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We propose an approach to analysing the asymptotic behaviour of Pólya urns based on

the contraction method. For this, a new combinatorial discrete-time embedding of the

evolution of the urn into random rooted trees is developed. A decomposition of these trees

leads to a system of recursive distributional equations which capture the distributions of

the numbers of balls of each colour. Ideas from the contraction method are used to study

such systems of recursive distributional equations asymptotically. We apply our approach

to a couple of concrete Pólya urns that lead to limit laws with normal limit distributions,

with non-normal limit distributions and with asymptotic periodic distributional behaviour.
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1. Introduction

In this paper we develop an approach to proving limit theorems for Pólya urn models

by the contraction method. We consider an urn with balls in a finite number m � 2 of

different colours, numbered 1, . . . , m. The evolution of a Pólya urn is determined by an

m × m replacement matrix R = (aij)1�i,j�m, which is given in advance together with an

initial (time 0) composition of the urn with at least one ball. Time evolves in discrete steps.

In each step, one ball is drawn uniformly at random from the urn. If it has colour i it is

placed back into the urn together with aij balls of colour j for all j = 1, . . . , m. The steps

are iterated independently. A classical problem is to identify the asymptotic behaviour

of the numbers of balls of each colour as the number n of steps tends to infinity. The

literature on this problem, in particular on limit theorems for the normalized numbers

of balls of each colour, is vast. We refer to the monographs of Johnson and Kotz [22]

and Mahmoud [26] and the references and comments on the literature in the papers of

Janson [16], Flajolet, Gabarró and Pekari [13] and Pouyanne [32].

A couple of approaches have been used to analyse the asymptotic behaviour of Pólya

urn models, most notably the method of moments, discrete-time martingale methods,
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embeddings into continuous-time multitype branching processes, and methods from

analytic combinatorics based on generating functions. All these methods use the ‘forward’

dynamic of the urn process by exploiting the fact that the distribution of the composition

at time n given time n − 1 is explicitly accessible.

In the present paper, we propose an approach based on a ‘backward’ decomposition

of the urn process. We construct a new embedding of the evolution of the urn into an

associated combinatorial random tree structure growing in discrete time. Our associated

tree can be decomposed at its root (time 0) such that the growth dynamics of the subtrees

of the root resemble the whole tree in distribution. More precisely we have different types

of distributions for the associated tree, one type for each possible colour of its root. The

decomposition of the associated tree into subtrees gives rise to a system of distributional

recurrences for the numbers of balls of each colour. To extract the asymptotic behaviour

from such systems we develop an approach in the context of the contraction method.

The contraction method is well known in the probabilistic analysis of algorithms.

It was introduced by Rösler [34] and first developed systematically in Rachev and

Rüschendorf [33]. A rather general framework with numerous applications to the analysis

of recursive algorithms and random trees was given by Neininger and Rüschendorf [29].

The contraction method has been used for sequences of distributions of random variables

(or random vectors or stochastic processes) that satisfy an appropriate recurrence relation.

To the best of our knowledge it has not yet been used for systems of such recurrence

relations as they arise in the present paper, the only exception being Leckey, Neininger

and Szpankowski [25], where tries are analysed under a Markov source model. A novel

technical aspect of the present paper is that we extend the use of the contraction method

to systems of recurrence relations systematically.

The aim of this paper is not to compete with other techniques with respect to generality

under which urn models can be analysed. Instead we discuss our approach in relation to

a couple of examples illustrating the contraction framework in three frequently occurring

asymptotic regimes: normal limit laws, non-normal limit laws and regimes with oscillating

distributional behaviour. We also discuss the case of random entries in the replacement

matrix. Our proofs are generic and can easily be transferred to other urn models or

developed into more general theorems when asymptotic expansions of means (respectively

means and variances in the normal limit case) are available: see the types of expansions

of the means in Section 3.

A general assumption in the present paper is that the replacement matrix is balanced,

i.e., we have
∑m

j=1 aij =: K − 1 for all i = 1, . . . , m, where K � 2 is a fixed integer. (The

notation K is unfortunate since this integer is not random, and it has mainly been

chosen because of similarity in notation to earlier work on the contraction method.) An

implication of the balance condition is that the asymptotic growth of the subtrees of the

associated tree processes can jointly be captured by Dirichlet distributions. This leads to

characterizations of the limit distributions in all cases (normal, non-normal and oscillatory

behaviour) by systems (see (3.2)–(3.6) below) of distributional fixed point equations where

all coefficients are powers of components of a Dirichlet-distributed vector; see also the

discussion in Section 3. The present approach reveals that all three regimes are governed

by systems of distributional fixed point equations of similar type.

https://doi.org/10.1017/S0963548314000364 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000364


1150 M. Knape and R. Neininger

The paper is organized as follows. In Section 2 we introduce the associated trees

into which the urn models are embedded and derive the systems of distributional

recurrences for the numbers of balls of a certain colour from the associated trees. In

Section 3 we outline the types of systems of fixed point equations that emerge from

the distributional recurrences after proper normalization. To make these recurrences and

fixed point equations accessible to the contraction method, in Section 4 we first introduce

spaces of probability distributions and appropriate Cartesian product spaces together with

metrics on these product spaces. The metrics in use are product versions of the minimal

Lp-metrics and product versions of the Zolotarev metrics. In Section 5 we use these spaces

and metrics to show that our systems of distributional fixed point equations uniquely

characterize vectors of probability distributions via a contraction property. These cover

the types of distributional fixed point equations that appear in the final Section 6, where

we discuss examples of limit laws for Pólya urn schemes within our approach. Also in

Section 6, our convergence proofs are worked out, again based on the product versions of

the minimal Lp and Zolotarev metrics. In Section 7 we compare our study of systems of

recurrences with an alternative formulation based on multivariate recurrences and explain

the advantages and necessity of our approach.

For similar results see [9] (announced after posting the present paper on arXiv.org).

Notation. We let
d−→ denote convergence in distribution, and we let N (μ, σ2) denote the

normal distribution on R with mean μ ∈ R and variance σ2 � 0. In the case σ2 = 0, this

degenerates to the Dirac measure in μ. Throughout the paper, Bachmann–Landau symbols

are used in asymptotic statements. We let log(x) for x > 0 be the natural logarithm of x

and denote the non-negative integers by N0 := {0, 1, 2, . . . }.

2. A recursive description of Pólya urns

In this section we explain our embedding of urn processes into associated combinatorial

random tree structures growing in discrete time. The distributional self-similarity within

the subtrees of the roots of these associated trees leads to systems of distributional

recurrences which constitute the core of our approach.

The Pólya urn. To develop our approach, we first consider an urn model with two colours,

black and white, and a deterministic replacement matrix R. Below, an extension of this

approach to urns with more than two colours and replacement matrices with random

entries is discussed too. To be definite, we use the replacement matrix

R =

[
a b

c d

]
with a, d ∈ N0 ∪ {−1} and b, c ∈ N0, (2.1)

with

a + b = c + d =: K − 1 � 1.

The assumption that the sums of the entries in each row are the same will become essential

only from Lemma 2.1 on. Now, after drawing a black ball, this ball is placed back into

the urn together with a new black balls and b new white balls. If a white ball is drawn, it
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Pólya Urns Via the Contraction Method 1151

is placed back into the urn together with c black balls and d white balls. A diagonal entry

a = −1 (or d = −1) implies that a drawn black (or white) ball is not placed back into

the urn while balls of the other colour are still added to the urn. As initial configuration,

we consider both one black ball and one white ball. Other initial configurations can be

dealt with as well, also discussed below. We let Bb
n denote the number of black balls after

n steps when initially starting with one black ball, and we let Bw
n denote the number of

black balls after n steps when initially starting with one white ball. Hence, we have Bb
0 = 1

and Bw
0 = 0.

The associated tree. We encode the urn process as follows by a discrete-time evolution of

a random tree with nodes coloured black or white. This tree is called an associated tree.

The initial urn with one ball, say a black one, is associated with a tree with one root node

of the same (black) colour. The ball in the urn is represented by this root node. Now

drawing the ball and placing it back into the urn together with a new black balls and b

new white balls is encoded in the associated tree by adding a + b + 1 = K children to the

root node, a + 1 of them being black and b being white. The root node then no longer

represents a ball in the tree, whereas the K new leaves of the tree now represent the K

balls in the urn. Now, we iterate this procedure. At any step, a ball is drawn from the urn.

It is represented by one of the leaves, say node v in the tree. The urn follows its dynamic.

If the ball drawn is black, the (black) leaf v gets K children, a + 1 black ones and b white

ones. Similarly, if the ball drawn is white, the (white) leaf v gets c black children and d + 1

white children. In both cases, v no longer represents a ball in the urn. The ball drawn and

the new balls are represented by the children of v. The correspondence between all other

leaves of the tree and the other balls in the urn remains unchanged. For an example of

an evolution of an urn and its associated tree, see Figure 1. Hence, at any time, the balls

in the urn are represented by the leaves of the associated tree, where the colours of balls

and representing leaves match. Each node of the tree is either a leaf or has K children.

We could also simulate the urn process by only running the evolution of the associated

tree as follows. Start with one root node of the colour of the initial ball of the urn. At

any step, choose one of the leaves of the tree uniformly at random, inspect its colour, add

K children to the chosen leaf and colour these children as defined above. Then, after n

steps, the tree has n(K − 1) + 1 leaves. The number of black leaves is distributed as Bb
n if

the root node was black, and as Bw
n if the root node was white.

Subsequently, it is important to note the following recursive structure of the associated

tree. For a fixed replacement matrix of the Pólya urn, we consider the two initial

compositions of one black ball, respectively one white ball, and their two associated

trees. We call these the b-associated, respectively w-associated tree. Consider one of these

associated trees after n � 1 steps. It has n(K − 1) + 1 leaves, and each subtree rooted at a

child of the associated tree’s root (we call them subtrees for short) has a random number of

leaves according to how often a leaf node has been chosen for replacement in the subtree.

We condition on the numbers of leaves of the subtrees being ir(K − 1) + 1 with ir ∈ N0

for r = 1, . . . , K . Note that we have
∑K

r=1 ir = n − 1, the −1 resulting from the fact that in

the first step of the evolution of the associated tree, the subtrees are being generated; only

afterwards do they start growing. From the evolution of the b-associated tree, it is clear
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Figure 1. A realization of the evolution of the Pólya urn with replacement matrix
[

1 2
2 1

]
and initially one

white ball. The arrows indicate which ball is drawn (resp. which leaf is replaced) in each step. The associated

tree is shown below each urn. Leaf nodes correspond to the balls in the urn; non-leaf nodes (crossed out) no

longer correspond to balls in the urn. However, their colour still matters for the recursive decomposition of the

associated tree.

that, conditioned on the subtrees’ numbers of leaves being ir(K − 1) + 1, the subtrees are

stochastically independent and the rth subtree is distributed as an associated tree after

ir steps. Whether it has the distribution of the b-associated tree or the w-associated tree

depends on the colour of the subtree’s root node.

To summarize, we have that conditioned on their numbers of leaves, the subtrees of

associated trees are independent and distributed as associated trees of corresponding size

and type inherited from the colour of their root node.

System of recursive equations. We set up recursive equations for the distributions of the

quantities Bb
n and Bw

n . For Bb
n , we start the urn with one black ball and get a b-associated

tree with a black root node. Now, Bb
n is distributed as the number of black leaves in

the associated tree after n steps which, for n � 1, we express as the sum of the numbers

of black leaves of its subtrees. As discussed above, conditionally on I (n) = (I (n)
1 , . . . , I

(n)
K ),

the vector of the numbers of balls drawn in each subtree, these subtrees are independent

and distributed as b-associated trees or w-associated trees of the corresponding size

depending on the colour of their roots. In a b-associated tree, the root has a + 1 black

and b = K − (a + 1) white children. Hence, we obtain

Bb
n

d
=

a+1∑
r=1

B
b,(r)

I
(n)
r

+

K∑
r=a+2

B
w,(r)

I
(n)
r

, n � 1, (2.2)

where
d
= denotes that the left- and right-hand sides have an identical distribution; we have

that (Bb,(1)
k )0�k<n, . . . , (B

b,(a+1)
k )0�k<n, (Bw,(a+2)

k )0�k<n, . . . , (B
w,(K)
k )0�k<n, I

(n) are independent,
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Pólya Urns Via the Contraction Method 1153

the B
b,(r)
k are distributed as Bb

k , the B
w,(r)
k are distributed as Bw

k for k = 0, . . . , n − 1 for the

respective values of r.

Similarly, we obtain a recursive distributional equation for Bw
n . We have

Bw
n

d
=

c∑
r=1

B
b,(r)

I
(n)
r

+

K∑
r=c+1

B
w,(r)

I
(n)
r

, n � 1, (2.3)

with conditions on independence and identical distributions as in (2.2). Note that with

the initial value (Bb
0 , B

w
0 ) = (1, 0), the system of equations (2.2)–(2.3) defines the sequence

of pairs of distributions (L(Bb
n ),L(Bw

n ))n�0.

