)= ηz(xco, t)= ηx(xcs, t)= ηx(xco, t)= 0,
∂2ηz

∂x2 (xcs, t)= ∂
2ηz

∂x2 (xco, t)= 0.

 (2.14)

It is noted that since we investigate the stability of high Reynolds number flow over
a compliant panel the terms in (2.10) which feature Res in the denominator make
a small contribution to the normal force balance, however they are included for
the sake of the model completeness. Finally, the tangential force balance, equation
(2.11), becomes redundant in the case of the model where only vertical structural
displacements are allowed.

2.3. Eigenproblem formulation
We proceed by applying the decomposition,

{ωy, σ , ux, uz}(x, z, t)= {ω̂, σ̂ , ûx, ûz}(x, z) exp (λt),
p(x, 0, t)= p̂(x, 0) exp (λt), ηx(x, t)= η̂x(x) exp (λt), ηz(x, t)= η̂z(x) exp (λt),

}
(2.15)
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where λ=−iω, together with the complex conjugate part of the eigen-decomposition,
to the linear system of (2.3), (2.5), (2.10) and (2.11), taking into account the boundary
conditions (2.6)–(2.9) and (2.14), to transform it to the generalised eigenvalue problem

C2x̂= λC1x̂, x̂= {ω̂, σ̂ , η̂x, φ̂x, η̂z, φ̂z}
T, (2.16)

with φ̂x = λη̂x, φ̂z = λη̂z from which the eigenvalues λ and eigenvectors x̂ can
be extracted. If the real part of an eigenvalue λ is positive, temporal instability
occurs, whereas a negative real part indicates that disturbances decay with time. We
remark that the system equation (2.16) is smaller than that which would ensue if
the corresponding Poisson equation were solved, since in the present method σ̂ is
evaluated only on the boundary.

2.4. Local stability analysis
A Chebyshev collocation matrix combined with the companion matrix method
(Bridges & Morris 1984; Danabasoglu & Biringen 1990) is implemented to solve the
local spatial eigenvalue problem for the complete spectrum. Details of the formulation
are given in the appendix A.

2.5. Transient analysis formulation
We restrict the transient analysis to the model which allows only vertical displacements
of the compliant wall, even though the analysis could easily be extended to
accommodate two degrees of freedom. In order to investigate the transient behaviour
of the FSI system we adopt standard methods, for example see Schmid (2007) and
Coppola & de Luca (2010), but define the energy norm for the present FSI system
to be

E(t) =
1
2

∫ LH

0

∫ L

0
(|ux|

2
+ |uz|

2) dx dH

+
1
2

∫ Lc

0

(
CI η̇z

2
+CB

(
∂2ηz

∂x2

)2

+CKη
2
z

)
dx, (2.17)

where the flow kinetic energy is evaluated by the first integral on the right-hand side
and the kinetic and strain energies of the compliant panel are captured by the second
integral. We look for an initial disturbance which maximises the energy at time t, i.e.

G(t)=max
x0 6=0

‖x(t)‖2
E

‖x0‖
2
E
, (2.18)

in which the disturbances are constructed by the linear superposition of the
two-dimensional temporal modes (Ehrenstein & Gallaire 2005; Åkervik et al. 2007)
and therefore

x(x,H, t)=
Num∑
j=1

kj(t)x̂j(x,H), (2.19)

where Num is the number of converged global eigenvalues used. Taking into account
that they must satisfy the initial value form of the system (2.16), the maximum energy
growth becomes

G(t)= ‖F exp(Λt)F−1
‖

2
2, (2.20)
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with Λ = diag[λ1, λ2, . . . , λNum] and R = F TF the Cholesky decomposition of the
Gramian matrix R with entries

Rij =
1
2

∫ LH

0

∫ L

0
(û∗x,iûx,j + û∗z,iûz,j) dx dH

+
1
2

∫ Lc

0
CI
˙̂η∗z,i
˙̂ηz,j +CB

(
∂2η̂∗z

∂x2

)
i

(
∂2η̂z

∂x2

)
j

+CK η̂
∗

z,iη̂z,j dx, (2.21)

where ∗ denotes the complex conjugate. The largest growth at time t is then given by
the largest singular value of F exp (Λt)F−1 and the initial condition that provides it is
given by F−1z, with z being the right singular vector.

2.6. Numerical solution
A second-order finite-difference method is used for discretisation in the x-direction
both for the linearised Navier–Stokes and compliant wall equations and a Chebyshev
pseudo-spectral method (Canuto et al. 1988; Baltensperger & Trummer 2002) is
applied in the z-direction. This has been shown to give sufficient accuracy for this
type of FSI stability problem (Davies & Carpenter 1997b) provided that sufficient
resolution of the domain is applied; details showing that we meet this requirement are
provided where we present the results of this paper. The flow domain is discretised
into M=Mw1 +Mc +Mw2 cells in the streamwise direction, where Mw1, Mc and Mw2,
are respectively the number of fluid cells over the upstream rigid wall, the compliant
panel and the downstream rigid wall sections, while N + 1 points are deployed in the
z-direction with the following transformation used to map the collocation points from
the interval [1, 0] onto [0, LH].

Hk = LH

[
1− cos

(
kπ
2N

)]
for k= 0, 1 . . .N. (2.22)

Then, the discretised form of the momentum equation (2.3) for each cell (i, j) is
written for example as

−λω̂ij =
∂Ωy

∂x

∣∣∣∣
ij

ûx|ij +
∂Ωy

∂z

∣∣∣∣
ij

ûz|ij +Ux|ij
3ω̂ij − 4ω̂i( j−1) + ω̂i( j−2)

21x

+Uz|ij

N∑
k=1

Dij,kjω̂kj −
1

Res

(
ω̂i( j+1) − 2ω̂ij + ω̂i( j−1)

(1x)2
+

N∑
k=1

D2
ij,kjω̂kj

)
for i= 2 . . .N − 1, j= 2 . . .M − 1, (2.23)

where D and D2 (written above in tensor form) are the Chebyshev differentiation
matrices (Baltensperger & Trummer 2002) which generate the first and second
derivative at the collocation points, respectively. In the above expression, a second-
order backward finite-difference scheme has been utilised for discretisation of the
advection term, while second-order central finite-differences are used for the diffusion
term in the streamwise direction.

The Helmholtz decomposition, equation (2.5), is approximated by zeroth-order
vortex sheets and zeroth-order source sheets (Katz & Plotkin 1991; Houghton &
Carpenter 2003), which for each cell are written as
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ûx|ij =

N∑
k=1

M∑
l=1

IVX
ij,klω̂kl +

M∑
l=1

IPX
ij,1lσ̂1l +

M∑
l=1

IPX
ij,Nlσ̂Nl

+

N−1∑
k=2

IPX
ij,k1 σ̂k1 +

N−1∑
k=2

IPX
ij,kM σ̂kM, (2.24)

ûz|ij =

N∑
k=1

M∑
l=1

IVZ
ij,klω̂kl +

M∑
l=1

IPZ
ij,1lσ̂1l +

M∑
l=1

IPZ
ij,Nlσ̂Nl

+

N−1∑
k=2

IPZ
ij,k1σ̂k1 +

N−1∑
k=2

IPZ
ij,kMσ̂kM, for i= 1 . . .N, j= 1 . . .M, (2.25)

where IVX , IVZ , IPX and IPZ are the influence coefficient matrices, which give the x and
z components of the rotational and irrotational velocity components at the (i, j) cell
due to the presence of a vortex sheet at (k, l) cell and source sheet at the boundary
surface respectively. For completeness, expressions for the influence coefficients are
given in appendix B.

Finally, the ARPACK library (Lehoucq, Sorensen & Yang 1998) has been used to
extract a significant part of the spectrum of (2.16), namely 3000 eigenvalues and their
respective eigenvectors, using a relatively large Krylov subspace of 9000 vectors.

