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Deformation and breakup of drops in an isotropic turbulent flow has been studied by
numerical simulation. The numerical method involves a pseudospectral representation
of the turbulent outer flow field coupled to three-dimensional boundary integral
simulations of the local drop dynamics. A statistical analysis based on an ensemble
of drop trajectories is presented; results include breakup rates, the distribution of
primary daughter drops produced by breakup events, and stationary distributions for
drop deformation and orientation. Depending on the local flow history, drops may
break at modest length or become highly elongated and relax without breaking. Drop
deformation is the dominant mechanism of drop reorientation. The volume of the
primary daughter drops, produced by a given fluctuation in flow strength, scales with
the volume of the corresponding critical drop size for the fluctuation. A simplified
description for the evolution of the drop size distribution, based on this scaling, is
presented.

1. Introduction
Drop breakup in turbulent flows is relevant to a broad range of engineering

applications, including liquid–liquid extraction, emulsification and homogenization
processes, spraying, mixing and blending, and multiphase chemical reactors. Process
design and scale-up are hampered by the lack of reliable models for the breakup
process.

The phenomenological model proposed by Kolmogorov (1949) and Hinze (1955)
forms the basis of almost all of the current models for predicting drop breakup in
turbulent flows. According to this classical picture, breakup occurs when the distorting
hydrodynamic stress associated with a turbulent eddy exceeds the restoring stress
of surface tension. The hydrodynamic stress is dominated by inertia for drops that
are larger than the Kolmogorov dissipation length and by viscosity for drops that are
smaller. For each regime, an estimate is thus obtained for the critical drop size above
which breakup will occur in a typical fluctuation.

The population balance equation that describes the evolution of a drop size distri-
bution requires models for the breakup rates of individual drops in a fluctuating flow
field, the distribution of daughter drops produced by the breakup of a parent drop,
and pairwise coalescence rates (Coulaloglou & Tavlarides 1977; Tsouris & Tavlarides

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

03
00

55
61

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112003005561


232 V. Cristini, J. B�lawzdziewicz, M. Loewenberg and L. R. Collins

1994). Most of the recently developed phenomenological models for breakup rates
and daughter-drop-size distribution functions are based on the assumption that
drops are larger than the Kolmogorov dissipation length. Typically, this regime is
relevant to low-viscosity fluids (e.g. water, air) (see the review by Lasheras et al.
2002). Detailed simulations for the dynamics of a drop subjected to an axisymmetric
pressure disturbance were used by Shreekumar, Kumar & Gandhi (1996) as a model
for the drop dynamics in this regime. Ramkrishna and co-workers developed a
procedure for extracting breakup rates and daughter-drop-size distribution functions
from transient drop-size distribution data by solving the population balance equation
as an inverse problem (Sathyagal, Ramkrishna & Narsimhan 1996; Ramkrishna
2000). Their procedure is model-independent aside from the assumption that the
volume of daughter drops produced by a breakup event scale with the volume of the
parent drop.

The present article describes a numerical study of drop dynamics and breakup for
the complementary regime of drops that are smaller than the Kolmogorov dissipation
length. Hinze (1955) recognized the relevance of sub-Kolmogorov drop breakup in
high-viscosity fluids, but few models have been developed. The problem of computing
drop dynamics in the sub-Kolmogorov regime is simplified considerably by the
disparity of the relevant lengthscales. Accordingly, the local drop dynamics are
described by the Stokes equations in a time-dependent linear flow that matches to
the turbulent outer flow. The situation is similar to the problem of drop dynamics
in stochastic low-Reynolds-number flows, including mixing flows (Tjahjadi & Ottino
1991) and flows in porous media (Patel et al. 2003). Thus, the study presented in this
paper is relevant to a broader class of problems involving drop breakup in stochastic
flows.

The assumptions in our analysis are given in § 2, and the numerical method is
described in § 3. Qualitative features of the drop dynamics are presented in § 4. A
statistical analysis of an ensemble of drops is presented in § 5.

2. Assumptions
We consider isotropic homogeneous turbulent flow of a dilute dispersion of

deformable drops with constant interfacial tension σ . The dynamic viscosities of
the continuous- and drop-phase fluids are µ and λµ. The turbulence is characterized
by the Kolmogorov dissipation length

η = ν3/4ε−1/4, (2.1)

where ε is the average energy dissipation rate per unit mass, ν = µ/ρ is the kinematic
viscosity, and ρ is the mass density of the continuous-phase fluid; the Kolmogorov
timescale is τη = η2/ν.

