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SUMMARY
This paper presents a task-priority motion planning algorithm
for underactuated robotic systems. The motion planning
algorithm combines two features: the idea of the task-priority
control of redundant manipulators and the endogenous
configuration space approach. This combination results in
the algorithm which solves the primary motion planning task
simultaneously with one or more secondary tasks ordered
in accordance with decreasing priorities. The performance
of the task-priority motion planning algorithm has been
illustrated with computer simulations of the motion planning
problem for a container ship.

KEYWORDS: Underactuated system; Motion planning;
Task priority; Endogenous configuration approach; Con-
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1. Introduction
An underactuated robotic system is a robotic system which
has more degrees of freedom than control inputs. In other
words, the dimension of the state space of the underactuated
system is greater than the dimension of its control space.
For this reason, the motion planning problem calls for more
sophisticated tools than in the case of fully actuated robotic
systems.

The underactuated systems can be divided into two
groups. The systems belonging to the first group are
subjected to nonholonomic kinematic constraints of order
1 that assume the Pfaffian form. The mathematical model
of such a system is represented by a driftless control
system. Representative members of this group are wheeled
mobile robots. The second group is characterized by
the nonholonomic constraints of order 2 that arise from
the system’s dynamics. The mathematical model of a
system from this group involves an affine control system
with a nontrivial drift term. This group includes robotic
manipulators with passive joints or with flexible arms, and
also the mobile robots like surface and underwater robots,
aircraft robots, hovercrafts, etc. The members of both groups
are nonholonomic due to the presence of either kinematic or
dynamic nonholonomic constraints, and are underactuated,

* Corresponding author. E-mail: adam.ratajczak@pwr.wroc.pl

since they have less control inputs than degrees of freedom.
A general characterization of underactuated systems can be
found in ref [1], the control problems involving underactuated
manipulators have been addressed in ref. [2], a derivation of
control algorithms for underactuated ships has been done
in refs. [3, 4].

This paper introduces a task-priority motion planning
algorithm for underactuated robotic systems. Its derivation
relies on the endogenous configuration space approach.5,6

The presented algorithm allows to plan the motion along
with solving one or more additional tasks. These additional
tasks may refer to ensuring a desirable quality of motion,
keeping the configuration variables within some limits,
avoiding singularities, preventing collisions, etc. Originally,
the concept of prioritizing the subtasks for redundant
manipulators was set forth in ref. [7], however, for the
algorithm derivation a slightly different approach, coming
from ref. [8], will be followed. The first attempt to control the
underactuated systems using the endogenous configuration
space approach has been made in ref. [9], and a motion
planning problem of the underactuated ship with this
approach has been addressed in ref. [10]. In this paper a
complete derivation of the task-priority motion planning
algorithm for underactuated systems is made. The obtained
algorithm is then tailored to a motion planning problem of
a container ship. The algorithm is tested with computer
simulations involving a model of a container ship that
comes from ref. [4]. The performance of task-priority-based
control algorithms for the underwater robots is studied in
refs. [11, 12].

Compared to the existing literature,1–4 the benefits of the
new algorithm are threefold. First, within the class of affine
control systems the algorithm is not model specific. Second,
the algorithm is based on the widely accepted technique of
linear approximation. Third, its derivation proceeds along
a well-established route of task-priority motion planning
algorithms for holonomic manipulators.

The composition of this paper is the following. Section 2
deals with the modeling of underactuated systems. The
motion planning problem is stated in Section 3. Main result,
the derivation of a task-priority motion planning algorithm, is
included in Section 4. An application to the motion planning
of a container ship is presented in Section 5. The paper
concludes with Section 6.
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2. Modeling of Underactuated System
Let a general dynamics equation of a robotic system be given

M(q)q̈ + F (q, q̇) = B(q)u, (1)

where q ∈ IRn is a vector of internal coordinates, u ∈ IRm

is the vector of control forces and torques, M(q) denotes
the inertia matrix, F (q, q̇) collects centrifugal, Coriolis,
friction, gravitational, buoyancy, hydrostatic, hydrodynamic,
and other terms, B(q) is a control matrix. Very often the
dynamics equation is augmented with an output function

y = h(q, q̇), (2)

where y ∈ IRr denotes a vector of external coordinates. The
number of degrees of freedom in Eq. (1) will be assumed to
exceed the number of control inputs (n > m), which means
that the system composed of Eqs. (1) and (2) constitutes an
underactuated system.