3. Results and discussion
We focus on the global stability of system modes arising from each of the

well-known travelling wave flutter and Tollmien–Schlichting Waves that have been
predicted to occur in Blasius boundary-layer flow over compliant walls using a
local analysis. All the results presented in the following sections have been obtained
using the compliant wall model that allows only vertical displacements except in
§ 3.2, where results from global and local stability analyses using the axial-vertical
displacement model are presented. We choose the wall parameters in such a way
that the critical velocity for the onset of divergence instability in potential flow
over a finite-length compliant wall (Garrad & Carpenter 1982; Pitman & Lucey
2009) is above the free-stream flow speed U′

∞
= 10 m s−1 used herein as a base

case. Throughout the results, the fluid is water with density 1000 kg m−3 and
dynamic viscosity 1.37× 10−3 Ns m−2. The Reynolds number at the entrance to the
computational domain, Res, is set to 3000 for the eigen-analysis and to 1000 for the
transient analysis.

Three types of compliant panels are used herein, termed wall-1, wall-2 and wall-
3, with the base values of their physical properties listed in table 1. Also included
in table 1 are the values of their corresponding non-dimensional parameters. (The
effect of parametric variations from the base values within these wall types are also
investigated.) Wall-1 is typical of the Kramer-type wall studied in Carpenter & Garrad
(1985) that was capable of transition delay but with a reduced elastic modulus E′. For
this wall, divergence onset first occurs at a flow speed U′

∞
= 10.32 m s−1 with critical

wavelength λ′= 0.0044 m as determined using the potential flow theory of Carpenter
& Garrad (1986). The wall length (0.04 m) is chosen so that it is substantially longer
than both this critical wavelength and that of TWF predicted by local stability theory
and shown later. Accordingly, the FSI system features the dynamics of an infinitely
long compliant coating most often studied in stability analyses; however, its fixed ends
remain crucial in the global stability analysis presented in § 3.1.1.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

45
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.453


The interaction of Blasius boundary-layer flow with a compliant panel 167

Panel property Symbol (units) Wall-1 Wall-2 Wall-3

Elastic modulus E′ (N m−2) 1.0× 104 5.0× 106 1.0× 105

Spring coefficient K ′ (N m−3) 115× 106 10× 106 400× 106

Thickness h′m (m) 2× 10−3 4× 10−3 2× 10−3

Density ρ ′m (kg m−3) 1000 1000 1000
Length of compliant section L′c (m) 0.04, 0.01a 0.01–0.05 0.01
Upstream rigid section L′w1 (m) 0.01 0.06− L′c/2 0.01
Downstream rigid section L′w2 (m) 0.01 0.06− L′c/2 0.01

Non-dimensional Symbol Wall-1 Wall-2 Wall-3
parameter

Reynolds number Res 3000, 1000a 3000 1000
Inertia CI 4.87, 14.6a 9.73 14.6
Damping CDz 0–0.2, 0–1a 0–0.5 0–0.5
Flexural rigidity CB 1.28, 34.6a 5127.7 345.7
In-plane stiffness CA 0.649 648.8 19.5
Spring stiffness CK 0.473–3.355, 0.158a 0.041 0.548

TABLE 1. Base values of the physical properties and non-dimensional parameters of the
systems studied.

aValues for transient analysis using wall-1 physical data.

Wall-2 is chosen so that the frequencies of its in vacuo structural modes in vertical
displacements,

ωn =

(
CB(nπ/Lc)

4
+CK

CI
−

C2
Dz

4C2
I

)1/2

, (3.1)

where n is the mode number, are close to those of the range of unstable TSWs in
the boundary layer when the panel has length 0.04 m. Using the finite wall potential
flow analysis of Garrad & Carpenter (1982), divergence onset occurs at the critical
flow speed U′

∞
= 13.67 m s−1 in the fundamental panel mode, n = 1. Because the

contribution of its flexural rigidity to overall wall stiffness far exceeds that of its
spring foundation, its dynamics are very similar to those of a simple flexible plate
(panel) for which the wavelength of the lowest-frequency mode is determined by the
panel length. Wall-3 is of a similar type to wall-1 but it has been made stiffer so that
the FSI system is free of the TWF instability and its structural eigenfrequencies are
beyond the range of those of unstable TSWs while its divergence-onset flow speed
is U′

∞
= 22.8 m s−1 and the wavelength of the critical mode is λ′ = 0.008 m. For

all walls, the effect of structural damping, D′z, in the range 0–104 Ns m−3, is studied
in order to assess this as a means to control system instabilities or reduce transient
growth.

Validations of predicted eigenvalues and their corresponding eigen-vectors using
the present modelling have been undertaken using appropriate comparisons with
local stability analyses in the literature, for example Carpenter & Morris (1990). Our
local stability results have then been used to construct the spatial amplification of
convectively unstable TSWs over a compliant panel in order to create benchmarks
against which the spatial amplification computed using the present methods have been
compared.
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Rigid wall
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FIGURE 2. (a) Eigenvalue spectrum at Res= 3000 from global stability analysis for wall-
1 data and rigid wall at xs = 1012 and frequency of the inlet boundary condition ωs =

0.07755, (b) detail from (a) to show the M5 branch and its variation for different structural
damping and stiffness. (The meanings of the mode branch labels M1–M5 are provided in
the text.)

Figure 2(a) shows the full eigenvalue spectrum using the wall-1 data while the
detail of figure 2(b) shows the effect of two variations from the base data that increase
the structural stiffness or incorporates structural damping. The horizontal axis, ωr,
gives the oscillatory part of each mode, while the vertical axis, ωi gives its temporal
growth rate, positive values indicating amplification while negative values indicate
decay. Convergence of the global spectrum was achieved (for example, see Tsigklifis
& Lucey 2015) with 240 uniformly distributed grid points in the streamwise direction
and 75 collocation points in the vertical direction for height of the computational
domain LH = 30. In the streamwise discretisation, 160 points were used for the
compliant wall section giving a dimensionless element length 1x = 0.6, which is
sufficient to resolve the wavelength of the most unstable TWF mode (17 grid points)
and of the associated structural mode (13 grid points) predicted by local stability
analysis. Five mode types are identified in this figure: M1 is the TSW branch that
for these system properties is seen to be stable, M2 is the Orr mode branch, M3
is the continuous spectrum of the Orr–Sommerfeld equation while M4 are modes
associated with the Orr–Sommerfeld entry boundary conditions. It is noted that all
of these branches can be identified with the corresponding spectrum for a rigid wall
that is also plotted in figure 2(a). The fifth, M5, is the TWF branch that is seen to
be unstable over a range of oscillation frequencies. Clearly, there is no rigid wall
analogue for this flexible-wall-based mode in figure 2(a). However, it is seen in
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figure 2(b) that either a suitable amount of stiffening or the inclusion of sufficient
structural damping stabilises the TWF branch. Finally, we have varied both the length
of the rigid wall regions upstream and downstream of the compliant panel and the
choice of inlet and outlet disturbance frequencies to the flow domain, used to generate
complex α in (2.6a,b) to ensure that this type of modal interaction behaviour is not
an artefact of the finite computational domain.

3.1. Stability analysis
Herein we present predictions of the time-asymptotic behaviour of the system (i.e.
solutions of the boundary-value problem) that characterise the system state after
transient responses to the initiation of system disturbances have either been wholly
attenuated or convected away from the region of the compliant panel. The main focus
is upon the findings of the global stability analysis arising from the decomposition
of (2.15) that leads to the eigen-problem of (2.16). However, we also perform local
analyses wherein all perturbations are proportional to exp[i(αx − ωt)] in which
α=αr+ iαi is the complex wavenumber that arises from solving the Orr–Sommerfeld
equation (A 2), for a given frequency ω. Clearly this type of analysis uses the
assumption of a compliant panel that is infinitely long within a boundary layer of
fixed displacement thickness determined by the value of the local Reynolds number
at the mid-chord of the panel, and its formulation only permits spatial growth or
decay (αi < 0 and αi > 0 respectively, for downstream-propagating modes) of system
disturbances.

3.1.1. Travelling wave flutter branch
Using local analyses, TWF on a compliant wall of infinite extent has been shown

to be a convective instability (Carpenter & Garrad 1986; Carpenter & Morris 1990;
Dixon et al. 1994; Lucey & Carpenter 1995). For the definition of convective and
absolute instabilities, see Huerre & Monkewitz (1985, 1990), while Lucey (1998),
Lucey & Peake (2003) describe the application of these concepts when ideal flow
interacts with a flexible panel. Unstable TWF waves grow spatially in the downstream
direction from a source of applied excitation. The instability arises from the action
of the fluid flow on what are essentially structural waves, their growth caused by
irreversible transfer of energy from the flow to the flexible wall that occurs when a
critical layer exists within the boundary layer. In the wave classification system of
Benjamin (1963), they are denoted Class B.

