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A scaling analysis of transient natural convection
in a reservoir model induced by iso-flux heating
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This study presents a detailed scaling analysis quantifying the transient behaviour of
natural convection in a reservoir model induced by iso-flux surface heating. It is found
that horizontal conduction, which has often been neglected in previous analyses, plays
an important role in the development of the flow. Depending on the Rayleigh number,
three possible pathways through which the flow develops towards the final steady
state are identified. A thermal boundary layer initially grows downwards from the
surface. When the thermal boundary layer reaches the sloping bottom and becomes
indistinct, a horizontal temperature gradient establishes due to the increasing water
depth in the offshore direction. A flow is then driven towards the offshore direction by
a buoyancy-induced horizontal pressure gradient, which convects away the heat input
from the water surface. On the other hand, the horizontal temperature gradient also
conducts heat away. The flow behaviour is determined by the interaction between
the horizontal conduction and convection. An interesting flow feature revealed by
the present scaling analysis is that the region across which the thermal boundary
layer encompasses the full water depth shrinks over time at a certain stage of the
flow development. The shrinking process eventually stops when this region coincides
with a conduction-dominated subregion. The present scaling results are verified by
corresponding numerical simulations.

Key words: buoyant boundary layers, convection in cavities, gravity currents

1. Introduction
The underlying mechanisms that govern natural convection in lakes and reservoirs

are of great significance in the successful management of these resources, particularly
in terms of nutrient and pollutant transport. The nearshore bathymetry of an increasing
water depth in the offshore direction of lakes and reservoirs implies that, as a result
of approximately uniform heat fluxes at the surface during day-time heating and
night-time cooling, the shallow region heats up or cools down more rapidly than
the deeper region, setting up a horizontal temperature gradient, which drives a
convective flow. This flow exchanges nutrients and pollutants between the nearshore
and the central regions, and thus influences the water quality. There have been a

† Present address: Institute of High Performance Computing, Agency for Science, Technology
and Research (A*STAR), Republic of Singapore. Email address for correspondence:

yup@ihpc.a-star.edu.sg

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

69
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:yup@ihpc.a-star.edu.sg
https://doi.org/10.1017/jfm.2014.697


220 P. Yu, J. C. Patterson and C. Lei

considerably large number of investigations on natural convection in nearshore lake
waters, reservoir sidearms (the nearshore embayments connected to the main water
body) or other shallow-water bodies with a sloping bottom, by using analytical,
experimental and numerical methods (e.g. Adams & Wells 1984; Lei & Patterson
2002a; Farrow 2004).

The field study of Monismith, Imberger & Morison (1990) has demonstrated a clear
picture of this thermally driven flow, which greatly enhanced the rate of horizontal
exchange between the sidearm and the main body of the reservoir. Many pollutants
in reservoir systems are shore-based, and this mechanism can therefore provide
significant transport of these materials from the nearshore region to the central part.
The recent field experiment of Monismith et al. (2006) indicates that the thermally
driven flow may also be a generic feature of the hydrodynamics of coral reefs and
coastal oceans in general. It also helps to alleviate the stress of coral bleaching
and enhance connectivity between the reef and the ocean (Monismith 2007). The
implications of this for coral reef health are clear, and the connection to a much
wider tourism industry is apparent.

Experimental and numerical studies of natural convection in a simplified reservoir
model have been performed by many researchers (e.g. Horsch & Stefan 1988; Horsch,
Stefan & Gavali 1994; Lei & Patterson 2003; Bednarz, Lei & Patterson 2008). Horsch
& Stefan (1988) and Horsch et al. (1994) investigated numerically and experimentally
natural convection in a triangular enclosure with a constant heat flux at the surface.
The transient behaviour of the flow with surface cooling including the formation
of sinking thermals and the establishment of a full cavity-scale circulation was
illustrated. Lei & Patterson (2002a) investigated natural convection in a triangular
enclosure subject to solar radiation. Their results revealed that the flow development
from an isothermal and stationary state passes through three distinct stages, namely,
an initial stage dominated by bottom heating due to the absorption of penetrative
radiation there, a transitional stage characterized by the onset of convective instability
in the form of rising plumes, and a steady stage evidenced by a steady large-scale
circulation across the sidearm. It is worth mentioning that most of the studies
considered two-dimensional triangular enclosures. Moreover, Lei & Patterson (2003)
showed that the two-dimensional simulation reproduces all of the flow features
observed in a three-dimensional simulation.

In addition to the numerical and experimental studies, attempts have also been
made to quantify the strength of the thermally driven flow by analytical methods.
For natural convection above the sloping bottom in a stratified ocean, Phillips (1970)
and Wunsch (1970) described a mechanism that drives the flow. The approximately
adiabatic condition on the sloping bottom means that the horizontal isothermals in
the stratified water body must curl over to become perpendicular to the sloping
bottom, which creates an additional boundary layer there. A horizontal temperature
gradient is then established, which in turn drives a flow down the slope. Based on
this mechanism, Wunsch (1970) provided a scale for the thickness of the bottom layer
in a stably stratified fluid. Horsch & Stefan (1988) presented a scale for the flow
rate, which is approximately proportional to Ra1/n

c , where Rac is the Rayleigh number
over the range 104 < Rac < 108 and 2< n< 3. Note that a laminar model is adopted
in their study, and Rac is defined as Rac = gβIsh4/kαν, where g is the acceleration
due to gravity, β is the thermal expansion coefficient, Is is the surface heat flux, h is
the maximum depth of the enclosure, k is the thermal conductivity, α is the thermal
diffusivity and ν is the kinematic viscosity. However, they did not report detailed
analysis with respect to this scale. Sturman, Oldham & Ivey (1999) developed a
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set of scaling arguments to characterize the flow induced by surface cooling. The
results were used to explain both field and experimental data, as well as published
data from the literature. Based on a detailed scaling analysis, Lei & Patterson (2005)
demonstrated that the unequal heat loss associated with the varying water depth
is more prevailing than the Philips mechanism. They classified the flow into three
regimes, namely conductive, transitional and convective regimes. More recently, Mao,
Lei & Patterson (2010) introduced a variable offshore length scale to extend the
scaling of Lei & Patterson (2005). Two different sets of scaling incorporating the
offshore-distance dependence have been derived for the conduction-dominated region
and stable-convection-dominated region, respectively, which are confirmed by their
numerical simulations.

Based on a small-slope assumption, a zero-order asymptotic solution has been
derived by Farrow & Patterson (1994) to quantify the circulation induced by
absorption of radiation in a sidearm. Using scaling analysis, Lei & Patterson (2002b)
found that the flow can also be classified broadly into conductive, transitional or
convective regimes determined merely by the Rayleigh number. By adopting a
variable length scale in the scaling analysis and including the exponential terms
arising from the depth-dependent absorption of solar radiation and the heat flux due
to the re-emission of residual radiation arriving at the sloping bottom, Mao, Lei &
Patterson (2009) have demonstrated that the flow quantities depend on the horizontal
position. They developed a set of scales (e.g. temperature, velocity, time, thermal
boundary layer thickness, etc.) to describe the flow development across the water
body, and revealed more detailed features of the flow, i.e. the entire flow domain may
be separated into different subregions with distinct flow and thermal features.

Despite our understanding of natural convection in reservoir nearshore regions
advancing significantly in recent years, it is still far from complete, particularly with
respect to the transient behaviour of the flow. More specifically, the recent studies
of Yu, Lei & Patterson (2012a,b) showed deviations of their simulations from the
scaling predictions of Mao et al. (2010) in terms of the transient flow development
in the reservoir model induced by surface flux. For example, the developing time
for the flow to reach the quasi-steady state is much longer than that predicted by
Mao et al. (2010); the velocity in the convection-dominated region decreases with
the offshore distance instead of increasing monotonically with the offshore distance
as predicted by Mao et al. (2010); and the flow in the whole convection-dominated
region reaches the quasi-steady state at the same time instead of sequentially in the
offshore direction as predicted by Mao et al. (2010). This has motivated the present
analysis, which will reveal the detailed transient behaviour of natural convection in
a reservoir nearshore region with a constant heating flux at the water surface. The
thermal forcing condition considered here may represent the day-time heating case in
cloudy weather. The present investigation includes a detailed scaling analysis as well
as a comprehensive set of numerical simulations. The simulations serve to verify the
scaling analysis and provide additional insight for understanding the mechanisms that
drive the flow.

The organization of the rest of the paper is as follows. Section 2 describes the
governing equations and boundary conditions. Section 3 provides a detailed scaling
analysis to quantify the transient behaviour of the flow. The numerical techniques
as well as a grid independence study are given in § 4, followed by verification
of the scaling analysis using the numerical results in § 5. Finally, § 6 draws some
conclusions.
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FIGURE 1. Schematic of the reservoir model. The symbol L denotes the total length of
the reservoir. A very small tip region (x< 0.008L) is cut off to avoid singularity at the
tip.

