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SUMMARY
We propose a fuzzy weighted subtask controller for a redundant robot manipulator. To expand the
feasibility of the inverse kinematic solution, we introduce a weighted pseudo-inverse that changes
the null-space of the Jacobian. The weights of elements in the pseudo-inverse are obtained using
fuzzy rules that are related to the null-space velocity tracking error. With the pseudo-inverse, we
develop a task space controller to track a desired task space trajectory and subtask control input.
We propose a weighted subtask controller for multiple subtasks. The results of a simulation and
experiment using a seven-degree-of-freedom whole arm manipulator robot show the effectiveness of
the proposed controller with multiple subtasks.

KEYWORDS: Redundant manipulators; Control of robotic systems; Subtask control; Self-motion;
Fuzzy weighted pseudo-inverse.

1. Introduction
A redundant manipulator has more degrees of freedom (DOF) than required to execute a given task,
and it has multiple inverse kinematic solutions that can be solved using several criteria.1−24 Two
types of approaches have been studied to solve the redundancy resolution; the first solution uses
the self-motion of the joint (SMJ)1−14,19−24 and the second (non-SMJ) uses other criteria.15−17 The
SMJ method uses the null-space of the manipulator’s Jacobian without changing the position of the
end-effector whereas the non-SMJ method performs the subtask directly using extra DOF.

The SMJ method utilizes link velocity, not affecting task space velocity, in the null-space of the
Jacobian. For a desired end-effector trajectory, controllers using the SMJ method should be designed
to select a reasonable joint space trajectory that satisfies both control (stability and boundedness of all
signals) and mechanical constraints (singularities and joint limit avoidance). A task space controller
is designed3, 4, 19−24 to track both the desired trajectory and the subtask control input that satisfies
these constraints. In this controller, the subtask objective is secondary to the tracking objective. A
subtask controller is selected using a gradient projection (GP) methods or auxiliary positive function
(APF) methods.

The GP1−7 method is a typical SMJ method. This method is initially applied to avoid joint limits.7

After the GP is applied, other various subtask objectives are applied to maximize manipulability1,4 and
avoid joint limits1,4,7 or obstacles.1,2,18 This conventional method has the property that the gradient
value of the subtask function is zero at an extremum point. If the subtask function value is not at an
extremum point, then an additional subtask input is applied to the null-space of the Jacobian. Another
approach used to project the subtask function on the joint velocity domain is the APF method.19−24

In this method, an auxiliary signal is defined; an auxiliary signal is bounded when the proposed
sufficient conditions are satisfied using the Lyapunov theorem.
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In practice, multiple subtasks are required during manipulator operations. For example, avoidance
of joint limits and singularities should be performed simultaneously when the manipulator tracks
a trajectory. For the GP method, numerous studies have considered how to successfully complete
multi-objective subtasks.2,4,5,8−14 The simplest approach sums subtask functions and applies the GP
method;2,4,5 however, in this approach, subtask objectives may not be adequately met because the GP
method determines a locally-optimal solution for each subtask. The extended Jacobian,12 augmented
Jacobian,13,14 and task priority8−10 approaches have been studied when the manipulator is required
to perform several subtasks. The problem with these approaches however, is that if the number of
subtasks is increased, the null-space projection of the Jacobian strongly constrains the motion of the
joints and may result in the manipulator failing to complete a task.17 As a result, these techniques can
be applied only when the number of subtasks is smaller than the degree of redundancy.

The ultimate boundedness conditions of the auxiliary signal have been studied using the controller
based on APF for both a single subtask19−21 and multiple subtasks.24 The subtask objectives are
satisfied when the subtask function values are positive. Therefore, the subtask controller input is
applied to the null-space of the Jacobian to keep subtask function values positive. However, if the
null-space of the Jacobian strongly constrains the input of the subtask controller signal, the subtasks
cannot be satisfied when the APF method is applied. The null-space of the Jacobian is determined
by the Jacobian and its pseudo-inverse. For a controller based on APF, the pseudo-inverse is the
least-norm solution of the same portion of each joint velocity. The pseudo-inverse, however, may
cause the null-space of the Jacobian to restrict the subtask control input. To relax the constraints on
the null-space, we introduce a weighted pseudo-inverse that considers the joint priority. The weighted
pseudo-inverse, based on the null-space error, provides the movement of corresponding joints. This
movement relaxes the constraints on the null-space of the Jacobian.