For a finite panel with wall-1 data, figure 2 (see branch M5) shows that TWF
can become a global, temporally amplifying, instability that would lead to the
destabilisation of the compliant panel at all spatial locations and without a continuing
applied source of excitation. We emphasise that the global temporal amplification
of this unstable branch is insensitive to changes of the inlet outlet boundary
conditions nor increases to the length of the compliant panel. To understand the
global destabilisation mechanism, we present in figure 3 the time evolution of the
panel deflection for the most unstable TWF branch eigenvalue in figure 2. First, it is
clearly seen that the amplitude of the mode grows with time t (non-dimensionalised
using displacement thickness and free-stream flow speed). Second, is also seen to
be spatially amplified by comparing deflection amplitudes near the compliant panel
leading edge (x = 1040 where the coordinate of location is non-dimensionalised
using the displacement thickness) with those near its trailing edge (x = 1130).
The dashed and dotted line envelopes in these figures signify the spatial change
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FIGURE 3. Spatio-temporal evolution of the panel deflection for the most unstable global
mode on the TWF branch (M5) in figure 2. The dashed and dotted lines are plots of the
spatial amplification of the structural (S) and TWF modes found using a local stability
analysis at the global mode frequency and shown in figure 5(a) positioned as a best fit to
the global mode. The computational domain extends from x=1012–1158 (non-dimensional
distances from the boundary-layer origin) while the compliant panel occupies the region
x= 1037–1134.

in amplitude of the structural (S) and TWF mode respectively predicted by local
stability analysis conducted at the complex frequency of the global mode, the results
of which are presented in figure 5(a) that will be discussed later. It can be seen
that the spatial amplification of the wall displacement in the downstream direction
predicted by the global model agrees well with that of the structural mode predicted
by a local stability analysis; however, the structural mode is spatially stabilised in
the direction of its phase speed and group speed. The spatial amplification of the
velocity disturbance away from the wall predicted by the global stability agrees with
that of the TWF mode predicted by a local stability analysis (not shown). Finally,
it can be seen that the global mode is a combination of two types of wave, the
expected downstream-travelling TWF (predicted by a local stability analysis) and an
upstream-travelling wave. It is this combination of waves on a flexible wall with fixed
ends, permitting energy propagation in both downstream and upstream directions, that
leads to the temporal growth found for the global mode. The TWF transfers flow
kinetic energy to the compliant wall as it propagates downstream. At the trailing
edge the TWF continuously excites the upstream-propagating structural mode and its
arrival at the leading edge of the compliant panel provides a continuous source of
excitation for the TWF.
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FIGURE 4. Temporal amplification curves in the ωr–Res plane for the TWF mode
predicted by the global stability analysis for wall-1 data at x′s = 0.416 m with Res varied
through the free-stream flow speed. The neutral curve predicted by local spatial stability
analysis is also included.

As has been seen in figure 2 the inclusion of sufficient structural damping CDz

stabilises the TWF branch. This might be expected since TWF occurs essentially
through the destabilisation of what is a wall flexural wave (that exists in vacuo)
and it has been categorised as a Class B wave. Stiffening the compliant panel by
increasing the spring stiffness CK also exercises a stabilising effect as evidenced in
the same figure. Again, this could have been anticipated on the basis of local stability
analyses, given that in the limit of infinite stiffness the wall is rigid and therefore
unable to support the flexural waves that are the source of TWF; in fact, when the
compliant coating is sufficiently stiff that the speed of its structural waves exceeds
that of the free-stream flow (external to the boundary layer) the critical layer ceases
to exist.

We now consider the effect of the Reynolds number on the global TWF mode
instability. Figure 4 shows its temporal amplification curves in the ωr–Res plane as
predicted by the global stability analysis. For comparison, we have also included
the neutral curve predicted by our local spatial stability analysis. There is a good
match between local spatial and global temporal stability regarding the prediction
of the critical Reynolds number – the value at which instability first appears with
increasing Res – and the lower part of the neutral curve but poor agreement for
the upper branch. As can be discerned in figure 2 when damping is absent, the
TWF branch (M5) crosses the real axis as a near asymptote that gives large values
of the oscillatory frequency ωr which correspond to small spatial wavelength. The
global stability model is stretched to resolve accurately the small spatial wavelength
spectrum due to the use of a second-order finite-difference scheme for streamwise
spatial discretisation. However, the discretisation parameters we have used accurately
capture the eigenvalues of the main instability loop and the maximum temporal
amplification rate because these are located at lower oscillation frequencies.

We now show how the foregoing globally unstable TWF mode branch might
manifest itself in a local stability analysis. Figures 5(a) and 5(b) are dispersion
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diagrams, without and with (at CDz = 0.2) structural damping, respectively, for
wavenumber as a function of real wave frequency; i.e. the results of a spatial stability
analysis. The local analysis is conducted for the Reynolds number obtained using
the displacement thickness at the mid-point of the compliant panel. In these figures
the real part of the eigenvalue, αr, indicating the inverse of wavelength, is plotted
as different types of blue lines for the different mode branches with axis scale on
the left of the figure. The imaginary part of each eigenvalue, αi, that gives the
spatial amplification is plotted in red with its axis scale in red on the right of the
figure. For a downstream-propagating wave, spatial amplification and decay in the
downstream direction are respectively indicated by negative and positive values of αi;
for upstream-propagating waves, positive and negative values indicate amplification
and decay respectively in the upstream direction. The direction of wave travel can
be inferred from the wave phase speed, c= ωr/αr and propagation from the sign of
group velocity (cg = ∂ωr/∂αr). We have also included the in vacuo dispersion curve
for the compliant wall because it is readily seen that the TWF and S mode branches
respectively approach those of the downstream and upstream free waves of the wall
as the effect of fluid loading steadily reduces with increasing frequency. The different
types of blue (real part) and red (imaginary part) markers added into the figures are
the complex wavenumbers that result when the complex frequency ω = ωr + iωi of
the most unstable global mode on the TWF branch (M5) and the least stable global
mode on the TSW branch (M1) in figure 2 are used in the local analysis.

In figure 5(a) the local stability analysis reveals the expected downstream-
propagating (with positive αr) TWF branch that amplifies in the downstream direction.
Also evident is the upstream-propagating (with negative αr) structural mode branch
labelled S that evidences wave travel and attenuation in the upstream direction. These
features could be demonstrated formally through the Briggs–Bers technique (for its
application to potential flow over a flexible wall see Peake 2004) or in the analytical
categorisation of wave types in Ashpis & Reshotko (1990) as (ci) in their figure 5
with the compliant panel trailing edge acting as its source of excitation in the global
stability analysis. Thus, the global mode that contained two wave types in figure 3
may be considered to be the combined effect of these two modes predicted by the
local analysis. However, a local analysis alone would not be sufficient to show that
these combine to yield a global instability on a panel of finite extent. Moreover,
while the wavelengths of these two modes at the complex frequency of the global
mode are predicted well by the local stability analysis, their amplification/decay
rates are not; in fact it can be seen that the local stability analysis overpredicts the
downstream amplification of the TWF mode while it underpredicts the upstream
attenuation of the structural mode. Accordingly, we may conclude that while the
local stability analysis can provide the basis for understanding the interaction of
finite compliant panels with a boundary-layer flow, only a global analysis can yield
quantitative predictions of system stability. Figure 5(b) shows that structural damping
levels, sufficient to stabilise the global TWF mode branch (see figure 2b), do not
eliminate the spatial amplification of the TWF mode branch that continues to exist as
a convectively unstable mode, albeit with reduced spatial growth rate (comparison of
red continuous lines between figures 5a and 5b). However, the local stability analysis
at the frequency of the most unstable global TWF modes in figure 2 with and without
damping predicts only a slight stabilisation of the spatial amplification (comparison
of the red triangles between figures 5a and 5b). Structural damping is also seen to
increase the attenuation of the upstream-travelling structural wave in its direction of
propagation and this reinforces the interpretation of the global TWF mode instability
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FIGURE 5. Dispersion diagrams showing the variation of complex wavenumber, with real
(blue) and imaginary (red) parts respectively on left and right vertical axes, with wave
frequency for (a) CDz = 0 and (b) CDz = 0.2. Discrete data markers indicate the complex
eigenvalues from the local stability analysis conducted at the complex frequencies of the
most unstable TWF global mode (triangles and circles respectively for TWF and S modes)
and the least stable global TSW mode (crosses and squares respectively for compliant
and rigid walls) of figure 2. The grey line is the dispersion curve for free waves of the
compliant wall.

of a finite panel as comprising a combination of the TWF and S modes predicted by
local stability analyses.

