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The bivariate series θ(q, x) :=
∑∞

j=0 qj(j+1)/2xj defines a partial theta function.
For fixed q (|q| < 1), θ(q, ·) is an entire function. For q ∈ (−1, 0) the function θ(q, ·)
has infinitely many negative and infinitely many positive real zeros. There exists
a sequence {q̄j} of values of q tending to −1+ such that θ(q̄k, ·) has a double real
zero ȳk (the rest of its real zeros being simple). For k odd (respectively, k even)
θ(q̄k, ·) has a local minimum (respectively, maximum) at ȳk, and ȳk is the
rightmost of the real negative zeros of θ(q̄k, ·) (respectively, for k sufficiently
large ȳk is the second from the left of the real negative zeros of θ(q̄k, ·)). For k
sufficiently large one has −1 < q̄k+1 < q̄k < 0. One has q̄k = 1 − (π/8k) + o(1/k)
and |ȳk| → eπ/2 = 4.810477382 . . ..
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1. Introduction

The bivariate series

θ(q, x) :=
∞∑

j=0

qj(j+1)/2xj

defines an entire function in x for every fixed q from the open unit disc. This
function is called a partial theta function because θ(q2, x/q) =

∑∞
j=0 qj2

xj , whereas
the Jacobi theta function is defined by the same series with summation performed
from −∞ to ∞ (i.e. when summation is not partial).

There are several domains in which the function θ finds applications: in the theory
of (mock) modular forms (see [3]); in statistical physics and combinatorics (see [18]);
in asymptotic analysis (see [2]) and in Ramanujan-type q-series (see [19]). Recently,
it has been considered in the context of problems about hyperbolic polynomials
(i.e. real polynomials having all their zeros real; see [4–6,9,13,15,16]). These prob-
lems were studied earlier by Hardy [4], Petrovitch [16] and Hutchinson [5]. For more
information about θ, see also [1].

For q ∈ C, |q| � 0.108, the function θ(q, ·) has no multiple zeros (see [11]). For
q ∈ [0, 1) the function θ has been studied in [8–10,13]. The results are summarized
in the following theorem.
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Theorem 1.1.

(1) For any q ∈ (0, 1) the function θ(q, ·) has infinitely many negative zeros.

(2) There exists a sequence of values of q (denoted by 0 < q̃1 < q̃2 < · · · )
tending to 1− such that θ(q̃k, ·) has a double negative zero, yk, which is the
rightmost of its real zeros and which is a local minimum of θ(q, ·). One has
q̃1 = 0.3092493386 . . . .

(3) For the remaining values of q ∈ [0, 1) the function θ(q, ·) has no multiple real
zero.

(4) For q ∈ (q̃k, q̃k+1) (we set q̃0 = 0) the function θ(q, ·) has exactly k complex
conjugate pairs of zeros counted with multiplicity.

(5) One has q̃k = 1 − (π/2k) + o(1/k) and yk → −eπ = −23.1407 . . . .

Definition 1.2. A value of q ∈ C, |q| < 1, is said to belong to the spectrum of θ if
θ(q, ·) has a multiple zero.

We consider the function θ in the case when q ∈ (−1, 0]. In order to use the
results about the case q ∈ [0, 1) one may note the following fact. For q ∈ (−1, 0] set
v := −q. Then

θ(q, x) = θ(−v, x) = θ

(
v4,−x2

v

)
− vxθ(v4,−vx2). (1.1)

We prove the analogue of the above theorem. The following three theorems are
proved in §§ 3–5, respectively.

Theorem 1.3. For any q ∈ (−1, 0) the function θ(q, ·) has infinitely many negative
and infinitely many positive real zeros.

Theorem 1.4.

(1) There exists a sequence of values of q (denoted by q̄j) tending to −1+ such
that θ(q̄k, ·) has a double real zero, ȳk (the rest of its real zeros being simple).
For the remaining values of q ∈ (−1, 0) the function θ(q, ·) has no multiple
real zero.

(2) For k odd (respectively, k even) one has ȳk < 0, θ(q̄k, ·) has a local minimum
at ȳk and ȳk is the rightmost of the real negative zeros of θ(q̄k, ·) (respectively,
ȳk > 0, θ(q̄k, ·) has a local maximum at ȳk and for k sufficiently large ȳk is the
leftmost but one (second from the left) of the real negative zeros of θ(q̄k, ·)).