Herein, we assume that the drops are small compared to the Kolmogorov scale

a/η � 1, (2.2)

where v = 4πa3/3 is the drop volume. In this regime, viscous stresses Σµ = µ/τη

dominate inertial stresses Σρ = ρa2/τ 2
η at the drop scale because Σρ/Σµ = (a/η)2.

Accordingly, the local velocity field in the neighbourhood of a drop is governed by
the Stokes equations. The trajectory of the centre-of-mass of a drop nearly coincides
with the trajectory of a material element in the turbulent outer flow, provided that
the density contrast between the continuous- and drop-phase fluids is moderate (i.e.
liquid–liquid dispersion).
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For low- and moderate-viscosity ratios, λ� 1, the time scale for drop dynamics is
set by the capillary relaxation time τσ = µa/σ , where σ is the surface tension; for
λ� 1, the relevant time scale is λτσ . Most of the results in this paper correspond to
λ= 1, although a limited set of results for λ= 0.1 and λ= 5 is also presented.

The drop-size parameter v̄ is defined by the ratio of time scales

v̄1/3 = τσ /τη. (2.3)

The parameter v̄ can be interpreted as the drop volume non-dimensionalized by
4π(στη/µ)3/3, and v̄1/3 is the capillary number for the system. Drop deformation is
significant for v̄ ≈ 1 and breakup occurs for v̄ beyond a critical value which depends
on the history of the local flow field.

The sub-Kolmogorov regime is defined by (2.2). Taking v̄ ≈ 1, we find

a/η ∼ µ−5/4σρ1/4ε−1/4, (2.4)

which indicates that sub-Kolmogorov drop breakup may occur in high-viscosity fluids.
An example of conditions corresponding to sub-Kolmogorov breakup (a/η = 0.2,
v̄1/3 = 0.3) is obtained for drops with 10 µm radius in an emulsion with µ = λµ = 20 cP,
ρ = 1000 kg m−3, and σ = 0.005 N m−1 in a turbulent flow with an average dissipation
rate ε = 103 W kg−1.

For systems with an initial drop size distribution larger than the Kolmogorov length,
the sub-Kolmogorov regime is achieved at long-times, provided that the right-hand
side of (2.4) is small compared to unity.

3. Numerical method
3.1. Outer turbulent flow

Under the assumption that the dispersion is dilute, and the density contrast of the
fluids is moderate, the turbulent outer flow uo is unaffected by the presence of the
drops. Moreover, trajectories of the drop centre-of-mass xc(t) can be approximated
by the trajectories of material elements,

dxc

dt
= uo(xc, t), (3.1)

and pre-calculated. The velocity field uo was computed by solving the Navier–
Stokes equations with periodic boundary conditions, using a pseudospectral method
(Canuto et al. 1988). Stationary turbulence was maintained by adding energy to the
long-wavenumber modes with a random forcing (Eswaran & Pope 1988). Physical
space was discretized on a 643 lattice, and wavenumbers up to 1.5η−1 were used
(Sundaram & Collins 1997). The velocity field between lattice points was obtained
by spectral interpolation. The Reynolds number based on the Taylor microscale for
this system is 54. Fluctuations of the energy dissipation rate about the mean value
are known to increase with Reynolds number (Frisch 1995); however, the Reynolds-
number-dependence of the drop dynamics was not explored in our study.

3.2. Local drop dynamics

3.2.1. Boundary integral formulation

According to the assumptions discussed in § 2, the local velocity field is described
by the Stokes equations with boundary conditions appropriate for deformable drops
with constant interfacial tension (i.e. velocity and tangential stress continuous at the
drop interface, and a normal stress discontinuity resulting from capillary stresses).
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Figure 1. Maximum drop length for trajectory (b) in figure 2 as a function of mesh
resolution N−1

0 (points); linear fit (dashed line).

Drop-shape evolution was computed by integrating the the fluid velocity u(x) on
the drop interface. The velocity field u(x) was obtained by solving the boundary
integral equation for Stokes flow (Pozrikidis 1992) with a far field that matches to a
linear expansion of the turbulent outer flow about the drop trajectory,

u∞(x, t) = (x − xc) · [e(t) + w(t)]. (3.2)

Here, e(t) and w(t) are the symmetric and antisymmetric tensors that describe the
straining and rotational components of the flow, respectively.