Turning attention to the globally stable TSW branch in figure 2, it is seen in
figure 5(a) that there exists a range of frequencies for which TSWs are convectively
unstable in that they amplify as they propagate downstream. The local analysis
conducted at the complex frequency of the least stable global mode shows (see
markers) that a conventional local stability analysis underpredicts the growth rate
of the unstable mode. It is also seen by comparing the growth rates of the TSW
markers that wall compliance has a mildly stabilising effect on the convectively
unstable TSWs as compared with their amplification over a rigid wall (comparison
of the red crosses and squares in figure 5a). Comparing figures 5(a) and 5(b), the
spatial growth rate of the TSW is also seen to be slightly increased by the inclusion
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FIGURE 6. Variation of structural stiffness at which global TWF mode instability first
occurs with Reynolds number through (a) variation of the distance of the flexible panel
from the boundary-layer origin for different fixed free-stream flow speed flow speeds, U′

∞
,

and (b) variation of the free-stream flow speed for different fixed distances x′s.

of damping but the compliant panel continues to exercise a stabilising effect on the
TSW as compared to its growth over a rigid wall.

Comparing the spatial amplification rates of the most unstable TWF and TSW
modes, either for real ω or the global complex ω, in figure 5(a,b), it can be seen that
the amplification of the convectively unstable TWF mode is greater than the spatial
amplification rate of the TSW mode and that structural damping is only marginally
attenuating at the global frequency. A compliant panel with these properties could
not be used for transition delay because the spatial amplification of the TWF mode
exceeds that of TSW and thus it may be TWF that causes transition as has been
shown to occur by Lucey & Carpenter (1995) when modelling the experiments of
Gaster (1988). Accordingly, in practical applications of compliant panels for transition
delay it is essential to choose compliant wall properties (a combination of structural
stiffness and damping for a given mass ratio CI) that prevent global instability and
postpone the onset and/or reduce the growth rates of convectively unstable TSWs
and TWF. The latter has been accomplished in the optimisation of transition delay
based upon local stability analyses (Carpenter 1991; Dixon et al. 1994). Accordingly,
in what follows we focus on a parametric study of the effects of structural stiffness
and damping on the stability of the global TWF mode.

We first focus upon the relationship between compliant panel stiffness and the
Reynolds number at which global instability on the TWF branch first occurs. To
characterise the stiffness, that comprises contributions from both plate flexure and
spring foundation, we define a non-dimensional wall stiffness as the ratio of its
minimum free wave speed to the free-stream flow speed, hence

KIW =
c′min

U′
∞

=
(4CKCB)

1/4

C1/2
I

. (3.2)

We remark that the simple inviscid theory of Carpenter & Garrad (1986), using a local
analysis, predicts KIW = 1 as the criterion for TWF onset on the basis that this value is
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FIGURE 7. (a) Eigenvalue spectrum from global stability analysis for different Reynolds
numbers and fixed free-stream speed U′

∞
= 10 m s−1. (b) Distribution of the energy

production function S through the boundary layer for the cases shown in (a) produced
by local stability analysis using wall-1 properties.

the threshold between the existence and absence of a critical layer within the boundary
layer.

It is well known that the self-similarity of Blasius boundary-layer flow means that
its dynamics can be characterised uniquely by the Reynolds number. This continues
to be the case for local stability analyses where non-parallel effects are neglected
and the compliant wall is homogenous in the streamwise direction. However, when
a panel of finite length is inserted in an otherwise rigid wall, the FSI system
becomes inhomogeneous in the streamwise direction. Accordingly for a fluid with
given kinematic viscosity, Reynolds number variation can be achieved in one of two
distinct ways, either (i) changing the downstream distance of the plate x′s (from the
boundary-layer origin) for a fixed free-stream flow speed U′

∞
or (ii) changing the

free-stream flow speed U′
∞

for a fixed position x′s of the compliant panel. These
changes do not give equivalent FSI dynamics even though they may result in the
same Reynolds number. The former appears more appropriate for theoretical analysis
because the dimensionless stiffness depends only on the structural properties, while
the latter is more convenient for comparison with experimental measurements obtained
at a specific location along the plate.

In figure 6(a) we show how the stiffness KIW at which global TWF mode
instability first appears varies with the Reynolds number for different values of a fixed
free-stream flow speed U′

∞
where the streamwise position, x′s (hence boundary-layer

thickness), is varied. Figure 6(b) is the corresponding result but here the flow speed
is allowed to vary while different fixed downstream positions x′s are considered. These
results have been generated using the local spatial stability analysis and have been
verified a posteriori with the global stability, since, as can be seen in figure 4, there
is good agreement between local and global stability analyses for the lower branch of
the neutral curve and the lowest Reynolds number at which the global TWF branch
features instability. These results indicate that the FSI system becomes more stable
with respect to global TWF modes with increasing downstream distance from the
leading edge of the plate at a given free-stream flow speed U′

∞
, or as the free-stream
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flow speed increases for a given position of the plate. Moreover, figure 6(a) shows
that, at any given location of the flexible panel, a higher flow speed is destabilising
and this can be expected since the ratio of wall stiffness to flow stiffness (that scales
with the dynamic pressure of the free-stream flow) is reduced; i.e. the wall appears
softer. Figure 6(b) shows that, for any given flow speed, the flexible panel is more
stable when located further downstream where the boundary layer is thicker via
higher x′s and/or lower Reynolds number (free-stream flow speed for the variation
used in figure 6b). It is noted that KIW can exceed unity but this does not mean that
the critical layer does not exist. The approximate threshold KIW = 1 discussed below
(3.2) above is based upon the assumption of a thin boundary layer and its formulation
does not account for the effects of fluid inertia on the compliant wall wave speed.

Figure 7(a) confirms the finding that the FSI system becomes more stable with
increased downstream location of the flexible panel for a given free-stream flow speed
U′
∞

. In this figure we plot the temporal eigenvalue spectrum from the global stability
analysis for different Reynolds numbers while maintaining a constant free-stream flow
speed U′

∞
= 10 m s−1. The temporal growth rates of the TWF modes reduce with

increasing downstream location because the wavelength of the instability becomes
smaller relative to the length of the compliant wall and therefore the finiteness effect
of the compliant panel that underpins the global instability is reduced.

The principal mechanism of the TWF instability is the phase shift in the pressure
perturbation across the critical layer which gives rise to irreversible energy transfer
to the wall (Carpenter & Gajjar 1990; Carpenter & Morris 1990). In order to reveal
why increasing the downstream distance of the flexible panel from the origin of
the boundary layer is stabilising for the global TWF mode, we use a local stability
analysis to calculate the rate of work done by the pressure disturbance on the wall
(Carpenter & Morris 1990),

p
∂ηz

∂t
∼

∫ LH

0
Re
[(

i(αUx −ω)ûz −
1

Rex

(
d2

dz2
− α2

)
ûz

)
ûz(H = 0)

]
dH =

∫ LH

0
S dH,

(3.3)
having integrated the z-component of linearised Navier–Stokes equations from the
compliant wall through to the free stream to obtain the pressure perturbation on
the wall. Figure 7(b) shows the distribution of the function S through the boundary
layer for the cases shown in figure 7(a). It can be seen that as the boundary layer
progresses downstream both the positive rate of work above the critical layer and
the dissipation in the viscous wall layer become smaller in magnitude but the total
contribution is in favour of the global TWF mode stabilisation. As the boundary layer
progresses downstream, its thickness increases and the critical layer, where the fluid
flow speed equals the surface wave speed, moves away from the wall and its effect
is attenuated.