In this paper, a fuzzy weighted subtask controller was proposed for a redundant manipulator. We
extended the feasibility of the inverse kinematic solution when a desired trajectory is given, and we
constructed a gain matrix using fuzzy rules related to the null-space velocity tracking error. The fuzzy
parameters of the membership function were selected by minimizing the norm of the weighted joint
velocity to obtain the global resolution of the redundancy. Using the weighted pseudo-inverse, a task
space controller was designed to track both the desired trajectory and the subtask control input. A
fuzzy weighted subtask controller was proposed for multiple subtasks. The results of the simulation
and experiment using a seven-DOF whole arm manipulator showed the feasibility of the proposed
controller with multiple subtasks.

This paper is organized as follows. In Section 2, we present preliminary information about the
robot and pseudo-inverse. In Section 3, we introduce the controller using APF in the velocity domain.
In Section 4, we develop the weighted pseudo-inverse, the task space controller, and the subtask
controller. In Section 5, we present a simulation and experiment that show the effectiveness of the
proposed controller with multiple subtasks. In Section 6, we present our conclusions.

2. Preliminary

2.1. Kinematic and dynamic models
The kinematic model of the robot manipulator is given by

x = f (q(t)), (1)

where x(t) ∈ Rm is the end-effector position in the task space, f (q) ∈ Rm is forward kinematics, and
q(t) ∈ Rn is the joint position.

Taking the time derivative of (1) yields

ẋ = J (q)q̇, (2)

where J (q) = ∂f (q)
∂q

is the Jacobian and q̇ is joint velocity. The dynamics of an n-DOF revolute
manipulator is

M(q)q̈ + Vm(q, q̇)q̇ + G(q) + F (q̇) = τ, (3)
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where q, q̇, q̈ (all∈ Rn) represent the position, velocity, and acceleration in the joint-space,
respectively. M(q) ∈ Rn×n is the inertia matrix, Vm(q, q̇) ∈ Rn×n represents the centripetal-Coriolis
matrix, G(q) ∈ Rn denotes the gravity effects, F (q̇) ∈ Rn represents the friction effect, and τ (t) ∈ Rn

is the input torque.
The properties found in refs. [19]–[21] are utilized in control development.

Property 1. The inertia matrix M(q) is symmetric and positive-definite and satisfies the following
inequality:

m1||ζ ||2 ≤ ζ T M(q)ζ ≤ m2||ζ ||2, (4)

where m1, m2 ∈ R are positive constants and || · || is the Euclidean norm.

Property 2. The left-hand side of (3) can be linearly parameterized as

M(q)q̈ + Vm(q, q̇)q̇ + G(q) + F (q̇) = Y (q, q̇, q̈)φ, (5)

where Y (q, q̇, q̈) ∈ Rn×r is the regression matrix and φ ∈ Rr contains constant system parameters
(e.g., mass, inertia).

2.2. The pseudo-inverse and its properties
To resolve the redundancy of a redundant manipulator, the pseudo-inverse of J (q) is needed. The
weighted pseudo-inverse of J (q) is denoted by

J+
w

�=W−1J T (JW−1J T )−1 ∈ Rn×m, (6)

where W = diag(w1, w2, . . . , wn) ∈ Rn×n and wi ∈ R+ is the ith component of W . This weighted
pseudo-inverse is obtained by solving the least norm problem,

min
q̇

1

2
q̇T Wq̇, (7)

subject to ẋ = J q̇.

Note that wi in (6) denotes the gain of the ith joint in (7). For example, if W is the identity matrix In,
the pseudo-inverse is obtained by considering the same portion of each joint; the pseudo-inverse of
J is J+

w = J T (JJ T )−1, which minimizes 1
2 q̇T q̇.

The pseudo-inverse J+
w satisfies the following condition:

JJ+
w = Im, (8)

where Im is the m×m identity matrix. The pseudo-inverse J+
w also satisfies the following Moore–

Penrose conditions:

JJ+
w J = J, J+

w JJ+
w = J+

w , (9)

(J+
w J )T = J+

w J, (JJ+
w )T = JJ+

w . (10)

The matrix (In − J+
w J ) satisfies the following conditions:

(In − J+
w J )(In − J+

w J ) = (In − J+
w J ), (11)

J (In − J+
w J ) = 0m×1, (12)

(In − J+
w J )T = (In − J+

w J ), (13)

(In − J+
w J )J+

w = 0n×1, (14)

where In is the n×n identity matrix, 0n×1 and 0m×1 are zero vectors.
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2.3. The assumptions for subsequent development
Subsequent development is based on the following assumptions.