(3) For k sufficiently large one has −1 < q̄k+1 < q̄k < 0.

(4) For k sufficiently large and for q ∈ (q̄k+1, q̄k) the function θ(q, ·) has exactly
k complex conjugate pairs of zeros counted with multiplicity.

Remark 1.5. Numerical experience confirms the conjecture that parts (2)–(4) of
the theorem are true for any k ∈ N. Proposition 4.5 clarifies part (2) of the theorem.
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Figure 1. Graphs of the functions θ(q̄k, ·) for k = 1, 2, 3, 4.

Theorem 1.6. One has

q̄k = 1 −
(

π

8k

)
+ o

(
1
k

)
and |ȳk| → eπ/2 = 4.810477382 . . . .

Remark 1.7.

(1) Theorems 1.1 and 1.4 do not us tell whether there are values of q ∈ (−1, 1)
for which θ(q, ·) has a multiple complex conjugate pair of zeros.

(2) It would be interesting to know whether the sequences {yk} and {ȳ2k−1} are
monotone decreasing and {ȳ2k} is monotone increasing. This is true for at
least the five first terms of each sequence.

(3) It would be interesting to know whether there are complex non-real values of
q of the open unit disc belonging to the spectrum of θ and (as suggested by
Sokal) whether |q̃1| is the smallest of the moduli of the spectral values.

(4) The following statement is formulated and proved in [7]:

the sum of the series
∑∞

j=0 qj(j+1)/2xj (considered for q ∈ (0, 1)
and x ∈ C) tends to 1/(1 − x) (for x fixed and as q → 1−)
exactly when x belongs to the interior of the closed Jordan curve
{e|s|+is, s ∈ [−π, π]}.

This statement and (1.1) imply that, as q → −1+, θ(q, x) → (1−x)/(1+x2) for
x ∈ (−eπ/2, eπ/2), eπ/2 = 4.810477381 . . . . Note that the radius of convergence
of the Taylor series at 0 of the function (1 − x)/(1 + x2) equals 1.

(5) In figures 1 and 2 we show the graphs of θ(q̄k, ·) for k = 1, . . . , 8. Those for
k = 1, 2, 5, 6 are shown in black; the others are drawn in grey. One can see by
looking at figure 2 that for x ∈ [−2.5, 2.5] the graphs of θ(q̄k, ·) for k � 5 are
hardly distinguishable from that of (1 − x)/(1 + x2).

(6) The approximative values of q̄k and ȳk for k = 1, 2, . . . , 8 are given in table 1.
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Figure 2. Graphs of the functions θ(q̄k, ·) for k = 5, 6, 7, 8.

Table 1. Approximative values of q̄k and ȳk for k = 1, 2, . . . , 8.

k −q̄k ȳk

1 0.72713332 −2.991
2 0.78374209 2.907
3 0.84160192 −3.621
4 0.86125727 3.523
5 0.88795282 −3.908
6 0.89790438 3.823
7 0.913191 −4.08
8 0.9192012 4.002

2. Some facts about θ

This section contains properties of the function θ, known or proved in [9]. When a
property is valid for all q from the unit disc or for all q ∈ (−1, 1), we write θ(q, x).
When a property holds true only for q ∈ [0, 1) or only for q ∈ (−1, 0], we write
θ(v, x) or θ(−v, x), where v ∈ [0, 1).

Theorem 2.1.

(1) The function θ satisfies the following functional equation:

θ(q, x) = 1 + qxθ(q, qx), (2.1)

and the following differential equation:

2q∂θ

∂q
=

2x∂θ

∂x
+

x2∂2θ

∂x2 =
x∂2(xθ)

∂x2 . (2.2)

(2) For k ∈ N one has θ(v,−v−k) ∈ (0, vk).

https://doi.org/10.1017/S0308210515000591 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000591


On a partial theta function and its spectrum 613

(3) In the following two situations the two conditions sgn(θ(v,−v−k−1/2)) =
(−1)k and |θ(v,−v−k−1/2)| > 1 hold:

(i) for k ∈ N and v > 0 small enough;

(ii) for any v ∈ (0, 1) fixed and for k ∈ N large enough.