The boundary integral equation was iteratively solved on a set of N interfacial
marker points at each time step of the drop-shape evolution. Between time steps, the
discretization of the drop interface was adaptively restructured to maintain uniform
resolution of the pointwise curvature with a prescribed accuracy determined by the
number of marker points N0 used to discretize the initial (spherical) drop shape
(Cristini, B�lawzdziewicz & Loewenberg 2001). Figure 1 shows the maximum drop
length attained on trajectory (b) in figure 2 as a function of mesh resolution N−1

0 .
Drop length is defined as the diameter of the sphere that circumscribes the drop shape.
The results shown in figure 1 indicate that discretization errors are approximately
O(N−1

0 ). The calculations presented in this paper were obtained using N0 = 100, which
corresponds to approximately 5% discretization error, according to the figure.

Critical values of the drop-size parameter v̄∗ for isolated fluctuations in flow
strength along a given trajectory were determined to within 1% accuracy (for a fixed
discretization N0) from a series of simulations. The critical drop length l∗, defined as
the maximum length without breakup on a particular fluctuation, was obtained by
extrapolating from the maximum lengths achieved for subcritical-size drops. Breakup
times at pinch-off tb and (primary) daughter drop volumes vd for supercritical-size
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Figure 2. Evolution of drop length and projected strain rate on two trajectories, v̄1/3 = 0.3,
λ= 1 (solid curves). Final drop shapes and shape at maximum length on trajectory (b) are
shown. Axisymmetric approximation (4.3) corresponding to drop-size parameter v̄1/3 = 0.25
(dashed curve).

drops were obtained by extrapolating in time to the pinch-off event from simulations
that describe the evolution close to pinch-off (Lister & Stone 1998; B�lawzdziewicz,
Cristini & Loewenberg 1997). Satellite drops produced by the subsequent breakup of
the elongated neck region were not resolved in our simulations.
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4. Drop trajectories
Qualitative features of drop dynamics are illustrated in this section. The evolution

of drop length l for two drop trajectories is shown in figure 2. The strength of the
local flow field along the trajectories is characterized by the strain projection

el = l̂ · e · l̂, (4.1)

where l̂ is the drop-orientation vector, and e is the rate-of-strain tensor. Selected drop
shapes along the trajectories are shown in figure 3. The point-symmetry of the drop
shapes results from the symmetry of the linear incident flow field (3.2) and spherical
initial conditions.

The drop on trajectory (a) in figure 2 breaks after moderate elongation (l/a ≈ 7),
while the drop on trajectory (b) becomes much more distorted (l/a ≈ 13) but relaxes
to a nearly spherical shape. The two drops experience qualitatively different projected
strain histories, as shown in figure 2. Drop (a) experiences a modest straining
fluctuation that decays slowly; the fluctuation stretches the drop and maintains its
elongation until a neck forms, as shown in figure 3(a). The neck thins under capillary
pressure, and pinch-off occurs. In contrast, drop (b) encounters a larger fluctuation
that strongly stretches the drop; however, the straining fluctuation decays rapidly,
and is followed by compressional flow (el < 0). Thus, the drop retracts quickly, and
only a shallow neck develops, as seen in figure 3(b). The foregoing example shows
that the drop dynamics depend on the detailed history of the local flow field.

On a given trajectory, the drop dynamics depend on the viscosity ratio and drop-
size parameter v̄. The effects of these parameters are illustrated in figure 4. Here, the
strength of the local flow field is characterized by

emax = max(e1, e2, e3), (4.2)

where (e1, e2, e3) are the eigenvalues of the rate-of-strain tensor e. The results show
that for breaking trajectories, the drop length at pinch-off increases approximately
linearly with the drop-size parameter v̄. This is because the elongation rate after
a neck region forms is dominated by the local strain rate, but the neck thinning
rate is proportional to surface tension. Subsequent breakup of the elongated neck
by end-pinching or the capillary-wave instability would yield several smaller satellite
drops; however, this process was not resolved in our simulations.

The results in figure 4 also show that low-viscosity drops (i.e. λ= 0.1 and λ= 1)
respond quickly to changes in the flow field because τσ � τη. For high-viscosity drops
(λ= 5), the relevant timescale is comparatively longer λτσ > τη, thus drops respond
more slowly and have a longer memory of the flow-field history. The drop length at
pinch-off increases with λ for λ� 1, because the neck thinning rate is proportional
to λ−1.