Assumption 1. The weight matrix denoted by W = diag(w1, w2, . . . , wn) ∈ Rn×n satisfies the
following statements:

λWm
||ζ ||2 ≤ ζ T Wζ ≤ λWM

||ζ ||2, (15)

where ζ ∈ Rn, and λWm
(λWM

) satisfying 0 < λWm
≤ λWM

< ∞ is the minimum (maximum) eigenvalue
of W .

Remark 1. During control development, J+
w (q) ∈ L∞ by Assumption 1 and subtask control of

manipulability [4,20,21].

Assumption 2. The dynamic and kinematic terms of the revolute robot manipulator, denoted by
M(q), Vm(q, q̇), and J (q) depend on q(t) as arguments of trigonometric functions; hence, residuals
are bounded for all q(t) ∈ L∞ and q̇(t) ∈ L∞. Assumption 1 and Remark 1 imply that if x(t) is
bounded, then q(t) is a bounded signal.

3. Subtask Control in the Velocity Domain Based on APF and its Feasibility
In this section, we introduce the subtask controller based on APF methods in the joint velocity
domain. We also discuss the feasibility of the inverse kinematic solution. A controller based on APF
can perform multiple subtask objectives since its solution has greater feasibility than a controller
based on GP methods. However, a controller based on APF is restricted by the null-space of the
Jacobian. In the next section, this restriction is relaxed by the proposed controller.

Based on (2), the following expression can be obtained for redundancy resolution in the joint
velocity domain:

q̇ = J+
w (q)ẋ + (In − J+

w J )g, (16)

where g(t) ∈ Rn is a subtask controller. Multiplying both sides of (16) on the left by J shows that
g changes the joint velocity, but it does not affect the task space velocity ẋ. This property enables
us to perform various subtask objectives such as maximizing manipulability1,4 and avoiding joint
limits1,4,7 or obstacles1,2,18.

3.1. Method of auxiliary positive function
Subtask controllers using APF for a single subtask are introduced.20 The controller proposed in ref.
[20] is based on W = In and J+

w = J T (JJ T )−1, which minimizes 1
2 q̇T q̇.

To develop the controller, an auxiliary signal is introduced. The APF y is given by

y
�= exp(−ksβ(q)), (17)

where ks ∈ R is a positive constant and β(q) is a subtask function. Taking the time derivative of (17)
yields

ẏ = Jsq̇, (18)

where Js = ∂y

∂q
.

Adding and subtracting terms Js(In − J+
w J )(g − q̇) to the right-hand side of Eq. (18) yields

ẏ = Jsq̇ + Js(In − J+
w J )(g − q̇) − Js(In − J+

w J )(g − q̇)

= Jsq̇ − Js(In − J+
w J )q̇ + Js(In − J+

w J )g − JsėN

= JsJ
+
w J q̇ + Js(In − J+

w J )g − JsėN

= JsJ
+
w ẋ + Js(In − J+

w J )g − JsėN , (19)
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where

ėN = (In − J+
w J )(g − q̇) (20)

is the null-space velocity tracking error defined in ref. [3].
The subtask controller for a single subtask can be designed according to20

g = −ks[Js(In − J+
w J )]T y. (21)

Multiple subtask objectives are required when the robot operates. Extending APF methods from a
single subtask to multiple subtasks is required. The auxiliary signal of the ith subtask is

yi
�= exp(−ksβi(q)), (22)

where ks ∈ R is a positive constant and βi(q) is the ith subtask function. The time derivative of (22)
is given by

ẏi = Jsi q̇, (23)

where Jsi = ∂yi

∂q
.

By adding and subtracting Jsi(In − J+
w J )(g − q̇) to the right-hand side of Eq. (23), the time

derivatives of the auxiliary signal can be extended to the ith subtask as

ẏi = JsiJ
+
w ẋ + Jsi(In − J+

w J )g − Js1ėN . (24)

The auxiliary signal vector is defined as y= [yT
1 yT

2 , . . . , yT
j ]T ∈ Rj . The time derivatives of y can

be written as

ẏ = JJ+
w ẋ + J (In − J+

w J )g − J ėN , (25)

where J = [J T
s1, J

T
s2, . . . , J

T
sj ]T ∈ Rj×n and j is the number of subtasks.