We now consider the effect of structural damping in conjunction with compliant
wall stiffness variations. We define the non-dimensional damping, based upon the
dynamics of the compliant wall in vacuo, as

DIW =
D′zc

′

min

ρ ′lU
′2
∞

=
CDz(−C2

Dz
+ 4CICK)

1/4C1/4
B

C3/4
I

, (3.4)

noting that the physical damping is constrained by CDz < 2
√

CICK; i.e. lower than
critical damping for the wall structure.
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FIGURE 8. Variation of structural damping at which global TWF mode instability first
occurs with Reynolds number using both global and local stability analyses, for different
values of foundation spring stiffness (K ′), through (a) variation of the distance of the
flexible panel from the boundary-layer origin for different fixed free-stream flow speeds,
U′
∞

, and (b) variation of the free-stream flow speed for different fixed distances x′s.

Figures 8(a) and 8(b) plot the variation with Reynolds number of the minimum
value of damping DIW required to stabilise all modes on the global TWF branch in
figure 2 for different values of fixed free-stream flow speeds and fixed positions of
the flexible panel plate respectively, and different values of the foundation spring
stiffness. These results have been generated through the combined use of global and
local stability analyses using the following procedure. For given Reynolds number
and compliant wall stiffness we conduct a global stability analysis without structural
damping. This result is then used to conduct a local spatial stability analysis at the
predicted complex frequency ω = ωr + iωi with the maximum temporal amplification
ωi, increasing the structural damping until the spatial amplification αi crosses the
real axis and becomes positive, indicating a spatially stable mode. For this value of
the structural damping, we then perform the global stability analysis to verify that
this value of damping marginally stabilises the TWF global instability branch. This
approach has been adopted to reduce the number of computationally expensive global
calculations. From the results in figure 8(a,b), it can be seen that there is a good
agreement between local and global stability analyses except for cases where edge
effects of the finite compliant wall are non-negligible and a higher value of structural
damping is needed. Overall, figure 8(a,b) shows that the level of damping required to
eliminate the global TWF mode instability reduces as the boundary layer progresses
downstream or with an increase to the compliant wall stiffness and/or the decrease of
the free-stream flow speed. These findings align with those of figure 6(a,b), because
the global TWF instability can be stabilised by each of increased structural stiffness
and damping or a combination thereof.

3.1.2. Tollmien–Schlichting wave branch
Local stability analyses of Blasius boundary-layer flow over a compliant wall

(Carpenter & Garrad 1985, 1986; Carpenter 1990), show that TSWs are convective
instabilities and Class A waves in the energy classification of Benjamin (1963). In
the results of § 3.1.1 the choice of wall-1 properties rendered the system globally
stable for the TSW branch modes.

Throughout this section we use the properties of wall-2 (listed in table 1) to show
that TSWs can combine with structural modes of the finite panel to generate global
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FIGURE 9. Global stability analysis using wall-2 data for xs = 1012 and at Res = 3000
with frequency of the inlet boundary condition ωs = 0.07755 focusing on the TSW
branch. (a) The effect of discretisation for compliant panel non-dimensional (based upon
displacement thickness) length Lc = 97.3; (b) ûx distribution (upper panel) of the most
unstable global mode in (a) and (lower panel) its comparison with the mode predicted
by the local spatial stability analysis at the position denoted by the dashed line; the solid
lines signify the leading and trailing edges of the compliant wall. (c) The effect of panel
length on global instability of the TSW branch; the broken lines connecting the discrete
eigenvalues (symbols) are sketched in to highlight how growth/decay varies with increasing
oscillation frequency for each panel-length case. (d) The effect of structural damping on
the global stability of the TSW branch mode for Lc = 97.3.

instability. Figure 9(a) shows one part of the full eigenvalue spectrum for different
levels of discretisation for height of the computational domain, LH = 50. In the upper
panel we increase the number of Chebyshev collocation points in the wall-normal
direction for a fixed number of points (120) in the streamwise direction and then, in
the lower panel, we increase the number of points in the streamwise direction for a
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fixed number of collocation points in the wall-normal direction (85). It is seen that
for a fairly narrow range of mode frequencies, ωr, the temporal growth rate, ωi, is
positive and that the mesh 168× 85 accurately captures the system behaviour of the
most unstable modes. The 112 grid points (1x= 0.87) used for the discretisation of
the compliant wall section are able to capture the characteristics of the most unstable
TSW (33 grid points per wavelength) and of the associated structural mode (90 grid
points per wavelength) in the global destabilisation. Compared to the growth rates of
unstable modes on the TWF branch, for example see figure 2, these rates are very low,
being one order of magnitude smaller. However, as a temporal instability, it will come
to dominate the system behaviour with the passage of sufficient time. We also note
that both its amplification rate and oscillation frequency are sensitive to the change of
the frequency of disturbances introduced as entry conditions upstream of the compliant
panel. This means that any mode on the TSW branch could potentially resonate with
a structural mode provided the frequency of the latter falls within the range of the
TSW branch. The upper panel of figure 9(b) shows the global eigenmode of the most
unstable mode in figure 9(a) through its ûx distribution while the lower panel shows
its variation through one vertical slice at the position marked by the vertical dashed
line in the upper panel. Clearly, this mode has the well-known characteristics of a
Tollmien–Schlichting wave, albeit modified by its interaction with the compliant panel,
the extent of which is denoted by the vertical solid lines. Also plotted in the lower
panel is the eigenfunction of the TSW predicted by the local spatial stability analysis
at the Reynolds number of the vertical dashed line. While the global and local modes
have the same essential characteristics, it is evident that quantitative differences exist
between the predictions of the types of analysis.

The mechanism for global instability arises through the interaction of the fluid-based
TSW mode and a mode of the wall structure. This can be inferred from figure 9(c)
that shows the eigenvalue spectrum for different (non-dimensional) wall lengths. The
very short panels, Lc = 24.3 and 36.5 yield a globally stable system whereas for
Lc = 48.7 instability appears at a single system frequency. The shorter panels have
structural frequencies, given by (3.1) with its dependence upon Lc, that, even for the
first panel mode (n = 1) are higher than those of the TSW branch. Increasing the
length of the panel for fixed structural properties lowers its natural frequencies into
the range for which the unstable resonances seen in figure 9(c) can occur. A further
increase to the panel length Lc = 73.0 actually reduces the growth rate because, as
will be seen later, the wavelength of the structural mode is such that the resonance
with the TSW is less exact than that at Lc = 48.7. Continuing to increase the panel
length enables both the first and second structural modes to interact with the TSW
to give two unstable global modes at each of Lc = 97.3 and 121.7. Further increases
to panel length would see the third structural mode creating resonance but, it will be
seen later, the increased effective flexibility of the panel (as evidenced by its natural
frequency) in general renders it susceptible to a stronger divergence instability.

We now demonstrate that structural damping in the panel can be used to suppress
global instability of the TSW branch modes. Figure 9(d) shows the eigenvalue
spectrum of the TSW branch in figure 9(c) when Lc = 97.3 for different levels
of (non-dimensional) damping coefficient CDz . As the level of damping is increased
(from zero), the eigenvalues of the unstable modes move downwards into the negative
ωi plane thereby stabilising the mode. Although local analyses (Carpenter & Garrad
1985; Dixon et al. 1994; Lucey & Carpenter 1995; Carpenter et al. 2001) show
that structural damping is spatially destabilising for TSWs in an infinite domain, in
keeping with its Class A classification, it is its effect upon the structural mode that
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FIGURE 10. Dispersion diagrams showing the variation of complex wavenumber, with real
(blue) and imaginary (red) parts respectively, on left and right vertical axes, with wave
frequency for (a) CDz = 0 and (b) CDz = 0.5. Discrete data markers indicate the complex
eigenvalues from the local stability analysis conducted at the complex frequency of the
most unstable TSW global mode (crosses and circles respectively for TSW and S modes)
of figure 9(d) while the squares give the corresponding eigenvalue for a rigid wall. The
grey line is the dispersion curve for free waves of the compliant wall. Note that the TWF
branch has been omitted for clarity.

combines with the TSW to create the global temporal instability that results in the
overall stabilisation of the global mode.