A standard substitution of a new state variable, x =
(x1, x2) = (q, q̇), converts the system into an affine control
system

ẋ = f (x) + G(x)u,

y = h(x)

}
(3)

with the drift vector and the control matrix defined as follows

f (x) =
(

x2

−M−1(x1)F (x)

)
, G(x) =

[
0n×m

M−1(x1)B(x1)

]
,

where 0n×m is an n × m zero matrix and matrices M(x1),
F (x), B(x1) come from Eq. (1).

3. Motion Planning Problem
Assume that the motion planning problem for the system
(3) consists of the primary, proper motion planning task,
and one or more secondary tasks of decreasing priorities.
The objective of the motion planner is to solve all these
tasks simultaneously, respecting their priorities. The motion
planning task consists in determining a control function
which drives the output of the system (3) to a desirable point,
over a prescribed time interval. Additionally, the control
function is supposed to solve all the subordinate tasks,
however, if the solution of all subtasks is not possible, the
tasks of higher priority will be preferred. The construction
of the motion planning algorithm combines two ingredients:
the generalized inverse of the Jacobian with task priority,
based on ref. [8], and the endogenous configuration space
approach.5

4. Algorithm Construction
In order to solve the motion planning problem, one needs
to define an algorithm solving the primary, motion planning
task, and then the way to incorporate the remaining tasks. As
a result, a complete task-priority motion planning algorithm
is obtained, able to solve the problem composed of several

tasks. For making the derivation self-contained, in the next
subsection some basic concepts referring to the endogenous
configuration space approach will be introduced.

4.1. Endogenous configuration space
Following ref. [5], the endogenous configuration of the
control system (3) is identified with an admissible control
function u(·) ∈ L2

m[0, T ] = X defined on a time interval
[0, T ]. The endogenous configuration space X is a Hilbert
space equipped with the inner product

〈u1(·), u2(·)〉X =
∫ T

0
uT

1 (t)R(t)u2(t) dt, R(t) = RT (t) > 0,

and the induced norm. To every endogenous configuration
there corresponds a state trajectory x(t) = ϕx0,t (u(·)), where
ϕx0,t (u(·)) denotes the flow of the system (3) initialized at x0

and driven by u(·).
The accomplishment of a task as it depends on control is

described by a task map

KT (u(·)) : X → IRs, (4)

which transforms the endogenous configuration into a task
space. By the differentiation of (4) the Jacobian is obtained

JT (u(·))v(·) = d

dα

∣∣∣∣
α=0

KT (u(·) + αv(·)). (5)

If the Jacobian is invertible, then there exists the Jacobian
pseudo-inverse5

J #
T (u(·)) : IRs → X . (6)

From the properties of the pseudo-inverse,13 it follows that
the map

PT (u(·)) = idX − J #
T (u(·))JT (u(·)), (7)

where idX denotes the identity map, is a projection of the
endogenous configuration space onto ker JT (u(·)). Specific
formulas for Eqs. (4)–(6) will be provided in the next
subsections.

4.2. Jacobian motion planning algorithm
The construction of the task-priority algorithm begins with a
computation of the Jacobian for the motion planning task, and
its pseudo-inverse. The task map is in this case tantamount
to the end point map of the control system (3),

Kx0,T (u(·)) : X → IRr,

Kx0,T (u(·)) = y(T ) = h(ϕx0,T (u(·))), (8)

so it determines the output of the system (3) reached at time
T under the control u(·). In accordance with (5), the Jacobian
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results from the differentiation of Eq. (8),

Jx0,T (u(·))v(·) = d

dα

∣∣∣∣
α=0

Kx0,T (u(·) + αv(·))

= C(T )
∫ T

0
�(T , s)B(s)v(s) ds,

The computation of the Jacobian involves the linear
approximation

ξ̇ = A(t)ξ + B(t)v,

η = C(t)ξ,

}
(9)

to the system (3) along a control-trajectory pair (u(t), x(t)),
where the matrices A(t), B(t), C(t) are defined as follows:

A(t) = ∂(f (x(t)) + G(x(t))u(t))

∂x
,

B(t) = G(x(t)), C(t) = ∂h(x(t))

∂x
.