Finally, the subtask controller g for multiple subtasks based on APF24 is designed as

g = −ks

j∑
i=1

[Jsi(In − J+
w J )]T yi, (26)

where J+
w = J T (JJ T )−1.

With (26) in hand, we discuss the feasibility of the inverse kinematic solution using APF in the next
subsection.

Remark 2. To perform subtask objectives, the subtask controller g includes the subtask function
β(q). For APF, g also includes the function β(q) which will be kept positive. Gradient information
is utilized to maximize β(q) when β(q) < 0. However, when β(q) > 0, y results in small input to g

since 0 < exp(−ksβ(q)) < 1.

3.2. The feasibility of APF with multiple subtasks
In this subsection, we analyze the subtask controller based on APF from the aspect of the inverse
kinematic solution’s feasibility. When multiple subtasks are applied, the objective function β =∑j

i=1 βi(q) is the summation of each subtask function where βi(q) is the ith subtask function and j

is the number of subtasks. The summation of each subtask function may cause the extremum point
of β to change; this modification can result in a failure to satisfy the subtasks.

Each subtask function is quadratic and has a minimum point (Fig. 1(a), (b), (d), and (e)). The
first subtask (Fig. 1(a) and (d)) is cyclicity.1 The second (Fig. 1(b) and (e)) is joint limit avoidance.1

β1 obtains a minimum value of 0 at [q1, q2] = [0.8, 1]. β2 obtains a minimum value of −0.75 at
[q1, q2] = [−1, −1]. However, note that the summation of subtask functions changes the minimum
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Fig. 1. Example of changing the extremum point for q ∈ R2: (a) cyclicity; (b) joint limit avoidance; (c)
summation of the two subtask functions; (d) top view of β1; (e) top view of β2; (f) top view of the β1 + β2.

point (0.5347 at [q1, q2] = [0.56, 0.51]) (Fig. 1(c) and (f)). When this point changes, the joint limit
avoidance requirement may not be satisfied because the minimum point is close to the joint limit.

Although the maximum or minimum point is changed, a controller based on APF can still perform
multiple subtask objectives because it has time-varying gain that reduces the coupling effects of other
subtask functions. The coupling effect can be analyzed by examining the time derivatives of the
subtask function vector B = [βT

1 βT
2 . . . , βT

j ]T ∈ Rj . The Jacobian of yi is

Jsi = ∂yi

∂q
= ∂

∂q
exp(−ksβi(q)) = −ks

∂βi

∂q
yi. (27)

Substituting (27) into (26), the subtask controller based on APF can be rewritten as

g = −ks

j∑
i=1

[Jsi(In − J+
w J )]T yi

= (In − J+
w J )

j∑
i=1

∂βi

∂q

T

k2
s y

2
i . (28)
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Table I. Fuzzy Rules for weight component wi .∑n
i=1 ||ėN (i)||

||ėN (i)|| Small Medium Large

Small wi = Medium wi = Small wi = Small
Large wi = Large wi = Large wi = Medium

The time derivative of B with (28) is given by

Ḃ = ∂B

∂q
(J+

w ẋ + (In − J+
w J )g)

= ∂B

∂q
(J+

w ẋ + (In − J+
w J )

∂B

∂q

T

(k2
sY )111), (29)

whereY
�= diag(y2

1 , y
2
2 , . . . , y2

j ) ∈ Rj×j and111
�=[1, 1, . . . , 1, 1]T ∈ Rj . Therefore, the time derivative

of the lth subtask function is

β̇l = ∂βl

∂q
J+

w ẋ + ∂βl

∂q
(In − J+

w J )
j∑

i=1

∂βi

∂q

T

k2
s y

2
i . (30)

The term ∂βl

∂q
(In − J+

w J )
∑j

i=1
∂βi

∂q

T
k2
s y

2
i is the coupling effect of βl and the other subtask βi (for

i = 1, 2, . . . , j ). However, when the other subtask is satisfied, the coupling effect of βl is reduced

because βi > 0 making 0 < yi < 1 ( ∂βi

∂q

T
k2
s y

2
i � 0). This property reduces the coupling effect of βl

on the other subtask βi .
If the null-space of the Jacobian strongly constrains the subtask input g, the subtasks cannot be

satisfied when the controller based on APF is applied. The subtask control input g can be divided
into two parts: the first part is