2. Model formulation
The reservoir model under consideration consists of a sloping-bottom region and

an adjacent flat-bottom region. We perform the scaling analysis only for the sloping-
bottom region as that adopted by Mao et al. (2009, 2010) because the sloping region
provides the driving force for the convective flow in the reservoir. However, the flat
region affects the scaling analysis in that it introduces a maximum water depth in the
reservoir. The slope inclination is A (A� 1) and the maximum water depth is h. The
reservoir is filled with water. A Cartesian coordinate system (x, y) is adopted, with the
origin located at the tip of the reservoir model (refer to figure 1). The Navier–Stokes
and energy equations governing the flow and temperature evolution are expressed as
follows, in which the usual Boussinesq assumption has been made:

ux + vy = 0, (2.1)

ut + uux + vuy = −ρ−1
0 px + ν∇2u, (2.2)

vt + uvx + vvy = −ρ−1
0 py + ν∇2v + gβ(T − T0), (2.3)

Tt + uTx + vTy = κ∇2T. (2.4)

Here u and v are the velocity components in the horizontal and vertical directions,
respectively; x and y are the horizontal and vertical coordinates originating from
the tip of the sloping region; t is time; T is the fluid temperature; and p is the
pressure. The parameters ρ0, κ , ν and β are, respectively, the density, thermal
diffusivity, kinematic viscosity and thermal expansion coefficient of water at a
reference temperature T0 (see below). Here, g is the acceleration due to gravity,
which is in the negative y direction.

Initially (t 6 0), the water in the reservoir is at rest and isothermal, that is,

u= v = 0, (2.5)
T = T0. (2.6)

The water surface (y= 0) is assumed to be flat and stress-free, therefore

uy = 0, v = 0. (2.7a,b)

The sloping and flat bottoms are rigid, no-slip and adiabatic. At the deep end,
an open boundary condition is imposed, which is given by ∂2u/∂x2 = ∂2v/∂x2 =
∂2T/∂x2 = 0 and ∂u/∂x= ∂v/∂x= ∂T/∂x= 0. Heating is introduced with a constant
heat flux through the water surface as

Ty = 1
κ

(
I0

ρ0Cp

)
= H0

κ
, y= 0, t> 0, (2.8)
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Indistinct thermal 
boundary layer region

Shrink of thermal 
boundary layer

Distinct thermal 
boundary layer region

Conduction-dominated

Quasi-steady state

Unsteady development

Quasi-steady 
state
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FIGURE 2. Schematic of possible flow development pathways towards the final
quasi-steady state. The horizontal axis denotes the distance from the tip for the slope
region. Here td is the time scale for the thermal boundary layer to reach the sloping
bottom; th is the time scale to reach the quasi-steady state in the conduction-dominated
subregion; tcL and tcR are the time scales at which the convection balance is achieved; and
tm is the time scale for the discharge flow.

where I0 is the imposed surface heat flux, Cp is the specific heat of water at T0, and
H0 = I0/(ρ0Cp) is the volumetric heating intensity at the surface.

3. Scaling analysis
3.1. Overview of the flow development

In this section, the key scaling results are summarized to provide an overview of the
flow development. When the water in the present reservoir model is exposed to a
constant heat flux from the water surface for a sufficiently long time, the flow in the
reservoir eventually reaches a quasi-steady state, in which temperature gradient and
flow velocity become steady everywhere in the water body. The possible pathways
through which the flow develops towards the final quasi-steady state, which depend
on the Rayleigh number, are summarized in table 1. A schematic of the development
pathways is shown in figure 2, and a schematic of the movements of the interfaces
between the different subregions shown in figure 2 is given in figure 3.

Upon the initiation of the heat flux at the water surface, the thermal boundary layer
initially grows downwards. Once the thermal boundary layer reaches the bottom, it
becomes indistinct over the local water depth. When that happens, the thermal
boundary layer is referred to as an indistinct thermal boundary layer. In contrast, a
thermal boundary layer with thickness less than the full local water depth is referred
to as a distinct thermal boundary layer. A horizontal temperature gradient develops
in the indistinct thermal boundary layer region due to the variation of the water
depth, which results in unequal heat gain over the local depth. A horizontal pressure
gradient is then induced by buoyancy, which drives a horizontal flow in the offshore
direction along the surface.

The flow is weak initially and conduction is dominant in the whole reservoir.
The indistinct thermal boundary layer region expands in the offshore region (the
dashed line xd in figure 3a). Within the indistinct thermal boundary layer region, a
conduction-dominated subregion develops and also expands in the offshore direction
(the dashed line xh in figure 3a). Within the conduction-dominated subregion, the
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Ra range Flow description

Ra< 1 0< t< h2κ−1 The thermal boundary layer grows and attaches to
the sloping bottom; initiation of a flow and the
flow velocity increases with time.

t= h2κ−1 The thermal boundary layer attaches to the bottom
in the whole reservoir.

h2κ−1 < t< 1
2 h2A−2κ−1 The horizontal temperature gradient and the flow

velocity outside the conduction-dominated subregion
increase with time.

t= 1
2 h2A−2κ−1 Flow reaches the quasi-steady state.

1< Ra< Rai 0< t< h2κ−1 The thermal boundary layer grows and attaches to
the sloping bottom; initiation of a flow and the
flow velocity increases with time.

t= h2κ−1 The thermal boundary layer attaches to the bottom
in the whole reservoir.

h2κ−1 < t< tB The horizontal temperature gradient and flow
velocity outside of the conduction-dominated
subregion keep increasing with time.

t= tB The region with indistinct thermal boundary layer
stops extending at x= xB.

tB < t< tF The thermal boundary layer becomes distinct near
the region with the maximum depth and convection
becomes dominant there; the indistinct boundary
layer region shrinks while the convection-dominated
subregion expands; the flow velocity outside the
conduction-dominated subregion increases with time.

t= tF Flow reaches the quasi-steady state; the whole
reservoir can be divided into conduction-dominated
and convection-dominated subregions.

Ra> Rai 0< t< tB The thermal boundary layer grows and attaches to
the sloping bottom; initiation of a flow and the
flow velocity increases with time.

t= tB The indistinct thermal boundary layer region stops
extending at x= xB.

tB < t< tF Convection becomes dominant near the region
around x= xB; the indistinct boundary layer region
shrinks and the convection-dominated subregion
expands; the flow velocity outside the
conduction-dominated subregion increases with time.

t= tF Flow reaches the quasi-steady state; the whole
reservoir can be divided into conduction-dominated
and convection-dominated subregions; the
convection-dominated subregion can be further
divided into two subregions.

TABLE 1. Possible development pathways of the flow.
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(a)

(b)

(c)

FIGURE 3. Schematic of the movement of the interfaces between different flow regions:
(a) t< tB; (b) tB < t< tF; (c) t> tF. Here tB denotes the time scale when the convection
balance initially occurs, and tF denotes the time scale when the right boundary of the
conduction-dominated subregion meets the left boundary of the convection-dominated
subregion. The dashed lines denotes the interfaces: xd denotes the interface between the
distinct and indistinct thermal boundary layer regions; xh denotes the right boundary of
the conduction-dominated subregion; xcL and xdR denote the left and right boundaries
of the convection-dominated subregion, respectively; xB denotes the position where the
convection balance initially occurs; xF denotes the position where the left boundary of
the convection-dominated subregion and the right boundary of the conduction-dominated
subregion meet each other; xD denotes the position of the right boundary of the
convection-dominated subregion at the quasi-steady state. The dash-dotted line denotes the
boundary layer. The arrow indicates the direction of the movement.

flow reaches the quasi-steady state. Convection in the rest of the domain enhances
with time. The expansion of the indistinct thermal boundary layer region stops when
the interface xd reaches the position xB; at the time (t ∼ tB) convection initially
balances horizontal conduction at xB. The conduction-dominated subregion continues
to extend offshore and the horizontal temperature gradient in the region between xh

and xB keeps increasing. The convection-dominated subregion begins to expand in
both the onshore and offshore directions (the dashed lines xcL and xcR in figure 3b).
The thermal boundary layer within the convection-dominated subregion (between
xcL and xcR) shrinks with time. The thermal boundary layer in the region on the
right side of xcR still grows. When the interfaces xh and xcL eventually meet at the
position xF (at the corresponding time t ∼ tF), both the conduction-dominated and
convection-dominated subregions stop developing. At that time (t∼ tF), the right-hand
interface of the convection-dominated subregion stops at the position xD (figure 3c).
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For t > tF, the flow discharges into the region on the offshore side of xD, which
resembles an intrusion flow from the shore side of xD. A detailed discussion on the
flow intrusion can be found in Patterson & Imberger (1980). In this study, we mainly
focus on the flow development at t 6 tF.

In what follows, the detailed transient flow developments at different stages and in
various subregions are described through scaling analysis.

3.2. Initiation of the flow
At time t= 0, there is no flow and no heat transfer in the reservoir. At the early stage,
both horizontal conduction and convection are negligible so that the heat input from
the water surface is diffused vertically downwards to raise the water temperature. As
a consequence, a thermal boundary layer starts to grow downwards underneath the
water surface. A balance between the unsteady term and the diffusion term in the
energy equation (2.4) yields a scale for the thickness of the thermal boundary layer
(Mao et al. 2010)

δT ∼ (κt)1/2. (3.1)

The temperature in this surface layer increases due to the heat input through the
surface specified in (2.8). The temperature scale thus can be obtained as

Ts ∼H0κ
−1/2t1/2. (3.2)

Note that the scale Ts represents the temperature rise relative to the initial temperature
T0. In this very early stage, the fluid is still at rest. This situation holds until the
thermal boundary layer reaches the sloping bottom and becomes indistinct.