We found that qualitative features of the three-dimensional drop dynamics can be
predicted using an axisymmetric approximation, provided that the drop-orientation

vector l̂(t) is known. According to this approximation, the incident flow field (3.2) is
represented by

u∞
z = elz, u∞

s = − 1
2
els, (4.3)

where (s, z) are cylindrical coordinates with radial distance s and the z-axis parallel

to l̂ . The corresponding velocity components are (usuz), and el is the projected strain

(4.1). This approximation was tested on several trajectories by using l̂(t) obtained from
our three-dimensional simulations. In all cases, this approximation gave qualitatively
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Figure 3. Sequence of drop shapes corresponding to trajectories (a) and (b) in figure 2, at
times t/τη indicated; inset shows neck region for trajectory (a) at t/τη = 45.15.
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Figure 4. Evolution of drop length and flow strength with λ= 0.1, 1, 5 and v̄1/3 as labelled;
drop shapes at the onset of pinch-off are shown.

reliable predictions, provided that the drop size parameter was adjusted (up to 15%).
An example is shown in figure 2 (dashed-curve).

We have not been able to develop a simplified model for the drop orientation l̂(t),
given the time-dependent ambient flow. According to our simulations, the evolution
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Figure 5. Autocorrelations of drop length (solid curve) and flow strength (dashed curve),
v̄1/3 = 0.3, λ = 1.

of drop orientation is qualitatively distinct from the evolution of a passive material
element, except in the strong-flow limit (i.e. rapid breakup conditions), where drop
shapes resemble slender filaments (Tjahjadi & Ottino 1991). As shown in § 5.2,
drop deformation, rather than drop rotation, is the dominant mechanism for drop
reorientation under small- and moderate-deformation conditions.

5. Statistical analysis
5.1. Correlation times

A statistical analysis of the system was performed for the case λ = 1. Simulation times
much longer than the correlation time for the drop dynamics were used to ensure
that the results presented below represent the stationary behaviour of the system.

Time autocorrelation functions for flow-strength emax and drop length l, calculated
for v̄1/3 = 0.3, are shown in figure 5. The autocorrelation RQ(t) of the quantity Q(t),
where Q = emax or Q = l, was evaluated from an ensemble of 100 trajectories, each
corresponding to an elapsed time t0 = 136τη. Broken drops were discarded from
the ensemble at the time of pinch-off tb (for v̄1/3 = 0.3, breakup occurred on 36
trajectories). The autocorrelation functions were calculated using both ensemble and
time averaging,

RQ(t) =

〈 ∫ T

0

�Q(t ′) �Q(t ′ + t) dt ′
〉

〈∫ T

0

�Q(t ′)2 dt ′
〉 , (5.1)

where �Q(t) = Q(t)−〈Q(t)〉, T = min(t0, tb), and 〈 . . . 〉 denotes the ensemble average.
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0 0.1 0.2 0.3

τl /τe

v1/3

Figure 6. Drop-length correlation time versus drop size parameter, λ= 1. A representative
error bar is shown.

The corresponding correlation time is defined as

τQ =

∫ ∞

0

RQ(t ′) dt. (5.2)

In our simulations, the calculated flow-strength correlation time was

τe/τη � 2.4, (5.3)

in agreement with the measurements of Pope (1990). According to the results shown
in figure 6, τl ≈ τe, consistent with the rapid response of low- and moderate-viscosity
drops to fluctuations in flow strength, seen in figure 4. Drop dynamics are quasi-static
in the limit τσ /τη → 0 (discussed below), thus limv̄→0 τl = τe.

5.2. Distributions of drop length and orientation

The cumulative probability distributions P for drop length and drop orientation,
shown in figure 7, were calculated by time-averaging the instantaneous distributions
from the ensemble of drop trajectories described above.

Drop orientation with respect to the local velocity field is characterized by the
parameter

β(l̂) =
el

‖e‖ , (5.4)

where el is the projection (4.1), and ‖e‖ = (e : e)1/2 (β = 1 corresponds to l̂ parallel to
the z-axis in axisymmetric straining flow (4.3)). On a given trajectory, maximum drop
alignment (i.e. maximum value of β) corresponds to

l̂ = êmax, (5.5)

where êmax is the eigenvector associated with the maximum eigenvalue, emax .
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Figure 7. Stationary cumulative distributions of (a) drop length and (b) orientation parameter
(5.4), λ= 1, v̄1/3 = 0.05, 0.15, 0.25, 0.30 as labelled; numerical simulations (solid curves), O(v̄)
small deformation theory (dotted curves). Maximum alignment (5.5), v̄ = 0 (dashed-dotted
curve), and orientation of material element (dashed curve) shown in (b).