General number of colours. The approach above for urns with two colours extends directly

to urns with an arbitrary number m � 2 of colours. We denote the replacement matrix by

R = (aij)1�i,j�m with

aij ∈
{

N0 for i �= j,

N0 ∪ {−1} for i = j,
and

m∑
j=1

aij =: K − 1 � 1 for i = 1, . . . , m.

The colours (subsequently also called types) are now numbered 1, . . . , m and we focus

on the number of balls of type 1 after n steps. When starting with one ball of type j

we let B[j]
n denote the number of type 1 balls after n steps. To formulate a system of

distributional recurrences generalizing (2.2) and (2.3), we further denote the intervals of

integers:

Jij :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
1 +

∑
k<i akj ,

∑
k�i akj

]
∩ N0 for i < j,[

1 +
∑

k<i akj , 1 +
∑

k�i akj
]

∩ N0 for i = j,[
2 +

∑
k<i akj , 1 +

∑
k�i akj

]
∩ N0 for i > j,

(2.4)

with the convention [x, y] = ∅ if x > y. Then, we have

B[j]
n

d
=

m∑
i=1

∑
r∈Jij

B
[i],(r)

I
(n)
r

, n � 1, j ∈ {1, . . . , m}, (2.5)

where, for each j ∈ {1, . . . , m}, we have that the family

{
(
B

[i],(r)
k

)
0�k<n

| r ∈ Jij , i ∈ {1, . . . , m}} ∪ {I (n)}

is independent, B[i],(r)
k is distributed as B

[i]
k for all i ∈ {1, . . . , m}, 0 � k < n and r ∈ Jij and

I (n) has the distribution as above in Lemma 2.1.

Composition vectors. For urns with more than two colours one may study the numbers

of balls of each colour jointly. Even though the system (2.5) only gives access to the

marginals of this composition vector, we could also derive a system of recurrences for

the composition vectors and develop our approach for the joint distribution of the

composition vector. The work spaces (MR
s )×d and (MC

s )×d defined in Section 4 below

(there d corresponds to the number of colours) then become (MR
d−1

s )×d and (MC
d−1

s )×d.

The Zolotarev metrics ζs and minimal Lp-metrics �p are defined on R
d−1 and C

d−1 as well
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and can be used to develop a similar limit theory for the composition vectors as presented

here for their marginals.

Random entries in the replacement matrix. The case of a replacement matrix with random

entries such that each row almost surely sums to a deterministic and fixed K − 1 � 1 can

be covered by an extension of the system (2.5). Instead of formulating such an extension

explicitly, we discuss an example in Section 6.2.

Growth of subtrees. In our analysis, the asymptotic growth of the K subtrees of the

associated tree is used. We denote by I (n) = (I (n)
1 , . . . , I

(n)
K ) the vector of the numbers of

draws of leaves from each subtree after n � 1 draws in the full associated tree. In other

words, I (n)
r (K − 1) + 1 is the number of leaves of the rth subtree after n � 1 steps. We

have I (1) = (0, . . . , 0), and I (2) is a vector with all entries being 0, except for one coordinate

which is 1. To describe the asymptotic growth of I (n), we need the Dirichlet distribution

Dirichlet((K − 1)−1, . . . , (K − 1)−1): it is the distribution of a random vector (D1, . . . , DK )

with
∑K

r=1 Dr = 1 and such that (D1, . . . , DK−1) has a Lebesgue density supported by the

simplex

SK :=

{
(x1, . . . , xK−1) ∈ [0, 1]K−1

∣∣∣∣
K−1∑
r=1

xr � 1

}

given for x ∈ SK by

x = (x1, . . . , xK−1) 	→ cK

(
1 −

K−1∑
r=1

xr

)2−K
K−1

K−1∏
r=1

x
2−K
K−1
r , cK =

Γ
(
(K − 1)−1

)1−K

K − 1
,

where Γ denotes Euler’s gamma function. In particular, D1, . . . , DK are identically distrib-

uted with the beta
(
(K − 1)−1, 1

)
distribution, i.e., with Lebesgue density

x 	→ (K − 1)−1x
2−K
K−1 , x ∈ [0, 1].

We have the following asymptotic behaviour of I (n).

Lemma 2.1. Consider a Pólya urn with constant row sum K − 1 � 1 and its associated

tree. For the numbers of balls I (n) = (I (n)
1 , . . . , I

(n)
K ) drawn in each subtree of the associated

tree when n balls have been drawn in the whole associated tree, we have, as n → ∞,(
I

(n)
1

n
, . . . ,

I
(n)
K

n

)
−→ (D1, . . . , DK )

almost surely and in any Lp, where (D1, . . . , DK ) has the Dirichlet distribution

L(D1, . . . , DK ) = Dirichlet

(
1

K − 1
, . . . ,

1

K − 1

)
.

Proof. The sequence (I (n)
1 (K − 1) + 1, . . . , I (n)

K (K − 1) + 1)n∈N0
has an interpretation by

another urn model, which we call the subtree-induced urn. For this, we give additional

labels to the leaves of the associated tree. The set of possible labels is {1, . . . , K}, and we

label a leaf j if it belongs to the jth subtree of the root (any ordering of the subtrees of
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the root is fine). Hence, all leaves of a subtree of the associated tree’s root get the same

label, and leaves of different subtrees get different labels. Now, the subtree-induced urn

has balls of colours 1, . . . , K . At any time, the number of balls of each colour is identical

to the numbers of leaves with the corresponding label. Hence, the dynamic of the subtree-

induced urn is that of a Pólya urn with initially K balls, one of each colour. Whenever a

ball is drawn, it is placed back into the urn together with K − 1 balls of the same colour.

In other words, the replacement matrix for the dynamic of the subtree-induced urn is a

K × K diagonal matrix with all diagonal entries equal to K − 1. After n steps, we have

I (n)
r (K − 1) + 1 balls of colour r. The dynamic of the subtree-induced urn as a K-colour

Pólya–Eggenberger urn is well known (see Athreya [1, Corollary 1]): for n → ∞, almost

surely and in Lp for any p � 1, we have(
I

(n)
1 (K − 1) + 1

n(K − 1) + 1
, . . . ,

I
(n)
K (K − 1) + 1

n(K − 1) + 1

)
−→ (D1, . . . , DK ),

where (D1, . . . , DK ) has a Dirichlet((K − 1)−1, . . . , (K − 1)−1) distribution. This implies the

assertion.

Subsequently we only consider balanced urns such that we have the asymptotic

behaviour of I (n)/n in Lemma 2.1 available. The assumption of balance only enters our

subsequent analysis via Lemma 2.1. It also seems feasible to apply our approach to un-

balanced urns that have an associated tree such that I (n)/n converges to a non-degenerate

limit vector V = (V1, . . . , VK ) of random probabilities, i.e., of random V1, . . . , VK � 0 such

that
∑K

r=1 Vr = 1 almost surely and P(max1�r�K Vr < 1) > 0. It seems that the contraction

argument may even allow the distribution of V to depend on the initial colour of the ball

in the urn. We leave these issues for future research.

3. Systems of limit equations

In this section we outline how systems of the form (2.5) are used subsequently. Based

on the order of means and variances, the B[j]
n are normalized and recurrences for the

normalized random variables are considered. From this, with n → ∞, we derive systems of

recursive distributional equations; see (3.2), (3.4) and (3.6). According to the general idea

of the contraction method, we then show first that these systems characterize distributions

(see Section 5), and second that the normalized random variables converge in distribution

towards these distributions (see Section 6). In the periodic case (c) we do not have

convergence, but the solution of system (3.6) allows us to describe the asymptotic periodic

behaviour.

Particularly crucial are the expansions of the means

μ[j]
n := E

[
B[j]
n

]
, j = 1, . . . , m,

which are intimately related to the spectral decomposition of the replacement matrix. We

only consider cases where these means grow linearly. Note, however, that even balanced

urns can have quite different growth orders. An example is the replacement matrix
[

4 0
3 1

]
;
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see Kotz, Mahmoud and Robert [24] for this example or Janson [17] for a comprehensive

account of urns with triangular replacement matrix.

Type (a). Assume that we have expansions of the form, as n → ∞,

μ[j]
n = cμn + djn

λ + o(nλ), j = 1, . . . , m,

with a constant cμ > 0 independent of j, with constants dj ∈ R and an exponent 1/2 <

λ < 1. We call this scenario type (a). This suggests that the variances are of the order n2λ

and a proper scaling is

X[j]
n :=

B[j]
n − μ[j]

n

nλ
, n � 1, j = 1, . . . , m. (3.1)

Deriving from (2.5) a system of recurrences for the X[j]
n and letting formally n → ∞ (this is

done explicitly in the examples in Section 6), we obtain the system of fixed point equations

X[j] d
=

m∑
i=1

∑
r∈Jij

Dλ
rX

[i],(r) + b[j], j = 1, . . . , m, (3.2)

where the X[i],(r) and the (D1, . . . , DK ) are independent, X[i],(r) are distributed as X[i], the

(D1, . . . , DK ) is distributed as in Lemma 2.1 and the b[j] are functions of (D1, . . . , DK ).

It turns out that such a system subject to centred X[j] with finite second moments has

a unique solution on the level of distributions (Theorem 5.1). This identifies the weak

limits of the X[j]
n . Examples are given in Sections 6.1 and 6.2. One can also obtain the

same system (3.2) with b[j] = 0 for all j by only centering the B[j]
n by cμn instead of the

exact mean. Then system (3.2) has to be solved subject to finite second moments and

appropriate means. Moreover, the system allows us to calculate higher-order moments of

the solution. From the second and third moments one can typically see that the solution

is not a vector of normal distributions.

Expansions of the form

μ[j]
n = cμn + djn

λ logν(n) + o(nλ logν(n)), j = 1, . . . , m,

with ν � 1, also appear; see Janson [16] or the table on page 279 of Pouyanne [31] for

a classification. Such additional factors logν(n), slowly varying at infinity, give rise to

the same limit system (3.2) and hence do not affect the limit distributions. These cases

can be covered in a similar way to the examples in Section 6. We omit the details; see,

however, Hwang and Neininger [14] for the occurrence and analysis of similar slowly

varying factors.

Type (b). Assume that we have expansions of the form, as n → ∞,

μ[j]
n = cμn + o(

√
n), j = 1, . . . , m,

with a constant cμ > 0 independent of j. We call this scenario type (b). This suggests that

the variances are of linear order and a proper scaling is

X[j]
n :=

B[j]
n − μ[j]

n√
Var(B[j]

n )

, n � 1, j = 1, . . . , m (3.3)
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(or

√
Var(B[j]

n ) replaced by
√
n). The corresponding system of fixed point equations in the

limit is

X[j] d
=

m∑
i=1

∑
r∈Jij

√
DrX

[i],(r), j = 1, . . . , m, (3.4)

with conditions as in (3.2). Under appropriate assumptions on moments we find that the

only solution is for all X[j] to be standard normally distributed (Theorem 5.2). This leads

to asymptotic normality of the X[j]
n . Examples are given in Sections 6.1 and 6.2. The case

μ[j]
n = cμn + Θ(

√
n), j = 1, . . . , m,

leads to the same system of fixed point equations (3.4). However, here the variances are

typically of order n logδ(n) with a positive δ.

Type (c). Assume that we have expansions of the form, as n → ∞,

μ[j]
n = cμn + �

(
κjn

iμ
)
nλ + o(nλ), j = 1, . . . , m,

with a constant cμ > 0 independent of j, 1/2 < λ < 1, constants κj ∈ C and μ ∈ R \ {0}
(where i denotes the imaginary unit). We call this scenario type (c). This suggests oscillating

variances of order n2λ. The oscillatory behaviour of mean and variance typically cannot

be removed by proper scaling to obtain convergence towards a limit distribution. Using

the scaling

X[j]
n :=

B[j]
n − cμn

nλ
, n � 1, j = 1, . . . , m, (3.5)

it turns out that the oscillating behaviour of the X[j]
n can be captured by the system of

fixed point equations

X[j] d
=

m∑
i=1

∑
r∈Jij

Dω
r X

[i],(r), j = 1, . . . , m, (3.6)

with conditions as in (3.2) and ω := λ + iμ. Under appropriate moment assumptions

this has a unique solution within distributions on C (Theorem 5.3). An example of a

corresponding distributional approximation is given in Section 6.3.

As in type (a) we may have additional factors logν(n), i.e.,

μ[j]
n = cμn + �(κjn

iμ)nλ logν(n) + o(nλ logν(n)), j = 1, . . . , m.