The real entire function ψ(z) is said to belong to the Laguerre–Pólya class L–P
if it can be represented as

ψ(x) = cxme−αx2+βx
ω∏

k=1

(
1 +

x

xk

)
e−x/xk ,

where ω is a natural number or infinity, c, β and xk are real, α � 0, m is a non-
negative integer and

∑
x−2

k < ∞. Similarly, the real entire function ψ∗(x) is a
function of type I in the Laguerre–Pólya class, written ψ∗ ∈ L–PI, if ψ∗(x) or
ψ∗(−x) can be represented in the form

ψ∗(x) = cxmeσx
ω∏

k=1

(
1 +

x

xk

)
, (2.3)

where c and σ are real, σ � 0, m is a non-negative integer, xk > 0 and
∑

1/xk < ∞.
It is clear that L–PI ⊂ L–P. The functions in L–P, and only these, are uniform
limits, on compact subsets of C, of hyperbolic polynomials (see, for example, [14,
ch. 8]). Similarly, ψ ∈ L–PI if and only if ψ is a uniform limit on the compact sets
of the complex plane of polynomials whose zeros are real and are either all positive
or all negative. Thus, the classes L–P and L–PI are closed under differentiation;
that is, if ψ ∈ L–P, then ψ(ν) ∈ L–P for every ν ∈ N and, similarly, if ψ ∈ L–PI,
then ψ(ν) ∈ L–PI. Pólya and Schur [17] proved that if

ψ(x) =
∞∑

k=0

γk
xk

k!
(2.4)

belongs to L–P and its Maclaurin coefficients γk = ψ(k)(0) are all non-negative,
then ψ ∈ L–PI.

The following theorem is the basic result contained in [12].

Theorem 2.2.

(1) For any fixed q ∈ C
∗, |q| < 1, and for k sufficiently large, the function θ(q, ·)

has a zero ζk close to −q−k (in the sense that |ζk + q−k| → 0 as k → ∞).
These are all but finitely many of the zeros of θ.

(2) For any q ∈ C
∗, |q| < 1, one has θ(q, x) =

∏
k(1 + x/xk), where −xk are the

zeros of θ counted with multiplicity.

(3) For q ∈ (q̃j , q̃j+1] the function θ(q, ·) is a product of a degree 2j real polynomial
without real roots and a function of the Laguerre–Pólya class L–PI. Their
respective forms are

∏2j
k=1(1 + x/ηk) and

∏
k(1 + x/ξk), where −ηk and −ξk

are the complex and real zeros of θ counted with multiplicity.
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(4) For any fixed q ∈ C
∗, |q| < 1, the function θ(q, ·) has at most finitely many

multiple zeros.

(5) For any q ∈ (−1, 0) the function θ(q, ·) is a product of the form R(q, ·)Λ(q, ·),
where

R =
2j∏

k=1

(
1 +

x

η̃k

)

is a real polynomial with constant term 1 and without real zeros and

Λ =
∏
k

(
1 +

x

ξ̃k

)
, ξ̃k ∈ R

∗,

is a function of the Laguerre–Pólya class L–P. One has ξ̃k ξ̃k+1 < 0. The
sequence {|ξ̃k|} is monotone increasing for k large enough.

3. Proof of theorem 1.3

One can use (1.1). By part (3) of theorem 2.1 with v4 for v, for each v ∈ (0, 1)
fixed and for k large enough, if −x2/v = −(v4)−k−1/2 (i.e. if |x| = v−2k−1/2), then
|θ(v4,−x2/v)| > 1 and sgn(θ(v4,−x2/v)) = (−1)k. At the same time, part (2) of
theorem 2.1 implies that for −vx2 = −(v4)−k (i.e. again for |x| = v−2k−1/2) one
has θ(v4,−vx2) ∈ (0, v4k); hence, |vxθ(v4,−vx2)| < v2k+1/2 < 1. This means that
for v ∈ (0, 1) fixed and for k large enough the equality sgn(θ(v4,−x2/v)) = (−1)k

holds, i.e. there is a zero of θ on each interval of the form (−v−2k−1/2,−v−2k+1/2)
and (v−2k+1/2, v−2k−1/2).

4. Proof of theorem 1.4

4.1. Properties of the zeros of θ

This subsection contains some preliminary information about the zeros of θ.

Lemma 4.1. For q ∈ [−0.108, 0) all zeros of θ(q, ·) are real and distinct.

Proof. Indeed, it is shown in [11] that for q ∈ C, |q| � 0.108, the zeros of θ are of
the form −q−j∆j , ∆j ∈ [0.2118, 1.7882]. This implies (see [11]) that the moduli of
all zeros are distinct for |q| � 0.108. When q is real, as all coefficients of θ are real,
each of its zeros either is then real or belongs to a complex conjugate pair. As the
moduli of the zeros are distinct, the zeros are all real and distinct.

