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The ranging accuracy provided by pseudorange-only techniques is usually no better than a
few metres when no differential corrections are applied. Carrier-phase algorithms, on the
other hand, yield higher-precision estimates – down to a few millimetres – but are prone

to ambiguities difficult to resolve. An easier-to-implement method, using single-frequency
pseudorange measurements only, is presented. It allows for a decimetre-level relative
positioning accuracy. Results, derived from the GPS Relative Positioning Equations, are

validated with actual satellite data from the Gravity Recovery and Climate Experiment
(GRACE) mission.
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1. INTRODUCTION. Precise relative positioning based on Global
Navigation Satellite Systems (GNSS) is the key to numerous space applications
such as satellite rendezvous, formation flying and spacecraft collision avoidance.
Current methods used to evaluate inter-satellite separation rely on Global
Positioning System (GPS) code and carrier phase measurements [1, 2]. The expected
level of precision when using pseudo-ranges only is a few metres when no correc-
tions are applied. If the phases of the carrier are also used, the precision of relative
positioning estimates can go down to a few millimetres once carrier phase ambi-
guities are resolved. However, the task is often daunting and is still the topic of
continuing research [3, 15].

In this study, an easier-to-implement method – based on single-frequency pseudo-
range measurements only – was developed. It allows for a decimetre-level accuracy.
In addition, the utilization of single-frequency receivers can afford a substantial re-
duction in the overall cost of space missions, notably those featuring micro-satellites.
This method was evaluated using raw empirical data from the Gravity Recovery and
Climate Experiment (GRACE) mission. It is important to note that data were not
processed within the framework of this article : no filtering algorithm or corrections
were applied.

The GRACEmission features two identical satellites in a leader-follower formation
(GRACE A and GRACE B) orbiting the Earth on the same orbital plane. Their
initial altitude above the Earth surface was close to 500 km. Due to atmospheric drag,
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it will decrease to about 300 km towards the end of the mission. The mean inter-
satellite separation varies between 170 and 270 km. Originally funded for a five-
year period (2002–2007), the mission has been further extended to 2009. As the orbit
decay has been slower than initially thought and the satellites’ current fuel supply
is expected to last another four years at the very least, the mission is likely to continue
past 2012.

This article is organized as follows. In Section 2, data used throughout this study
are described:

’ Pseudoranges between the GRACE spacecraft and all of the GPS satellites in
sight.

’ Ephemeris data characterizing the orbit and clock of all of the relevant GPS
satellites.

’ GRACE inter-satellite separation collected by the K-Band Ranging (KBR)
system.

’ GRACE navigation data (GNV), which include post-processed position and
velocity solutions.

Section 3 focuses on the performances of two relative positioning algorithms. The
first one is based on the difference between two absolute position vectors. This
method is frequently used and numerous techniques have been designed to address its
major shortcoming, namely taking into account twice the errors common to both of
the satellites (such as atmospheric propagation delays or ephemeris uncertainty) be-
fore their expected mutual cancellation in the differencing process [4].

The second algorithm was initially conceived for aircraft collision avoidance [5].
Through this research, it has been validated for spaceborne applications for the first
time. As it solves directly for the relative position vector, errors affecting simul-
taneously the two satellites are cancelled at the source. A large-scale analysis under-
taken on behalf of the Galileo Future Applications project (GEO-6) showed that the
relative positioning error could be reduced by up to two orders of magnitude when
using the ‘direct ’ method.

2. DATA ACQUISITION. Actual data from a formation of satellites equip-
ped with GPS receivers were essential to verify and validate the positioning algo-
rithms. Data collected by the GRACE satellites enabled such an endeavour. Two
sets of data were needed to calculate the relative position between GRACE A and
GRACE B:

’ Pseudoranges between each satellite and all of the GPS satellites it has in view.
’ Ephemeris data characterizing each of these GPS satellites.

In addition, the inter-satellite separation derived from the K-Band Ranging system
measurements was used as a ‘true ’ reference against which the calculated distances
were compared.

2.1. GRACE Observation Data. GRACE A and GRACE B observation data
can be found on the mission’s official website maintained by the Jet Propulsion
Laboratory.1 Observation files contain pseudoranges and phase measurements for

1 http://podaac.jpl.nasa.gov/grace/data access.html#level1b
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each of the GRACE satellites. Data used in this study were recorded on four different
three-day-long periods. As the sampling frequency was equal to 0.1 Hz, the expected
total number of measurements amounted to 25 920 for each period.

GPS satellites transmit data on two L-band frequencies : L1=1575.42 MHz and
L2=1227.6 MHz. Pseudo-random noise (PRN) ranging codes in use include the
coarse acquisition (C/A) code and the precision (P) code. C/A code is available on the
L1 frequency only whereas the P-code is available on both L1 and L2.