A comparison between the thickness of the thermal boundary layer (3.1) and the
local water depth Ax results in the time scale for the thermal boundary layer to reach
the sloping bottom,

td ∼ A2x2κ−1. (3.3)

Clearly, with increasing offshore distance, it takes a longer time for the thermal
boundary layer to reach the sloping bottom. This indicates that the indistinct thermal
boundary layer region extends in the offshore direction. Within the indistinct thermal
boundary layer region, the scale for the boundary layer thickness is the local water
depth, i.e.

δT ∼ Ax. (3.4)

At an arbitrary position x within the indistinct thermal boundary layer region,
considering an infinitesimal water column of width dx, the energy balance in this
water column gives

I0 dx∼ ρ0CpδT dx
dTi

dt
, (3.5)

where Ti is the temperature of the water column. Substituting (3.4) into (3.5) yields
the temperature scale within the indistinct thermal boundary layer region,

Ti ∼H0A−1x−1t. (3.6)

Again, the scale Ti is not the temperature itself but the temperature rise relative to the
initial temperature T0.

Equation (3.6) indicates that a horizontal temperature gradient establishes within
the indistinct thermal boundary layer region, which results in a horizontal pressure
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gradient that drives a flow away from the tip. As the bottom slope is assumed to
be very small (usually �1 in field situations), the vertical velocity component is
negligible compared to the horizontal velocity component. A balance between the
pressure term and the buoyancy term in the vertical momentum equation (2.3) yields
a scale for the pressure p, by applying (3.4) and (3.6),

p∼ gβρ0TiδT ∼ gβρ0H0t. (3.7)

Mao et al. (2010) have shown that the viscous term in the horizontal momentum
equation (2.2) is dominant in the indistinct thermal boundary layer region at the initial
stage. This indistinct thermal boundary layer is shallow so that ∂/∂y � ∂/∂x. The
balance in the horizontal momentum equation is thus between the viscous term and
the buoyancy-induced pressure gradient, which yields a velocity scale of

un ∼ gβH0A2ν−1xt∼ Ra A2κ2h−4xt, (3.8)

where Ra is the global Rayleigh number defined as

Ra= gβH0h4/κ2ν. (3.9)

Previous numerical and experimental studies (see e.g. Horsch et al. 1994; Bednarz,
Lei & Patterson 2009b; Mao et al. 2010) have shown that the properties of the
convective flow in a reservoir model such as the flow velocity vary along the
horizontal direction. Adopting a fixed length scale in the scaling analysis would
obscure the position-dependent flow features to be revealed. Thus, a variable
horizontal length scale x is adopted in the present study. The same approach has
been adopted in the previous scaling analyses of Mao et al. (2009, 2010) and has
been proved to be appropriate by corresponding numerical simulations.

In the distinct thermal boundary layer region, the flow is passively driven by
the pressure gradient induced in the indistinct thermal boundary layer region. Note
that, in the distinct thermal boundary layer region, the boundary layer thickness and
temperature scales are still governed by (3.1) and (3.2), respectively. The balance
between the viscous term and the pressure gradient yields a velocity scale

uf ∼ gβH0κν
−1x−1t2 ∼ Ra κ3h−4x−1t2. (3.10)

It is worth noting that the velocity scale (3.10) is the same as that reported in Mao
et al. (2010). Although the heat flux boundary conditions at the surface in these two
studies have opposite signs (one for heating and the other for cooling), the same
mechanism drives the flow in both cases, and thus the same velocity scale is expected.
It is also worth noting that the horizontal flow considered here is in the opposite
direction to that considered in Mao et al. (2010).

3.3. Extension of the indistinct thermal boundary layer region
The velocity scales given by (3.8) and (3.10) indicate that the velocity initially
increases and then decreases along the x direction at an instantaneous time t (see
figure 4). The peak velocity um occurs at the interface between the indistinct and
distinct thermal boundary layer regions. By substituting (3.3) into (3.8) and (3.10),
we found that the two velocity scales are identical at the interface, which represents
the peak velocity at any given location x (achieved at time td),

um ∼ Ra A4κh−4x3. (3.11)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

69
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.697


228 P. Yu, J. C. Patterson and C. Lei

 0.2

0.4

0.6

0.8

1.0

1.2

0 1 2 3 4

FIGURE 4. Sketch of the velocity profile along the x direction. Here um denotes the peak
velocity and xu denotes the corresponding location of um. Initially, with the passage of
time, the peak velocity increases and its location moves in the offshore direction. The
solid line denotes data at the water surface (y = 0) from numerical simulation, whereas
the dash-dotted line denotes data from scaling analysis.

With the passage of time, the indistinct thermal boundary layer region extends in
the offshore direction at a speed of ui. The position where the peak velocity occurs
(xu∼ (κt)1/2/A) also moves at the velocity ui in the offshore direction, which is given
by

ui ∼ δTA−1t−1 ∼ A−1κ1/2t−1/2. (3.12)

While heat is transferred into the thermal boundary layer through the surface
heat flux, a horizontal temperature gradient is established after the thermal boundary
layer reaches the sloping bottom. The heat entering the thermal boundary layer is
thus conducted away by the horizontal temperature gradient. On the other hand, the
horizontal temperature gradient induces a horizontal pressure gradient, which drives
a flow in the offshore direction. Therefore, heat is also convected away by the flow
induced by the horizontal pressure gradient.

3.4. Development of a conduction-dominated subregion
It is expected that the flow will achieve a steady or quasi-steady state after a certain
time period, which is characterized by the steady velocity distribution in the whole
reservoir. At the steady or quasi-steady state, the temperature gradient becomes steady
in the whole reservoir; otherwise, the variation of temperature gradient would induce
additional forces to accelerate or decelerate the flow. To maintain a steady temperature
gradient across the entire reservoir, the temperature has to be constant or increase
at the same rate everywhere in the reservoir. Since the reservoir model considered
here is an enclosed domain with heat entering from the surface and no heat escaping
from anywhere, it is expected that the temperature increases at the same rate but the
temperature gradient remains steady in the entire reservoir at the quasi-steady state.
Based on the above argument, the average temperature increase rate in the whole
reservoir (considering that the flat-bottom region is much longer than the sloping-
bottom region) can be calculated as

dTavg

dt
∼H0h−1 or Tavg ∼H0th−1. (3.13)
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It is worth noting that the heat advected out of the domain is neglected in (3.13),
which is appropriate for a sufficiently long domain. At a given location, when the
convective flow reaches the quasi-steady state, part of the energy entering from the top
surface is absorbed by the water and the rest is either conducted or convected away.
In the indistinct thermal boundary layer region, the comparison between convection
and horizontal conduction in (2.4) gives

convection
horizontal conduction

∼ uTx−1

κTx−2
∼ uxκ−1 ∼ Ra A2κh−4x2t. (3.14)

Note that the velocity u in (3.14) is governed by scale (3.8).
From (3.14), it is found that conduction is dominant when tcom < Ra−1A−2κ−1h4x−2,

where tcom represents the time scale for heat transfer to switch from conduction-
dominated to convection-dominated at a given x value. Within the indistinct thermal
boundary layer region, for a particular location x0, the thermal boundary layer reaches
the bottom at tdx0∼A2x2

0κ
−1. If tdx0< tcom, the flow is still conduction-dominant, which

gives x0 < Ra−1/4A−1h. Thus, we can always find an x0 ∼ Ra−1/4A−1h so that within
the region x< x0 the horizontal conduction term is larger than the convection term. In
this region, the velocity stops increasing when horizontal conduction is strong enough
to remove the excessive heat input from the surface that is not absorbed by the water.
The energy balance in this region is thus written as

I0x∼ ρ0Cpκ

(
−∂T
∂x

)
Ax+ 1

2
ρ0CpxAx

dTavg

dt
. (3.15)

Substituting (3.13) into (3.15) gives

−∂T
∂x
∼H0κ

−1A−1

(
1− Ax

2h

)
. (3.16)

Substituting (3.6) into (3.16) yields the time scale to reach the quasi-steady state,

th ∼
(

1− Ax
2h

)
x2κ−1. (3.17)

Equation (3.17) implies that the region where the quasi-steady state is achieved
extends in the x direction with time. Horizontal conduction dominates in this region,
which carries away the excessive heat that is not absorbed by the water. We shall
refer to this region as the conduction-dominated subregion, which is a subregion in
the indistinct thermal boundary layer region. It is worth noting that the internal energy
change and the horizontal conduction were not accounted for in Mao et al. (2010),
and the conduction-dominated and the indistinct thermal boundary layer regions were
not distinguished in their study. As implied by (3.17), the conduction-dominated
subregion expands in the offshore direction with time. Comparing (3.3) and (3.17)
gives

th

td
∼ 1− Ax/(2h)

A2
∼ A−2 − A−1xh−1. (3.18)