In the small-deformation-limit v̄1/3 → 0, the drop-shape evolution is quasistatic
because the capillary relaxation time is much less than the Kolmogorov time,
according to equation (2.3). Under these conditions, the drop shape is described
by ξ/a = 1 + v̄1/3(C : êξ êξ ), where ξ is the distance of the drop interface from the drop
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centre along the direction of the radial unit vector êξ , and C is the shape tensor

C(t) =
b0

b1

τηe(t), (5.6)

with b0 = 5/(2λ+ 3) and b1 = 8b0(λ+ 1)/(19λ+ 16) (Leal 1992). This result indicates
that maximum drop alignment (5.5) is achieved in the small-deformation limit.
Under small-deformation-conditions τσ � τη, drop reorientation occurs quickly by
deformation of the drop interface on the timescale τσ , rather than by rotation of the
drop on the longer timescale τη.

The dashed-dotted curve in figure 7(b) shows the quasistatic prediction (5.5) for
the cumulative distribution of drop orientation. The dotted curves in figure 7 show the
predictions of an O(v̄) perturbation expansion (Barthés-Biesel & Acrivos 1973). The
drop-length distributions shown in figure 7(a) indicate that small-deformation-theory
is accurate only for very modest deformations.

In the complementary strong-flow regime, elongated drop filaments reorient as
passive material elements on the time scale τη. In our simulations, however, breakup
events preclude large deformations. As a result, the drop orientation distributions
shown in figure 7(b) are qualitatively distinct from the distribution corresponding to
material elements (dashed curve); in fact, the drop orientation distributions are closer
to maximum alignment (5.5).

The evolution of the conditionally averaged drop length and orientation prior to
breakup events, shown in figure 8, were calculated from an ensemble of 36 trajectories
corresponding to v̄1/3 = 0.3. Large fluctuations result from the small size of the
ensemble and the absence of time-averaging. The results show that after encountering
the breaking fluctuation at tb − t ≈ 10τη, drops elongate and misalign with respect
to the flow, similar to a material element, in contrast to the near-maximum average
alignment shown in figure 7(b). These results suggest that drop deformation, rather
than rotation by the flow, is the dominant mechanism of drop reorientation in
time-dependent flows with λ� 1, except immediately prior to breakup events.

5.3. Breakup rates

Our calculation of drop breakup rates is based on the assumption that the turbulent
flow field along a drop trajectory can be represented by a sequence of uncorrelated
fluctuations in the magnitude of the local strain rate. According to this picture,
fluctuations are separated by intervals of relatively weak flow in which drop breakup
does not occur. The strength of each fluctuation is characterized by a critical drop
volume v̄∗, such that drops with v̄ > v̄∗ break in the fluctuation, and drops with
v̄ < v̄∗ do not break. The fluctuations are uncorrelated, provided that the time interval
between them is large compared to the drop-length correlation time τl .

The distribution of the flow-field fluctuations is characterized by the fluctuation
rate f (v̄∗), where f (v̄∗) dv̄∗ represents the number per unit time of fluctuations
with strength in the range (v̄∗, v̄∗ + dv̄∗). Under the assumptions of uncorrelated
fluctuations and statistical equivalence of drop trajectories, drop breakup rates are
given by the cumulative distribution of the flow-strength fluctuation frequency,

r(v̄) =

∫ v̄

0

f (s) ds. (5.7)

For uncorrelated fluctuations, this procedure is equivalent to computing r(v̄) by
determining the number of breakup events in a given time interval from simulations
with v̄ fixed. However, our approach is more efficient because separate simulations
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Figure 8. Evolution of average (a) flow strength, (b) drop length, and (c) orientation parameter
(5.4) (solid curve) for trajectories resulting in drop breakup, v̄1/3 = 0.3, λ= 1. Pinch-off occurs
at t = tb . Maximum alignment (5.5) (dashed-dotted curve) and orientation of material element
(dashed curve) are shown in (c).

for each value of the drop size parameter are not required. Our approach is
particularly useful in the long-time regime v̄ → 0 associated with rare breakup events
(cf. § 5.7).
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Figure 9. Breakup rates defined by (5.7), λ= 1 (solid curve); linear fit (5.8) (dashed curve).