The comments for type (a) cases above apply here as well.

Note that the approach of embedding urn models into continuous-time multitype

branching processes (see [2, 16]) also leads to characterizations of the limit distributions

as in (3.2) and (3.6). However, the form of the fixed point equations is different; see the

system in equation (3.5) in Janson [16]. Properties of such fixed points have been studied

by Chauvin, Pouyanne and Sahnoun [10, 8, 7].
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4. Spaces of distributions and metrics

In this section we define Cartesian products of spaces of probability distributions and

metrics on these products. These metric spaces will be used below, first to characterize

limit distributions of urn models (Section 5) and then to prove convergence in distribution

of the scaled numbers of balls of a colour (Section 6).

Spaces. We let MR denote the space of all probability distributions on R with the Borel

σ-field. Moreover, we consider the subspaces

MR

s := {L(X) ∈ MR | E[|X|s] < ∞}, s > 0,

MR

s (μ) := {L(X) ∈ MR

s | E[X] = μ}, s � 1, μ ∈ R,

MR

s (μ, σ2) := {L(X) ∈ MR

s (μ) | Var(X) = σ2}, s � 2, μ ∈ R, σ � 0.

We need the d-fold Cartesian products, d ∈ N, of these spaces denoted by

(MR

s )×d := MR

s × · · · × MR

s , (4.1)

and analogously (MR
s (μ))×d and (MR

s (μ, σ2))×d.

We also need probability distributions on the complex plane C. We let MC denote the

space of all probability distributions on C with the Borel σ-field. Moreover, for γ ∈ C we

use the subspaces and product space

MC

s := {L(X) ∈ MC | E[|X|s] < ∞}, s > 0,

MC

2 (γ) := {L(X) ∈ MC

2 | E[X] = γ},
(MC

2 (γ))×d := MC

2 (γ) × · · · × MC

2 (γ).

To cover the different behaviour of the urns, two types of metrics are constructed:

extensions of the Zolotarev metrics ζs and the minimal Lp-metric �p to the product spaces

defined above.

Zolotarev metric. The Zolotarev metric was introduced and studied in [39, 40]. The

contraction method based on the Zolotarev metric was systematically developed in [29]

and, for issues that go beyond what is needed in this paper, in [20] and [30]. We only

need the following properties. For distributions L(X), L(Y ) ∈ MR the Zolotarev distance

ζs, s > 0, is defined by

ζs(X,Y ) := ζs(L(X),L(Y )) := sup
f∈Fs

|E[f(X) − f(Y )]|, (4.2)

where s = m + α with 0 < α � 1, m ∈ N0, and

Fs := {f ∈ Cm(R,R) : |f(m)(x) − f(m)(y)| � |x − y|α}, (4.3)

the space of m-times continuously differentiable functions from R to R such that the mth

derivative is Hölder-continuous of order α with Hölder constant 1.

We have that ζs(X,Y ) < ∞ if all moments of orders 1, . . . , m of X and Y are equal and

if the sth absolute moments of X and Y are finite. Since the cases 1 < s � 3 are used

later on, we have two basic cases. First, for 1 < s � 2 we have ζs(X,Y ) < ∞ for L(X),

L(Y ) ∈ MR
s (μ) for any μ ∈ R. Second, for 2 < s � 3 we have ζs(X,Y ) < ∞ for L(X),
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L(Y ) ∈ MR
s (μ, σ2) for any μ ∈ R and σ � 0. Moreover, the pairs (MR

s (μ), ζs) for 1 < s � 2

and (MR
s (μ, σ2), ζs) for 2 < s � 3 are complete metric spaces; for completeness see [11,

Theorem 5.1].

Convergence in ζs implies weak convergence on R. Furthermore, ζs is (s,+)-ideal, i.e.,

we have

ζs(X + Z, Y + Z) � ζs(X,Y ), ζs(cX, cY ) = csζs(X,Y ) (4.4)

for all Z independent of (X,Y ) and all c > 0. Note that this implies that, for X1, . . . , Xn

independent and Y1, . . . , Yn independent such that the respective ζs distances are finite, we

have

ζs

( n∑
i=1

Xi,

n∑
i=1

Yi

)
�

n∑
i=1

ζs(Xi, Yi). (4.5)

On the product spaces (MR
s (μ))×d for 1 < s � 2 and (MR

s (μ, σ2))×d for 2 < s � 3, our first

main tool is

ζ∨
s ((ν1, . . . , νd), (μ1, . . . , μd)) := max

1�j�d
ζs(νj , μj),

where (ν1, . . . , νd), (μ1, . . . , μd) ∈ MR
s (μ))×d and ∈ (MR

s (μ, σ2))×d respectively. Note that ζ∨
s

is a complete metric on the respective product spaces and induces the product topology.

Minimal Lp-metric �p . First, for probability metrics on the real line, the minimal Lp-metric

�p, 1 � p < ∞ is defined by

�p(ν, �) := inf{‖V − W‖p |L(V ) = ν,L(W ) = �}, ν, � ∈ MR

p ,

where

‖V − W‖p := (E[|V − W |p])1/p

is the usual Lp-norm. The spaces (MR
p , �p) and (MR

p (μ), �p) for 1 � p < ∞ are complete

metric spaces: see [6]. The infimum in the definition of �p is a minimum. Random

variables V ′, W ′, with distributions ν and �, respectively, such that �p(ν, �) = ‖V ′ − W ′‖p
are called optimal couplings. They exist for all ν, � ∈ MR

p . We use the notation �p(X,Y ) :=

�p(L(X),L(Y )) for random variables X and Y . Subsequently the following inequality

between the �p- and ζs-metrics is used:

ζs(X,Y ) �
(
(E[|X|s])1−1/s + (E[|Y |s])1−1/s

)
�s(X,Y ), 1 < s � 3, (4.6)

where for 1 < s � 2 we need L(X),L(Y ) ∈ MR
s (μ) for some μ ∈ R, and for 2 < s � 3 we

need L(X),L(Y ) ∈ MR
s (μ, σ2) for some μ ∈ R and σ � 0 (see [11, Lemma 5.7]).

On the product space (MR

2 (0))×d, we define

�∨
2 ((ν1, . . . , νd), (�1, . . . , �d)) := max

1�j�d
�2(νj , �j),

where (ν1, . . . , νd), (μ1, . . . , μd) ∈ (MR

2 (0))×d. Note that (MR

2 (0))×d, �∨
2 ) is a complete metric

space as well.

Second, on the complex plane the minimal Lp-metric �p is defined similarly by

�p(ν, �) := inf{‖V − W‖p |L(V ) = ν,L(W ) = �}, ν, � ∈ MC

p ,
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with the analogous definition of the Lp-norm. The respective metric spaces are complete

as in the real case and optimal couplings exist as well. On the product space (MC

2 (0))×d

we use

�∨
2 ((ν1, . . . , νd), (�1, . . . , �d)) := max

1�j�d
�2(νj , �j),

where (ν1, . . . , νd), (μ1, . . . , μd) ∈ (MC

2 (0))×d. Note that (MC

2 (0))×d, �∨
2 ) is a complete metric

space as well.

Preview of the use of spaces and metrics. The guidance as to which space and metric to

use in which asymptotic regime of Pólya urns is as follows. We return to the three types

(a)–(c) of urns from the previous section.

(a) Urns that, after scaling, lead to convergence to a non-normal limit distribution.

Typically such a convergence holds almost surely, but we only discuss convergence in

distribution.

(b) Urns that, after scaling, lead to convergence to a normal limit. Such a convergence

typically does not hold almost surely, but at least in distribution.

(c) Urns that, even after a proper scaling, do not lead to convergence. Instead there is an

asymptotic oscillatory behaviour of the distributions. Such oscillatory behaviour can

even be captured almost surely; we discuss a (weak) description for distributions.

The cases of type (a) can be dealt with on the space (MR

2 (μ))×d with appropriate μ ∈ R

and d ∈ N, where, by centering, one can always achieve the choice μ = 0. One can use the

metrics ζ∨
2 or �∨

2 , which lead to similar results although based on different details in the

proofs. We will only present the use of ζ∨
2 , since we can then easily extend the argument to

the type (b) cases by switching from ζ∨
2 to ζ∨

3 . This leads to a more concise presentation.

However, the �∨
2 -metric appears to us to be equally convenient to apply in type (a) cases.

The cases of type (b) can be dealt with on the space (MR
s (μ, σ2))×d with 2 < s � 3

and appropriate μ ∈ R, σ > 0 and d ∈ N. By normalization, one can always achieve the

choices μ = 0 and σ = 1. Since in the context of urns third absolute moments in type (b)

cases typically exist, one can use s = 3 and the metric ζ∨
3 . We do not know how to use

the �∨
p -metrics in type (b) cases.

The cases of type (c) can be dealt with on the space (MC

2 (γ))×d with appropriate γ ∈ R

and d ∈ N. The metric used subsequently in type (c) cases is the complex version of �∨
2 .

In our example below we will, however, use MC

2 (γ1) × · · · × MC

2 (γd) with γ1, . . . , γd ∈ C in

order to be able to work with a more natural scaling of the random variables, the metric

still being �∨
2 . We think ζ∨

2 can also be used in type (c) cases, but we have not checked

the details since the application of �∨
2 is straightforward.

5. Associated fixed point equations

We fix d, d′ ∈ N, a d × d′ matrix (Air) of random variables and a vector (b1, . . . , bd) of

random variables. Either all of these random variables are real or all of them are complex.

Furthermore, we are given a d × d′ matrix (π(i, r)) with all entries π(i, r) ∈ {1, . . . , d}. First,
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we consider the case where all Air and all bi are real. We associate a map

T : (MR)×d → (MR)×d,

(μ1, . . . , μd) 	→ (T1(μ1, . . . , μd), . . . , Td(μ1, . . . , μd)), (5.1)

Ti(μ1, . . . , μd) := L
( d′∑

r=1

AirZir + bi

)
, (5.2)

with (Ai1, . . . , Aid′ , bi), Zi1, . . . , Zid′ independent and Zir distributed as μπ(i,r), r = 1, . . . , d′ and

for all components i = 1, . . . , d.

In the case where the Air and bi are complex random variables, we define a map T ′

similar to T :

T ′ : (MC)×d → (MC)×d, (5.3)

(μ1, . . . , μd) 	→ (T ′
1(μ1, . . . , μd), . . . , T

′
d(μ1, . . . , μd)),

with T ′
i (μ1, . . . , μd) defined as for Ti in (5.2).

For the three regimes discussed in the preview within Section 4 we use the following

three theorems (Theorem 5.1 for type (a), Theorem 5.2 for type (b), and Theorem 5.3 for

type (c)) on existence of fixed points of T and T ′.

Theorem 5.1. Assume that in the definition of T in (5.1) and (5.2), the Air and bi are

square-integrable real random variables with E[bi] = 0 for all 1 � i � d and 1 � r � d′, and

max
1�i�d

d′∑
r=1

E
[
A2
ir

]
< 1. (5.4)

Then the restriction of T to (MR

2 (0))×d has a unique fixed point.

Theorem 5.2. Assume that in the definition of T in (5.1) and (5.2) for some ε > 0, the Air

are L2+ε-integrable real random variables and bi = 0 for all 1 � i � d and 1 � r � d′, that

almost surely

d′∑
r=1

A2
ir = 1 for all i = 1, . . . , d, (5.5)

and

min
1�i�d

P

(
max

1�r�d′
|Air| < 1

)
> 0. (5.6)

Then, for all σ2 � 0, the restriction of T to (MR

2+ε(0, σ
2))×d has the unique fixed point

(N (0, σ2), . . . ,N (0, σ2)).

Theorem 5.3. Assume that in the definition of T ′ in (5.3), the Air and bi are square-

integrable complex random variables for all 1 � i � d and 1 � r � d′, and that for
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γ1, . . . , γd ∈ C we have

E[bi] +

d′∑
r=1

γπ(i,r)E[Air] = γi, i = 1, . . . , d. (5.7)

If, moreover,

max
1�i�d

d′∑
r=1

E
[
|Air|2

]
< 1, (5.8)

then the restriction of T ′ to MC

2 (γ1) × · · · × MC

2 (γd) has a unique fixed point.

Note that a special case of Theorem 5.1 was used in the proof of [16, Theorem 3.9(iii)]

with a proof technique similar to that in our proof of Theorem 5.3.

The rest of this section contains the proofs of Theorems 5.1–5.3.

Proof of Theorem 5.1. First note that for (μ1, . . . , μd) ∈ (MR

2 (0))×d, by independence in

definition (5.2) and E[bi] = 0, we have Ti(μ1, . . . , μd) ∈ MR

2 (0) for i = 1, . . . , d. Hence, the

restriction of T to (MR

2 (0))×d maps into (MR

2 (0))×d.