We now examine the extent to which a local spatial stability analysis can predict
the mechanism for global instability of the TSW branch. Figures 10(a) and 10(b) are
dispersion diagrams, without and with (at CDz = 0.5) structural damping respectively,
for wavenumber as a function of real wave frequency plotted using the same
convention as that used in figure 5. The Reynolds number used is based upon
the displacement thickness at the mid-point of the panel used in the generation
of the global mode in figure 9(d). Note that in these figures we have, for clarity,
omitted the TWF branch that links to the downstream-propagating in vacuo mode at
high frequencies. The TSW branch appears as spatially amplifying in the downstream
direction over the range of frequencies ωr : 0.025→ 0.09. Also evident is the structural
mode branch, labelled S, which is upstream propagating, has upstream directed phase
speed and is spatially attenuating in the upstream direction. It is these two branches
that combine to give the global instability presented in figure 9. However, the local
stability analysis yields a continuous variation of eigenvalues for these two branches
because the compliant wall is assumed to be infinitely long. Accordingly, it is unable
to identify the discrete frequencies, determined by compliant panel length, at which
resonance between the two modes might occur. The markers in figure 10(a,b) are the
local stability eigenvalues calculated at the complex frequency of the most unstable
global mode in figure 9(d), i.e. for panel length Lc = 97.3. It is seen that these align
fairly closely with the predictions for real ω in the dispersion diagrams. While the
level of structural damping CDz = 0.5 was sufficient to stabilise the TSW global mode
as shown in figure 9(d), it is marginally destabilising for the convectively unstable
TSW branch in figure 10(b). This is to be expected given that TSW is a Class A
instability. However, the local stability analysis does indicate that damping has a
strong stabilising effect on the structural mode, S, and this reinforces the explanation
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FIGURE 11. The effect of Reynolds number on (a) the resonant complex frequency of the
global instability of the TSW branch and for wall-2 data for fixed dimensional location
based on x′s = 0.416 m, compliant panel length L′c = 0.04 m and frequency of the inlet
boundary condition ωs = 0.05. (b) Shows the normalised mode shapes (through wall
vertical velocity) at different Reynolds number resonances in (a) with the TSW mode and
at the onset of the globally unstable divergence (D).

as to why damping can stabilise the globally unstable TSW mode. Finally, even
with damping present, figure 10(b) shows that the spatial amplification rate of the
convectively unstable TSW over the compliant wall is lower than that which occurs
over a rigid wall. Accordingly compliant panels could be designed with sufficient
structural damping to suppress the global instability and reduce the growth of TSWs
as they travel downstream.

In figure 11(a) we show the dependence of the resonant frequency and the
maximum growth rate of the globally unstable TSW mode on the Reynolds number
for the properties of wall-2 and fixed compliant panel length L′c = 0.04 m at given
position x′s = 0.416 m. These dimensional values are provided because changing the
Reynolds number (through flow speed for a fixed location) results in changes to
the non-dimensional (based upon displacement thickness) flexible panel length and
its distance from the origin of the boundary layer. The wall mode shapes at three
Reynolds numbers of the variation are depicted in figure 11(b) noting that increasing
the Reynolds number moves the non-dimensional location of the flexible panel to
greater distances from the boundary-layer origin as reflected in this figure. Broadly,
the effect of increasing the Reynolds number is analogous to increasing the length
of the compliant panel (shown in figure 9c and discussed above). This is because
increasing the flow speed reduces the panel stiffness relative to the flow stiffness that
is proportional to its dynamic pressure. Accordingly, figure 11(a) shows that increasing
the Reynolds number reduces the frequency of the fundamental structural mode –
labelled mode 1, the wall shape of which is characterised by the result at Res= 2683
in figure 11(b) that yields the resonance with a TSW. With further increases to Res,
it is the second structural mode, labelled mode 2, that combines with the TSW to
create the most unstable global mode. This pattern of increasingly higher structural
modes yielding the most unstable global mode continues with the appearance of the
branch and wall mode labelled mode 3 in figure 11(a,b). However, it is seen that for
Re > 3795 (U′

∞
= 16 m s−1) a low-frequency divergence instability mode (labelled
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D) appears that is insensitive to the inlet–outlet boundary conditions of the flow. The
divergence mode has increasing amplification rate and decreasing frequency as Res
increases and would dominate (over the global TSW mode instability) the system
response at sufficiently high Reynolds numbers.

The appearance of divergence in the present system is unsurprising because
increasing Res through the flow speed increases the flow stiffness and when this
exceeds the panel stiffness, divergence, which is a buckling-type of instability, may
occur. It is upon this basis that potential flow modelling (Garrad & Carpenter 1982)
can be used to predict its onset flow speed. Thus, the black dashed vertical line in
figure 11(a) indicates the critical Reynolds number, Recrit.= 3508 (U′

∞
= 13.67 m s−1)

for the onset of divergence while its mode shape is shown in figure 11(b). Its
wavelength (non-dimensionalised by displacement thickness δ′s) is approximately
λ = 148 at Res = 3795 while potential flow theory predicts λ = 227.6 for the
fundamental mode and λ = 118.9 for the second mode at onset flow speeds
U′
∞
= 13.67 and 14.94 m s−1, respectively. In addition, the wavelength of the least

stable global TSW mode for the rigid wall case at Res = 3795, is λ = 35.2 and so
the critical wavenumber of the divergence instability is smaller than the wavenumber
of the least stable TSW mode. This is in agreement with the predictions of Davies
& Carpenter (1997a) who found that the critical wavenumber of the divergence
should be much smaller than the wavenumber of the least stable TSW mode for the
divergence instability to be realised.

To conclude this subsection, we evaluate the levels of structural damping required
to stabilise the global TSW mode for the wall-2 properties. Given that low-order
structural modes of a finite compliant panel underpin the resonance, as evidenced
by figure 11(b), we define the non-dimensional structural damping in terms of the
standing wave vibrational characteristics of the panel, hence

DFW =
D′zL

′

c f ′1
ρ ′lU

′2
∞

=CDzLc

(
CB(π/Lc)

4
+CK

CI
−

C2
Dz

4C2
I

)1/2

, (3.5)

where f ′1 the eigenfrequency of the fundamental in vacuo structural mode. In table 2
we list the minimum level of dimensionless structural damping DFW required to
eliminate the unstable resonant behaviour for the three Reynolds number cases shown
in figure 11(b). However, we remark that these findings pertain to the TSWs excited
by the specific perturbation ωs = 0.05; to determine the minimum levels of damping
for all such global TSW branch instabilities would require such evaluations across
the full range of ωs that excite TSW in the FSI system. The fifth and sixth columns
in table 2, give the resulting spatial amplification rates of the least stable TSW at the
given level of structural damping DFW for the compliant panel and for a rigid wall. It
can be seen that with the required amount of damping to eliminate global instability at
each Reynolds number, it is also possible to reduce the spatial amplification rates for
the least stable TSWs relative to those of the flow over a rigid wall. We also remark
that the divergence mode (D), being a Class C instability, is relatively insensitive to
the effect of structural damping. Thus, even though the globally unstable TSW branch
can be stabilised through damping, the onset of divergence instability for Res > 3795
would render the system globally unstable.

3.2. Effect of axial and vertical compliant wall displacements
Here we investigate the combined effect of axial and vertical structural displacements
on the global instabilities of the FSI system. Figure 12 shows a typical spectrum
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Res U′
∞

(m s−1) D′z (kg m−2 s−1) DFW Wall-2, αi Rigid, αi

2683 8 1500 1.5696 −9.656× 10−3
−3.292× 10−2

3550 14 8200 2.2374 −1.068× 10−2
−2.471× 10−2

3795 16 10 000 1.7648 −1.087× 10−2
−2.477× 10−2

TABLE 2. Critical damping for stabilisation of the global TSW branch for the cases shown
in figure 11(a) until the onset of the divergence at Res = 3795 and corresponding spatial
amplification rates (αi) of the least stable TSW for the compliant and the rigid wall cases.
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Axial-vertical model 

TWF and vertical
mode resonance branch 

Vertical model 
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FIGURE 12. Eigenvalue spectrum at Res= 3000 from global temporal stability analysis of
the FSI system for wall-1 data for xs=1012 and frequency of the inlet boundary condition
ωs = 0.07755: comparison with the model accounting only for the vertical motion.

of eigenmodes for wall-1 data from the global stability analysis which also includes
corresponding results for the one-degree-of-freedom (vertical) compliant wall model.
The additional axial structural modes are seen to be globally stable. Furthermore,
their inclusion does not change the strong global TWF mode instability predicted by
the one-degree-of-freedom (vertical) compliant wall model investigated in § 3.1.1, nor
does it generate a globally unstable interaction with the TSW mode branch. Further
results for the wall-2 data (not presented here) indicate that the inclusion of axial wall
motion does not alter the globally unstable TSW resonance investigated in § 3.1.2.
However, the growth rates of the two globally unstable modes are very marginally
increased as can be discerned, for example, through figure 12 by careful inspection
of the unstable TWF branch and the least stable mode on the TSW branch. Spatial
local stability analysis of the system that generated figure 12 yields results (not
presented here) that are very similar to figure 5 but with the addition of downstream-
and upstream-travelling (and propagating) axial mode branches that are both stable
in their direction of propagation. The existence of the latter, that transmits energy
upstream, makes a small contribution, further to that of the upstream-propagating
structural mode (labelled S in figure 5), that combines with TWF and therefore
strengthens the global instability mechanism. However, overall, the inclusion of axial
deformation of the compliant wall does not generate significant differences to the FSI
behaviour of the system for the parameter ranges considered in the present paper.
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FIGURE 13. Maximum growth of fluid–structure system energy G(t), as a function of
time for two compliant panels with and without structural damping, CDz for Res = 1000,
free-stream flow speed U′

∞
=10 m s−1 and frequency of the inlet boundary condition ωs=

0.07755.