The transition matrix �(t, s) of the linearized system satisfies
the evolution equation ∂�(t,s)

∂t
= A(t)�(t, s), with initial

condition �(s, s) = In.
Relying on a derivation accomplished in ref. [5], the

Jacobian peudo-inverse(
J #

x0,T
(u(·))η)(t) = BT (t)�T (T , t)CT (T )G−1

x0,T
(u(·))η,

(10)
where Gx0,T (u(·)) is the Gram matrix of the linear system (9),
defined as

Gx0,T (u(·)) = C(T )
∫ T

0
�(T , s)B(s)BT (s)�T (T , s) ds CT (T ).

The Jacobian pseudo-inverse is well defined on condition
that the Gram matrix in nonsingular.

Given the Jacobian pseudo-inverse (10), the following
procedure defines the Jacobian pseudo-inverse motion
planning algorithm. First, an initial control u0(·) ∈ X is
chosen. If this control does not solve the motion planning
problem, it is deformed to a smooth curve uθ (·) ∈ X , and the
error

e(θ) = Kx0,T (uθ (·)) − yd,

is computed, where yd denotes a desirable point in the
task space of the system (3). A requirement that the error
decreases exponentially at a decay rate γ > 0 leads to a
Ważewski–Davidenko equation

Jx0,T (uθ (·)) d

dθ
uθ (·) = −γ e(θ). (11)

The Jacobian pseudo-inverse transforms this equation into a
dynamic system

d

dθ
uθ (t) = −γ

(
J #

x0,T
(uθ (·)) e(θ))(t), (12)

whose limit trajectory ud (t) = limθ→+∞ uθ (t) provides a
solution to the motion planning problem.

The basic system (12) can be extended to the form

d

dθ
uθ (t) = −γ

(
J #

x0,T
(uθ (·))e(θ)

)
(t) + Px0,T (uθ (·))(μ(·))(t),

(13)
where μ(·) ∈ X and

Px0,T (u(·)) = idX − J #
x0,T

(u(·))Jx0,T (u(·)).

It is easily checked that, since Px0,T (u(·)) is a projection onto
ker Jx0,T (u(·)), the expression (13) satisfies the Eq. (11). The
term μ(·) denotes a direction of motion in the endogenous
configuration space that will be further exploited in the
construction of the task-priority algorithm.

4.3. Secondary task
As an example of the secondary task the control energy
minimization is chosen. The corresponding task map

KT (u(·)) : X → IR, KT (u(·)) = 1

2

∫ T

0
uT (t)σ (t)u(t) dt

that has the meaning of the weighted control energy, where
σ (t) = σT (t) denotes a weight matrix. According to Eq. (5),
the Jacobian is computed as the differential

JT (u(·))v(·) = d

dα

∣∣∣∣
α=0

KT (u(·) + αv(·)) =
∫ T

0
uT (t)σv(t) dt.

The Jacobian pseudo-inverse for the secondary task arises as
a solution v(·) of the Jacobian equation

JT (u(·))v(·) =
∫ T

0
uT (t)σ (t)v(t) dt = ζ, ζ ∈ IR, (14)

which minimize the integral

1

2

∫ T

0
vT (t)v(t) dt.