Next, we show that the restriction of T to (MR

2 (0))×d is a (strict) contraction with

respect to the metric ζ∨
2 . For (μ1, . . . , μd), (ν1, . . . , νd) ∈ (MR

2 (0))×d we first fix i ∈ {1, . . . , d}.
Let Zi1, . . . , Zid′ and Z ′

i1, . . . , Z
′
id′ be real random variables such that Zir is distributed as

μπ(i,r) and Z ′
ir is distributed as νπ(i,r). Moreover, assume that both families

{(Ai1, . . . , Aid′ , bi), Zi1, . . . , Zid′ } and {(Ai1, . . . , Aid′ , bi), Z
′
i1, . . . , Z

′
id′ }

are independent. Then we have

Ti(μ1, . . . , μd) = L
( d′∑

r=1

AirZir + bi

)
, Ti(ν1, . . . , νd) = L

( d′∑
r=1

AirZ
′
ir + bi

)
. (5.9)

Conditioning on (Ai1, . . . , Aid′ , bi) and denoting this vector’s distribution by Υ, we obtain

ζ2(Ti(μ1, . . . , μd), Ti(ν1, . . . , νd))

= sup
f∈F2

∣∣∣∣
∫

E

[
f
( d′∑

r=1

αrZir + β
)

− f
( d′∑

r=1

αrZ
′
ir + β

)]
dΥ(α1, . . . , αd′ , β)

∣∣∣∣
�
∫

sup
f∈F2

∣∣∣∣E
[
f

( d′∑
r=1

αrZir + β

)
− f

( d′∑
r=1

αrZ
′
ir + β

)]∣∣∣∣ dΥ(α1, . . . , αd′ , β)

=

∫
ζ2

( d′∑
r=1

αrZir + β,

d′∑
r=1

αrZ
′
ir + β

)
dΥ(α1, . . . , αd′ , β). (5.10)

Since ζ2 is (2,+)-ideal, we obtain from (4.4) that

ζ2

(∑
αrZir + β,

∑
αrZ

′
ir + β

)
�
∑

α2
r ζ2(Zir, Z

′
ir).
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Hence, we can further estimate

ζ2(Ti(μ1, . . . , μd), Ti(ν1, . . . , νd))

�
∫ d′∑

r=1

α2
r ζ2(Zir, Z

′
ir) dΥ(α1, . . . , αd′ , β)

=

∫ d′∑
r=1

α2
r ζ2(μπ(i,r), νπ(i,r)) dΥ(α1, . . . , αd′ , β)

�
( d′∑

r=1

E
[
A2
ir

])
ζ∨
2 ((μ1, . . . , μd), (ν1, . . . , νd)). (5.11)

Now, taking the maximum over i yields

ζ∨
2 (T (μ1, . . . , μd), T (ν1, . . . , νd)) �

(
max
1�i�d

d′∑
r=1

E
[
A2
ir

])
ζ∨
2 ((μ1, . . . , μd), (ν1, . . . , νd)). (5.12)

Hence, condition (5.4) implies that the restriction of T to (MR

2 (0))×d is a contraction.

Since the metric ζ∨
2 is complete, Banach’s fixed point theorem implies the assertion.

Proof of Theorem 5.2. This proof is similar to the previous proof of Theorem 5.1. Let

ε > 0 be as in Theorem 5.2 and let σ > 0 be arbitrary. First note that for

(μ1, . . . , μd) ∈ (MR

2+ε(0, σ
2))×d,

by independence in definition (5.2), condition (5.5), and bi = 0, we have

Ti(μ1, . . . , μd) ∈ MR

2+ε(0, σ
2) for i = 1, . . . , d.

Hence, the restriction of T to (MR

2+ε(0, σ
2))×d maps into (MR

2+ε(0, σ
2))×d.

We set s := (2 + ε) ∧ 3. For

(μ1, . . . , μd), (ν1, . . . , νd) ∈ (MR

2+ε(0, σ
2))×d

we choose Zi1, . . . , Zid′ and Z ′
i1, . . . , Z

′
id′ as in the proof of Theorem 5.1, such that we have

(5.9). Note that with our choice of s we have

ζs(Ti(μ1, . . . , μd), Ti(ν1, . . . , νd)) < ∞.

With an estimate analogous to (5.10)–(5.12), now using that ζs is (s,+)-ideal, we obtain

ζ∨
s (T (μ1, . . . , μd), T (ν1, . . . , νd)) �

(
max
1�i�d

d′∑
r=1

E
[
|Air|s

])
ζ∨
s ((μ1, . . . , μd), (ν1, . . . , νd)).

Note that s > 2 and the conditions (5.5) and (5.6) imply that

d′∑
r=1

E[|Air|s] < 1 for all i = 1, . . . , d.
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Hence, the restriction of T to (MR

2+ε(0, σ
2))×d is a contraction and the completeness of ζ∨

s

implies the existence of a unique fixed point. With the convolution property

N (0, σ2
1) ∗ N (0, σ2

2) = N (0, σ2
1 + σ2

2) for σ1, σ2 � 0,

one can directly check that (N (0, σ2), . . . ,N (0, σ2)) is a fixed point of T in (MR

2+ε(0, σ
2))×d.

Proof of Theorem 5.3. Let γ1, . . . , γd be as in Theorem 5.3 and abbreviate

P := MC

2 (γ1) × · · · × MC

2 (γd).

First note that for (μ1, . . . , μd) ∈ P , from independence in the definition of T ′
i (μ1, . . . , μd)

and the finite second moments of the Air and bi, we obtain T ′
i (μ1, . . . , μd) ∈ MC

2 for all

i = 1, . . . , d. For a random variable W with distribution T ′
i (μ1, . . . , μd), we have

E[W ] =

d′∑
r=1

E[Air]γπ(i,r) + E[bi] = γi

by condition (5.7). Hence, the restriction of T ′ to P maps into P .

Next, we show that the restriction of T ′ to P is a contraction with respect to the metric

�∨
2 . For (μ1, . . . , μd), (ν1, . . . , νd) ∈ P we first fix i ∈ {1, . . . , d}. Let (Zir, Z

′
ir) be an optimal

coupling of μπ(i,r) and νπ(i,r) for r = 1, . . . , d′ such that (Zi1, Z
′
i1), . . . , (Zid′ , Z ′

id′ ), (Ai1, . . . , Aid′ , bi)

are independent. Then we have

T ′
i (μ1, . . . , μd) = L

( d′∑
r=1

AirZir + bi

)
, T ′

i (ν1, . . . , νd) = L
( d′∑

r=1

AirZ
′
ir + bi

)
. (5.13)

Letting γ denote the complex conjugate of γ ∈ C, we obtain

�2
2(T

′
i (μ1, . . . , μd), T

′
i (ν1, . . . , νd))

� E

[∣∣∣∣
d′∑
r=1

Air(Zir − Z ′
ir)

∣∣∣∣
2]

= E

[ d′∑
r=1

|Air|2|Zir − Z ′
ir|2
]

+ E

[∑
r �=t

Air(Zir − Z ′
ir)Ait(Zit − Z ′

it)

]

=

d′∑
r=1

E
[
|Air|2

]
�2

2(μπ(i,r), νπ(i,r)) (5.14)

�
( d′∑

r=1

E
[
|Air|2

])(
�∨

2 ((μ1, . . . , μd), (ν1, . . . , νd))
)2
.

For equation (5.14), we first use that Zir − Z ′
ir and Zit − Z ′

it are independent, centred

factors, so that the expectation of the sum over r �= t is 0, and second that (Zir, Z
′
ir) are

optimal couplings of (μπ(i,r), νπ(i,r)) such that E[|Zir − Z ′
ir|2] = �2

2(μπ(i,r), νπ(i,r)).
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Now, taking the maximum over i yields

�∨
2 (T ′(μ1, . . . , μd), T

′(ν1, . . . , νd))

�
(

max
1�i�d

d′∑
r=1

E
[
|Air|2

])1/2

�∨
2 ((μ1, . . . , μd), (ν1, . . . , νd)).

Hence, condition (5.8) implies that the restriction of T ′ to P is a contraction. Since the

metric �∨
2 is complete, Banach’s fixed point theorem implies the assertion.

6. Convergence and examples

In this section a couple of concrete Pólya urns are considered, and convergence of the

normalized numbers of balls of a colour is shown within the product metrics defined in

Section 4. The proofs are generic such that they can easily be transferred to other urns

of types (a)–(c) in Section 3. We always show limit laws for the initial compositions of

the urn with one ball of (arbitrary) colour. Limit laws for other initial compositions can

be obtained from these by appropriate convolution with coefficients which are powers of

components of an independent Dirichlet-distributed vector. We leave the details to the

reader.

6.1. 2 × 2 deterministic replacement urns

A discussion of urns with a general balanced 2 × 2 replacement matrix as in (2.1) is given

in Bagchi and Pal [3]. Subsequently, we assume the conditions in (2.1) and, as in [3],

that bc > 0. As shown in [3], asymptotic normal behaviour occurs for these urns when

a − c � (a + b)/2 (type (b) in Section 4), whereas a − c > (a + b)/2 leads to limit laws

with non-normal limit distributions (type (a) in Section 4). In this section we show how to

derive these results by our contraction approach. With Bb
n and Bw

n as in the beginning of

Section 2, we denote expectations by μb(n) and μw(n). These values can be derived exactly

(see [3]):

μb(n) =
c(a + b)

b + c
n +

bΓ
(
1/(a + b)

)
(b + c)Γ

(
(1 + a − c)/(a + b)

) Γ
(
n + (1 + a − c)/(a + b)

)
Γ
(
n + 1/(a + b)

) +
c

b + c
,

(6.1)

μw(n) =
c(a + b)

b + c
n −

cΓ
(
1/(a + b)

)
(b + c)Γ

(
(1 + a − c)/(a + b)

) Γ
(
n + (1 + a − c)/(a + b)

)
Γ
(
n + 1/(a + b)

) +
c

b + c
.

(6.2)

Non-normal limit case. We first discuss the non-normal case a − c > (a + b)/2. Note that

with λ := (a − c)/(a + b) and excluding the case bc = 0, we have 1/2 < λ < 1 and, as

n → ∞,

μb(n) = cbn + dbn
λ + o(nλ), μw(n) = cwn + dwn

λ + o(nλ), (6.3)
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with

cb = cw =
c(a + b)

b + c
,

db =
bΓ

(
1/(a + b)

)
(b + c)Γ

(
(1 + a − c)/(a + b)

) ,
dw = −

cΓ
(
1/(a + b)

)
(b + c)Γ

(
(1 + a − c)/(a + b)

) .
(6.4)

We use the normalizations X0 := Y0 := 0 and (see (3.1))

Xn :=
Bb
n − μb(n)

nλ
, Yn :=

Bw
n − μw(n)

nλ
, n � 1. (6.5)

Note that we do not have to identify the order of the variance in advance. It turns out

that it is sufficient to use the order of the error terms dbn
λ and dwn

λ in the expansions

(6.3). From the system (2.2)–(2.3) we obtain for the scaled quantities Xn, Yn the following

system for n � 1:

Xn
d
=

a+1∑
r=1

(
I (n)
r

n

)λ

X
(r)

I
(n)
r

+

K∑
r=a+2

(
I (n)
r

n

)λ

Y
(r)

I
(n)
r

+ bb(n), (6.6)

Yn
d
=

c∑
r=1

(
I (n)
r

n

)λ

X
(r)

I
(n)
r

+

K∑
r=c+1

(
I (n)
r

n

)λ

Y
(r)

I
(n)
r

+ bw(n), (6.7)

with

bb(n) = db

(
−1 +

a+1∑
r=1

(
I (n)
r

n

)λ)
+ dw

K∑
r=a+2

(
I (n)
r

n

)λ

+ o(1), (6.8)

bw(n) = db

c∑
r=1

(
I (n)
r

n

)λ

+ dw

(
−1 +

K∑
r=c+1

(
I (n)
r

n

)λ)
+ o(1), (6.9)

with conditions on independence between the X
(r)
j ,Y (r)

j and I (n) and identical distributions

of the X
(r)
j and Y

(r)
j analogous to (2.2) and (2.3). The o(1) terms in (6.8) and (6.9) are

deterministic functions of I (n). In view of Lemma 2.1 this suggests, for limits X and Y of

Xn and Yn, respectively,

X
d
=

a+1∑
r=1

Dλ
rX

(r) +

K∑
r=a+2

Dλ
r Y

(r) + bb, (6.10)

Y
d
=

c∑
r=1

Dλ
rX

(r) +

K∑
r=c+1

Dλ
r Y

(r) + bw, (6.11)
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with

bb = db

(
−1 +

a+1∑
r=1

Dλ
r

)
+ dw

K∑
r=a+2

Dλ
r ,

bw = db

c∑
r=1

Dλ
r + dw

(
−1 +

K∑
r=c+1

Dλ
r

)
,

where (D1, . . . , DK ), X(1), . . . , X(K), Y (1), . . . , Y (K) are independent, and the X(r) are distrib-

uted as X, the Y (r) are distributed as Y , and (D1, . . . , DK ) is as in Lemma 2.1. Note that

the moments E[Dλ
r ] and the form of db and dw in (6.4) imply E[bb] = E[bw] = 0. From

λ > 1/2 and
∑K

r=1 Dr = 1 we obtain

K∑
r=1

E
[
D2λ

r

]
< 1.