3.3. Transient growth
We now assess whether transient growth would be a significant effect in the
destabilisation of the finite compliant panels considered in this paper. We consider
two types of panel, namely the potentially transition-delaying compliant coating with
a reduced stiffness represented by the wall-1 data in table 1 that was found to be
susceptible to a global instability of the TWF branch in § 3.1.1, and a stiffer coating
represented by wall-3 data in table 1 that is free from global instability. The relatively
low Reynolds number, Res = 1000 with a free-stream flow speed U′

∞
= 10 m s−1, is

used herein.
Figure 13 shows the time history maximum energy growth G(t) for the compliant

wall properties of wall-1 and wall-3 for different levels of structural damping and for
a rigid wall. First it is seen that a compliant panel free from global instability (wall-3)
produces marginally lower maximum total energy (TE) than the rigid wall. However, it
is seen that the compliant panel with wall-1 properties supports very significant levels
of transient growth. In the absence of structural damping, the panel experiences global
instability and thus its energy time series grows to become infinite. When structural
damping at CDz = 0.5 is used to suppress the global instability, as described in § 3.1.1,
the maximum energy is finite but at a much higher level than that for a rigid wall.
The inclusion of a higher level of damping, CDz = 1.0, marginally reduces the peak
energy level but increases the temporal width of the energy footprint. Accordingly,
transient growth needs to be considered as a factor in the design of compliant panels
for transition postponement even if their properties have been tailored to preclude the
existence of global instabilities.

To understand better the above behaviour but also to calculate the maximum
flow kinetic energy which is convected downstream and the effect of structural wall
damping on this, we decompose the time evolution of the system total energy that
arises from the optimal initial disturbances (plotted in figure 13) and defined by
(2.17), into its contributions from the flow kinetic (FKE), structural kinetic (SKE)
and structural strain energy (SPE). This is shown in figures 14(a) and 14(b) for wall-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

45
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.453


The interaction of Blasius boundary-layer flow with a compliant panel 185

Rigid TE

Rigid TE

200 400 600

t t
800 1000 1200 200 400 600 800 1000 12000

10

20

30

40

50

60

70

80

90

100

0

5

10

15

25

20

(a) (b)

FIGURE 14. Time evolution of the system total energy (TE) arising from optimal initial
disturbances and its decomposition to the flow kinetic (FKE), structural kinetic (SKE) and
structural strain (SPE) energy for (a) wall-1 and (b) wall-3. The rigid wall total (flow
kinetic) energy (TE) is also included.

and wall-3 properties respectively; for the purpose of comparison, the total energy
trace for the rigid wall case is included in each of these figures. The overall feature
of these results is that the accumulation of flow kinetic energy dominates transient
growth of disturbances.

Figure 14(a) shows that while the fluid kinetic energy is the dominant energy term,
the wall energy terms are non-negligible. The effect of structural damping is seen to
reduce the latter terms. This is consistent with earlier results showing that damping
can be used to control both global and local TWF modes. However, increasing the
damping leads to an increase in the fluid kinetic energy because it has been seen
that it has a destabilising effect on the flow-based modes that principally comprise
TSWs. Thus, while the inclusion of structural damping is essential to preclude global
instability it does lead to larger downstream transfer of fluid kinetic energy through
transient growth. In contrast, the stiffer wall-3 that was chosen to be free of globally
unstable modes without the need for structural damping, generates a level of transient
growth that is marginally lower than that of flow over a rigid wall; this is seen in
figure 14(b). It is also seen that the wall energy components of the energy growth are
almost negligible and that structural damping creates a small increase to the maximum
flow kinetic energy transfer.

Finally we note that in figure 14(a) the time at which maximum flow kinetic
energy occurs coincides with the time of the maximum of the wall energies (SPE
and SKE) which is earlier than that of the rigid wall case. We will see below that this
difference reflects the arrival of the disturbance at the leading edge and the initiation
of compliant wall effects. In contrast, when wall-3 properties are used to generate
figure 14(b), there is a time difference between the maxima of the wall energies and
the maximum flow kinetic energy that in this case is closely aligned with that of the
rigid wall. This is because the much higher stiffness of this wall limits compliant
wall interaction in the transient growth process.

The different transient dynamics of the two FSI systems as evidenced by the time
difference between the maxima of the flow kinetic energy and the wall energies
(SKE+SPE) are further elucidated by plotting the spatio-temporal evolution of the
streamwise disturbance velocity of the wave packet that arises from the optimal
initial disturbance. Figures 15(a) and 15(b) respectively show these for wall-1 with
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FIGURE 15. Spatio-temporal evolution of the wave packet of the streamwise disturbance
velocity amplitude for (a) wall-1 with CDz = 0.5 and (b) wall-3 without structural damping.
The vertical lines signify the x-coordinates of the leading and trailing edges of the
compliant panel.

CDz = 0.5 and wall-3 properties without structural damping. In both cases the optimal
initial disturbance is tilted against the shear as is the case for flow over a rigid wall
(Åkervik et al. 2007). It is then seen to rise to an upright position while extracting
energy from the mean flow. Thereafter the wave packet evolutions in figures 15(a)
and 15(b) differ significantly. In the former, for wall-1 data, the convectively unstable
TWF and its interaction with structural modes causes the maximum streamwise
velocity to appear above and close to the trailing edge of the compliant panel. When
the wave packet leaves the compliant panel it starts to dissipate since the TWF
instability does not exist on the rigid wall section. However, a significant part of the
energy accumulated over the compliant panel is distributed to TSWs, which carry
the transient growth energy downstream of the compliant panel. It is remarked that
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while the FSI system is globally stable, the TWF mode continues to be convectively
unstable with a larger spatial amplification rate (αi = −2.13 × 10−2) than the least
stable TSW mode over the compliant panel (αi = −8.777 × 10−3) but also over the
rigid wall (αi = −1.62 × 10−2). By contrast, figure 15(b) that pertains to the stiffer
wall-3 properties, shows that the maximum amplification of the velocity disturbance
is located at the end of the fluid domain. This is because the compliant wall has
marginally reduced the transient amplification of the TSW relative to the flow over
a rigid wall and for this type of compliant panel the disturbance total energy almost
exclusively comprises fluid kinetic energy as seen in figure 14(b).

4. Conclusions

We have formulated a fluid–structure interaction model for Blasius boundary-layer
flow fully coupled with the dynamics of a compliant panel with fixed leading and
trailing edges embedded in an otherwise rigid wall accounting for both vertical and
axial structural displacements. The resulting spatio-temporal analysis is permitted by
the hybrid of computational and theoretical modelling used in our novel approach.
While we have studied viscous developing flow in the absence of a pressure gradient,
our methods could equally be used for the stability analysis of boundary-layer flow
developing in a non-zero pressure gradient.