A standard solution procedure of this constrained
optimization problem14 involves the Lagrangian

L(v(·), λ) = 1

2

∫ T

0
vT (t)v(t) dt + λ

(∫ T

0
uT (t)σ (t)v(t)dt− ζ

)
,

where λ ∈ IR denotes a Lagrange multiplier. After some
standard developments, the Jacobian pseudo-inverse for the
secondary task is found as(

J #
T (u(·))ζ

)
(t) = σ (t)u(t)

‖σ (·)u(·)‖2
ζ,

where ‖σ (·)u(·)‖2 = ∫ T

0u
T (t)σT (t)σ (t)u(t) dt . By repeating

the same line of reasoning as for the primary task, the
following Jacobian pseudo-inverse algorithm solving the
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secondary task is obtained

d

dθ
uθ (t) = −γ

(
J #

T (uθ (·))e(θ)
)

(t) + PT (u(·))(μ(·))(t),

where PT (uθ (·)) = idX − J #
T (u(·))JT (u(·)) stands for the

projection onto ker JT (u(·)), μ(·) has the same meaning as in
Eq. (13), and the error

e(θ) = KT (uθ (·)) = 1

2

∫ T

0
uT

θ (t)σ (t)uθ (t) dt.

By design, the algorithm converges exponentially with the
rate γ > 0. A construction of the algorithm solving a
secondary task of the control energy minimization may serve
as an example. Other secondary tasks can be taken into
account analogously.

4.4. Task-priority Jacobian inverse algorithm
In this subsection two previously devised algorithms will
be combined into a task-priority motion planning algorithm
including two subtasks, and next this algorithm will be
generalized to more than two subtasks. Let (S1, . . . , Sl)
denotes a collection of subtasks, ordered with decreasing
priority. With every task Si a corresponding task map
KiT : X → IRsi (Eq. (4)) is associated, as well as, a
task Jacobian JiT (u(·)) : X → IRsi (Eq. (5)), a Jacobian
pseudo-inverse J #

iT (u(·)) : IRsi → X (Eq. (6)), and the error
ei(u(·)) = KiT (u(·)) − yid , where yid stands for the desirable
value of the map KiT (u(·)). This being so, the ith task may be
described by a quadruple Si = (KiT , JiT J #

iT , ei). As it was
mentioned in the previous subsection, the variable μ(·) in Eq.
(13) can be replaced by a term related to the accomplishment
of a lower priority task. The Jacobian equation for the ith
subtask takes the form

dei(θ)

dθ
= JiT (uθ (·))duθ (·)

dθ
, i = 1, 2, . . . , l.

For the task Si the pseudo-inverse J #
iT (u(·)) defines a general

Jacobian pseudo-inverse algorithm

duθ (·)
dθ

= −γiJ
#
iT (uθ (·))ei(θ) + PiT (uθ (·))μi(·),

i = 1, 2, . . . , l, (15)

where PiT (u(·)) = idX − J #
iT (u(·))JiT (u(·)) is the projection

onto ker JiT (u(·)), and μi(·) ∈ X . From an axiom of the
pseudo-inverse13,

J #
iT (u(·))JiT (u(·))J #

iT (u(·)) = J #
iT (u(·)) (16)

it follows directly that every operator PiT (u(·)) is idempotent,
i.e.,

P 2
iT (u(·)) = PiT (u(·))PiT (u(·)) = PiT (u(·)).

Now, following the route taken in ref. [8], the algorithm
comprising two subtasks can be derived. Note that,
differently to the original setting in ref. [8], the dynamic

system (15) evolves in the infinite-dimensional endogenous
configuration space. For each pair of tasks (say for tasks S1

and S2), the identity (15) yields

−γ2J
#
2T (uθ (·))e2(θ) + P2T (uθ (·))μ2(·)

= −γ1J
#
1T (uθ (·))e1(θ) + P1T (uθ (·))μ1(·). (17)

Next, each side of Eq. (17) is multiplied from the left
by the operator P1T (u(·)). The property (16) implies
that PiT (u(·))J #

iT (u(·)) = 0, so, by the idempotency of the
projection, the identity (17) transforms to the form

−γ2P1T (uθ (·))J #
2T (uθ (·))e2(θ)

+ P1T (uθ (·))P2T (uθ (·))μ2(·) = P1T (uθ (·))μ1(·). (18)

After the substitution of Eq. (18) into (15) for i = 1, the
following motion planning algorithm for two subtasks is
obtained

duθ (·)
dθ

= −γ1J
#
1T (uθ (·))e1(θ) − γ2P1T (uθ (·))J #

2T (uθ (·))e2(θ)

+P1T (uθ (·))P2T (uθ (·))μ2(·).