Hence, Theorem 5.1 applies to the map associated to the system (6.10)–(6.11), and implies

that there exists a unique solution (L(Λb),L(Λw)) in the space MR

2 (0) × MR

2 (0) to (6.10)–

(6.11). The following convergence proof resembles ideas from Neininger and Rüschendorf

[29].

Theorem 6.1. Consider the Pólya urn with replacement matrix (2.1) with a − c > (a + b)/2

and bc > 0, and the normalized numbers Xn and Yn of black balls as in (6.5). Furthermore,

let (L(Λb),L(Λw)) denote the unique solution of (6.10)–(6.11) in MR

2 (0) × MR

2 (0). Then, as

n → ∞,

ζ∨
2

(
(Xn, Yn), (Λb,Λw)

)
→ 0.

In particular, as n → ∞,

Xn
d−→ Λb, Yn

d−→ Λw. (6.12)

Proof. We first define, for n � 1, the accompanying sequences

Qb
n :=

a+1∑
r=1

(
I (n)
r

n

)λ

Λ(r)
b +

K∑
r=a+2

(
I (n)
r

n

)λ

Λ(r)
w + bb(n), (6.13)

Qw
n :=

c∑
r=1

(
I (n)
r

n

)λ

Λ(r)
b +

K∑
r=c+1

(
I (n)
r

n

)λ

Λ(r)
w + bw(n), (6.14)

with bb(n) and bw(n) as in (6.8) and the Λ(r)
b , Λ(r)

b and I (n) being independent, where the

Λ(r)
b are distributed as Λb and the Λ(r)

w are distributed as Λw for the respective values of r.

Note that Qb
n and Qw

n are centred with finite second moments since L(Λb),L(Λb) ∈ MR

2 (0).

Hence, ζ2 distances between Xn, Yn, Q
b
n , Q

w
n ,Λb and Λw are finite. To bound

Δ(n) := ζ∨
2 ((Xn, Yn), (Λb,Λw)),
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we look at the distances

Δb(n) := ζ2(Xn,Λb), Δw(n) := ζ2(Yn,Λw).

We start with the estimate

ζ2(Xn,Λb) � ζ2(Xn,Q
b
n) + ζ2(Q

b
n ,Λb). (6.15)

We first show for the second summand in the latter display that ζ2(Q
b
n ,Λb) → 0 as n → ∞.

With inequality (4.6), we have

ζ2(Q
b
n ,Λb) � (‖Qb

n‖2 + ‖Λb‖2)�2(Q
b
n ,Λb).

Moreover, ‖Λb‖2 < ∞ since L(Λb) ∈ MR

2 , and, by definition of Qb
n and with |I (n)

r /n| � 1, we

have that ‖Qb
n‖2 is uniformly bounded in n. Hence, it is sufficient to show �2(Q

b
n ,Λb) → 0.

Using the independence properties in (6.13) and (6.10), we have that

�2(Q
b
n ,Λb)

�
a+1∑
r=1

∥∥∥∥
(
I (n)
r

n

)λ

− Dλ
r

∥∥∥∥
2

‖Λ(r)
b ‖2 +

K∑
r=a+2

∥∥∥∥
(
I (n)
r

n

)λ

− Dλ
r

∥∥∥∥
2

‖Λ(r)
w ‖2 + ‖bb(n) − bb‖2.

Lemma 2.1 implies that

‖(I (n)
r /n)λ − Dλ

r ‖2 → 0 as n → ∞,

which also implies ‖bb(n) − bb‖2 → 0. Hence, we obtain

�2(Q
b
n ,Λb) → 0 and ζ2(Q

b
n ,Λb) → 0.

Next, we bound the first summand ζ2(Xn,Q
b
n) in (6.15). We condition on I (n). Note that

conditionally on I (n) we have that bb(n) is deterministic, which, for integration, we denote

by β = β(I (n)). Denoting the distribution of I (n) by Υn and i := (i1, . . . , iK ), this yields

ζ2(Xn,Q
b
n)

�
∫

ζ2

(a+1∑
r=1

(
ir

n

)λ

X
(r)
ir

+

K∑
r=a+2

(
ir

n

)λ

Y
(r)
ir

+ β,

a+1∑
r=1

(
ir

n

)λ

Λ(r)
b +

K∑
r=a+2

(
ir

n

)λ

Λ(r)
w + β

)
dΥn(i)

�
∫ (a+1∑

r=1

(
ir

n

)2λ

ζ2(X
(r)
ir
,Λ(r)

b ) +

K∑
r=a+2

(
ir

n

)2λ

ζ2(Y
(r)
ir

,Λ(r)
w )

)
dΥn(i)

=

a+1∑
r=1

E

[(
I (n)
r

n

)2λ

Δb(I
(n)
r )

]
+

K∑
r=a+2

E

[(
I (n)
r

n

)2λ

Δw(I (n)
r )

]

�
K∑
r=1

E

[(
I (n)
r

n

)2λ

Δ(I (n)
r )

]
, (6.16)
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where for (6.16) we use that ζ2 is (2,+)-ideal, as well as (4.5). Altogether, the estimate

started in (6.15) yields

Δb(n) �
K∑
r=1

E

[(
I (n)
r

n

)2λ

Δ(I (n)
r )

]
+ o(1).

With the same argument we obtain the same upper bound for Δw(n). Thus, also using

that I (n)
1 , . . . , I

(n)
K are identically distributed, we have

Δ(n) � KE

[(
I

(n)
1

n

)2λ

Δ(I (n)
1 )

]
+ o(1). (6.17)

Now, a standard argument implies Δ(n) → 0, as follows. First, from (6.17) we obtain with

I
(n)
1 /n → D1 in L2 and, by λ > 1/2, with ϑ := KE[D2λ

1 ] < 1 that

Δ(n) � KE

[(
I

(n)
1

n

)2λ]
max

0�k�n−1
Δ(k) + o(1)

� (ϑ + o(1)) max
0�k�n−1

Δ(k) + o(1).

Since ϑ < 1, this implies that the sequence (Δ(n))n�0 is bounded. We denote η :=

supn�0 Δ(n) and ξ := lim supn→∞ Δ(n). For any ε > 0 there exists an n0 � 0 such that

Δ(n) � ξ + ε for all n � n0. Hence, from (6.17) we obtain

Δ(n) � KE

[
1{I (n)

1 <n0}

(
I

(n)
1

n

)2λ]
η + KE

[
1{I (n)

1 �n0}

(
I

(n)
1

n

)2λ]
(ξ + ε) + o(1).

With n → ∞ this implies

ξ � ϑ(ξ + ε).

Since ϑ < 1 and ε > 0 is arbitrary, this implies ξ = 0. Hence, we have

ζ∨
2 ((Xn, Yn), (Λb,Λw)) → 0 as n → ∞.

Since convergence in ζ2 implies weak convergence, this implies (6.12) too.

The normal limit case. Now we discuss the normal limit case a − c � (a + b)/2, where

we first consider a − c < (a + b)/2. (The remaining case a − c = (a + b)/2 is similar with

more involved expansions for the first two moments.) The formulae (6.1), (6.2) now imply

μb(n) = cbn + o(
√
n), μw(n) = cwn + o(

√
n), (6.18)

with cb and cw as in (6.4). As usual in the use of the contraction method for proving

normal limit laws based on the metric ζ3, we also need an expansion of the variance. We

denote the variances of Bb
n and Bw

n by σ2
b(n) and σ2

w(n). As well as bc = 0, we exclude the

case a = c. (In this case there is a trivial non-random evolution of the urn.) From [3] we

have as n → ∞:

σ2
b(n) = fbn + o(n), σ2

w(n) = fwn + o(n), (6.19)
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with

fb = fw =
(a + b)bc(a − c)2

(a + b − 2(a − c))(b + c)2
> 0.

We use the normalizations X0 := Y0 := X1 := Y1 := 0 and (see (3.3))

Xn :=
Bb
n − μb(n)

σb(n)
, Yn :=

Bw
n − μw(n)

σw(n)
, n � 2. (6.20)

From the system (2.2)–(2.3) we obtain for the scaled quantities Xn, Yn, for n � 1, the

system

Xn
d
=

a+1∑
r=1

σb(I
(n)
r )

σb(n)
X

(r)

I
(n)
r

+

K∑
r=a+2

σw(I (n)
r )

σb(n)
Y

(r)

I
(n)
r

+ eb(n), (6.21)

Yn
d
=

c∑
r=1

σb(I
(n)
r )

σw(n)
X

(r)

I
(n)
r

+

K∑
r=c+1

σw(I (n)
r )

σw(n)
Y

(r)

I
(n)
r

+ ew(n), (6.22)

with conditions on independence and identical distributions analogous to (2.2) and (2.3)

(respectively (6.6) and (6.7)). We have ‖eb(n)‖∞, ‖ew(n)‖∞ → 0 since the leading linear

terms in the expansions (6.18) cancel out and the error terms o(
√
n) are asymptotically

eliminated by the scaling of order 1/
√
n. In view of Lemma 2.1, this suggests, for limits

X and Y of Xn and Yn, respectively,

X
d
=

a+1∑
r=1

√
DrX

(r) +

K∑
r=a+2

√
DrY

(r), (6.23)

Y
d
=

c∑
r=1

√
DrX

(r) +

K∑
r=c+1

√
DrY

(r), (6.24)

where (D1, . . . , DK ), X(1), . . . , X(K), Y (1), . . . , Y (K) are independent, and the X(r) are distrib-

uted as X and the Y (r) are distributed as Y . We can apply Theorem 5.2 to the map

associated to the system (6.23)–(6.24). The conditions (5.5) and (5.6) are trivially satisfied.

Hence (N (0, 1),N (0, 1)) is the unique fixed point of the associated map in the space

MR

3 (0, 1) × MR

3 (0, 1).

Theorem 6.2. Consider the Pólya urn with replacement matrix (2.1) with a − c < (a + b)/2

and bc > 0 and the normalized numbers Xn and Yn of black balls as in (6.20). Then, as

n → ∞,

ζ∨
3

(
(Xn, Yn), (N (0, 1),N (0, 1))

)
→ 0.

In particular, as n → ∞,

Xn
d−→ N (0, 1), Yn

d−→ N (0, 1).

Proof. The proof of this theorem can be follow the approach of the proof of Theorem 6.1.

However, more care has to be taken in the definition of the quantities corresponding to
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Qb
n and Qw

n in (6.13) in order to ensure finiteness of the ζ3 distances. For n � 2, a possible

choice is

Q̃b
n :=

a+1∑
r=1

1{I (n)
r �2}

σb(I
(n)
r )

σb(n)
Nr +

K∑
r=a+2

1{I (n)
r �2}

σw(I (n)
r )

σb(n)
Nr + eb(n), (6.25)

Q̃w
n

d
=

c∑
r=1

1{I (n)
r �2}

σb(I
(n)
r )

σw(n)
Nr +

K∑
r=c+1

1{I (n)
r �2}

σw(I (n)
r )

σw(n)
Nr + ew(n), (6.26)

with eb(n) and ew(n) as in (6.21)–(6.22) and N1, . . . , NK , I (n), independent, where the Nr

are standard normally distributed for r = 1, . . . , K . A comparison of the definition of

Q̃b
n and Q̃w

n with the right-hand sides of (6.21) and (6.22) and the scaling (6.20) yields

E[Q̃b
n] = E[Q̃w

n ] = 0 and Var(Q̃b
n) = Var(Q̃w

n ) = 1 for all n � 2. Obviously, we also have

‖Q̃b
n‖3, ‖Q̃w

n ‖3 < ∞. Hence, ζ3 distances between Xn, Yn, Q̃
b
n , Q̃

w
n , and N (0, 1) are finite for

all n � 2. With

Δ̃(n) := ζ∨
3 ((Xn, Yn), (N (0, 1),N (0, 1))),

Δ̃b(n) := ζ3(Xn,N (0, 1)),

Δ̃w(n) := ζ3(Yn,N (0, 1)),

we also start with

ζ3(Xn,N (0, 1)) � ζ3(Xn, Q̃
b
n) + ζ3(Q̃

b
n ,N (0, 1)).

Analogous to the proof of Theorem 6.1, we obtain ζ3(Q̃
b
n ,N (0, 1)) → 0 as n → ∞.