The breakup rates shown in figure 9 were computed using formula (5.7) from
an ensemble of 108 uncorrelated fluctuations with v̄∗ � 0.06, found within a total
flow time Ttot = 13, 600τη. The upper limit ensures that the fluctuations were in fact
uncorrelated. According to figure 6 and equation (5.3), the drop-length correlation
time lies in the range 2.4τη � τl � 3.3τη, whereas the fluctuations in our simulations
were isolated by at least 10τη. For each fluctuation, the critical drop size was evaluated
from a series of boundary-integral simulations. For moderate drop volumes (v̄ > 0.02),
our numerical results indicate that breakup rates are approximately described by the
linear relation

r ≈ kv̄, (5.8)

where kτη = 0.148 ± 0.015. An estimate of the relative statistical error in the rate
calculation, based on the variance for a Poisson distribution, is (r Ttot)

−1/2. Accordingly,
breakup rates corresponding to the strongest fluctuations (v̄ < 0.01) are poorly
resolved; longer simulations are required to resolve breakup rates for v̄ → 0.

The same ensemble of flow fluctuations was used to evaluate the cummulative
distribution P (l∗) of critical drop lengths l∗ (maximum drop length attained in a
fluctuation without breakup). The broad critical drop-length distribution, seen in
figure 10, implies that a finite fraction of drops become highly elongated without
breakup (cf. example in figure 3). In contrast, drops in stationary Stokes flows have
comparatively short critical lengths, (e.g. l∗/a ≈ 4.7 in simple shear flow for λ= 1
(B�lawzdziewicz, Cristini & Loewenberg 2002). Given that large deformations may
occur without breakup, and that small deformation theory is reliable only for very
modest deformations (cf. figure 7a), small deformation theory (or any description
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Figure 10. Cumulative distribution of critical drop length, λ= 1.

of drop dynamics which does not resolve the evolution of the neck) cannot reliably
predict breakup events in time-dependent Stokes flows.

5.4. Distribution of daughter drops

The distribution of primary daughter-drop volumes, shown in figure 11, was computed
from a simulations of 46 breakup events with λ= 1 and 0.18 � v̄1/3 � 0.27. The results
are presented in a rescaled form, where each daughter-drop volume v̄d is normalized
by the corresponding critical drop size v̄∗ for the fluctuation in which the breakup
event occurs. Our simulation results show that this rescaling yields a narrow drop-size
distribution with a mean value

v̄d/v̄
∗ ≈ b−1, (5.9)

where b ≈ 2 is a partitioning constant.
The scaling (5.9) reflects the stress balance on the drop interface. The radius of

curvature of a drop fragment (i.e. daughter-drop radius ad) is determined by the
balance between capillary and viscous stresses σ/ad ∼ µγ̇ ′, where γ̇ ′ is the charac-
teristic strain rate for the fluctuation that breaks the drop. Accordingly, the daughter
drop volume is given by

v̄d ∼ (τηγ̇
′)−3, (5.10)

which is independent of the parent-drop volume. For v̄ ≈ v̄∗, breakup events produce
two daughter drops with volume v̄d ≈ v̄∗/2. Thus, by the insensitivity with respect to
parent-drop volume, equation (5.9) follows.

A similar scaling has been observed in experimental and numerical studies of drop
breakup in simple shear flow under Stokes flow conditions (Marks 1998; Cristini et al.
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Figure 11. Cumulative distribution of daughter-drop volumes, λ= 1.

2003), and in simple shear with inertia (Renardy & Cristini 2001; Renardy, Cristini &
Li 2002). This result contradicts the assumption, embedded in almost all models of
drop breakup in a turbulent flow, that the daughter-drop-size distribution scales with
the size of the parent drop (Lasheras et al. 2002; Sathyagal et al. 1996; Ramkrishna
2000).

5.5. Evolution of the drop-size distribution

Assuming that drop breakup events are uncorrelated and that drops do not coalesce,
the evolution of the number density of drops n(v̄, t) of size v̄ is governed by the
population balance equation

∂

∂t
n(v̄, t) =

∫ ∞

v̄

g(v̄, v̄′)n(v̄′, t) dv̄′ − r(v̄)n(v̄, t), (5.11)

where r(v̄) is the drop breakup rate (5.7), and g(v̄, v̄′) is the production rate of drops
with volume v̄ by the breakup of drops with volume v̄′.