It has been shown that global instability of the linear FSI system can occur
through two distinct mechanisms namely, (i) in the wall-based travelling wave flutter
eigenvalue branch when its modes interact with a vertical structural mode and (ii) in
the fluid-based Tollmien–Schlichting wave eigenvalue branch when its modes interact
with a vertical structural mode. The first features higher temporal growth rates than
the second and is insensitive to the perturbation boundary conditions applied to
the flow domain. It comprises travelling wave disturbances of the wall that have
characteristic wavelengths far shorter than the panel length and can be suppressed by
stiffening the compliant wall. The second is dependent upon the length of the finite
panel and the boundary conditions, evidencing a resonant-type behaviour with discrete
structural modes of the compliant panel. Finally, a globally unstable divergence mode
was found at very low oscillatory frequencies that has increasing amplification rate
as the free-stream flow speed is increased. The flow speed of its onset is largely
unaffected by structural damping. Like the TWF mode, this wall-based instability is
insensitive to the boundary conditions applied upstream of the flexible panel. Even
though the mechanism for divergence is mainly inviscid in nature, it appears in the
present boundary-layer flow only as long as its wavelength is much longer than that
of the least stable TSW wave, an effect that has been seen in previous studies (Davies
& Carpenter 1997a).

With the exception of divergence, these types of global instability have not been
found before in stability studies of this FSI system. Most studies of the system
have used a local stability analysis that assumes, a priori, that TWF and TSWs
over a compliant wall are convective instabilities and necessarily ignore the effects
of finite panel length. Nevertheless we have shown how local stability analyses
can give insights as to which modes might combine to generate global instability
of a finite-length compliant panel. It might have been expected that these temporal
instabilities would appear in the numerical simulations of Davies & Carpenter (1997b)
for the analogous system of Poiseuille flow over a compliant insert. However, the
TSW branch phenomenon was not seen because the global instability has a very
low growth rate and the numerical simulations were not run for long enough for it
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to become apparent (C. Davies, Private communication with A. D. Lucey (2013)).
That the TWF branch of global instability did not appear may be due to the forcing
frequency (as the entry condition to the numerical domain) being too low in Davies
& Carpenter (1997b) given that it was chosen to illustrate the development of
TSWs over finite compliant panels. The advantage, over numerical simulation, of the
modelling developed in the present paper, is that it readily permits investigation and
assessment of the full frequency spectrum of system modes. However, for a complete
quantification of the globally unstable TSW branch phenomena, the present methods
would need deployed for the full range of inlet–outlet boundary conditions.

Both types of global instability can be suppressed by the use of structural damping
but would leave the TWF and TSW modes as convectively unstable for the compliant
panel properties used herein. It was also shown that the effect of structural damping
is stabilising for convective TWF instability and destabilising for TSWs in agreement
with the findings of previous local stability analyses and the well-known energy
classification of these waves. However, even with damping present, the amplification
rate of convectively unstable TSWs are lower in the presence of a compliant panel
than over a rigid wall.

The amplification rates of globally unstable modes of the TWF branch have
been shown to reduce as the Reynolds number is increased for given free-stream
flow speed; this occurs because the critical layer moves away from the wall with
increased boundary-layer thickness thereby attenuating its effect in the destabilisation
mechanism of the TWF. In contrast, amplification of globally unstable modes on
the TSW branch do not exhibit a monotonic change because of the distinct resonant
character of the temporal instability with its dependence on the compliant panel
length. However, as Reynolds number is increased the order of structural mode that
resonates with the TSW increases.

The inclusion of axial displacement modes, alongside the vertical displacement
modes, of the compliant wall has been studied. It was shown that the axial structural
modes do not combine with modes on either the TSW or TWF branches to create
global instability. However, their inclusion causes a very slight increase to the growth
rates of the global modes that are based principally upon vertical displacement
structural modes of the compliant panel.

The results of the non-modal analysis developed and deployed in this paper suggest
that finite compliant panels capable of attenuating TSWs and which are free from
global instability of modes on the TWF branch, via the inclusion of the necessary
amount of structural damping, generate levels of transient flow kinetic energy growth
that significantly exceed (by a factor of 3 for the compliant panels assessed in this
paper) those that would occur for boundary-layer disturbances over a rigid or very
stiff compliant wall. Accordingly, in the design of compliant panels for boundary-layer
transition postponement, it is essential to ensure that increased transient growth would
not lead to bypass transition.
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Appendix A
The local spatial stability analysis is studied by implementing the Chebyshev

collocation matrix combined with the companion matrix method (Bridges & Morris
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1984; Danabasoglu & Biringen 1990) and solving the eigenvalue problem for the
complete spectrum. More specifically, applying the decomposition,

{ux, uz, p, ηx, ηz}(x, z, t)= {ûx, ûz, p̂, η̂x, η̂z}(z) exp (iαx− iωt), (A 1)

together with the complex conjugate part of the eigen-decomposition to the linearised
x and z components of the Navier–Stokes equations, to the continuity equation, to
the normal and tangential force balance, equations (2.10), (2.11) and to the kinematic
boundary conditions (2.7) and considering that the disturbances decay to zero at
infinity, we obtain the Orr–Sommerfeld equation,

(α4ûz)+ iRexUx(α
3ûz)−

(
iωRex + 2

d2

dz2

)
(α2ûz)

+ iRex

(
d2Ux

dz2
−Ux

d2

dz2

)
(αûz)+

(
iωRex

d2

dz2
+

d4

dz4

)
ûz = 0, (A 2)

with the boundary conditions at the wall z= 0,

−CA
dUx

dz

∣∣∣∣
z=0

(α3ûz)−

(
CAω

d
dz
+

iω2

Rex

)
(α2ûz)

+ (CIω
2
+ iCDxω)

dUx

dz

∣∣∣∣
z=0

(αûz)+ (CIω
2
+ iCDxω)ω

dûz

dz
−

iω2

Rex

d2ûz

dz2
= 0, (A 3)

iCB(α
6ûz)−

2
Rex

dUx

dz

∣∣∣∣
z=0

(α3ûz)+

(
−iCIω

2
+CDzω+ iCK −

3ω
Rex

d
dz

)
(α2ûz)

+ iω
dUx

dz

∣∣∣∣
z=0

(αûz)+
ω

Rex

d3ûz

dz3
+ iω2 dûz

dz
= 0, (A 4)

and at z=∞,

ûz = 0 and
dûz

dz
= 0. (A 5a,b)

The system of (A 2) can be written in a companion matrix form following Bridges
& Morris (1984) as

−Q3 −Q2 −Q1 −Q0
I 0 0 0
0 I 0 0
0 0 I 0

− α
−Q4 0 0 0

0 I 0 0
0 0 I 0
0 0 0 I




{α3ûz}

{α2ûz}

{αûz}

{ûz}

= 0, (A 6)

supplemented by the boundary conditions to give a complex generalised eigenvalue
problem. For given ω, the complex eigenvalues, α, and the associated eigenvectors
can be calculated from (A 6) through the QZ algorithm (Moler & Stewart 1973).
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Appendix B
The influence coefficient matrices, which give the tangential (X) and normal (Z)

components of the rotational (V) and irrotational (P) velocity components at the (i, j)
cell due to the presence of a zeroth-order vortex sheet or source sheet at the (k, l)
cell or surface element, respectively, are

IVX
ij,kl =

1zkl

2π

∫ 1x/2

−1x/2

[(
zij

(xij − ζ )2 + z2
ij

)
tkl · tij −

(
xij − ζ

(xij − ζ )2 + z2
ij

)
nkl · tij

]
dζ , (B 1)

IVZ
ij,kl =

1zkl

2π

∫ 1x/2

−1x/2

[(
zij

(xij − ζ )2 + z2
ij

)
tkl · nij −

(
xij − ζ

(xij − ζ )2 + z2
ij

)
nkl · nij

]
dζ , (B 2)

IPX
ij,kl =

1
2π

∫ 1x/2

−1x/2

[(
xij − ζ

(xij − ζ )2 + z2
ij

)
tkl · tij +

(
zij

(xij − ζ )2 + z2
ij

)
nkl · tij

]
dζ , (B 3)

IPZ
ij,kl =

1
2π

∫ 1x/2

−1x/2

[(
xij − ζ

(xij − ζ )2 + z2
ij

)
tkl · nij +

(
zij

(xij − ζ )2 + z2
ij

)
nkl · nij

]
dζ , (B 4)

where 1zij is the cell thickness, (xij, zij) are the physical cell coordinates and t and n
are the normal and tangential unit vectors of the specific vortex sheet or source sheet
and of the control (collocation) points (Houghton & Carpenter 2003).
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