∑j

i=1(In − J+
w J )J T

si which is related to the null-space of the Jacobian
and the second part is (−ksyi) which is a function of the subtask function βi . If the null-space of
J restricts g (one element of

∑j

i=1(In − J+
w J )J T

si � 0 ) in the first part, the subtask input g is not
sufficient to satisfy the subtask objective even though yi > 1 (βi < 0) in the second part. Therefore,
we relax the condition W = I (each joint velocity has the same gain) to change the null-space of the
Jacobian (In − J+

w J ).

4. The Proposed Controllers Using a Fuzzy Weighted Matrix
In this section, we propose a weighted subtask controller for a redundant manipulator. To relax the
constraints on the null-space of the Jacobian, we use fuzzy rules to define the coefficient of W related
to the null-space velocity error given by (20). Based on this matrix, we obtain the weighted pseudo-
inverse J+

w = W−1J T (JW−1J T )−1. We then develop a task space controller which tracks xd and g.
After the task space controller is developed, we propose a subtask controller for multiple subtasks.

4.1. The fuzzy weighted matrix
To design the weighted subtask controller, we first develop the coefficients of the weighted matrix
W = diag(w1 , w2, . . . , wn). The coefficient wi (i = 1, . . . , n) is related to the gain of q̇i in (7). If
wi is large, the weighted pseudo-inverse J+

w is the least-norm solution considering a large portion of
q̇i movement. We design wi to relax the condition that W = In in the APF methods. We design wi

in this manner to decide which q̇i will have priority. The priority of q̇i can be expressed using fuzzy
rules (Table I), where ėN (i) is the ith component of ėN (20).

We assign the priority wi using fuzzy rules that are related to the terms ||ėN (i)|| and
∑n

i=1 ||ėN (i)||.
A large value of ||ėN (i)|| indicates that q̇i cannot follow the ith component of g. We increase the
weight of the ith joint to follow the ith component of the subtask controller. For the reason, wi is large
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Table II. Fuzzy operations.

And Implication Aggregation Defuzzification

Min Prod Max Centroid

when ||ėN (i)|| is large, and
∑n

i=1 ||ėN (i)|| is small or medium (Table I). However, if both ||ėN (i)||
and

∑n
i=1 ||ėN (i)|| are large, the possibility exists that in addition to the ith component joint being

unable to follow the ith component of subtask controller g, other joint components may have a large
null-space velocity error (||ėN (k)|| � 0). In this case, we assign the medium gain. If ||ėN (i)|| is small
and

∑n
i=1 ||ėN (i)|| is medium or large, we do not need to assign a large gain because the ith joint

follows the ith component of g with a small error. However, when both ||ėN (i)|| and
∑n

i=1 ||ėN (i)||
are small, all joints follow g, and therefore, we assign the medium gain to each joint (Table I).

The value of wi is determined using fuzzy rules (Table I) and operations (Table II). From the
input membership function μRk :||ėN || (Fig. 1(a)), μRk :

∑ ||ėN || (Fig. 1(b)) and the output membership
function μRk :wi

(Fig. 1(c)), the kth fuzzy rule Rk is implemented using the fuzzy implication function

μRk

�=[ μRk :||ėN || And μRk :
∑ ||ėN ||] → μRk :wi

. The fuzzy rules are aggregated for the output fuzzy set as

μwi
= Agg(μR1, μR2, . . . , μR6 ), (31)

where Agg(·) is the aggregation operator. Using centroid defuzzification (Table II), wi is computed
as

wi =
∫

μwi
(wi)widwi∫

μwi
(wi)dwi

. (32)

Figure 2 shows the input and output membership functions. The parameters zp (p = 1, . . . , 6) can
be found by minimizing the following quadratic performance criterion:

C =
∫ tf

t0

q̇T Wq̇ dt, (33)

subject to zp ∈ [zmin
p , zmax

p ] for p =1 to 6,

where t0 is the initial time and tf is the final time of robot operations. Optimization techniques with
an integral-type performance index (33) are introduced to obtain the globally optimal resolution
of redundancy of the robot manipulators.25−27 By solving (33) using the optimization algorithm,
uDEAS,28−30 the parameters zp are determined.