We can then confirm that th/td� 1 because A� 1 and the maximum x value is x∼
h/A. Thus, the conduction-dominated subregion is always contained by the indistinct
thermal boundary layer region.
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3.5. Initiation of balance between convection and horizontal conduction
Equations (3.8) and (3.10) indicate that the velocity in the reservoir increases with
time, resulting in an increase in convection. The convection term may eventually
become comparable with the horizontal conduction term over a certain region. In
such a region, the unabsorbed energy from the surface is removed from the layer
by convection. It is shown above that the peak velocity occurs at the interface
between the indistinct and distinct thermal boundary layer regions. At that point,
local convection is maximum, which indicates that the energy balance should be
initially achieved there, which gives

I0x∼ ρ0CpumδTTc + 1
2
ρ0CpxAx

dTavg

dt
. (3.19)

Note that in (3.19) the thickness of the thermal boundary layer and the velocity are
governed by (3.4) and (3.11) respectively. The temperature scale Tc can be calculated
from (2.8), giving

Tc ∼H0Axκ−1. (3.20)

Substituting (3.4), (3.11), (3.13) and (3.20) into (3.19) gives

x4 + 0.5Ra−1h3A−5x− Ra−1h4A−6 ∼ 0. (3.21)

From (3.21) we can obtain the position where the convection balance initially occurs
(xB). Although (3.21) can be solved analytically, it would be more convenient to yield
the solution by asymptotic analysis or a numerical method. The asymptotic solution
of xB can be written as xB∼ [Ra−1/4A−3/2− (1/8)Ra−1/2A−2− (1/128)Ra−3/4A−5/2]h. If
the Rayleigh number is big enough so that AxB/(2h)� 1, we can obtain

xB ∼ Ra−1/4A−3/2h. (3.22)

The corresponding time scale tB is obtained by substituting (3.22) into (3.3), which
gives

tB ∼ Ra−1/2κ−1A−1h2. (3.23)

The variation of xB with Ra is shown in figure 5. With increasing Ra, these solutions
converge.

The thermal boundary layer stops growing once the energy balance is reached.
This indicates that the indistinct thermal boundary layer region stops extending at
the position xB and the corresponding time tB. Although the convection balance is
achieved at x∼ xB and t∼ tB, this does not mean that the development of flow within
the indistinct thermal boundary layer region (x< xB) stops. In fact, the region where
the convection balance is achieved extends in both onshore and offshore directions
from the initial position x ∼ xB as demonstrated in § 3.6. The indistinct thermal
boundary layer region thus shrinks towards the tip region.

3.6. Expansion of the convection-dominated subregion
As shown in § 3.4, the conduction-dominated subregion, which is within the indistinct
thermal boundary layer region, extends from the tip region in the offshore direction.
At the time t ∼ tB, the right boundary of the conduction-dominated subregion xh
satisfies xh < xB. Although the local energy balance is achieved at x< xh (conduction)
and x∼ xB (convection), the horizontal temperature gradient in the region xh < x< xB
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100
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101

10–1
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x
xD

xB

xB (large Ra assumption)
xB (asymptotic solution)

xD (large Ra assumption)

xF

FIGURE 5. Variation of xB, xF and xD with Ra (see the caption of figure 3 for the
definitions of xB, xF and xD). For xB, the solid, dotted and dash-dotted-dotted lines denote
the numerical solution of (3.21), the asymptotic solution and the approximate solution
given by (3.22), respectively.

still increases, as neither convection nor horizontal conduction is strong enough to
remove the excessive heat from that region. The horizontal pressure gradient also
increases in this region, and so does the flow velocity. Thus, with the passage of time,
convection outside the conduction-dominated subregion (i.e. for the region x > xh)
continuously increases until energy balance is achieved in this region.

For t> tB, the conduction-dominated subregion continuously extends in the offshore
direction with time, that is, xh increases with time. As convection increases, convection
in the region xh < x < xB may eventually become strong enough to remove the
unabsorbed heat from the region, which gives

I0x∼ ρ0CpuδTTc + 1
2
ρ0CpxAx

dTavg

dt
. (3.24)

In the region xh < x< xB, the thermal boundary layer is indistinct. Thus the velocity
in (3.24) is governed by (3.8). The thickness of the thermal boundary layer and the
temperature scale Tc are governed by (3.4) and (3.20), respectively. The time scale at
which the convection balance is achieved can then be obtained as

tcL ∼ Ra−1h4A−4κ−1x−2

(
1− Ax

2h

)
. (3.25)

The corresponding position xcL where the convection balance is achieved can be
calculated from (3.25), which implies that xcL moves backwards towards the tip
region with time. Note that, at t ∼ tB, xcL coincides with xB. Thus, for t > tB, the
region where the convection balance is achieved extends from xB towards the onshore
region. We shall refer to the region as the convection-dominated subregion.

For the distinct thermal boundary layer region (x > xB), convection also increases
with time. Convection in this region may eventually become strong enough to remove
the unabsorbed heat, which is also governed by (3.24). However, the thickness of the
thermal boundary layer, the temperature and the velocity are now governed by (3.1),

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

69
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.697


232 P. Yu, J. C. Patterson and C. Lei

(3.2) and (3.10), respectively. This energy balance yields the following time scale at
which the convection balance is achieved:

tcR ∼ Ra−1/3h4/3κ−1x2/3

(
1− Ax

2h

)1/3

. (3.26)

Once the convection balance is achieved, the thermal boundary layer stops growing.
The corresponding position at which the convection balance is achieved, xcR, can be
calculated from (3.26), which implies that xcR moves in the offshore direction with
time. Note that, at t ∼ tB, xc coincides with xB. Thus, for t > tB, the convection-
dominated subregion also extends from xB towards the offshore region.

The above analysis shows that for t> tB the convection-dominated subregion extends
from xB in both the onshore and offshore directions. The left and right boundaries
of the convection-dominated subregion are xcL and xcR, respectively. For the region
between xh and xcL, the horizontal temperature gradient still develops because no
energy balance has been achieved. Thus, for the regions outside the conduction-
dominated subregion (x > xh), the horizontal pressure gradient still increases, and so
does the velocity. This indicates that, even in the convection-dominated subregion,
convection still keeps increasing after the convection balance is initially achieved. The
thermal boundary layer in the convection-dominated subregion has to adjust in order
to maintain the energy balance. This dynamic energy balance can still be described
by (3.24). However, the velocity, temperature and thermal boundary layer thickness
scales in (3.24) have to be re-evaluated.

In the convection-dominated subregion, the balance in the horizontal momentum
equation is between the viscous term and the buoyancy-induced pressure gradient,
which gives

p
ρ0x
∼ ν u

δ2
T
. (3.27)

It is worth noting that the pressure p in the above relation is still determined by the
balance between the pressure gradient term and the buoyancy term in the vertical
momentum equation (2.3), which leads to a scale for pressure similar to (3.7), that is,
p∼ gβρ0TcδT . However, in this case the thermal boundary layer thickness is unknown
and is determined by neither (3.1) nor (3.4). Equation (3.27) can be rewritten as

u∼ gβH0ν
−1tδ2

Tx−1 ∼ Ra h−4κ2tδ2
Tx−1. (3.28)

The temperature scale can be derived from the boundary condition (2.8), which gives

Tc ∼H0δTκ
−1. (3.29)

Substituting (3.28) and (3.29) into (3.24) gives

δT ∼ Ra−1/4κ−1/4t−1/4x1/2h
(

1− Ax
2h

)1/4

. (3.30)

The velocity scale can then be obtained by substituting (3.30) into (3.28), yielding

u∼ Ra1/2κ3/2t1/2h−2

(
1− Ax

2h

)1/2

. (3.31)

Equation (3.30) indicates that the thermal boundary layer thickness decreases with
time. This means that the thickness of thermal boundary layer shrinks in the
convection-dominated subregion while this region extends in both the onshore and
offshore directions.
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3.7. Quasi-steady state of convection- and conduction-dominated subregions
Equation (3.17) implies that the right boundary of the conduction-dominated
subregion moves in the offshore direction with time. The analysis in § 3.6 shows
that the convection-dominated subregion extends from xB in both the onshore
and offshore directions. In the region between the conduction-dominated and the
convection-dominated subregions, the horizontal temperature gradient is still growing
because neither horizontal conduction nor convection is sufficiently strong to carry
away the unabsorbed heat. The horizontal temperature gradient stops growing only
when the right boundary of the conduction-dominated subregion meets the left
boundary of the convection-dominated subregion, i.e. th ∼ tcL, which gives

xF ∼ Ra−1/4A−1h, (3.32)

and the corresponding time is

tF ∼ (1− 1
2 Ra−1/4)Ra−1/2κ−1A−2h2. (3.33)

The variation of xF with Ra is shown in figure 5. As A�1, tF is always larger than tB.
At t ∼ tF, the conduction-dominated subregion stops extending in the offshore

direction. At the quasi-steady state, the velocity scale for the conduction-dominated
subregion can be obtained by substituting (3.17) into (3.8) as follows:

u∼ gβH0A2ν−1xth ∼ Ra A2κh−4x3

(
1− Ax

2h

)
for x . xF. (3.34)