Using the C/A code and the P-code on both L1 and L2, pseudoranges between
GRACE satellites and each of theGPS satellites they respectively had in view (between
1 and 10 for GRACE A, 2 and 10 for GRACE B) were extracted and stored for
subsequent calculations. The graphs presented in this article were based on the
P1-code for the January 1st–3rd, 2007 period unless otherwise specified.

2.2. GPS Data. Global GPS Navigation files were obtained from the National
Geodetic Survey website2. They contain ephemeris data for each of the GPS satellites.
GPS satellite numbers (also known as PRN number after the unique pseudo-random
noise associated with each satellite) range from 1 to 31. However, on limited occur-
rences just 30 GPS satellites were in view as some of the satellites could not be
seen – by either GRACE A or GRACE B – during the 72-hour measurement periods
under consideration or were not operating at that time. A description of the GPS
constellation for each epoch can be found on the U.S. Coast Guard website.3

For each of the GPS satellites, 19 parameters characterizing their respective orbit
and clock were extracted. Using the broadcast ephemeris data, GPS satellites’ co-
ordinates were calculated in the WGS-84 (World Geodetic System) Earth-Centred
Earth-Fixed (ECEF) reference frame. To this end, the algorithm found in Reference
[6] was modified as it superfluously introduces the functions cosx1 and tanx1, the use
of which may be critical for values at the boundary of the definition domain. A
variation on the derivations of the second harmonic perturbations (corrections made
to orbit parameters such as the argument of latitude, radius and inclination) that does
not resort to reciprocal trigonometric functions is presented in the Appendix.

2.3. GRACE KBR and GNV data. K-Band Ranging (KBR) data files provide
biased ranges between GRACE A and GRACE B along with the light time and
antenna offset corrections that must be added. True ranges were obtained by calcu-
lating the bias as many times as needed over the 72-hour time periods (typically
between once and thrice). GRACE navigation (GNV) data, which contain the post-
processed positions and velocities for both satellites were used to estimate the bias.
The true ranges thus computed served as a benchmark against which the distances
generated by the different relative positioning algorithms were compared. As the
typical sampling rate was 0.2 Hz (twice the GPS data rate), every other measurement
was discarded to ensure a perfect correspondence between the data.

3. KINEMATIC STUDY. Two different approaches were used to evaluate the
relative position between the GRACE satellites. The first method consists of solving
the GPS absolute positioning equations for each of the satellites and differencing
the position vectors thus obtained. The algorithm developed by Milliken and Zoller
in 1978 offers an elegant solution to the absolute positioning problem. Its principle,

2 http://www.ngs.noaa.gov/CORS/Data.html
3 http://cgls.uscg.mil/pipermail/gps
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detailed in Reference [7], is summarized in Section 3.1. The major drawback of this
method is that errors common to both of the GRACE satellites such as ionospheric
propagation delays, GPS satellite clock drifts or relativistic effects must be taken
into account twice, even though they are expected to cancel out during the differen-
tiation process. To remedy this issue, GPS relative positioning equations were for-
mulated in Reference [5]. They allow one to eliminate at the source errors that affect
simultaneously two nearby spacecraft and to solve directly for the relative position
vector. A detailed exposé of this method is given in Section 3.2.

Relative positions between GRACE A and GRACE B were computed and their
norm was compared to the ‘true ’ ranges derived from the KBR measurements. A
significant increase in terms of accuracy was achieved when using the latter algorithm
(see Section 3.3).

3.1. Absolute Positioning. Absolute positioning equations can be solved pro-
vided that a minimum of four GPS satellites are in view from the spacecraft under
consideration.

Let A and SA, i respectively represent GRACE A and one of the n GPS satellites it
has in view (isNn). rA and ri denote the position vectors of GRACE A and SA, i ; rA, i,
the vector from A to SA, i (see Figure 1). rA, i can be rewritten as:

rA, i=rA, iuA, i where rA, i=krA, ik (1)

In addition, rA, i is related to the broadcast pseudorange rA, i as follows:

rA, i=rA, i+eA+eA, i (2)

where eA stands for the range equivalent of GRACE A’s clock offset and eA, i for the
range equivalents of the GPS satellites’ clock offsets.

uA, i �rA=uA, i � (rixrA, i)

=uA, i �rixrA, i

=uA, i �rix(rA, i+eA+eA, i)

By reorganizing terms, the absolute positioning equation is obtained:

uA, i �rA+eA=uA, i �rix(rA, i+eA, i) (3)

Figure 1. Absolute spatial configuration.
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The left-hand side of Equation (3) contains the unknown position vector rA and the
associated error eA ; the right-hand side of the equation, observable data.