The overall process of the proposed controller is illustrated in Fig. 3. The dynamic and kinematic
models of the robot with the proposed controller, discussed in the next sections, generate the null-
space tracking error ėN . The proposed fuzzy rules (Table I) give the fuzzy weighted matrix. This
matrix is used to calculate J+

w . The pseudo-inverse of J is subsequently used to generate ėN that
provides W repeatedly.

4.2. Task space controller
The most important control objective is that the end effector position of the manipulator tracks a
desired trajectory. To track the trajectory, the controller is designed to apply the torque input.

The task-space error e(t) ∈ Rm is defined as

e = xd − x, (34)

where xd (t) ∈ Rm is the desired task-space trajectory. Differentiating (34) with respect to time and
substituting (2), we obtain the following equation:

ė = ẋd − J q̇ = −αke + αke + ẋd − J q̇, (35)
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Fig. 2. Membership functions of (a) ||ėN (i)||; (b)
∑n

i=1 ||ėN (i)||; (c) wi .

where αk ∈ Rm×m is a diagonal, positive-definite gain matrix. Using pseudo-inverse properties (8)
and (12), (35) can be rewritten as

ė = −αke + J [J+
w (αke + ẋd ) − q̇ + (In − J+

w J )g]. (36)

The filtered tracking error signal r(t) is defined as

r = J+
w (αke + ẋd ) − q̇ + (In − J+

w J )g. (37)

After multiplying by (In − J+
w J ) and using (14), (20) is rewritten as

ėN = (In − J+
w J )r. (38)

Therefore, when r(t) is regulated, ėN (t) is also regulated so that subtask control is achieved.
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Fig. 3. Overall process of the proposed controller.

Substituting (37) into (36) yields

ė = −αke + J r. (39)

By differentiating (37), pre-multiplying by M(q) and using (3) yields

Mṙ = −Vmr + Yφ − τ, (40)

where Yφ = M d
dt

[J+
w (ẋd + αke) + (In − J+

w J )g] + Vm[J+
w (ẋd + αke) + (In − J+

w J )g] + G(q) +
F (q̇).

The control torque input τ (t) is designed as follows:

τ = Yφ + Kr + J T e, (41)

where K is a positive constant gain matrix. Then, we propose the following Theorem for tracking xd

and g.

Theorem 1. The control input (41) ensures that both signals e(t) and ėN (t) are bounded by an
exponential envelope.

PROOF: The Lyapunov candidate is chosen as

V1 = 1

2

[
e

r

]T [
Im 0
0 M

] [
e

r

]
. (42)

Substituting (41) into (40) yields

Mṙ = −Vmr − Kr − J T e. (43)

Taking the time derivative of (42), then substituting (39) and (43) yields

V̇1 =
[
e

r

]T [
Im 0
0 M

] [
ė

ṙ

]
+ 1

2

[
e

r

]T [
0 0
0 Ṁ

] [
e

r

]

= −
[
e

r

]T [
αk 0
0 K

] [
e

r

]
< 0. (44)
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4.3. Subtask controller with multiple subtasks
In this section, we develop a fuzzy weighted subtask controller using the weighted pseudo-inverse
from Section 4.1 for multiple subtasks.

The proposed subtask controller is designed as

g = −ks

j∑
i=1

[Jsi(In − J+
w J )]T yi. (45)

The following Theorem relates to the weighted subtask controller when multiple subtasks are
given.

Theorem 2. If the following sufficient conditions hold

||J (In − J+
w J )||2 > δ̄w, (46)

||JJ+
w ẋ − J ėN || ≤ δ1w, (47)

ks >
1

δ2wδ̄w

, (48)

then the subtask controller g of (45) makes y ultimately bounded in the following sense:

||y|| ≤
[

||y(t0)||2exp(−2γwt) + εw

γw

] 1
2

, (49)

where εw = δ2
1wδ2w and γw = (ks δ̄w − 1

δ2w
).