Once the horizontal temperature gradient stops increasing, the horizontal pressure
gradient remains constant, and so does the velocity. Thus, the velocity in the
convection-dominated subregion stops increasing, the region stops expanding, and
the thickness of the thermal boundary layer stops shrinking. The left boundary of the
convection-dominated subregion and the right boundary of the conduction-dominated
subregion meet at x∼ xF. The right boundary of the convection-dominated subregion
stops at t∼ tF, which can be obtained by substituting (3.33) into (3.26) as follows:

x2/3

(
1− Ax

2h

)1/3

∼
(

1− 1
2

Ra−1/4

)
Ra−1/6A−2h2/3. (3.35)

From (3.35) we can obtain the position of the right boundary of the convection-
dominated subregion xD. Equation (3.35) can be solved either analytically or
numerically. For sufficiently high Rayleigh numbers AxD/2h� 1, we can obtain

xD ∼ Ra−1/4A−3h, (3.36)
tD ∼ Ra−1/2κ−1A−2h2. (3.37)

The variation of xD with Ra is also shown in figure 5. Note that the solid
line denotes the numerical solution of (3.35) whereas the dashed line denotes the
approximate solution given by (3.36). At t ∼ tF, the thermal boundary layer in the
convection-dominated subregion stops shrinking. The final scales for the thickness of
the thermal boundary layer and the velocity can be obtained by substituting (3.33)
into (3.30) and (3.31), respectively,

δT ∼ Ra−1/8x1/2A1/2h1/2

(
1− 1

2
Ra−1/4

)−1/4 (
1− Ax

2h

)1/4

, (3.38)
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u ∼ Ra1/4κA−1h−1

(
1− 1

2
Ra−1/4

)1/2 (
1− Ax

2h

)1/2

. (3.39)

The flow on the right side of the convection-dominated subregion may still develop
after t> tF. We shall refer to this region as the free-developing region. In this region,
the flow is driven by the pressure gradient induced by the temperature gradient in the
indistinct boundary layer region, which remains constant after t> tF,

pF ∼ gβρ0H0tF. (3.40)

The balance in the horizontal momentum equation is between the viscous term and
the buoyancy-induced pressure gradient, which gives

pF

ρ0x
∼ ν u

δ2
T
. (3.41)

The scale of the thermal boundary layer thickness in (3.41) is governed by (3.1). The
velocity scale can be obtained by substituting (3.1) and (3.40) into (3.41), which yields

u∼ Ra1/2(1− 1
2 Ra−1/4)A−2h−2κ2x−1t. (3.42)

The flow stops developing when the energy balance described by (3.24) is reached,
which yields the time scale

ts ∼ Ra−1/4

(
1− 1

2
Ra−1/4

)−1/2 (
1− Ax

2h

)1/2

Axhκ−1. (3.43)

The final thermal boundary layer thickness and velocity scales at the quasi-steady state
can then be obtained by substituting (3.43) into (3.1) and (3.42), respectively, which
are exactly the same as (3.38) and (3.39).

3.8. Possible flow regimes
The time-dependent behaviour of the flow varies with the Rayleigh number. The
possible developmental pathways of the flow at different Rayleigh numbers are
summarized in table 1. If the Rayleigh number is sufficiently small (Ra < 1), the
condition h/A < xF holds. In this case, horizontal conduction is always greater than
convection. After sufficient time has elapsed, the thermal boundary layer attaches to
the bottom in the whole reservoir. Subsequently, the horizontal temperature gradient
continues to increase until it becomes significant enough to conduct away the heat
input from the water surface and the quasi-steady state is achieved.

For medium Rayleigh numbers (1 < Ra < Rai), the condition xF < h/A < xB holds.
Note that Rai can be obtained by letting xB ∼ h/A, where xB is determined by (3.21).
The value of Rai is O(A−2), which is ∼50 if A= 0.1. After sufficient time has elapsed,
the thermal boundary layer eventually attaches to the bottom in the whole reservoir,
but the flow velocity keeps increasing. Horizontal conduction is dominant in the whole
reservoir. Convection first becomes significant in the region with the maximum depth
and the thermal boundary layer becomes distinct there again, which occurs at t ∼ tB.
The indistinct thermal boundary layer region shrinks until t∼ tF. At the quasi-steady
state, the whole reservoir can be divided into two subregions, i.e. the conduction-
and convection-dominated subregions. In the conduction-dominated subregion, the
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velocity scale at the quasi-steady state is given by (3.34). In the convection-dominated
subregion, the flow becomes steady at t ∼ tF; the corresponding thermal boundary
layer thickness and velocity scales are described by (3.38) and (3.39), respectively.

For sufficiently high Rayleigh numbers (Ra>Rai), the condition h/A> xB holds. In
this Rayleigh-number regime, the indistinct thermal boundary layer region does not
occupy the whole reservoir during the developing stage and stops expanding when
t ∼ tB at x ∼ xB. The indistinct thermal boundary layer region then shrinks until t ∼
tF. At the quasi-steady state, the whole reservoir can be divided into the conduction-
dominated and convection-dominated subregions.

4. Numerical procedures
As shown in figure 1, the computational model comprises two distinct regions:

one with a sloped bottom and the other with a uniform water depth. This model
is more realistic than the model of a triangular enclosure that has been adopted by
Lei & Patterson (2006), Bednarz et al. (2008, 2009b) and Bednarz, Lei & Patterson
(2009a,c). The slope inclination is fixed at A = 0.1. The lengths of the flat and the
sloped parts are assumed to be equal, giving the total length of the model L = 20h.
The non-dimensional governing equations can be expressed as

UX + VY = 0, (4.1)
Uτ +UUX + VUY = −(Pr Ra)PX + Pr∇2U, (4.2)
Vτ +UVX + VVY = −(Pr Ra)PY + Pr∇2V + (PrRa)θ, (4.3)
θτ +UθX + VθY = ∇2θ, (4.4)

with the non-dimensional surface heat flux condition,

θY = 1 at Y = 0. (4.5)

All the quantities in (4.1)–(4.5) have been normalized by the following scales: X, Y ∼
h; τ ∼ h2κ−1; θ ∼H0hκ−1; U, V ∼ κh−1; P∼ ρ0gβH0hκ−1. The Prandtl number Pr is
defined as Pr= ν/κ . As heat continuously enters the water body from the surface, the
temperature of the water body keeps increasing. In this sense, there is no steady state
with respect to the water temperature. However, a quasi-steady state may be reached in
which temperature gradient and flow velocity become steady. At the quasi-steady state,
temperature increases at the same rate everywhere, and thus the difference between the
local temperature and the average temperature becomes steady.

The above non-dimensional governing equations along with the specified boundary
and initial conditions are solved numerically using a finite-volume method. The
second-order central difference scheme is applied for spatial derivatives in the
governing equations. The second-order backward scheme is applied for time
discretization in calculating the transient flow. The SIMPLEC method is adopted
for pressure and velocity coupling. The non-staggered grid arrangement is applied
and the interpolation of Rhie & Chow (1983) is used to get a good coupling
between pressure and velocity. The detailed numerical procedures on discretization
can be found in Ferziger & Perić (1999) and Yu et al. (2007). The validation of the
present code for the simulation of natural convection in the reservoir model has been
demonstrated in Yu et al. (2012a,b) and will not be repeated here.

The simulation is performed with a fixed Prandtl number of Pr = 7, which is
relevant to water at room temperature. Before the final simulation, a mesh and
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Mesh 260× 20 320× 40 480× 60 640× 80
Time step 2× 10−6 10−6 0.7× 10−6 0.5× 10−6

Umax 64.52 64.13 63.90 63.78
Error (%) 1.16 0.55 0.19 —

TABLE 2. Effect of mesh size and time step on the predicted maximum velocity at the
quasi-steady state.

time-step dependence test has been conducted using four different meshes, 260× 20,
320 × 40, 480 × 60 and 640 × 80 for Ra = 2.1 × 105, which is the highest among
all the simulation cases. All the meshes are non-uniform, with higher grid density
near all the boundaries. The time step is adjusted for different meshes so that the
Courant–Friedrichs–Lewy (CFL) number remains approximately the same for different
meshes. To avoid singularity at the tip, a very small tip region (X = 0.16) was cut
off and an extra vertical wall was assumed there. The cutoff region accounts for less
than 0.01 % of the entire domain and thus has a negligible effect on the overall flow,
except at the very beginning of the flow development.

Table 2 compares the predicted maximum horizontal velocity in the reservoir model
obtained with all the meshes at the quasi-steady state. The error of the predicted
maximum velocity with a chosen mesh related to that predicted with the finest mesh is
also presented in the table. It is seen that the numerical error reduces and the predicted
maximum horizontal velocity approaches a constant value with the increasing mesh
resolution. It is expected that the variations of the solutions with the different meshes
are even smaller at lower Rayleigh numbers. Based on these tests, mesh 2 is adopted
for the present simulation and the corresponding time step is fixed at 10−6.