The unit vector uA, i, also known as line-of-sight vector, must be estimated with an
external device. For algorithmic purposes, an algebraic solution to the GPS equations
found in Reference [8] was used to calculate an initial position estimate and hence an
approximate value of the line-of-sight vector. Though the latter may be inaccurate,
the iterative algorithm based on Equation (3) generally converges rapidly and stops
whenever the distance between two consecutive position estimates does not exceed a
fixed value set to 1 mm.

Similarly, let B and SB, j respectively represent GRACE B and one of the p GPS
satellites it has in view ( jsNp). rB and rj denote the position vectors of GRACE B and
SB, j respectively and rB, j, the vector from B to SB, j. eB stands for the range equivalent
of GRACE B’s clock offset and eB, j for the range equivalents of the GPS satellites’
clock offsets. The absolute positioning equation for GRACE B is expressed as:

uB, j �rB+eB=uB, j �rjx(rB, j+eB, j) (4)

The ECEF coordinates of GRACE A and GRACE B, (xA, yA, zA) and (xB, yB, zB)
respectively, were calculated every 10 s – as allowed by the measurement sampling
rate – through Equations (3) and (4). They were used to plot GRACE satellites’ com-
mon orbit as well as the satellites’ altitude above the Earth’s surface (see Figures 2
and 3).

3.2. Relative Positioning. The distance between GRACE A and GRACE B can
be derived by differencing the absolute position vectors of the two satellites ; alterna-
tively, it can be directly expressed as a result of the relative positioning equations.

Let A and B represent satellites GRACE A and GRACE B. SA, i and SB, j respect-
ively denote the ithGPS satellite in view fromAand the jthGPS satellite in view fromB,

Figure 2. 72-hour Earth coverage of GRACE satellites.
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where (i, j)sNnrNp. The vectors from A to B, A to SA, i, B to SB, j and SA, i to SB, j are
designated as rA,B, rA, i, rB, j and ri, j respectively (see Figure 4).

Let uA, i and uB, j represent the unit vectors of lines (ASA, i) and (BSB, j) respectively.
rA, i and rB, j can be rewritten as:

rA, i=rA, iuA, i rB, j=rB, juB, j (5)

where rA, i=krA, ik and rB, j=krB, jk

Figure 3. GRACE satellites’ altitude above Earth’s surface.

Figure 4. Relative spatial configuration.
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In addition, rA, i and rB, j are related to the broadcast pseudoranges rA, i and rB, j by
the equations:

rA, i=rA, i+eA+eA, i rB, j=rB, j+eB+eB, j (6)

where eA and eB stand for the range equivalents of GRACE A and GRACE B clock
offsets, eA, i and eB, j, the range equivalents of the GPS satellites’ clock offsets.

(uA, i+uB, j) �rA,B=(uA, i+uB, j) �(rA, i+ri, jxrB, j)

=(uA, i+uB, j) �ri, j+(rA, ixrB, j+rA, iuA, i �uB, jxrB, juA, i �uB, j)
=(uA, i+uB, j) �ri, j+(1+uA, i �uB, j)(rA, ixrB, j)

=(uA, i+uB, j)ri, j+(1+uA, i �uB, j)(rA, ixrB, j+eAxeB+eA, ixeB, j)

By reorganizing terms, the relative positioning equation is obtained:

(uA, i+uB, j) �rA,Bx(1+uA, i �uB, j)(eAxeB)=(uA, i+uB, j) �ri, j+(1+uA, i �uB, j)
r(rA, ixrB, j+eA, ixeB, j)

(7)

The left-hand side of Equation (7) contains the unknown position vector rA,B and the
associated error eAxeB ; the right-hand side of the equation represents observable
data.

If the set of GPS satellites under consideration is further limited to those seen both
by GRACE A and GRACE B (i=j=k), Equation (7) simplifies to:

(uA, k+uB, k) �rA,Bx(1+uA, k �uB, k)(eAxeB)=(1+uA, k �uB, k)(rA, kxrB, k) (8)

This can be solved provided that the number of GPS satellites in common is greater
than four (ko4).

Equation (8) can be written in a matrix form as: WX=O where W is the k2r4
weight matrix, X the 4r1 relative position vector and O is the kr1 observable
vector. The corresponding system of linear equations is generally overdetermined as
k>4, but it can be solved using the pseudo-inverse matrix:

X=[WtW]x1 WtO (9)

For the 72-hour period under consideration, the number of common satellites
ranged between 0 and 9. Its variation over time, superimposed with the calculated
distance between the GRACE satellites, is displayed in Figure 5. Close to 70% of the
time, a minimum of six GPS satellites could be seen simultaneously by GRACE A
and GRACE B, as illustrated by the histogram displayed on Figure 6.