Notation 4.2. We denote by 0 < x1 < x3 < · · · the positive zeros of θ and by
· · · < x4 < x2 < 0 the negative zeros of θ. For q ∈ [−0.108, 0) this notation is in
line with the fact that xj is close to −q−j .
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Figure 3. The real zeros of θ for q ∈ (−1, 0).

Remark 4.3.

(1) The quantities ∆j are constructed in [11] as convergent Taylor series in q of
the form 1 + O(q).

(2) For q ∈ (−1, 0) the function θ(q, ·) has no zeros in [−1, 0). Indeed, this follows
from

θ = 1 + q3x2 + q10x4 + · · · + qx(1 + q5x2 + q14x4 + · · · ).

Each of the two series is sign-alternating, with positive first term and with
decreasing moduli of its terms for q ∈ (−1, 0), x ∈ [−1, 0). Hence, their sums
are positive; as qx > 0, one has θ > 0.

Lemma 4.4. For q ∈ [−0.108, 0) the real zeros of θ and their products with q are
arranged on the real line, as shown in figure 3.

Proof. The lemma follows from (2.1). Indeed,

0 = θ(q, x4k+2) = 1 + qx4k+2θ(q, qx4k+2), x4k+2 < 0 and q < 0;
hence, θ(q, qx4k+2) < 0.

For small values of q the quantity qx4k+2 is close to −q−4k−1 (see lemma 4.1
and remark 4.3(1)), i.e. close to x4k+1 and as θ(q, qx4k+2) < 0 one must have
x4k+1 < qx4k+2 < x4k+3. By continuity, these inequalities hold for all q < 0 for
which the zeros x4k+1 < x4k+3 are real and distinct.

In the same way one can justify the disposition of the other points of the form
qxj with respect to (w.r.t.) the points xj .

Proposition 4.5. The function θ(q, ·) with q ∈ (−1, 0) has a zero in the interval
(0,−1/q). More precisely, one has θ(q, −1/q) < 0.

Proof. Setting v = −q, as above, one gets

θ

(
−v,

1
v

)
= −vΦ(v) + v3Ψ(v),

where

Φ(v) =
∞∑

j=0

(−1)jv2j2+3j , Ψ(v) =
∞∑

j=0

(−1)jv2j2+5j .
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Furthermore, we use some results of [9]. Consider the functions

ϕk(τ) :=
∞∑

j=0

(−1)jτkj+j(j−1)/2 = θ(τ, −τk−1)

and ξk(τ) := 1/(1 + τk), τ ∈ [0, 1), k > 0.
We then use the following proposition.

Proposition 4.6.

(1) The functions ϕk are real analytic on [0, 1); when k > 0, ϕk < ξk; when k > 1,
ϕk > ξk−1; one has limτ→1− ϕk(τ) = 1

2 .

(2) Consider the function ϕk as a function of the two variables (k, τ). One has
∂ϕk/∂k > 0 for k > 0.

(3) For q ∈ (0, 1), x ∈ (−q−1,∞) one has ∂θ/∂x > 0.

(4) For q ∈ (0, 1), x ∈ (−q−1/2,∞) one has θ > 1
2 .

Proposition 4.6(2) implies ϕ3/4(v4) > ϕ1/4(v4). As −vΦ(v) = ϕ1/4(v4) − 1 and
−v3Ψ(v) = ϕ3/4(v4) − 1, this means that θ(−v, 1/v) < 0, i.e. θ(q, −1/q) < 0. This
completes the proof of proposition 4.5.

Proof of proposition 4.6. Part (1) of the proposition is proved in [9].
To prove part (2), observe that

∂ϕk/∂k = (− log τ)
∞∑

j=1

(−1)j−1jτkj+j(j−1)/2

= (− log τ)
∞∑

j=1

(ϕk+2j−1 − τk+2j−1ϕk+2j)τ (2j−1)k+(j−1)(2j−1).

As ϕk+2j−1 −τk+2j−1ϕk+2j = 2ϕk+2j−1 −1 and (see part (1) of the proposition) as
ϕk+2j−1(τ) > ξk+2j−2(τ) � 1

2 , each difference ϕk+2j−1 − τk+2j−1ϕk+2j is positive
on [0, 1). The factors − log τ and τ (2j−1)k+(j−1)(2j−1) are also positive.