If there are only two subtasks, then μ2(·) = 0, otherwise the
term μ2(·) will enable the inclusion into the algorithm of the
next subtask.

By repeating the presented line of reasoning, a recurrent
formula of the task-priority motion planning algorithm
including l subtasks is obtained

duθ (·)
dθ

= −
l∑

i=1

γi

⎛⎝i−1∏
j=0

PjT (uθ (·))
⎞⎠ J #

iT (uθ (·))ei(θ),

where P0T (uθ (·)) = idX .

4.5. Computational aspects
For a practical computer implementation of the motion
planning algorithm, it is necessary to employ a
finite dimensional parametrization of the endogenous
configuration space, and to use a discrete version of the
algorithm instead of the continuous one. In order to get
the finite dimensional representation, the control function
of the system (3) should be chosen in the form of a truncated
orthogonal series of given order k, composed of certain basic
functions ψi(t) belonging to an orthogonal basis of X

ui(λ, t) =
k∑

j=0

λijψj (t) = �(t)λ, i = 1, 2, . . . , m,

(19)
where ψj (t) denotes the j th function from the basis.
λ collects the gain coefficients and is defined as
λ = (λ0, λ1, . . . , λk), λj = (λ0j , λ2j , . . . , λmj ), and matrix
�(t) = [Imψ0(t), Imψ1(t), . . . , Imψk(t)] is the block matrix
built of the basic functions. The choice of the truncation order
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k should satisfy the following inequality

(k + 1)m ≥
l∑

i=1

si . (20)

The parametrization mentioned above reduces the
endogenous configuration space to a finite dimensional space
X̃ = IR(k+1)m. Consequently, the task map (4) becomes finite
dimensional

K̃T (λ) = KT (u(λ, ·)) : X̃ → IRs,

furthermore, also the Jacobian and the Jacobian pseudo-
inverse become finite dimensional operators represented
by suitable matrices J̃T (λ) = JT (u(λ, ·)) and J̃ #

T (λ) =
J̃ T

T (λ)(J̃T (λ)J̃ T
T (λ))−1.

The whole derivation from the previous section remains
valid in the finite dimensional setting, leading finally to a
finite dimensional and discrete version of the task-priority
motion planning algorithm

λθ+1 = λθ −
l∑

i=1

γi

⎛⎝i−1∏
j=0

P̃jT (λθ )

⎞⎠ J̃ #
iT (λθ )̃ei(θ),

where θ = 0, 1, . . ., the matrix P̃jT (λ) = I(k+1)m −
J̃ #

jT (λ)J̃jT (λ) is a projection onto ker J̃jT (λ), I(k+1)m

is a (k + 1)m dimensional identity matrix, ẽi(θ) =
K̃iT (λθ ) − yid denotes the ith task error.

5. Application to Container Ship
An assessment of performance and efficiency of the task-
priority motion planning algorithm will be based on computer
simulations. As a test bed a model of the container ship has
been chosen, provided in ref. [4]. This section presents the
model, tunes the algorithm to the ship model, and finally
reports on results of computer simulations in the Matlab
environment. The simulations will reveal that the task-
priority motion planning algorithm outperforms the simple
single-task algorithm.