Because of its computational cost, it is impractical to evaluate the two-variable
production-rate function g(v̄, v̄′) directly from boundary-integral simulations without
resorting to some simplifications. Small deformation theory cannot be used to predict
breakup rates, and the axisymmetric approximation (4.3) requires a model for
predicting drop orientation. However, a simple approximation for g(v̄, v̄′) can be
derived from estimate (5.9).

According to this estimate, the production rate gd(v̄, v̄′) of primary daughter drops
with volume v̄ is approximately independent of the parent-drop volume v̄′ and is
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proportional to the fluctuation strength, characterized by v̄∗. Thus, we have

gd(v̄, v̄′) ≈ 2bf (bv̄), (5.12)

where the factor b on the right-hand side results from the change of variables between
v̄ and v̄∗ = bv̄ in the fluctuation-strength frequency.

Approximation (5.12) leads to the simplified evolution equation for the primary
drop fragments produced by breakup events

∂

∂t
n(v̄, t) = 2bf (bv̄)

∫ ∞

bv̄

n(v̄′, t) dv̄′ − n(v̄, t)

∫ v̄

0

f (v̄′) dv̄′, (5.13)

which is obtained from (5.11) by replacing g(v̄, v̄′) with gd(v̄, v̄′). In equation (5.13),
the excess volume v̄′ − 2v̄ that is partitioned into smaller satellite drops is neglected,
because secondary breakup events leading to the formation to such satellites were
not resolved in our simulations. A more detailed description, where the distribution
of satellite drops is also modelled, will be discussed in a separate publication.

5.6. Moments of the drop size distribution

In this section, we derive an analytical solution of the evolution equation (5.13) with
a power-law breakup rate

r = kv̄q, (5.14)

and a monodisperse initial drop-size distribution

n(v̄, 0) = δ(v̄ − v̄0)n0, (5.15)

where n0 is the initial number density of drops, and v̄0 is the initial drop volume. The
results for an arbitrary initial condition can be obtained by linear superposition.

Multiplying equation (5.13) by v̄i and integrating with respect to v̄ yields

M ′
i (t) = −k

(
1 − 2qb−i

i + q

)
Mi+q(t), (5.16)

where

Mi(t) =

∫ ∞

0

v̄in(v̄, t) dv̄, i = 0, 1, 2 . . . (5.17)

are moments of the drop size distribution, and M ′
i (t) denotes a time derivative of Mi(t).

Higher-order time derivatives of the moments are obtained by iterative application
of (5.16)

M
(p)
i (t) = (−k)p

p∏
j=1

(
1 − 2qb−i−(j−1)q

i + jq

)
Mi+pq(t), (5.18)

where p = 1, 2, . . . According to initial condition (5.15),

Mi(0) = n0v̄
i
0. (5.19)

Thus, equation (5.18) can be used to generate the Taylor series expansion for the
normalized moments M̄i(t) = Mi(t)/Mi(0)

M̄i(t) =

∞∑
p=0

(−k̄t)p

p!

p∏
j=1

(
1 − 2qb−i−(j−1)q

i + jq

)
, (5.20)

where k̄ = kv̄
q

0 .
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Figure 12. Evolution of moments of drop size distribution (5.20) corresponding to breakup
rate (5.8) and partitioning constant b = 2.

Solution (5.20) is shown in figure 12 for a system with a linear breakup rate,
q = 1, and partitioning constant b = 2. These parameter values are consistent with
our simulations (cf. equation (5.8) and figure 11). The curves in figure 12 correspond
to the drop number density M̄0, the total drop volume M̄1, and the average drop
volume M̄2/M̄1. The total volume of primary daughter drops M̄1 decays with time,
because satellite drops produced by secondary breakup events are not included in the
evolution equation (5.13). The results reveal an algebraic evolution of the moments
at long times.

5.7. The role of rare events

Since only small drops survive at long times, rare strong fluctuations are required
for further breakup. According to the multifractal theory of turbulent intermittency,
fluctuations in the energy dissipation rate ε ′ scale as (Frisch 1995)

ε ′/ε ∼ (s ′/L)α−1, (5.21)

for ReL → ∞, where L is the integral lengthscale, s ′ is the lengthscale associated with
the fluctuation, ReL = (L/η)4/3 is the integral-scale Reynolds number, and α is the
singularity exponent. Assuming α ≈ 0, corresponding to the strongest fluctuations
(Meneveau & Sreenivasan 1991), and taking s ′ ≈ η′ ≡ ν3/4ε ′−1/4, we obtain

ε ′/ε ∼ ReL. (5.22)