The bound for ζ3(Xn, Q̃
b
n) is also analogous to the proof of Theorem 6.1, where we use

that ζ3 is (3,+)-ideal instead of (2,+)-ideal. This yields

ζ3(Xn, Q̃
b
n) �

a+1∑
r=1

E

[(
σb(I

(n)
r )

σb(n)

)3

Δ̃(I (n)
r )

]
+

K∑
r=a+2

E

[(
σw(I (n)

r )

σb(n)

)3

Δ̃(I (n)
r )

]
.

Then we argue as in the previous proof to obtain, analogous to (6.17),

Δ̃(n) �
a+1∑
r=1

E

[(
σb(I

(n)
r )

σb(n)

)3

Δ̃
(
I (n)
r

)]
+

K∑
r=a+2

E

[(
σw(I (n)

r )

σb(n)

)3

Δ̃
(
I (n)
r

)]
+ o(1).

From this estimate we can deduce Δ̃(n) → 0 as for Δ(n) in the proof of Theorem 6.1,

where we need to use the fact that from the expansions (6.19) and Lemma 2.1 we obtain,

as n → ∞, that

a+1∑
r=1

E

[(
σb

(
I (n)
r

)
σb(n)

)3]
+

K∑
r=a+2

E

[(
σw

(
I (n)
r

)
σb(n)

)3]
→

K∑
r=1

E
[
D3/2

r

]
< 1. (6.27)
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Remarks. (1) Note that the proof of Theorem 6.2 is not suitable for the ζ∨
2 -metric since

the term corresponding to (6.27) is then

a+1∑
r=1

E

[(
σb(I

(n)
r )

σb(n)

)2]
+

K∑
r=a+2

E

[(
σw(I (n)

r )

σb(n)

)2]
→

K∑
r=1

E
[
Dr

]
= 1,

where a limit < 1 is required to obtain Δ̃(n) → 0. This is why we use ζ∨
3 . It is possible to

use ζ∨
s for any 2 < s � 3 leading to the limit

∑K
r=1 E[Ds

r] < 1.

(2) The case a − c = (a + b)/2 differs in the error terms in (6.18), which then become

O(
√
n). Since the variances in (6.19) get additional logarithmic factors, we still obtain the

system (6.23)–(6.24), and our proof technique can be applied as well.

(3) The condition bc > 0 cannot be dropped. In the case bc = 0, the urn model is not

irreducible in the terminology of Janson [16] and is known to behave quite differently.

A comprehensive study of the case bc = 0 is given in Janson [17]; see also Janson [19].

In our approach bc = 0 would lead to degenerate systems of limit equations that do not

identify limit laws.

(4) The condition fb = fw is necessary for our proof to work.

6.2. An urn with random replacements

As an example of random entries in the replacement matrix R, we consider a simple

model with two colours, black and white. In each step when a black ball is drawn, a

coin is independently tossed to decide whether the black ball is placed back together

with another black ball or together with another white ball. The probability of success (a

second black ball) is denoted by 0 < α < 1. Similarly, if a white ball is drawn, a coin with

probability 0 < β < 1 is tossed to decide whether a second white ball or a black ball is

placed back together with the white ball. We denote the replacement matrix by

R =

[
Fα 1 − Fα

1 − Fβ Fβ

]
, (6.28)

where Fα and Fβ denote Bernoulli random variables being 1 with probabilities α and β

respectively, otherwise 0. This urn model was introduced in the context of clinical trials

and studied together with generalizations in [37, 38, 36, 35, 27, 4, 5, 16].

The row sums of R in (6.28) are both almost surely equal to one, hence the urn

is balanced. Again, the number of black balls after n draws starting with an initial

composition with one black ball is denoted by Bb
n , and if starting with a white ball by Bw

n .

According to our approach in Section 2 we obtain the recursive equation

Bb
n

d
= B

b,(1)
In

+ FαB
b,(2)
Jn

+ (1 − Fα)B
w
Jn
, n � 1, (6.29)

where (Bb,(1)
k )0�k<n, (B

b,(2)
k )0�k<n, (B

w
k )0�k<n, Fα and In are independent, and B

b,(1)
k and B

b,(2)
k

are distributed as Bb
k for k = 0, . . . , n − 1, and In is uniformly distributed on {0, . . . , n −

1} while Jn := n − 1 − In. (The uniform distribution of In follows from the uniform

distribution of the number of balls in the
[

1 0
0 1

]
-Pólya urn.) Similarly, we obtain for Bw

n
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that

Bw
n

d
= B

w,(1)
In

+ FβB
w,(2)
Jn

+ (1 − Fβ)B
b
Jn
, n � 1, (6.30)

with conditions on independence and identical distributions similar to (6.29). Together

with the initial value (Bb
0 , B

w
0 ) = (1, 0), the system of equations (6.29)–(6.30) again defines

the sequence of pairs of distributions (L(Bb
n ),L(Bw

n ))n�0. As a special case of Lemma 2.1

we have (
In

n
,
Jn

n

)
→ (U, 1 − U), (n → ∞), (6.31)

almost surely where U is uniformly distributed on [0, 1]. Furthermore, we denote for n � 0

μb(n) := E[Bb
n ], μw(n) := E[Bw

n ]. (6.32)

These means have been studied before. We have the following exact formulae.

Lemma 6.3. For μb(n) and μw(n) as in (6.32) with 0 < α, β < 1, we have

μb(n) =
1 − β

2 − α − β
n +

1 − α

2 − α − β

Γ(n + α + β)

Γ(α + β)Γ(n + 1)
+

1 − β

2 − α − β
, (6.33)

μw(n) =
1 − β

2 − α − β
n − 1 − β

2 − α − β

Γ(n + α + β)

Γ(α + β)Γ(n + 1)
+

1 − β

2 − α − β
. (6.34)

Proof. The proof is based on matrix diagonalization and can easily be done along the

lines of the proof of Lemma 6.7 below.

As in the example from Section 6.1, we have two different types of limit laws, with

normal limit for α + β � 3/2 and non-normal limit for α + β > 3/2.

The non-normal limit case. We assume that λ := α + β − 1 > 1/2. From Lemma 6.3 we

obtain the asymptotic expressions, as n → ∞,

μb(n) = c′
bn + d′

bn
λ + o(nλ),

μw(n) = c′
wn + d′

wn
λ + o(nλ),

with constants

c′
b = c′

w =
1 − β

1 − λ
, d′

b =
1 − α

(1 − λ)Γ(λ + 1)
, d′

w = − 1 − β

(1 − λ)Γ(λ + 1)
. (6.35)

We use the normalizations X0 := Y0 := 0 and (see (3.1))

Xn :=
Bb
n − μb(n)

nλ
, Yn :=

Bw
n − μw(n)

nλ
, n � 1. (6.36)

As in the non-normal case of the example in Section 6.1, it is sufficient to use the order

of the error term of the mean for the scaling. From (6.29)–(6.30), we obtain for n � 1

Xn
d
=

(
In

n

)λ

X
(1)
In

+ Fα

(
Jn

n

)λ

X
(2)
Jn

+ (1 − Fα)

(
Jn

n

)λ

YJn + b′
b(n), (6.37)

Yn
d
=

(
In

n

)λ

Y
(1)
In

+ Fβ

(
Jn

n

)λ

Y
(2)
Jn

+ (1 − Fβ)

(
Jn

n

)λ

XJn + b′
w(n), (6.38)
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with

b′
b(n) = d′

b

((
In

n

)λ

+ Fα

(
Jn

n

)λ

− 1

)
+ d′

w(1 − Fα)

(
Jn

n

)λ

+ o(1),

b′
w(n) = d′

w

((
In

n

)λ

+ Fβ

(
Jn

n

)λ

− 1

)
+ d′

b(1 − Fβ)

(
Jn

n

)λ

+ o(1),

with conditions on independence and identical distributions analogously to (6.29)–(6.30).

In view of (6.31), this suggests, for limits X and Y of Xn and Yn, that

X
d
= UλX(1) + Fα(1 − U)λX(2) + (1 − Fα)(1 − U)λY (1) + b′

b, (6.39)

Y
d
= UλY (1) + Fβ(1 − U)λY (2) + (1 − Fβ)(1 − U)λX(1) + b′

w, (6.40)

with

b′
b = d′

b

(
Uλ + Fα(1 − U)λ − 1

)
+ d′

w(1 − Fα)(1 − U)λ,

b′
w = d′

w

(
Uλ + Fβ(1 − U)λ − 1

)
+ d′

b(1 − Fβ)(1 − U)λ,

where X(1), X(2), Y (1), Y (2) and U are independent and X(1), X(2) are distributed as X and

Y (1), Y (2) are distributed as Y .

To check that Theorem 5.1 can be applied to the map associated to the system (6.39)–

(6.40), first note that the form of d′
b and d′

w in (6.35) implies E[b′
b] = E[b′

w] = 0. To check

condition (5.4), note that we have

E
[
U2λ

]
+ E

[
Fα(1 − U)2λ

]
+ E

[
(1 − Fα)(1 − U)2λ

]
=

2

2λ + 1
< 1,

since λ > 1/2. Analogously, we have E[U2λ] + E[Fβ(1 − U)2λ] + E[(1 − Fβ)(1 − U)2λ] =

2/(2λ + 1) < 1. Together, this verifies condition (5.4). Hence Theorem 5.1 can be applied,

and yields a unique fixed point (L(Λ′
b),L(Λ′

w)) in MR

2 (0) × MR

2 (0) to (6.39)–(6.40).

Theorem 6.4. Consider the Pólya urn with random replacement matrix (6.28) with α, β ∈
(0, 1) and α + β > 3/2 and the normalized numbers Xn and Yn of black balls as in (6.36).

Furthermore, let (L(Λ′
b),L(Λ′

w)) denote the unique solution of (6.39)–(6.40) in MR

2 (0) ×
MR

2 (0). Then, as n → ∞,

Xn
d−→ Λ′

b, Yn
d−→ Λ′

w.

Proof. The proof is analogous to that of Theorem 6.1.

The normal limit case. Now we discuss the normal limit case λ := α + β − 1 � 1/2. We

first assume λ := α + β − 1 < 1/2. The expansions from Lemma 6.3 now imply, as n → ∞,

μb(n) = cbn + o(
√
n), μw(n) = cwn + o(

√
n), (6.41)

with cb and cw given in (6.35). As in the normal limit cases in the examples in Section 6.1,

we first need asymptotic expressions for the variances. We denote the variances of Bb
n and

Bw
n by σ̂2

b(n) and σ̂2
w(n). These can be obtained from a result of Matthews and Rosenberger

[27] for the number of draws of each colour, as follows.
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Lemma 6.5. We have, as n → ∞,

σ̂2
b(n) = f′

bn + o(n), σ̂2
w(n) = f′

wn + o(n), (6.42)

with

f′
b = f′

w =
(1 − α)(1 − β)

(1 − λ)2

(
1

1 − 2λ
− 2λ(1 + λ)

)
> 0.

Proof. Matthews and Rosenberger [27], for the present urn model, study the number Nn

of draws within the first n draws in which a black ball is drawn. Starting with one black

ball, they establish, as n → ∞, that

E
[
Nn

]
=

1 − β

1 − λ
n + o(n),

Var(Nn), =
(1 − α)(1 − β)(3 + 2λ)

(1 − λ)2(1 − 2λ)
n + o(n).

As each black ball in the urn is either the first ball or has been added after drawing a

black ball and having success in tossing the corresponding coin, or after drawing a white

ball and having no success in tossing the coin, we can directly link Nn to Bb
n . Letting

(Fb
j )1�j�Nn

denote the coin flips after drawing black balls and (Fw
j )1�j�(n−Nn) denote the

coin flips after drawing white balls, we have

Bb
n = 1 +

Nn∑
j=1

Fb
j +

n−Nn∑
j=1

(1 − Fw
j ).

Using that all coin flips are independent, we obtain from the law of total variance by

conditioning on Nn that

σ̂2
b(n) = E

[
Var

(
Bb
n | Nn

)]
+ Var

(
E
[
Bb
n | Nn

])
=

(1 − α)(1 − β)

(1 − λ)2

(
1

1 − 2λ
− 2λ(1 + λ)

)
n + o(n).

When starting with one white ball, a similar argument gives the corresponding result.

We use the normalizations X0 := Y0 := 0 and (see (3.3))

Xn :=
Bb
n − μb(n)

σ̂b(n)
, Yn :=

Bw
n − μw(n)

σ̂w(n)
, n � 1. (6.43)

From the system (6.29)–(6.30) we obtain for the scaled quantities Xn, Yn, for n � 1, the

system

Xn
d
=

σ̂b(In)

σ̂b(n)
X

(1)
In

+ Fα

σ̂b(Jn)

σ̂b(n)
X

(2)
Jn

+ (1 − Fα)
σ̂w(Jn)

σ̂b(n)
YJn + e′

b(n),

Yn
d
=

σ̂w(In)

σ̂w(n)
Y

(1)
In

+ Fβ

σ̂w(Jn)

σ̂w(n)
Y

(2)
Jn

+ (1 − Fβ)
σ̂b(Jn)

σ̂w(n)
XJn + e′

w(n),

with conditions on independence and identical distributions analogous to (6.29)–(6.30).