For x ∈ (−q−1, 0] part (3) follows from part (2) and from ϕk(τ) = θ(τ, −τk−1).
Indeed, one can represent x as −τk−1 for some k > 0; for fixed τ , as x increases, k
also increases. One has

0 <
∂ϕk

∂k
= (− log τ)

∂θ

∂x

∣∣∣∣
x=−τk−1

and − log τ > 0.

For x > 0 part (3) results from all coefficients of θ(v, x) considered as a series in x
being positive.

For x ∈ (−q−1/2, 0] part (4) follows from part (3). Indeed, consider the function

ψ := 1 + 2
∞∑

j=1

(−1)jτ j2
, τ ∈ [0, 1).
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This function is positive valued, decreasing and tending to 0 as τ → 1− (see [8]).
As 0 < 1

2ψ(τ1/2) = ϕ1/2(τ) − 1
2 for k � 1

2 , part (2) implies

θ(τ, −τk−1) = ϕk(τ) � ϕ1/2(τ) > 1
2 .

For x = 0 one has θ = 1; hence, for x > 0, part (4) follows from part (2).

The following lemma follows immediately from the result of Katsnelson cited in
remark 1.7(4) and from proposition 4.5.

Lemma 4.7. For any ε > 0 sufficiently small there exists δ > 0 such that for
q ∈ (−1,−1 + δ] the function θ(q, ·) has a single real zero in the interval (−eπ/2 +
ε, eπ/2 − ε). This zero is simple and positive.

4.2. How do the zeros of θ coalesce?

We next describe the way in which multiple zeros are formed when q decreases
from 0 to −1.

Definition 4.8. We say that phenomenon A happens before phenomenon B if A
takes place for q = q1, B takes place for q = q2 and −1 < q2 < q1 < 0. By
phenomena we mean that certain zeros of θ or another function coalesce.

Notation 4.9. We denote by xj ≺ xk the following statement:

the zeros xk and xk+2 of θ can coalesce only after xj and xj+2 have
coalesced.

Lemma 4.10. One has x4k+2 ≺ x4k+3, x4k+2 ≺ x4k+1, x4k+3 ≺ x4k+4 and x4k+5 ≺
x4k+4, k ∈ N ∪ 0.

Proof. The statements follow from

qx4k+5 < x4k+4 < x4k+2 < qx4k+3, x4k+1 < qx4k+2 < qx4k+4 < x4k+3,

qx4k+4 < x4k+3 < x4k+5 < qx4k+6, x4k+6 < qx4k+7 < qx4k+5 < x4k+4,

respectively.

Lemma 4.11. One has x4k+2 ≺ x4k+6, k ∈ N ∪ 0.

Proof. Indeed, (2.1) implies

θ(q, x) = 1 + qx + q3x2 + q6x3 + q10x4θ(q, q4x). (4.1)

For x = x4k+2/q4 one obtains

θ

(
q,

x4k+2

q4

)
= 1 +

x4k+2

q3 +
x2

4k+2

q5 +
x3

4k+2

q6 =
(

1 +
x2

4k+2

q5

)
+

(
x4k+2

q3 +
x3

4k+2

q6

)
.

Each of the two sums is negative due to q ∈ (−1, 0), x4k+2 < −1 (see remark 4.3(2)).
For small values of |q| one has x4k+2/q4 ∈ (x4k+8, x4k+6) because xj = −q−j(1 +
O(q)) and θ(q, x4k+2/q4) < 0. By continuity, this holds true for all q ∈ (−1, 0) for
which the zeros x4k+8, x4k+6, x4k+4 and x4k+2 are real and distinct. Hence, if x4k+2
and x4k+4 have not coalesced, then x4k+6 and x4k+8 are real and distinct.
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Remark 4.12.

(1) Recall that for q ∈ (−1, 0) we set v := −q and that (1.1) holds true.

(2) Equation (2.2) implies that the values of θ at its local maxima decrease and its
values at local minima increase as q decreases in (−1, 0). Indeed, at a critical
point one has ∂θ/∂x = 0, so 2q∂θ/∂q = x2∂2θ/∂x2. At a minimum one has
∂2θ/∂x2 � 0, so ∂θ/∂q � 0 and the value of θ increases as q decreases (and
similarly for a maximum).