5. Verification of the scaling analysis

The present study focuses on the transient behaviour of natural convection in
the reservoir model induced by surface heating. Although the boundary condition
considered in the present study is opposite to those in Lei & Patterson (2005) and
Mao et al. (2010), which considered surface cooling, the underlying mechanism that
drives the flow is the same except for the flow instability under the surface cooling
conditions. In addition to the time-dependent behaviour of the flow, the present study
has also revealed additional flow features that were not revealed in the previous
scaling analyses of Lei & Patterson (2005) and Mao et al. (2010). Thus, this section
will focus on verifying these newly discovered flow behaviours using the results
of the numerical simulation. Flow visualizations showing the various stages of the
transient flow development can be found in Mao et al. (2010) and Yu et al. (2012a),
and are not repeated here for brevity. The simulations performed here cover a wide
range of Rayleigh numbers (refer to table 3) to demonstrate all three possible flow
development pathways. All the results presented in this section are normalized in the
way described in § 4.

Note that the above-described scaling analysis is conducted based on the reservoir
model with a triangular region connected with an infinite rectangular region. However,
the present numerical simulation is performed in a reservoir model consisting of a
triangular region and a finite rectangular region. For the former domain with a large
and effectively infinite rectangular region, the average temperature increase rate can be
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Flow regimes Ra

Ra< 1 0.14, 0.014
1< Ra< Rai 21
Ra> Rai 70, 2.1× 103, 7× 103, 2.1× 104, 7× 104, 2.1× 105

TABLE 3. Rayleigh numbers adopted in the numerical validation.

obtained from (3.13). For the finite domain as shown in figure 1, the energy balance
leads to

dTavg

dt
∼ 4

3
H0h−1 or Tavg ∼ 4

3
H0th−1. (5.1)

Applying (5.1) to the scaling analysis in § 3 means that the prefactors of (1−Ax/(2h))
and (1− Ra−1/4/2) in the scaling relations (3.16)–(3.17), (3.25)–(3.26), (3.30)–(3.31),
(3.33)–(3.35), (3.38)–(3.39) and (3.42)–(3.43) should be replaced by (1 − 2Ax/(3h))
and (1 − 2Ra−1/4/3), respectively, when comparing to our simulation results. For
instance, the velocity scale at the quasi-steady state in the conduction-dominated
subregion (see (3.34)) should be rewritten as

u∼ Ra A2κh−4x3

(
1− 2Ax

3h

)
. (5.2)

Our preliminary study shows that the new prefactors give a better prediction of the
flow behaviour. Accordingly, the new prefactors will be used for the validation of the
scaling relations.

5.1. Unsteady scales for the indistinct thermal boundary layer region
At the initial stage, the scaling analysis indicates that the instantaneous horizontal
velocity increases and then decreases in the x direction ((3.8) and (3.10)). The peak
velocity is located at the interface between the indistinct and distinct thermal boundary
layer regions, which moves in the x direction with time. If the Rayleigh number is
sufficiently low, the interface eventually reaches the end of the slope region at τ ∼ 1.
At the same time, the thermal boundary layer in the whole flat region also reaches
the bottom and becomes indistinct. As a consequence, the thermal boundary layer
becomes indistinct over the entire flow domain, and the interface between the distinct
and indistinct thermal boundary layer regions no longer exists. Since the peak velocity
initially moves with the interface as shown in § 3.3, it remains at the end of the slope
region after the disappearance of the distinct thermal boundary layer (i.e. for τ & 1).

Figure 6 shows the horizontal velocity profile along the water surface at different
time for Ra = 0.14. For τ . 1, the velocity first increases and then decreases in
the offshore direction. The velocity is almost zero for X bigger than a certain value.
The position of the peak velocity moves towards the offshore direction when τ . 1,
corresponding to the expansion of the indistinct thermal boundary layer region (3.12).
The thermal boundary layer attaches to the bottom in the entire region at the time
scale τ ∼ 1 (3.3). The position of the peak velocity then remains fixed with X of
order h/A for τ & 1. These behaviours are consistent with the scaling analysis.

Mao et al. (2010) also proposed a velocity scale for the early stage of the flow
development, which is the same as the present velocity scale (3.10). They considered
this velocity scale as the sole velocity scale governing the flow in the early stage
and reported that the velocity at any given time decreases monotonically with the
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FIGURE 6. Horizontal velocity profiles along the water surface at different times for Ra=
0.14. The symbols on the plots are used to distinguish the curves at different times instead
of representing the x locations where the U velocity is sampled. The arrows indicate the
locations of the peak velocity.

offshore distance. However, both the present scaling analysis and numerical simulation
indicate that the velocity initially increases and then decreases with the offshore
distance. Therefore, the present study has provided a more comprehensive picture of
the transient flow behaviour.

In the flow regime Ra< 1, the interface between the distinct and indistinct thermal
boundary layer regions initially moves in the offshore direction with the extension of
the indistinct thermal boundary layer region (xu ∼ (κt)1/2/A) until it reaches the end
of the sloping region at τ ∼ 1. The interface disappears at τ ∼ 1 because the thermal
boundary layer in the whole flat region also reaches the bottom and becomes indistinct
as mentioned above. The location of the peak velocity then remains at the end of
the sloping region for τ & 1. In the flow regime Ra> 1, the corresponding interface
initially also moves in the offshore direction with the extension of the indistinct
thermal boundary layer region (xu ∼ (κt)1/2/A) and then moves back towards the tip
region with the shrinkage of the indistinct thermal boundary layer region (which can
be derived from (3.25)). We record the position Xu of the peak U velocity along
the water surface for the numerical simulation at different Rayleigh numbers and
plot the data in figure 7(a). The curves for Ra < 1 indicate that the location of the
peak velocity moves rapidly in the offshore direction when τ . 1 and reaches around
X∼ 8.5 at τ ∼ 1. For τ & 1, the location of the peak velocity stays around X∼O(10).
The curves for Ra > 1 shows that Xu initially moves in the offshore direction and
then retracts. All these results agree well with the scaling prediction. However, the
velocity scale provided by Mao et al. (2010) indicated that the position of the peak
U velocity only moves in the offshore direction, which cannot explain the retracting
behaviour of the location of the peak velocity.

Note that there is a coarse stagger on the curves for Ra < 1 in figure 7(a). As
mentioned in § 4, the computational meshes are non-uniform, with higher mesh
density near all the boundaries. The distance between two neighbouring points
around X ∼ O(10) is relatively large. The location of the peak velocity may drift
between two neighbouring points due to numerical errors, which may in turn cause
the obvious staggers on the curves. These staggers may be avoided by using a finer
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FIGURE 7. The transient behaviour of the position of the peak U velocity along the
surface: (a) time history of the position; (b) validation of the scale for t< tB; (c) validation
of the scale for tB < t< tF; (d) validation of the scale for the quasi-steady state (Ra> 1).
The Rayleigh numbers are indicated in the panels. The symbols denote the numerical
results and the solid line is a linear fit in (b–d).

mesh in the horizontal direction. However, this would require a significant increase in
computational time. Given that the present numerical results are sufficiently accurate
to capture the major flow features, the present mesh is adopted, although its resolution
in the region around X ∼O(10) is relatively low.

The time scale for the thermal boundary layer to reach the sloping bottom is
governed by the scale (3.3). The dimensionless form of the scale can be rewritten as
τd ∼ A2X2. As mentioned previously, the peak flow velocity occurs at the interface
between the indistinct and distinct thermal boundary layer regions. Accordingly, X2

u
linearly increases with time at the initial stage for all the Rayleigh numbers as shown
in figure 7(b). The curves deviate from the linear relationship for t > tB (curves for
Ra> 1) or t> h2/κ (curves for Ra< 1).

The time scale for the shrinkage of the indistinct thermal boundary layer is
governed by the scale (3.25). The dimensionless form of the scale can be rewritten
as τcL ∼ (1 − 2AX/3)/(Ra A4X2) if the new prefactor (1 − 2Ax/(3h)) determined by
(5.1) is applied. Note that the position of the peak velocity along the surface Xu is
located at the interface between the indistinct and distinct thermal boundary layer
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regions, which moves in the −x direction with the shrinkage of the indistinct thermal
boundary layer region as shown in figure 7(a). Figure 7(c) shows the time history of
(1 − 2AXu/3)/(Ra A4X2

u). The time is rescaled by tF (refer to the scale (3.33)). As
shown in figure 7(c), the function (1 − 2AXu/3)/(Ra A4X2

u) increases linearly with
time over the time period of 0.4< t/tF < 1.5 for Ra= 2.1× 103 and 2.1× 104. This
is consistent with the behaviour of the scale (3.25) in the retracting stage (tB < t< tF).
It is also seen in figure 7(c) that the curves for Ra = 2.1 × 103 and 2.1 × 104 do
not collapse onto each other. This is because the magnitude of τcL in the scale
(3.25) is both Ra- and position-dependent, and the scale (3.25) is only valid when
tB < t < tF. Therefore, it is difficult to rescale the plots to make the curves for the
different Rayleigh numbers collapse onto each other. Nevertheless, figure 7(c) shows
a linear relationship around t/tF ∼O(1) for the different Rayleigh numbers, which is
consistent with the prediction of the scale (3.25).