5.1. Ship dynamics
In this subsection the model of a container ship4 is
considered. The ship is equipped with a rudder enabling
a change of the ship’s orientation, and with a forward
thrust propeller controlling the ship’s velocity. Suppose
that the vector η = (n, e, φ) ∈ IR3 denotes the North–East
position and the yaw angle of the ship, and that the vector
ν = (u, v, r) ∈ IR3 is the velocity vector expressed in the
body frame. Then, the kinematics equation can be written as

d

dt
η = R(φ)ν, R(φ) =

⎡⎢⎣ cos φ − sin φ 0

sin φ cos φ 0

0 0 1

⎤⎥⎦ ,

where R(φ) is the rotation matrix around the Z-axis. The
ship’s dynamics equation, normalized using the Prime system

Table I. Numerical values of coefficients of the ship’s dynamics.

m′ = 0.00792 m′
x = 0.000238 m′

y = 0.007049
I ′
z = 0.000456 J ′

z = 0.000419 X′
uu = −0.0004226

Y ′
v = −0.0116 Y ′

r = 0.00242 Y ′
δ = −0.002578

N ′
v = −0.0038545 N ′

r = −0.00222 N ′
δ = 0.00126

td = 0.175 ρ = 1000 [kg/m3] L = 175 [m]

of SNAME,4 with respect to the body-fixed frame is

M(ν)ν̇ + N(ν)ν = B(ν)u, (21)

where M(ν) denotes a symmetric and positive definite inertia
matrix, and, depending on the assumed model accuracy, the
term N(ν)ν expresses centrifugal, Coriolis, hydrodynamics,
or friction torques/forces. B(ν) is a control matrix and u =
(�, δ) ∈ IR2 denotes the control input, where � stands for
the propeller forward thrust and δ is the turn angle of the
rudder. The matrices appearing in Eq. (21) are defined in the
following way:4

M(ν) =

⎡⎢⎢⎢⎢⎢⎣
L(m′ + m′

x)

U 2
0 0

0
L(m′ + m′

y)

U 2
0

0 0
L2(I ′

z + J ′
z)

U 2

⎤⎥⎥⎥⎥⎥⎦ ,

U =
√

u2 + v2,

N(ν) =

⎡⎢⎢⎢⎢⎢⎢⎣

−X′
uu|u/U |
U

0
−L(m′ + m′

y)v/U

U

0
−Y ′

v

U

−L(Y ′
r + (m′ + m′

x)u/U )

U

0
−N ′

v

U

−LN ′
r

U

⎤⎥⎥⎥⎥⎥⎥⎦ ,

B =

⎡⎢⎢⎣
2(1 − td )

ρU 2L2
0

0 Y ′
δ

0 N ′
δ

⎤⎥⎥⎦ .

Numerical values of the above coefficients have been
collected in Table I. The coefficients m′, m′

x , and m′
y are

dimensionless and refer to the mass of the ship and to the
added mass effect. Symbols I ′

z, J ′
z denote normalized inertia

torques of the ship, and torques of the added mass. The
quantities X′

uu, Y ′
v , Y ′

r , Y ′
δ , N ′

v , N ′
r , and N ′

δ are dimensionless
hydrodynamic coefficients. td is the propeller forward thrust
ratio, ρ denotes the water density, and L is the length of
the ship. In the coordinates x = (x1, x2) = (η, ν) ∈ IR6 the
ship’s dynamics Eq. (21) can be written as

ẋ1 = R(x13)x2,

ẋ2 = M−1(ν)(B(x2)u − N(x2)x2),

}
(22)

where x13 denotes the third coordinate of the vector x1 (the
orientation angle φ). The output function is set to

y = h(x) = x1 = η, (23)
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where y ∈ IR3 denotes a vector of task coordinates.
Equations (22) and (23) define an affine control system with
output

ẋ = f (x) + G(x)u,

y = h(x),

}
(24)

where

f (x) =
(

R(x13)x2

M−1(x2)N (x2)x2

)
, G(x) =

[
03×2

M−1(x2)B(x2)

]
.

The control system (24) contains the order 2 nonholonomic
constraints, resulting from the dynamics of the system.
Because the dimension of the task vector r = 3 is greater
than the number of independent control inputs m = 2, this
ship model belongs to the class of underactuated systems.
In the next subsections a motion planning algorithm for the
model (24) will be constructed.