(3) In particular, this means that θ can lose real zeros, but not acquire them as
q decreases on (−1, 0). Indeed, the zeros of θ depend continuously on q. If at
some point on the real axis a new zero of even multiplicity appears, it cannot
be a maximum because the critical value must decrease, and it cannot be a
minimum because its value must increase.

(4) To treat the cases of odd multiplicities of the zeros, it suffices to differentiate
both sides of (2.2) w.r.t. x. For example, a simple zero x0 of θ cannot become
a triple one because

2q∂

∂q

(
∂θ

∂x

)
=

2∂θ

∂x
+ 4x

∂2θ

∂x2 + x2 ∂3θ

∂x3 ,

which means that, as

∂θ

∂x

∣∣∣∣
x=x0

=
∂2θ

∂x2

∣∣∣∣
x=x0

= 0,

either ∂3θ/∂x3|x=x0 > 0 (and hence, in a neighbourhood of x0 one has
∂θ/∂x � 0 and (∂/∂q)(∂θ/∂x) < 0) or ∂3θ/∂x3|x=x0 < 0 and hence ∂θ/∂x �
0 and (∂/∂q)(∂θ/∂x) > 0 (in a neighbourhood of x0), so in both cases the
triple zero bifurcates into a simple one and a complex pair as q decreases. The
case of a zero of multiplicity 2m + 1, m ∈ N, is treated by analogy.

(5) In (1.1) the first argument of both functions θ(v4,−x2/v) and θ(v4,−vx2)
(i.e. v4) is the same, so when one of them has a double zero they both have
double zeros. If the double zero of the first one is at x = a, then that of the
second is at x = a/v.

Proposition 4.13. For any k ∈ N∪0 there exists q∗
k ∈ (−1, 0) such that for q = q∗

k

the zeros x4k+2 and x4k+4 coalesce.

Notation 4.14. We denote the functions θ(v4,−x2/v) and −vxθ(v4,−vx2) by ψ1
and ψ2, respectively. By y±k and z±k we denote their real zeros for v4 ∈ (0, 0.108],
their moduli increasing with k ∈ N, yk > 0, y−k < 0, zk > 0 and z−k < 0. We set
z0 = 0.

Proof of proposition 4.13. In figure 4 we show for v4 ∈ (0, 0.108] what the graphs
of the functions ψ1 and ψ2 (drawn as solid and dashed lines, respectively) look like,
the former being even, and the latter odd (see remark 4.12(1)). The signs + and −
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– – –
+ + ++

Figure 4. The graphs of ψ1 (solid line) and ψ2 (dashed line).

indicate places where it is certain that their sum θ(−v, x) is positive and negative,
respectively. It is positive (respectively, negative) if both functions are of this sign.
It is positive near the origin because ψ1|x=0 > 0, while ψ2|x=0 = 0.

For values of v close to 0 the zeros y±k of ψ1 (respectively, the zeros z±k of
ψ2/x) are close to the numbers ±v−(4k−1)/2 (respectively, ±v−(4k+1)/2), k ∈ N (see
remark 4.3(1)). From these remarks it also follows that for small positive values of v
the zeros of θ(−v, x) are close to the numbers −v−k, k ∈ N. Hence, on the negative
half-axis x one obtains the following arrangement of these numbers:

· · · < −v−11/2 < −v−9/2 < −v−4 < −v−7/2

y−5 z−3 x4 y−3

< −v−5/2 < −v−2 < −v−3/2 < 0.

z−1 x2 y−1

Hence, for v4 ∈ (0, 0.108] between a zone marked by a + and one marked by a −
there is exactly one zero of θ(−v, ·).

As v increases from 0 to 1, it takes countably many values, at each of which one of
the functions ψ1 and ψ2 (in turn) has a double zero; when the value is passed, this
double zero becomes a conjugate pair (see theorem 1.1). Hence, on the negative
real half-line, the regions where the corresponding function ψ1 or ψ2 is negative
disappear one by one, starting from the right. As two consecutive changes of sign
of θ(−v, ·) are lost, θ(−v, ·) has a couple of consecutive real negative zeros replaced
by a complex conjugate pair. The quantity of these losses being countable implies
the proposition.

Proposition 4.15. Any interval of the form [γ, 0], γ ∈ (−1, 0), contains at most
finitely many spectral values of q.

Proof. Indeed, if γ � −0.108, the interval contains no spectral value of q (see
lemma 4.1); all zeros of θ are real and distinct and the graphs of the functions ψ1,2
look as shown in figure 4.