At the final quasi-steady state, the location of the interface Xu remains at xF
(3.32) for Ra > 1. Figure 7(d) shows the locations of Xu at the quasi-steady state
obtained from the simulation for different Rayleigh numbers against the scaling of
xF ∼ Ra−1/4A−1h. It demonstrates an approximately linear correlation between the
numerical data and the scaling prediction, which further validates the present scaling
analysis. However, it may be argued that the numerical data shown in figure 7(d)
exhibit a power-law relationship with the scaling prediction. As described in the above
scaling analysis, at the quasi-steady state, the peak velocity is located at the interface
between the conduction-dominated and convection-dominated subregions. The scaling
analysis is based on the assumption that there is a sharp transition between the
conduction- and convection-dominated subregions. However, a transitional region, in
which both conduction and convection are important, exists in reality. This modifies
the energy balances ((3.19) and (3.24)) and causes the deviation between the numerical
simulation and scaling prediction.

5.2. Unsteady scales for the conduction-dominated subregion
The scaling analysis suggests that the conduction-dominated subregion extends in
the offshore direction with time. As described in the preceding scaling analysis, the
conduction-dominated subregion is always within the indistinct thermal boundary
layer region. For very low Rayleigh numbers (Ra < 1), the conduction-dominated
subregion keeps expanding even after the thermal boundary layer has encompassed
the whole sloping region. The final quasi-steady state in the entire reservoir occurs
at the time scale τ ∼ A−2/2= 50 (estimated from (3.17)).

It is worth mentioning that Mao et al. (2010) obtained the same time scale
td ∼ A2x2/κ for the thermal boundary layer to reach the sloping bottom. They also
considered td as the time scale for the flow in the indistinct thermal boundary
layer region to reach the quasi-steady state, i.e. the flow reaches the quasi-steady
state once the thermal boundary layer reaches the sloping bottom. Therefore, there
is no distinction between the indistinct thermal boundary layer region and the
conduction-dominated subregion in their analysis. The present scaling analysis reveals
that the developments of the flow and the horizontal temperature gradient in the
indistinct thermal boundary layer region continue after the thermal boundary layer
has reached the sloping bottom. The conduction-dominated subregion develops within
the indistinct thermal boundary layer region until t∼ th. The developing time for the
flow to reach the quasi-steady state is thus much longer than that predicted by Mao
et al. (2010). The numerical results indeed support our scaling analysis, as will be
shown later.
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FIGURE 8. Time histories of (a) the peak U velocity along the water surface and (b) the
u velocity at two fixed locations on the water surface. The Rayleigh numbers are indicated
in the panels. The velocity and time are normalized as shown.

Figure 6 shows that the horizontal velocity keeps increasing when τ �∼1, which
suggests that the horizontal temperature gradient is still increasing after the thermal
boundary layer reaches the bottom in the entire reservoir. The development of the flow
stops only if horizontal conduction is significantly strong to remove the excessive heat
entering from the surface.

We also record the time histories of the peak horizontal velocity along the water
surface for Ra = 0.014 and 0.14 in figure 8(a). Here the peak velocity presented
in figure 8(a) is further normalized by Ra. The scaling analysis indicates that the
peak velocity is governed by (3.11). When τ & 1, the thermal boundary layer has
reached the bottom in the entire reservoir. The velocity is governed by scale (3.8).
As the peak velocity is located at x∼ h/A for τ & 1, the peak velocity scale becomes
um ∼ Ra Aκ2h−3t. Thus, the peak velocity is a linear function of time for τ & 1.
This situation holds until τ ∼ A−2/2 = 50 (see figure 8a), i.e. the time scale for the
quasi-steady state in the sloping region as given by the scale (3.17). As expected,
the calculated velocities for the two different Ra values collapse onto one curve, as
shown in figure 8(a).

The above scaling analysis shows that, in the indistinct thermal boundary layer
region, the velocity is a linear function of both the position and time. The flow within
this region reaches the quasi-steady state at t ∼ th, which is position-dependent, as
indicated by (3.17). At the quasi-steady state, the velocity in the conduction-dominated
subregion is governed by (3.34). To validate the velocity scale, the time histories of
the horizontal surface velocity at different Rayleigh numbers from the simulations are
plotted with the position as a parameter in figure 8(b). The velocity and time in the
figure are normalized by the scales u∼ Ra A2κh−4x3(1− 2Ax/(3h)) (scale (3.34) with
the new prefactor) and th∼ (1− 2Ax/(3h))x2κ−1 (scale (3.17) with the new prefactor),
respectively. The scaling analysis shows that the conduction-dominated subregion is
confined in the tip region x < xF. Thus, we choose relatively small values of x to
ensure that the positions where the velocities are recorded are well within this region.

As shown in figure 8(b), all the curves collapse after the velocity and the time
from the simulations are normalized by the corresponding scales. Figure 8(b) also
shows that, at the initial stage, the velocity increases approximately linearly with time.
The development of the velocity stops at t/[x2κ−1(1− 2Ax/(3h))] ∼O(1). These flow
behaviours agree well with the prediction of the scaling analysis.
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FIGURE 9. Profiles of the U velocity along the water surface from the simulation.

Figure 9 shows the normalized velocity profiles along the x direction by using
the modified scale (5.2), i.e. with the new prefactor (1 − 2Ax/(3h)). The curves
for Ra = 0.014 and 0.14 collapse onto each other, indicating that conduction is
dominant in the entire slope region at these low Rayleigh numbers. It is noted in
figure 9 that the curves for Ra = 21 and 70 deviate from those for Ra < 1 when X
is beyond a certain value. As indicated by the scaling analysis, the region far away
from the tip region becomes convection-dominated for Ra > 1. The velocity in the
convection-dominated subregion does not follow the velocity scale of (5.2) and thus
deviates from those for Ra< 1. The position of the deviating point moves towards the
tip region with increasing Ra because the conduction-dominated subregion becomes
smaller at larger Ra (refer to the variation of xF with Ra in figure 5). It is worth
noting that using the prefactor (1 − Ax/(2h)), which is appropriate for a large and
effectively infinite rectangular domain, does not match the expected asymptote, but
the new prefactor (1− 2Ax/(3h)) derived for the finite domain does. This observation
further confirms that the change in the internal energy of the water body has to be
taken into account when considering the energy balance. All these results further
verify the present scaling analysis.

5.3. Unsteady scales for the convection-dominated subregion
For high Rayleigh numbers (Ra> 1), convection becomes dominant in the region far
from the tip region. The scaling analysis shows that the horizontal pressure gradient
still increases after the balance between convection and horizontal conduction is
initially achieved at x∼ xB. Thus, the horizontal velocity also increases and convection
enhances. The convection-dominated subregion expands in both the onshore and
offshore directions, while the indistinct thermal boundary layer region shrinks. The
shrinkage of the indistinct thermal boundary layer region has been demonstrated by
the time history of the location of the peak surface horizontal velocity Xu, as shown
in figure 7(a). To further show the expansion of the convection-dominated subregion
in the onshore direction, the time evolution of the isotherms for Ra = 2.1 × 105 are
shown in figure 10. At the very early time t = 0.005, the isotherms are horizontal
and parallel in most regions of the reservoir except for the tip region. The isotherms
are curled in the tip region in order to satisfy the no-flux conduction there, indicating
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FIGURE 10. Isotherms in the reservoir at different time instants for Ra = 2.1 × 105.
Isotherms at: (a) t= 0.005 with an interval of 0.02; (b) t= 0.01 with an interval of 0.05;
(c) t= 0.05 with an interval of 0.1; (d) t= 0.25 with an interval of 0.2; (e) t= 0.5 with
an interval of 0.5; (f ) t= 1 with an interval of 0.5.

that the thermal boundary layer attaches to the bottom and an indistinct thermal
boundary layer region forms. The contour lines with a very small non-zero value of
10−4 are marked in figure 10(b–f ). It is shown that the 10−4 contour line first moves
in the offshore direction and then retracts in the onshore direction. If this contour
line is regarded as an indicator of the interface between the distinct and indistinct
thermal boundary layer regions, the expansion and retraction of the indistinct thermal
boundary layer region is then indicated by the positions of the 10−4 contour lines.
The retraction of the 10−4 contour line also indicates a decrease in temperature there.

The above scaling analysis reveals that the dominant mode of heat transfer
varies with time and position. To validate this, the horizontal heat transfer rates
by conduction and convection are calculated from the simulation results. The total
horizontal heat transfer rate, including the contributions of both conduction and
convection, is averaged over the local water depth and defined in a dimensionless
form as

H(X)= 1
|Yb|

∫ 0

Yb

(Uθ∗ − θ∗x ) dY, (5.3)

where θ∗ is the spatial variation of the temperature (spatial deviation from the average
temperature in the reservoir) and Yb is the corresponding Y coordinate of the bottom
at a given horizontal position X.
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FIGURE 11. Profiles of the horizontal convection (solid lines) and conduction (dashed
lines) heat transfer rates averaged over the local water depth at different time instants for
(a) Ra= 2.1× 103 and (b) Ra= 2.1× 104.

It is worth mentioning that (5.3) has been successfully used in the previous studies
(Lei & Patterson 2005; Mao et al. 2009, 2010) to characterize the quasi-steady flow
behaviours. The present study will further show the transient behaviours of flow
properties. Figure 11 shows the profiles of the horizontal heat transfer rates averaged
over the local water depth calculated at different times for Ra = 2.1 × 103 and
2.1× 104, respectively, which also compares the relative intensities of convection and
conduction along the x direction. The intersection of the convection and conduction
curves at a particular time indicates that convection and conduction are equally
important there. Clearly, this figure shows that the intersection moves towards the
tip region with time, which indicates the expansion of the convection-dominated
subregion towards the onshore direction. All the transient flow results presented
above provide strong evidence to support the present scaling analysis.