PROOF: The Lyapunov candidate is

V2 = 1

2
yT y. (50)

The time derivative of V2 is

V̇2 = yT J (J+
w ẋ + (In − J+

w J )g − ėN )

= yT J (J+
w ẋ − ks(In − J+

w J )JT y − ėN )

= −ksyT ||J (In − J+
w J )||y + yT [JJ+

w ẋ − J ėN ]. (51)

From Assumption 2 and Remark 1, J (q) and J+
w (q) ∈ L∞ have full ranks. Assumption 2 shows

that q(t) ∈ L∞; therefore, Jsi(q) ∈ L∞ for all subtasks (i = 1, 2, . . . , j ). From this, the following
condition is derived:

||J (In − J+
w J )|| > δ̄w, (52)

where δ̄w ∈ R is a positive constant.
The following upper bound on the desired trajectory is assumed to be

||JJ+
w ẋ − J ėN || ≤ δ1w, (53)

where δ1w ∈ R is a positive constant. After utilizing the bounds δ1w and δ̄w, (51) can be expressed as

V̇2 ≤ −ks δ̄wyT y + δ1wy. (54)

Using the following inequality,

|δ1wy| ≤ 1

δ2w

yT y + δ2
1wδ2w, (55)
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Table III. The DH parameters of the WAM.

i (joint)

1 2 3 4 5 6 7

ai 0 0 0.045 −0.045 0 0 0
αi −π/2 π/2 −π/2 π/2 −π/2 π/2 0
di 0 0 0.55 0 0.3 0 0.060
qi q1 q2 q3 q4 q5 q6 q7

(54) can be written as

V̇2 ≤ −
(

ks δ̄w − 1

δ2w

)
yT y + δ2

1wδ2w, (56)

where δ2w ∈ R is a positive constant. The values of ks ,δ̄w and δ2w are chosen to satisfy

γw =
(

ks δ̄w − 1

δ2w

)
> 0. (57)

If (57) is satisfied, (56) can be expressed as

V̇2 ≤ −γwyT y + εw, (58)

where γw and εw are bounding constants. Substituting (50) into (58), the following equation can be
derived:

V̇2 ≤ −2γwV2 + εw. (59)

Integrating both sides of Eq. (59) yields

V2(t) ≤ V2(t0)exp(−2γwt) + εw

2γw

(1 − exp(−2γwt)). (60)

After utilizing (60), the following upper bound of y can be obtained as

|y| ≤ [|y(t0)|2exp(−2γwt) + εw

γw

]
1
2 ; (61)

thus, y(t) ∈ L∞. From (45), we see that g is in L∞. Using Jsi ,J ,J+
w ∈ L∞, (45), (61) and

Assumption 2, ẏ is also in L∞. After taking the time derivative of (45), ∂g

∂q
is clearly in L∞.

5. Simulation and Experimental Results
In this section, we use an example to demonstrate the effectiveness of the proposed controller. The
WAM (Barrett TechnologyT M ), commercial seven-DOF robot is used for the computer simulation
and experiment. The Denavit-Hartenburg (DH) parameters of the WAM are listed in Table III.

The main task was defined as the end-effector that tracks the desired “figure-eight”-shaped
trajectory,20

xd =
⎡
⎣−0.1 + 0.1sin(0.2t)

0.3
0.3 + 0.2cos(0.1t)

⎤
⎦ .
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Table IV. Maximum and minimum joint angle limits.

i (joint)

1 2 3 4 5 6 7

qmax
i (rad) −2.6 −2.0 −2.8 −0.9 −4.8 −1.6 −2.2

qmin
i (rad) 2.6 2.0 2.8 3.1 1.3 1.6 2.2

The subtasks were defined to avoid joint limits and keep the manipulator away from the
singularity.

5.1. Simulation results
We defined the subtask objective functions that avoid the joint angle limits4 as

βi (i = 1,. . .,7) =
(

qi − qmin
i

qmax
i − qmin

i

)(
qmax

i − qi

qmax
i − qmin

i

)
, (62)

where qmax
i is the maximum ith joint angle limit and qmin

i is the minimum ith joint angle limit
(Table IV). In order for the joint angles to remain within their limits, βi must be positive for the
duration of operation.

For singularity avoidance,4,20,21 we defined

β8 =
√

det(JJ T ). (63)

When β8 is close to zero, the robot is close to the singular configuration. In order for J+
w to exist, β8

should not be zero.
The diagonal elements of W are found using the fuzzy rules in Table I and the membership

functions in Fig. 2. The range of parameters zi was chosen as follows:

[zmin
1 , zmax

1 ] = [0.1, 2], [zmin
2 , zmax

2 ] = [0.1, 4],

[zmin
3 , zmax

3 ] = [8, 15], [zmin
4 , zmax

4 ] = [0.1, 0.2],

[zmin
5 , zmax

5 ] = [0.3, 0.5], [zmin
6 , zmax

6 ] = [0.6, 1].