Suppose that γ < −0.108. When q decreases in [γ, 0], for each of the functions
this happens at most finitely many times such that each has a double zero that then
gives birth to a complex conjugate pair. This is always the zero which is closest to 0
(see theorem 1.1(2)).

Hence, the presentation of the graphs of ψ1,2 changes only on some closed interval
containing 0, but outside it the zones marked by + and − continue to exist (but
their borders change continuously) and the simple zeros of θ that are to be found

https://doi.org/10.1017/S0308210515000591 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000591


620 V. P. Kostov

between two such consecutive zones of opposite sign are still to be found there. In
addition, no new real zeros appear (see remark 4.12(3)).

Therefore, there exists s0 ∈ N such that, when q decreases from 0 to γ, the zeros
xs0 , xs0+1, xs0+2, . . . remain simple and depend continuously on q. Hence, only the
rest of the zeros (i.e. x1, . . . , xs0−1) can participate in the bifurcations.

Proposition 4.16. For q ∈ (−1, 0) the function θ(q, ·) can have only simple and
double real zeros. Positive double zeros are local maxima, and negative double zeros
are local minima.

Proof. Equality (2.1) implies

θ

(
q,

x

q2

)
= 1 +

x

q
+

(
x2

q

)
θ(q, x).

Set x = x4k+2. Hence, x4k+2 < −1 (remark 4.3(2)). As θ(q, x4k+2) = 0 and 1 +
x4k+2/q > 0, this implies θ(q, x4k+2/q2) > 0. In the same way θ(q, x4k+4/q2) > 0.

For q close to 0 the numbers x4k+2/q2 and x4k+4/q2 are close to x4k+4 and x4k+6,
respectively (see remark 4.3(1)). Hence, for such values of q one has

x4k+6 <
x4k+4

q2 <
x4k+2

q2 < x4k+4. (4.2)

This string of inequalities holds true (by continuity) for q belonging to any interval
of the form (a, 0), a ∈ (−1, 0), for any q of which the zeros x4k+6, x4k+4 and x4k+2
are real and distinct.

Equation (4.2) implies that x4k+6 and x4k+4 cannot coalesce if x4k+4 and x4k+2
are real (but not necessarily distinct). Hence, when negative zeros of θ coalesce for
the first time, this occurs with exactly two zeros, and the double zero is a local
minimum of θ.

For positive zeros, one obtains in the same way the string of inequalities

x4k+5 <
x4k+3

q2 <
x4k+5

q2 < x4k+7.

Indeed, one has 1 + x4k+3/q < 0 because x4k+3 > 1 (see proposition 4.5) and
q ∈ (0, 1). Hence, θ(q, x4k+3/q2) < 0 and, in the same way, θ(q, x4k+5/q2) < 0. Thus,
x4k+5 and x4k+7 cannot coalesce if x4k+3 and x4k+5 are real (but not necessarily
distinct). Hence, when positive zeros of θ coalesce for the first time, this occurs
with exactly two zeros, and the double zero is a local maximum of θ.

After a confluence of zeros takes place, one can give new indices to the remaining
real zeros, so that the indices of consecutive zeros differ by 2 (x2s+2 < x2s < 0
and 0 < x2s+1 < x2s+3). After this, for the next confluence, the reasoning is the
same.

Lemma 4.17. For k ∈ N sufficiently large one has x4k+3 ≺ x4k+6.

Proof. Suppose that x4k+3 � 3. Then

θ

(
q,

x4k+3

q3

)
= 1 +

x4k+3

q2 +
x2

4k+3

q3 +
(

x3
4k+3

q3

)
θ(q, x4k+3) = 1 +

x4k+3

q2 +
x2

4k+3

q3 .
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For x4k+3 � 3 and q ∈ (−1, 0) the right-hand side is negative. In the same way,
θ(q, x4k+5/q3) < 0. We prove below that

x4k+8 <
x4k+5

q3 <
x4k+3

q3 < x4k+6
. (4.3)

Hence, the zeros x4k+8 and x4k+6 cannot coalesce before x4k+5 and x4k+3 have
coalesced. To prove the string of inequalities (4.3) observe that for q close to 0 the
numbers x4k+8 and x4k+5/q3 are close to one another (as are x4k+3/q3 and x4k+6;
see remark 4.3(1)), which implies (4.3). By continuity, as long as x4k+3 � 3 and
q ∈ (−1, 0), the string of inequalities also holds true for q not necessarily close to 0.