Further, the time history of the x coordinate of the intersection Xi obtained from the
numerical simulation for Ra=2.1×103 and 2.1×104 is recorded. The scaling analysis
shows that the time scale for the balance between convection and vertical conduction
is governed by (3.25). It is expected that there is a linear relationship between
(1 − 2AXi/3)/(Ra A4X2

i ) and t/tF during the developing stage of the convection-
dominated subregion, i.e. for tB < t< tF, which is confirmed in figure 12(a). The two
curves for Ra= 2.1× 103 and 2.1× 104 do not collapse onto each other. The reason
for this is the same as that for Xu, as explained in figure 7(c).

At the quasi-steady state, the location of the interface Xi stays at xF (3.32) if Ra> 1.
The locations of Xi at the quasi-steady state obtained from the simulation for different
Rayleigh numbers are plotted against the scaling of xF ∼ Ra−1/4A−1h in figure 12(b).
The excellent linear correlation between the numerical data and the scaling prediction
demonstrates that the location of Xi at the quasi-steady state is well predicted by the
scaling analysis.

The scaling analysis indicates that the flow in the convection-dominated subregion
reaches the quasi-steady state at the same time. To validate this time scale, the surface
velocities at different locations for Ra= 2.1× 105 are shown in figure 13(a). All the
locations selected are within the convection-dominated subregion and also within the
sloping-bottom region to ensure the validity of the scale. Indeed, all the curves in this
figure indicate that the flow in the whole convection-dominated subregion reaches the
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FIGURE 12. (a) Time history of the x coordinate of the intersection of the horizontal
convection and conduction heat transfer curves Xi from the numerical simulation for
Ra = 2.1 × 103 and 2.1 × 104. (b) The locations of Xi at the quasi-steady state from
the simulation versus the scaling predictions at various Rayleigh numbers (Ra> 1). The
symbols denote the numerical results whereas the solid lines are linear fits.
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FIGURE 13. Time history of (a) the U velocity and (b) the renormalized u velocity at
fixed locations on the water surface. The locations and the Rayleigh numbers are indicated
in the panels. The velocity and time are normalized as shown.

quasi-steady state at the same time. Simulations for other Rayleigh numbers also show
the same result. The previous numerical simulations reported in Yu et al. (2012b) also
support this result.

It is worth noting that Mao et al. (2010) reported a time scale tc∼ x2/3Ra−1/3h4/3κ−1

for the flow in the convection-dominated subregion to reach the quasi-steady state,
which suggests that the steady-state time depends on the location. Clearly the present
scaling analysis and numerical simulation do not support their prediction (refer to
figure 13a).

To validate the velocity scale for the convection-dominated subregion, the time
histories of the horizontal surface velocity at different Rayleigh numbers from
the simulations are plotted with the position as a parameter in figure 13(b). The
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FIGURE 14. Profiles of the U velocity along the water surface from the numerical
simulation normalized by the relevant scale for the convection-dominated subregion.

velocity and time in the figure are normalized by the scales u ∼ Ra1/4κA−1h−1

×(1 − 2Ra−1/4/3)1/2(1 − 2Ax/(3h))1/2 ((3.39) with the new prefactor) and tF ∼
(1 − 2Ra−1/4/3)Ra−1/2κ−1A−2h2 ((3.33) with the new prefactor), respectively. The
values of x are chosen carefully to ensure that they are within the convection-
dominated subregion. As shown in figure 13(b), with the normalization, all the
curves become fairly close to each other despite some scattering, suggesting that the
scaling gives a reasonable prediction for the transient flow velocity. It is also seen in
figure 13(b) that the development of the flow velocity at all the Rayleigh numbers
and locations stops at t/tF ∼ 5, again confirming the validity of the scale for the
steady-state time.

Figure 14 shows the profiles of the U velocity along the water surface at
the quasi-steady state. The velocity is normalized by the velocity scale for the
convection-dominated subregion at the quasi-steady state (3.39). It is expected that the
normalized velocity in the convection-dominated subregion at different Ra collapses
onto a horizontal straight line because this velocity scale embodies the Rayleigh
number and position dependences. As can be seen in figure 14, the normalized
velocity profiles approximately converge to a horizontal line for X beyond a certain
value (this value is Ra-dependent and corresponds to the convection-dominated
subregion). Although the curve for Ra = 2.1 × 105 deviates slightly from the other
curves for X > 9, the deviation is considered negligibly small for the purpose of
demonstrating the scaling. It is also worth emphasizing that the unscaled values of U
in figures 13(b) and 14 vary by a factor of 4, but the rescaling reduces the variability
to less than 30 % of the mean value. Thus, the simulation results generally support
the scaling analysis.

6. Conclusions

In the present study, a scaling analysis coupled with numerical simulations has
been performed to investigate the transient behaviour of natural convection in a
reservoir model. An improved scaling analysis, which takes into account the internal
energy change and the effect of horizontal conduction, has been carried out to
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reveal new and more detailed features of the transient flow development than the
previously reported analyses (e.g. Lei & Patterson 2005; Mao et al. 2009). Position-
and time-dependent scales have been established to quantify the flow properties.
Depending on the Rayleigh number, three possible flow regimes corresponding to
three different flow development pathways towards the final quasi-steady state (as
shown in table 1) can be classified, i.e. the low-Rayleigh-number regime with Ra< 1,
the medium-Rayleigh-number regime with 1<Ra<Rai, and the high-Rayleigh-number
regime with Ra > Rai. These Rayleigh-number-based criteria are equivalent to the
following criteria based on the length of the sloping region: h/A< xF, xF < h/A< xB
and h/A> xB, respectively.

The present scaling analysis reveals that horizontal conduction plays an important
role in the transient flow behaviour. Initially, the thermal boundary layer reaches
the sloping bottom in the tip region, and the unequal heat gain associated with the
changing water depth results in a horizontal temperature gradient. This temperature
gradient in turn establishes a horizontal pressure gradient that drives a flow towards
the offshore direction. The indistinct thermal boundary layer region expands towards
the offshore direction. In the meantime, the horizontal conduction eventually becomes
strong enough near the tip region so that it removes the excessive heat input from
the surface. The flow in this horizontal conduction-dominated subregion becomes
quasi-steady. The horizontal conduction-dominated subregion also expands in the
offshore direction with time. Outside the conduction-dominated subregion, the flow
velocity keeps increasing.

The schematic of the development pathways towards the final quasi-steady state
has been summarized in figure 2. At time t ∼ tB, convection at x ∼ xB becomes
strong enough to balance the heat input from the surface. The expansion of the
indistinct thermal boundary layer region stops here and a convection-dominated
subregion appears. Between the horizontal conduction-dominated subregion and the
convection-dominated subregion, the horizontal temperature gradient still increases,
the horizontal velocity driven by the horizontal pressure gradient also increases,
and so does convection. As the horizontal temperature gradient increases, the
conduction-dominated subregion continues to expand in the offshore direction at
t > tB. In the meantime, the shore-side extent of the convection-dominated subregion
moves towards the tip region, resulting in the shrinkage of the indistinct thermal
boundary layer region. Within the convection-dominated subregion, the initially
indistinct thermal boundary layer detaches from the sloping bottom and shrinks
due to the increase of convection. The shrinkage of the thermal boundary layer
stops at t ∼ tF and the indistinct thermal boundary region finally coincides with the
conduction-dominated subregion. The above-described transient flow behaviour is
fully confirmed by the numerical simulations.

Built on the previous studies of Lei & Patterson (2005) and Mao et al. (2010),
a more thorough understanding of the near-shore natural convection flow driven by
constant heat flux has been achieved. Fundamental differences between the present
study and the previous ones (Lei & Patterson 2005; Mao et al. 2010) are that the
present study: (a) takes into account the change of the internal energy contained
by the water body when considering the energy balance; (b) accounts for the effect
of horizontal conduction; and (c) develops a comprehensive scaling for transient
convection leading to the quasi-steady state. The scaling analysis conducted in the
present study also explains the contradictions between the scaling analysis of Mao
et al. (2010) and the numerical simulation of Yu et al. (2012a).

The present scaling results are readily applicable to predicting the surface heat
flux-induced flow in field situations, in which the value of the Rayleigh number is
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much larger than Rai. In this case, the developments of the distinct and indistinct
thermal boundary layer regions, the conduction-dominated and convection-dominated
subregions, can be quantified by the present study. More specifically, the order of
magnitude of the flow velocity at any given time and a given location and the time
scales for the transitions between the different flow states, as well as the length scales
of the different flow subregions, can be readily predicted. However, the present study
only considers a constant heating flux at the water surface. In real field situations, the
thermal forcing varies, depending on the time of day and the weather conditions. The
combined effect of the variation of the thermal forcing and the inertia of the flow
may result in more complex flow behaviour. Also, turbulent convection may develop
at the much larger Ra expected in field situations. Therefore, further understanding
of these types of flow relevant to field conditions entails future investigations.
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