An estimate for the corresponding critical drop size parameter at high Reynolds
numbers is obtained by inserting the characteristic shear rate γ̇ ′ = ν/η′2 into equation
(5.10)

v̄∗ ∼ Re−3/2
L . (5.23)
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Accordingly, equation (2.4) becomes

a/η′ ∼
(
µ−5/4σρ1/4ε−1/4

)
Re−1/4

L . (5.24)

The additional factor Re−1/4
L suggests that the sub-Kolmogorov regime considered in

this study has broader relevance at high Reynolds numbers and long times.
Testing the predicted Reynolds-number dependence (5.23) with numerical simula-

tions will require longer simulation times and a range of larger Reynolds numbers.
Recent simulations of isotropic turbulence at Reynolds numbers up to 234 (based
on the Taylor microscale) show evidence of intermittency (Yeung 2001). The com-
putational strategy developed in our study is particularly efficient for computer
simulations of drop dynamics in the long-time regime. Accordingly, an ensemble
of isolated strong fluctuations is obtained by applying a flow-strength criterion or
a simplified model of the drop dynamics. Boundary-integral simulations are only
required for computing the critical drop size for each fluctuation, and breakup rates
are given by the cummulative distribution of critical drop sizes.

J. B., V. C., and M. L. were supported by NSF grant CTS-9624615 and NASA
grant NAG3-2477; V. C. had additional support from an NSF grant; L. R. C. was
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Lasheras, J. C., Eastwood, C., Martínez-Bazán, C. & Montanes, J. L. 2002 A review of statistical
models for the break-up of an immiscible fluid immersed into a fully developed turbulent
flow. Intl J. Multiphase Flow 28, 247–278.

Leal, L. 1992 Laminar Flow and Convective Transport Processes . Butterworth–Heinemann.

Lister, J. R. & Stone, H. A. 1998 Capillary breakup of a viscous thread surrounded by another
viscous fluid. Phys. Fluids 10, 2758–2764.

Marks, C. 1998 Drop breakup and deformation in sudden onset strong flows. PhD thesis, University
Maryland, College Park.

Meneveau, C. & Sreenivasan, K. R. 1991 Multifractal nature of turbulent energy dissipation.
J. Fluid Mech. 224, 429–484.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

03
00

55
61

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112003005561


250 V. Cristini, J. B�lawzdziewicz, M. Loewenberg and L. R. Collins

Patel, P., Shaqfeh, E., Butler, J., Cristini, V., Blawzdziewicz, J. & Loewenberg, M. 2003
Drop breakup in the flow through fixed fiber beds: an experimental and computational
investigation. Phys. Fluids 15, 1146–1157.

Pope, S. B. 1990 Lagrangian microscales in turbulence. Phil. Trans. R. Soc. Lond. A 333, 309–319.

Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow.
Cambridge University Press.

Ramkrishna, D. 2000 Population Balances: Theory and Applications to Particulate Systems in
Engineering . Academic.

Renardy, Y. & Cristini, V. 2001 Scalings for fragments produced from drop breakup in shear flow
with inertia. Phys. Fluids 13, 2161–2164.

Renardy, Y., Cristini, V. & Li, J. 2002 Drop fragment distributions under shear with inertia. Intl
J. Multiphase Flow 28, 1125–1147.

Sathyagal, A. N., Ramkrishna, D. & Narsimhan, G. 1996 Droplet breakage in stirred dispersions.
Breakage functions from experimental drop-size distributions. Chem. Engng Sci. 51, 1377–
1391.

Shreekumar, Kumar, R. & Gandhi, K. S. 1996 Breakage of a drop of inviscid fluid due to a
pressure fluctuation at its surface. J. Fluid Mech. 328, 1–17.

Sundaram, S. & Collins, L. R. 1997 Collision statistics in an isotropic, particle-laden turbulent
suspension I. direct numerical simulations. J. Fluid Mech. 335, 75–109.

Tjahjadi, M. & Ottino, J. M. 1991 Stretching and breakup of droplets in chaotic flows. J. Fluid
Mech. 232, 191–219.

Tsouris, C. & Tavlarides, L. L. 1994 Breakage and coalescence models for drops in turbulent
dispersions. AICHE J. 40, 395–406.

Yeung, P. K. 2001 Lagrangian characteristics of turbulence and scalar transport in direct numerical
simulations. J. Fluid Mech. 427, 241–274.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

03
00

55
61

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112003005561