The result of Katsnelson (see remark 1.7(4)) implies that there exists a ∈ (−1, 0)
such that for q ∈ (−1, a] the function θ(q, x) has no zeros in [−3, 3] except for the
one that is simple and close to 1 (see proposition 4.5). Hence, for q ∈ (−1, a] the
condition x4k+3 � 3 is satisfied if the zero x4k+3 is real and simple for q ∈ (a, 0). On
the other hand, for q ∈ [a, 0) only finitely many real zeros of θ coalesce, and only
finitely many belong to the interval [−3, 3] for some value of q (proposition 4.15).
Therefore, there exists k0 ∈ N such that for k � k0 one has x4k+3 � 3.

4.3. Completion of the proof of theorem 1.4

Proposition 4.16 and remark 4.12 show that θ(q, ·) has no real zero of multiplicity
higher than 2. Lemma 4.11 implies the string of inequalities −1 < · · · < q̄2l+2 <
q̄2l < · · · < 0. For k sufficiently large one has −1 < · · · < q̄k+1 < q̄k < · · · < 0. This
follows from lemmas 4.10 and 4.17. It follows from proposition 4.15 and from the
above inequalities that the set of spectral values has −1 as a unique accumulation
point. This proves part (3) of the theorem.

Part (2) of the theorem results from proposition 4.16.
Part (4) follows from remark 4.12. These remarks show that real zeros can only

be lost and no new real zeros are born.

5. Proof of theorem 1.6

Recall that ψ1 = θ(v4,−x2/v) and ψ2 = −vxθ(v4,−vx2) (see notation 4.14). Recall
that the spectral values q̃k of q for θ(q, x), q ∈ (0, 1), satisfy the asymptotic relation
q̃k = 1 − π/2k + o(1/k). Hence, the values of v for which the function θ(v4, x) has
a double zero are of the form

ṽk = (q̃k)1/4 = 1 − π

8k
+ o

(
1
k

)

and the functions ψ1,2 have double zeros for v = ṽk.
Consider three consecutive values of k, the first of which is odd: k0, k0 + 1 and

k0 +2. Set v := ṽk0 . Denote by a < b < 0 the double negative zeros of the functions
ψ1,2|v=ṽk0

. These zeros are local minima and on the whole interval [a, b] one has
θ > 0. The values of θ at local minima increase (see remark 4.12(2)). Therefore,
the double zero of θ(q̄k0 , ·) is obtained for some |q| < |ṽk0 |, i.e. before the functions
ψ1,2|v=ṽk0

have double zeros. This follows from (1.1) in which both summands on
the right-hand side have local minima (recall that, as k0 is odd, the double zero of
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θ is negative, so x < 0 in (1.1)). Hence,

|q̄k0 | < |ṽk0 | = 1 − π

8k0
+ o

(
1
k0

)
. (5.1)

In the same way,

|q̄k0+2| < |ṽk0+2| = 1 − π

8(k0 + 2)
+ o

(
1

k0 + 2

)
. (5.2)

In the case of k0 +1 the function ψ1|v=ṽk0+1 has a local minimum, while ψ2|v=ṽk0+1

has a local maximum (because k0 + 1 is even, the double zero of θ is positive, so
x > 0 in (1.1)). As θ has a local maximum and as the values of θ at local maxima
decrease (see remark 4.12(2)), the double zero of θ(q̄k0+1, ·) is obtained for some
|q| > |ṽk0+1|, i.e. after the functions ψ1,2|v=ṽk0+1 have double zeros. Therefore,

|q̄k0+1| > |ṽk0+1| = 1 − π

8(k0 + 1)
+ o

(
1

k0 + 1

)
. (5.3)

When k0 is sufficiently large one has |q̄k0 | < |q̄k0+1| < |q̄k0+2| (this follows from
theorem 1.4(3)). Using (5.2) and (5.3), one gets

1 − π

8(k0 + 1)
+ o

(
1

k0 + 1

)
< |q̄k0+1| < |q̄k0+2| < 1 − π

8(k0 + 2)
+ o

(
1

k0 + 2

)
.

Hence,

|q̄k0+1| = 1 − π

8(k0 + 1)
+ o

(
1

k0 + 1

)
and |q̄k0+2| = 1 − π

8(k0 + 2)
+ o

(
1

k0 + 2

)
.

This implies the statement of theorem 1.6.
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