5.2. Motion planning problem
The motion planning problem has been outlined in Section 3,
so only the primary and the secondary task should be defined.
The motion planning problem amounts to finding the control
function u(t) that, given the initial configuration x(0) and
the control horizon [0, T ], drives the ship to a desirable
point y(T ) = yd in the task space. Additionally, it is required
that the control energy should be minimal. This formulation
involves two subtasks

x(0)
ud (·)−−→ yd, (25)∫ T

0
uT

d (t)σ (t)ud (t) dt = min
u(·)

∫ T

0
uT (t)σ (t)u(t) dt, (26)

where the task (25) has been given a higher priority than (26).

5.3. Ship motion planning algorithm
In order that provide a solution to the motion planning
problem it is necessary to construct the maps (4), the
Jacobians (5), the Jacobian pseudo-inverses (6), and define
the error formulas for both subtasks. The infinite dimensional
version of these objects was introduced in Subsections 4.2
and 4.3. For the purpose of computer simulations, a finite
dimensional version of the task-priority algorithm is needed.
A control functions parametrization of the system (24) will
be accomplished in accordance with (19), using truncated
Fourier series. For the ship’s model the matrix �(t) in (19)
is set as

�(t) =
[

1 0 0 0 0
0 1 sin ωt cos ωt sin 2ωt

]
,

so dim λ = 5, and the condition (20) holds. The
proper motion planning task is specified as S1 =
(K̃1 x0,T , J̃1 x0,T , J̃ #

1 x0,T
, ẽ1), analogously, the control energy

minimization task S2 = (K̃2 T , J̃2 T , J̃ #
2 T , ẽ2). To construct

the algorithm, all constitutive elements of these tasks should
be defined.

For the task (S1) the finite dimensional Jacobian is defined
as

J̃1 x0,T (λ) = C(T )
∫ T

0
�(T , s)B(s)�(s) ds,

so the Jacobian pseudo-inverse becomes

J̃ #
1 x0,T

(λ) = J̃ T
1 x0,T

(λ)
(
J̃1 x0,T (λ)J̃ T

1 x0,T
(λ)

)−1
.

Concerning the task S2, the finite dimensional task map is

K̃2 T (λ) = K2 T (�(·)λ) = 1

2

T∫
0

(�(t)λ)T σ (t)(�(t)λ) dt

= 1

2
λT

T∫
0

�T (t)σ (t)�(t) dt

︸ ︷︷ ︸
Q(T )

λ = 1

2
λT Q(T )λ,

yielding the finite dimensional Jacobian

J̃2 T (λ) = d

dλ
K̃2 T (λ) = Q(T )λ,

and the Jacobian pseudo-inverse

J̃ #
2 T (λ) = J̃ T

2 T (λ)
(
J̃2 T (λ)J̃ T

2 T (λ)
)−1

.

Finally, a finite dimensional and discrete version of the task-
priority motion planning algorithm is derived

λθ+1 = λθ − γ1J̃
#
1 x0,T

ẽ1(λθ ) − γ2(I5 − J̃ #
1 x0,t

(λθ )J̃1 x0,T (λθ ))

×J̃ #
2 x0,T

(λθ )̃e2(λθ ), (27)

where the errors are defined as

ẽ1(λθ ) = K1 x0,T (u(λθ , ·)) − yd and ẽ2(λθ ) =K2 T (u(λθ ,·)).

5.4. Simulations results
As a result, the algorithm (27) returns the control coefficients
λ determining the required control function. For the purpose
of the numeric implementation it has been chosen γ1 = 0.08
and γ2 = 0.04. The choice of a constant weight matrix σ =
diag{0, 1} means the minimization of energy of the second
control input (the rudder angle δ). In the real ships, the rudder
angle is limited to δ ∈ (−10◦, 10◦) ≈ (−0.175, 0.175). The
motion planning problem introduced in the Subsection 5.3 is
regarded as solved when the ship reaches the desirable point
in the task space with the error below ‖e1‖ ≤ 10−6 (subtask
S1), and the value of the control δ remains inside the assumed
bounds (subtask S2). Because of the task S2 has been defined
as the energy minimization of the control function δ, after
finishing the computations, it should be checked, if δ(t) lies
inside the bounds.
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Fig. 1. Single-task algorithm (only S1).
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Fig. 2. Task-priority algorithm (both S1 and S2).