By minimizing (33), the membership function parameters are found to be z1 = 1.8959, z2 = 0.1002,
z3 = 8.0866, z4 = 0.1508, z5 = 0.3145, and z6 = 0.6014. For minimization, the uDEAS optimization
algorithm28−30 was used. The gains were chosen as

αk = diag(2, 2, 2), ks = 5,

and K = diag(40, 40, 40, 40, 40, 40, 40).

The subtask control input,

g = −ks

8∑
i=1

(In − J+
w J )J T

si yi,

were applied to (16) according to the following conditions:

⎧⎪⎨
⎪⎩

W = I7

(conventional APF controller ),
W = diag(w1, w2, . . . , w7)
(proposed controller).
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Fig. 4. (a) Joint angles (q1, . . . , q7) of the simulation example; (b) Subtask functions for the simulation example
where βi (i = 1, . . . , 7) is the avoidance of the i-th joint limit and β8 is manipulability.

The initial condition of q was chosen to be

q(t0) = [−2, −1, −2, 2.5, −3, 0, 0.5
]T

(rad). (64)

The simulation results are summarized in Figs. 4 and 5. Figure 4(a) shows joint angles q1, . . .,
q7. As one can see in the figure, q1 of the conventional APF controller is over its joint limit whereas
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Fig. 5. e1, e2, and e3 of the simulation example when the controllers (26) and (45) are applied for t ∈ [0, 10].

the proposed controller maintains all joint angles within their joint limits. Figure 4(b) shows that the
subtask objectives were performed successfully using the proposed controller (all βi > 0). Figure 5

shows the tracking errors e1
�= xd1 − x1, e2

�= xd2 − x2, and e3
�= xd3 − x3. The tracking errors of the

proposed controller converge to zero whereas the conventional APF controller stops operation at t =
0.4816 s after the operation. The conventional APF controller could not track the desired trajectory.

5.2. Experimental results
We performed an experiment for the same tasks described in Section 5.1. The same membership
function parameters zp (p = 1, . . . , 6) used in the simulation were also used in this experiment.
The Barrett WAM control library (based on C++) was used to implement the proposed
controller.

When the conventional APF controller (26) was applied to the WAM, it attempted to cross the
limit of joint angle q1 and stopped operation at t = 0.512 s. The WAM has a safety system that
stops operations when the control torque current exceeds the fault (3.91 A) levels. On the other
hand, the proposed controller made a successful operation for both main and subtasks. Figure 6(a)
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Fig. 6. (a) Joint angles (q1, . . ., q7) measured during the experiment; (b) Subtask functions of the
example for the experiment where βi (i = 1 to 7) is the avoidance of the i-th joint limit and β8 is
manipulability.

shows the joint angles qi (i = 1, . . .,7). In this figure, the proposed controller keeps all joint angles
within their joint limits. However, the conventional APF controller caused q1 to reach its joint angle
limit (−2.6 rad). When q1 of the WAM reached its joint limit, the operation was stopped; however,
motion continued only by gravitational force and eventually stopped (Fig. 6(a)). Using the proposed
controller, all subtask functions were positive (Fig. 6(b)), which implies that the subtask objectives
were successfully performed. Figure 7 shows the tracking errors e1, e2, and e3. The proposed controller
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Fig. 7. e1, e2, and e3 of the experiment when controllers (26) and (45) are applied for t ∈ [0, 10].

made the tracking error converge to zero whereas the conventional APF controller made the robot
stop operations. Figure 8 shows the sequence of manipulator motions tracking given the “figure-
eight”-shaped trajectory.

6. Conclusion
We proposed the fuzzy weighted subtask controller using APF. We introduced the weighted
pseudo-inverse obtained using fuzzy rules related to the null-space velocity tracking error. With
this pseudo-inverse, we proposed weighted subtask controllers using APF. A seven-DOF WAM
robot was used for the simulation and experiment. Multiple subtasks such as manipulability and
avoidance of joint limits were tested. In both the simulation and experiment, the proposed controllers
tracked the desired trajectory and satisfied multiple subtasks (positive subtask function values)
effectively.
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Fig. 8. Manipulator motion sequence in the experiment using the proposed controller.
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