We have ‖e′
b(n)‖∞, ‖e′

w(n)‖∞ → 0, since the leading linear terms in the expansions (6.41)
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cancel out and the error terms o(
√
n) are asymptotically eliminated by the scaling of order

1/
√
n. In view of (6.31) this suggests, for limits X and Y of Xn and Yn, respectively,

X
d
=

√
UX(1) + Fα

√
1 − UX(2) + (1 − Fα)

√
1 − UY (1), (6.44)

Y
d
=

√
UY (1) + Fβ

√
1 − UY (2) + (1 − Fβ)

√
1 − UX(1), (6.45)

where X(1), X(2), Y (1), Y (2) and U are independent and X(1), X(2) are distributed as X

and Y (1), Y (2) are distributed as Y . We can apply Theorem 5.2 to the map associated

to the system (6.44)–(6.45). The conditions (5.5) and (5.6) are trivially satisfied. Hence

(N (0, 1),N (0, 1)) is the unique fixed point of the associated map in the space MR

3 (0, 1) ×
MR

3 (0, 1).

Theorem 6.6. Consider the Pólya urn with random replacement matrix (6.28) with α, β ∈
(0, 1) and α + β < 3/2 and the normalized numbers Xn and Yn of black balls as in (6.43).

Then, as n → ∞,

Xn
d−→ N (0, 1), Yn

d−→ N (0, 1).

Proof. The proof is analogous to that of Theorem 6.2.

Remark. The case α + β = 3/2 differs in the error terms in (6.41) which then become

O(
√
n). Since the variances in (6.42) get additional logarithmic factors we still obtain the

system (6.44)–(6.45) and our proof technique still applies.

6.3. Cyclic urns

We fix an integer m � 2 and consider an urn with balls of types 1, . . . , m. After a ball

of type j is drawn, it is placed back into the urn together with a ball of type j + 1 if

1 � j � m − 1 and together with a ball of type 1 if j = m. These urn models are called

cyclic urns. Thus, the replacement matrix of a cyclic urn has the form

R =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0

0 1

0
. . . 1

1 0

⎤
⎥⎥⎥⎥⎥⎦. (6.46)

We let R[j]
n denote the number of type 1 balls after n draws when initially one ball of

type j is contained in the urn. Our recursive approach described above yields the system

of recursive distributional equations

R[1]
n

d
= R

[1]
In

+ R
[2]
Jn
, (6.47)

R[2]
n

d
= R

[2]
In

+ R
[3]
Jn
,

...

R[m]
n

d
= R

[m]
In

+ R
[1]
Jn
,
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where, on the right-hand sides, In and R
[j]
k for j = 1, . . . , m, k = 0, . . . , n − 1 are independent,

In uniformly distributed on {0, . . . , n − 1} and Jn = n − 1 − In.

We denote the imaginary unit by i and use the primitive roots of unity

ω := ωm := exp

(
2πi

m

)
=: λ + iμ (6.48)

with λ, μ ∈ R. Note that for 2 � m � 6 we have λ � 1/2, while for m � 7 we have λ > 1/2.

Asymptotic expressions for the mean of the R[j]
n can be found (together with further

analysis) in [15, 16, 31]. To keep this section self-contained we give an exact formula for

later use.

Lemma 6.7. Let R[j]
n be the number of balls of colour 1 after n draws in a cyclic urn with

m � 2 colours, starting with one ball of colour j. Then, with ω = ωm as in (6.48) we have

E
[
R[j]
n

]
=

n + 1

m
+

1

m

∑
k∈{1,...,m−1}\{m/2}

Γ(n + 1 + ωk)

Γ(n + 1) Γ(ωk + 1)
ωk(j−1). (6.49)

In particular, we have E[R[j]
n ] = 1

m
n + O(1) for m = 2, 3, 4 and, for m > 4, as n → ∞,

E
[
R[j]
n

]
=

1

m
n + �(κjn

iμ)nλ + o(nλ), κj :=
2ωj−1

mΓ(ω + 1)
. (6.50)

Proof. Using the system (6.47), we obtain by conditioning on In, for any 1 � j � m,

E
[
R[j]
n

]
=

1

n

n−1∑
i=0

E
[
R

[j]
i

]
+

1

n

n−1∑
i=0

E
[
R

[j+1]
i

]

=
1

n

(
E
[
R

[j]
n−1

]
+ E

[
R

[j+1]
n−1

])
+

n − 1

n
E
[
R

[j]
n−1

]
= E

[
R

[j]
n−1

]
+

1

n
E
[
R

[j+1]
n−1

]
,

where we set R
[m+1]
i := R

[1]
i for any 1 � i � n. With column vector Rn := (R[1]

n , . . . , R[m]
n ),

the replacement matrix R in (6.46) and the identity matrix Idm, this is rewritten as

E
[
Rn

]
=

(
Idm +

1

n
R

)
E
[
Rn−1

]
=

n∏
k=1

(
Idm +

1

k
R

)
E
[
R0

]
.

The eigenvalues of the replacement matrix are all mth roots of unity ωk , k = 1, . . . , m,

and a possible eigenbasis is vk := 1
m
(ω0, ωk, . . . , ω(m−1)k)t, k = 1, . . . , m. Decomposing the

mapping induced by R into the projections πvk onto the respective eigenspaces, we obtain

n∏
�=1

(
Idm +

1

�
R

)
=

m∑
k=1

n∏
�=1

(
1 +

1

�
ωk

)
πvk

= (n + 1) πvm +
∑

k∈{1,...,m−1}\{m/2}

Γ(n + 1 + ωk)

Γ(ωk + 1)Γ(n + 1)
πvk .
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Moreover, πvk (E[R0]) = vk and vm = 1
m
(1, . . . , 1), hence the jth component of the latter

display implies (6.49). The asymptotic expansion in (6.50) is now directly read off: note

that the roots of unity come in conjugate pairs ωm−k = ωk . If m is even, ωm/2 = ωm/2 = −1,

otherwise only ωm = 1 is real. Combining pairs of summands for such conjugate pairs

and using Γ(z) = Γ(z), we obtain the terms

Γ(n + 1 + ωk)ω(j−1)k

Γ(n + 1) Γ(ωk + 1)
+

Γ(n + 1 + ωk)ω(j−1)k

Γ(n + 1) Γ(ωk + 1)
= 2 �

(
ω(j−1)k Γ(n + 1 + ωk)

Γ(ωk + 1) Γ(n + 1)

)
.

By Stirling approximation the asymptotic growth order of the latter term is �(nω
k

), hence

the dominant asymptotic term is for the conjugate pair with largest real part, ω and ωm−1.

This implies (6.50) for m > 4. For m = 3, 4 the periodic term is o(1), respectively O(1); for

m = 2 there is no periodic fluctuation.

We do not discuss limit laws for the cases 2 � m � 6 in detail. They lead to asymptotic

normality, as has been shown with different proofs by Janson [15] and [16, Example 7.9].

These cases can be covered by our approach similarly to the normal cases in Sections 6.1

and 6.2. For 2 � m � 6, the system of limit equations is

X[1] d
=

√
UX[1] +

√
1 − UX[2],

X[2] d
=

√
UX[2] +

√
1 − UX[3],

...

X[m] d
=

√
UX[m] +

√
1 − UX[1],

and Theorem 5.2 applies.

We now assume m � 7. In particular, we have the asymptotic expansion (6.50) of the

mean of the R[j]
n with λ > 1/2. We define the normalizations

X[j]
n :=

R[j]
n − 1

m
n

nλ
. (6.51)

Hence, we obtain for the X[j]
n the system

X[1]
n

d
=

(
In

n

)λ

X
[1]
In

+

(
Jn

n

)λ

X
[2]
Jn

− 1

mnλ
,

X[2]
n

d
=

(
In

n

)λ

X
[2]
In

+

(
Jn

n

)λ

X
[3]
Jn

− 1

mnλ
,

...

X[m]
n

d
=

(
In

n

)λ

X
[m]
In

+

(
Jn

n

)λ

X
[1]
Jn

− 1

mnλ
,

where, on the right-hand sides, In and X
[j]
k for j = 1, . . . , m, k = 0, . . . , n − 1 are independent.

To describe the asymptotic periodic behaviour of the distributions of the X[j]
n , we use the
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following related system of limit equations:

X[1] d
= UωX[1] + (1 − U)ωX[2],

X[2] d
= UωX[2] + (1 − U)ωX[3],

...

X[m] d
= UωX[m] + (1 − U)ωX[1].

Since ω is complex non-real, this now has to be considered as a system to solve for

distributions L(X[1]), . . . ,L(X[m]) on the complex plane C. The corresponding map T̄ is a

special case of T ′ in (5.3):

T̄ : MC,×m → MC,×m,

(μ1, . . . , μm) 	→ (T̄1(μ1, . . . , μm), . . . , T̄m(μ1, . . . , μm)),

T̄j(μ1, . . . , μm) := L
(
UωV [j] + (1 − U)ωV [j+1]

)
(6.52)

for j = 1, . . . , m, where U,V [1], . . . , V [m+1] are independent, U is uniformly distributed on

[0, 1] and L(V [j]) = μj for j = 1, . . . , m and L(V [m+1]) = μ1.

Lemma 6.8. Let m � 7. The restriction of T̄ to MC

2 (κ1) × · · · × MC

2 (κm) has a unique

fixed point.

Proof. We verify the conditions of Theorem 5.3. First note that condition (5.7) for our

T̄ in (6.52) is

E
[
Uω

]
κj + E

[
(1 − U)ω

]
κj+1 = κj, j = 1, . . . , m, (6.53)

with κm+1 := κ1. Since

E[Uω] = E[(1 − U)ω] = (1 + ω)−1

and κj+1 = ωκj , we find that (6.53) is satisfied. Condition (5.8) for our T̄ is

E
[
|U2ω|

]
+ E

[
|(1 − U)2ω|

]
< 1.

Since m � 7, we have λ > 1/2, and thus

E[|U2ω|] + E[|(1 − U)2ω|] = 2/(1 + 2λ) < 1.

Hence Theorem 5.3 applies, and implies the assertion.

The fixed point in Lemma 6.8 has a particularly simple structure, as follows. Note that

a description related to (6.54) was given in Remark 2.3 in Janson [18].

Lemma 6.9. Let m � 7 and (L(Λ[1]), . . . ,L(Λ[m])) be the unique fixed point in Lemma 6.8.

Furthermore, let L(Λ) be the (unique) fixed point of

X
d
= UωX + ω(1 − U)ωX ′ in MC

2

(
2

mΓ(ω + 1)

)
, (6.54)
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where X, X ′ and U are independent, U is uniformly distributed on [0, 1], and X and X ′ have

identical distributions. Then we have

Λ[j] d
= ωj−1Λ, j = 1, . . . , m.

Proof. We abbreviate γ := 2/(mΓ(ω + 1)). For X, X ′ and U independent, U uniformly

distributed on [0, 1], and X and X ′ identically distributed with EX = γ, we have

E
[
UωX + ω(1 − U)ωX ′] =

1

1 + ω
(γ + ωγ) = γ,

hence the map of probability measures on C associated to (6.54) maps MC

2 (γ) into itself.

The argument of the proof of Theorem 5.3 implies that this map is a contraction on

(MC

2 (γ), �2). Hence it has a unique fixed point L(Λ). We have

(L(Λ),L(ωΛ), . . . ,L(ωm−1Λ)) ∈ MC

2 (κ1) × · · · × MC

2 (κm)

and, by plugging into (6.52), we find that this vector is a fixed point of T̄ . Since, by

Lemma 6.8, there is only one fixed point of T̄ in MC

2 (κ1) × · · · × MC

2 (κm), the assertion

follows.

The asymptotic periodic behaviour in the following theorem has already been shown

almost surely by martingale methods in [31, Section 4.2]; see also [16, Theorem 3.24]. Our

contraction approach adds the characterization of L(Λ) as the fixed point in (6.54). The

proof is based on the complex version of the �2-metric and resembles ideas from Fill and

Kapur [12]; see also [21, Theorem 5.3].