The simulation results are presented below. For
comparison the results of all two algorithms: the single-
task algorithm (without the task S2), and task-priority
algorithm (27) are revealed. The simulations started from
the initial coefficient vector λ0 = (300000, 0, 0.1, 0, 0), the
initial position of the ship is x1(0) = (0, 0, 0), and the initial
velocity x2(0) = (2, 0, 0). The desirable task space point
y(T ) = x1(T ) = (2000, 3500, −2π/3) should be reached in
time T = 1500 s. For both algorithms the solutions have been
produced in less than 500 steps.

In the Figs. 1 and 2 the ship’s routes are visualized. Taking
into account the motion strategy, both shapes of computed
ship trajectories are similar. However, it can be observed that
the trajectory returned from the single-task algorithm (fig. 1)
cannot be applied to the real ship due to physical motion
constraints, because the ship makes unrealistic turn near the
end point. The profile of the ship in these figures has been
marked every 150 s.

In the Figs. 3 and 4 the position and orientation trajectories
of the ship are depicted. As it can be checked, both the
algorithms solve the primary task (S1) correctly, and at the
end of the time horizon T the ship reaches the desirable point
in the task space.

Note that, due to a specific selection of the matrix �(t)
in Eq. (19), the first component of the control function,
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Fig. 3. Single-task algorithm (only S1).
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Fig. 4. Task-priority algorithm (both S1 and S2).
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Fig. 5. Single-task algorithm (only S1).

the thrust forward propeller �, remains constant at the
value � = 300 kN. The rudder angle control function δ is
depicted in the Figs. 5 and 6. Additionally, in the Fig. 5 the
control bounds have been shown. As can be seen, the control
function computed by the single-task algorithm violates the
bounds. On the contrary, the task-priority algorithm keeps the
control function inside the assumed bounds. It is necessary to
mention, that the task-priority algorithm deals with subtasks
in order of its priorities. So, it is possible that the second
subtask will not be accomplished (the control exceeds the
bounds).
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Fig. 6. Task-priority algorithm (both S1 and S2).

6. Conclusion
This paper provides a task-priority motion planning
algorithm for underactuated robotic systems. The algorithm
makes a fusion of the task-priority control of the holonomic
manipulators, and of the Jacobian motion planning
algorithms elaborated within the endogenous configuration
space approach. The new algorithm solves the motion
planning problem consisting of the primary motion planning
task and of a collection of secondary tasks of decreasing
priorities. Because the new algorithm computes a control
function which solves the tasks with respect to the order
of their priorities, it may happen that a subtask with lower
priority will not be satisfied, exactly as in the case of the task-
priority algorithm for holonomic manipulators.7 A derivation
of the algorithm for two subtasks has been made in detail,
then a recurrent formula for more than two subtasks has been
given. For the purpose of the derivation the secondary task
has been chosen as the control energy minimization, however,
an inclusion of other subtasks, like the obstacle avoidance,
singularity avoidance, etc. presents no essential difficulties.

Performance of the algorithm has been illustrated with the
container ship model. Particular attention has been paid to
a comparison between the single–task algorithm (a proper
motion planning using the Jacobian pseudo-inverse) and
the task-priority algorithm. As might be expected, the sole
motion planning task can be solved both by the single-
task algorithm, as well as, by the task-priority algorithm.
However, since the task-priority algorithm includes the
subtask of control energy minimization, the amplitude of
the rudder angle is smaller than in the solution delivered by
the single-task algorithm. Since in real ships the maximum
angle of the rudder is limited, the new algorithm certainly
provides a more practical solution. The comparison of the
Figs. 5 and 6 also shows that the control effort of the task-
priority algorithm is smaller than of the single-task algorithm.
In addition, the ship’s route resulting from the task-priority
algorithm outperforms the no task-priority solution.
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