Theorem 6.10. Let m � 7 and X[j]
n be as in (6.51) and let L(Λ) be the unique fixed point

in Lemma 6.9. Then, for all j = 1, . . . , m, we have

�2

(
X[j]

n ,�(ei(μ ln(n)+2π j−1
m )Λ)

)
→ 0 (n → ∞). (6.55)

Proof. Let Λ[1], . . . ,Λ[m] be independent random variables such that (L(Λ[1]), . . . ,L(Λ[m]))

is the unique fixed point as in Lemma 6.8. Set Λ[m+1] := Λ[1]. Note that for the random

variable within the real part in (6.55) with Lemma 6.9, we have

ei(μ ln(n)+2π j−1
m )Λ = niμωj−1Λ

d
= niμΛ[j].

The fixed point property of the Λ[j] implies

�
(
niμΛ[j]

) d
= �

(
niμUωΛ[j]

)
+ �

(
niμ(1 − U)ωΛ[j+1]

)
for all j = 1, . . . , m and n � 0. We denote

Δj(n) := �2

(
X[j]

n ,�(niμΛ[j])
)

and set Δm+1(n) := Δ1(n). Now, we assume that the X[j]
n , Λ[j], n � 1, 1 � j � m, In,

U appearing in (6.51) and (6.52) are defined on one probability space such that
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(X[j]
n ,�(niμΛ[j])) are optimal �2-couplings for all n � 0 and all 1 � j � m and such that

In = �nU�. Then we have

Δj(n)

= �2

((
In

n

)λ

X
[j]
In

+

(
Jn

n

)λ

X
[j+1]
Jn

− 1

mnλ
,�
(
niμUωΛ[j]

)
+ �

(
niμ(1 − U)ωΛ[j+1]

))

�
∥∥∥∥
{(

In

n

)λ

X
[j]
In

− �
(
Iωn
nλ

Λ[j]

)}
+

{(
Jn

n

)λ

X
[j+1]
Jn

− �
(
Jω
n

nλ
Λ[j+1]

)}∥∥∥∥
2

+

∥∥∥∥�
(
Iωn
nλ

Λ[j]

)
− �

(
niμUωΛ[j]

)∥∥∥∥
2

+

∥∥∥∥�
(
Jω
n

nλ
Λ[j+1]

)
− �

(
niμUωΛ[j+1]

)∥∥∥∥
2

+
1

mnλ

=: S1 + S2 + S3 +
1

mnλ
. (6.56)

First note that the summands S2 and S3 tend to zero. We have (In/n)
ω → Uω almost

surely by In = �nU�. Since Λ[j] and Λ[j+1] have finite second moments, we can apply

dominated convergence to obtain S2, S3 → 0 as n → ∞.

For the estimate of the first summand S1, we abbreviate

W [j]
n :=

(
In

n

)λ

X
[j]
In

− �
(
Iωn
nλ

Λ[j]

)
, W [j+1]

n :=

(
Jn

n

)λ

X
[j+1]
Jn

− �
(
Jω
n

nλ
Λ[j+1]

)
.

Then we have

S2
1 = E

[
(W [j]

n )2
]
+ E

[
(W [j+1]

n )2
]
+ 2E

[
W [j]

n W [j+1]
n

]
. (6.57)

Conditioning on In and using that (X[j]
k ,�(kiμΛ[j])) are optimal �2-couplings, we obtain

E
[
(W [j]

n )2
]

=

n−1∑
k=0

1

n
E

[{(
k

n

)λ

X
[j]
k − �

(
kλkiμ

nλ
Λ[j]

)}2]

=

n−1∑
k=0

1

n

(
k

n

)2λ

E
[
{X[j]

k − �
(
kiμΛ[j]

)
}2]

=

n−1∑
k=0

1

n

(
k

n

)2λ

Δ2
j (k)

= E

[(
In

n

)2λ

Δ2
j (In)

]
.

Analogously, we have

E[(W [j+1]
n )2] = E

[(
Jn

n

)2λ

Δ2
j+1(Jn)

]
.

To bound the mixed term in (6.57), note that by the expansion (6.50) and the normalization

(6.51) we have E[X[j]
n ] = �(κjn

iμ) + rj(n) with rj(n) → 0 as n → ∞ for all j = 1, . . . , m. In

particular, we have ‖rj‖∞ < ∞. Together with E[Λ[j]] = κj , this implies

E[W [j]
n ] = E[(In/n)

λrj(In)]
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and

E
[
W [j]

n W [j+1]
n

]
= E

[(
In

n

Jn

n

)λ

rj(In)rj+1(Jn)

]
. (6.58)

To show that the latter term tends to zero, let ε > 0. Then there exists k0 ∈ N such that

rj(k) < ε, rj+1(k) < ε for all k � k0. For all n > 2k0 we obtain, by considering the event

{k0 � In � n − 1 − k0}

and its complement,

E
[
W [j]

n W [j+1]
n

]
� 2k0

n
‖rj‖∞‖rj+1‖∞ + ε2.

Hence, we obtain that the mixed term (6.58) tends to zero.

Altogether, we obtain from (6.56) as n → ∞ that

Δj(n) �
{

E

[(
In

n

)2λ

Δ2
j (In)

]
+ E

[(
Jn

n

)2λ

Δ2
j+1(Jn)

]
+ o(1)

}1/2

+ o(1)

�
{

2E

[(
In

n

)2λ

Δ2(In)

]
+ o(1)

}1/2

+ o(1),

for all j = 1, . . . , m, where

Δ(n) := max
1�j�m

Δj(n).

Hence, we have

Δ(n) �
{

2E

[(
In

n

)2λ

Δ2(In)

]
+ o(1)

}1/2

+ o(1). (6.59)

Now, we obtain Δ(n) → 0 as in the proof of Theorem 6.1. First from (6.59) we obtain

with In/n → U almost surely that

Δ(n) �
{

2E

[(
In

n

)2λ]
max

0�k�n−1
Δ2(k) + o(1)

}1/2

+ o(1)

�
{(

2

1 + 2λ
+ o(1)

)
max

0�k�n−1
Δ2(k) + o(1)

}1/2

+ o(1).

Since λ > 1/2 this implies that the sequence (Δ(n))n�0 is bounded. We set η := supn�0 Δ(n)

and ξ := lim supn→∞ Δ(n). For any ε > 0 there exists an n0 � 0 such that Δ(n) � ξ + ε for

all n � n0. Hence, from (6.59) we obtain

Δ(n) �
{

2E

[
1{In<n0}

(
In

n

)2λ]
η2 + 2E

[
1{In�n0}

(
In

n

)2λ]
(ξ + ε)2 + o(1)

}1/2

+ o(1).

With n → ∞ this implies

ξ �
√

2

1 + 2λ
(ξ + ε).

Since
√

2/(1 + 2λ) < 1 and ε > 0 is arbitrary, this implies ξ = 0.
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7. Remarks on the use of the contraction method

A novel technical aspect of this paper is that we extend the use of the contraction method

to systems of recursive distributional equations. Alternatively, one may be tempted to

couple the random variables Bb
n and Bw

n in (2.2) and (2.3) on one probability space, set

up a recurrence for their vector (Bb
n , B

w
n ) and try to apply general transfer theorems from

the contraction method for multivariate recurrences, such as Theorem 4.1 in Neininger

[28] or Theorem 4.1 in Neininger and Rüschendorf [29]. For some particular instances

(replacement schemes) of the Pólya urn this is in fact possible. However, when attempting

to come up with a limit theory of the generality of the present paper, such a multivariate

approach hits two snags that seem difficult to overcome. In this section we highlight these

problems using one of the examples discussed above, and explain why we consider such

a multivariate approach disadvantageous in the context of Pólya urns.

We consider the example from Section 6.2 with the random replacement matrix in (6.28)

and denote the bivariate random variable by Bn := (Bb
n , B

w
n ) with Bb

n and Bw
n as in (6.29)

and (6.30) respectively. Note that in the discussion of Section 6.2 the random variables

Bb
n and Bw

n did not need to be defined on a common probability space. Hence, first of

all, only the marginals of Bn are determined by the urn process, and we have the choice

of a joint distribution for Bn respecting these marginals. We could keep the components

independent or choose appropriate couplings. We choose a form that implies a recurrence

of the form typically considered in general limit theorems from the contraction method.

The coupling is defined recursively by B0 = (1, 0) and, for n � 1,

Bn :
d
= BIn +

[
Fα 1 − Fα

1 − Fβ Fβ

]
B′
Jn
, (7.1)

where (Bn)0�k<n, (B′
n)0�k<n, (Fα, Fβ), and In are independent and Bk and B′

k identically

distributed for all 0 � k < n. As in Section 6.2, In is uniformly distributed on {0, . . . , n − 1}
and Jn := n − 1 − In, while Fα and Fβ are Bernoulli random variables, being 1 with

probabilities α and β respectively, and otherwise 0. Note that for any joint distribution of

(Fα, Fβ), definition (7.1) leads to a sequence (Bn)n�1 with correct marginals of Bb
n and Bw

n .

A beneficial joint distribution of (Fα, Fβ) will be chosen below.

We consider the cases where α + β − 1 < 1/2. Since these lead to normal limits, one

may try to apply Theorem 4.1 in [29], where 2 < s � 3 is the index of the Zolotarev

metric ζs on which that theorem is based. The best possible contraction condition (see [29,

equation (25)]) is obtained with s = 3, which we fix subsequently. Now, for the application

of Theorem 4.1 in [29] we need an asymptotic expansion of the covariance matrix of Bn.

In view of Lemma 6.5, we assume that for all i, j = 1, 2 we have

(Cov(Bn))ij = fijn + o(n), (n → ∞) (7.2)

such that (fij)ij is a symmetric, positive definite 2 × 2 matrix. Hence there exists an n1 � 1

such that Cov(Bn) is positive definite for all n � n1. For the normalized random sequence

Xn := (Cov(Bn))
−1/2(Bn − E[Bn]), n � n1,
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we obtain the limit equation

X
d
=

√
UX +

√
1 − U

[
Fα 1 − Fα

1 − Fβ Fβ

]
X ′,

where X,X ′, U, (Fα, Fβ) are independent, X and X ′ are identically distributed and U is

uniformly distributed on [0, 1]. Now the application of Theorem 4.1 in [29] requires

condition (25) there to be satisfied, which in our example is written as

E
[
U3/2

]
+ E

[
(1 − U)3/2

]
E

[∥∥∥∥
[

Fα 1 − Fα

1 − Fβ Fβ

]∥∥∥∥
3

op

]
< 1, (7.3)

where ‖ · ‖op denotes the operator norm of the matrix. Here, the joint distribution of

(Fα, Fβ) can be chosen to minimize the left-hand side of the latter inequality as follows.

For V uniformly distributed and independent of U, we set Fα = 1{V�α} and Fβ = 1{V�β}.

With this choice of the joint distribution of (Fα, Fβ), condition (7.3) turns into

2

5

(
2 + |α − β|(23/2 − 1)

)
< 1.

We see that this condition is not satisfied in the whole range α + β − 1 < 1/2. Hence, in

the best possible setup that we could find, Theorem 4.1 in [29] does not yield results of

the strength of Theorem 6.6.

A second drawback of the use of multivariate recurrences is that we needed the

assumption of the expansion (7.2), which is technically required in order to verify condition

(24) in [29]. Hence, after coupling Bb
n and Bw

n on one probability space such that we may

satisfy (7.3), we have to derive asymptotic expressions for the covariance Cov(Bb
n , B

w
n )

and to identify the leading constant in these asymptotics. Note that this covariance is

meaningless for the Pólya urn and only emerges by artificially coupling Bb
n and Bw

n . This

covariance does not appear in the approach we propose in Section 6, which makes its

application much simpler compared to a multivariate formulation.

A reason why our approach of analysing systems of recurrences is more powerful than

the use of multivariate recurrences is found when comparing the spaces of probability

measures with the aim of applying contraction arguments to them. In Section 4 we

introduce the space (MR
s )×d in (4.1) and work on subspaces where first, or first and

second, moments of the probability measures are fixed. The corresponding space in a

multivariate formulation and in Theorem 4.1 in [29] is the space Ms(R
d) of all probability

measures on R
d with finite absolute sth moment. Clearly (MR

s )×d is much smaller than

Ms(R
d), e.g., the first space can be embedded into the second by forming product measures.

This makes it plausible that it is much easier to find contracting maps as developed in

Section 5 on (MR
s )×d than on Ms(R

d), and we feel that this causes the problems mentioned

above with a multivariate formulation.

In the dissertation by Knape [23, Chapter 5], more details of our use of the contraction

method and an alternative multivariate formulation are given. There, too, improved

versions of Theorem 4.1 in [29] are derived by a change of the underlying probability

metric, which lead to better conditions compared to (7.3). However, the need to derive

artificial covariances in a multivariate approach, as discussed above, could not be
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Pólya Urns Via the Contraction Method 1185

surmounted in [23]. Similar advantages of the use of systems of recurrences over mul-

tivariate formulations were noted in Leckey, Neininger and Szpankowski [25, Section 7].
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