The variation of the Relative Geometric Dilution of Precision (RGDOP), which
takes into account the configuration of the GPS satellites in common, was also in-
vestigated. Using the notations of Equation (9), the RGDOP can be determined by
calculating the error covariance matrix as : C=[WtW]x1.

C is a symmetric matrix, the diagonal elements of which represent the variances on
the relative position coordinates (x, y, z) and time offset t and the non-diagonal ones,
the cross-correlation factors between those dimensions.

C=

s2
x sxy sxz sxt

sxy s2
y syz syt

sxz syz s2
z szt

sxt syt szt s2
t

2
664

3
775 (10)
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The Relative Geometric Dilution of Precision, represented in Figure 7, is defined as:

RGDOP=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
x+s2

y+s2
z+s2

t

q
(11)

When the RGDOP is greater than 6, the occurrence can be referred to as an ‘‘out-
age’’. As a general rule, the higher the number of common satellites, the lower and

Figure 5. Variation of the number of GPS satellites in common.

Figure 6. Distribution of the number of GPS satellites in common.
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less dispersed the RGDOP tends to be. This is illustrated qualitatively in Figure 8 and
quantitatively in Table 1, where the RGDOP mean and standard deviation (mRGDOP

and sRGDOP respectively) are calculated as a function of the number of GPS satellites
seen both by GRACE A and GRACE B.

3.3. Error Analysis. The performances of the two positioning algorithms (the
first one based on the difference between absolute positions, the second on the direct
result of the GPS relative positioning equations) are evaluated in this section. The
latter, which cancels out at the source errors common to both satellites, allows for a
major improvement in terms of precision.

A cumulative distribution analysis (see Figure 9) showed that 51.03% of the errors
were smaller than a metre when using the ‘direct ’ algorithm as opposed to 5.30%
when using the ‘difference ’ algorithm (see Table 2).

Figure 10 represents the error percentage on the relative distance between the
GRACE satellites over time. The ‘direct ’ algorithm allowed for the reduction

Figure 7. Variations of the RGDOP (<40).

Table 1. RGDOP mean and standard deviation (m).

Number of sat.

in common mRGDOP sRGDOP

4 15.17 120.13

5 2.71 1.64

6 1.97 0.79

7 1.54 0.54

8 1.32 0.34

9 1.17 0.19
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of the average error percentage by one order of magnitude: mdirect=4.92.10x2 ;
mdifference=1.21.10x1.

To study the influence of the number of common satellites on the relative posi-
tioning error, the data in Figure 10 were re-plotted, each point being represented in
the colour associated with the number of GPS satellites that both GRACE A and
GRACE B have in sight. The result is shown in Figure 11. The average error per-
centage was calculated for both algorithms as a function of the number of GPS
satellites in common as shown in Table 3.

3.4. Swap Day Results. On December 10, 2005, GRACE satellites switched
positions : GRACE B took the leader position while GRACE A was repositioned as
the ‘‘ follower’’. During the manoeuvre, the distance between the two satellites went
down to an all-time low of about 400 m (see Figure 12). As the distance between
GRACE A and GRACE B decreased, the number of GPS satellites that both of them

Figure 8. RGDOP dispersion (<40).

Table 2. Cumulative error distribution (%).

Error threshold (m) ‘Direct’ algo. ‘Difference’ algo.

<0.1 7.73 0.67

<0.2 15.14 1.29

<0.3 21.71 1.88

<0.4 27.35 2.48

<0.5 32.52 3.02

<1 51.03 5.30

<2 70.42 8.94

<3 79.23 11.68

<4 84.34 13.90

<5 87.63 16.44
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had in view increased. As illustrated in Figure 13, 41.8% of the time, a minimum of
eight common satellites were in sight (that proportion was as low as 12.7% for the
three-day period previously considered).

As the K-Band ranging system was deactivated on swap day, GNV data (ECEF
positions of the GRACE satellites as provided by the Jet Propulsion Laboratory)
were used as a ‘ true’ reference. For the error calculations, the computed relative
positioning data had to be sampled (1:6), since GNV data are given once every
minute only. A cumulative distribution analysis (see Figure 14) confirmed the per-
formance of the ‘direct ’ algorithm. For example, 91.32% of the errors were smaller
than a metre when using the ‘direct ’ algorithm as opposed to 22.92% when using the
‘difference’ algorithm (see Table 4).

Figure 9. Error distribution comparison.

Figure 10. Relative Positioning error with difference (Left) and direct algorithms (Right).
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Table 3. Comparison of the average error percentages.

Number of sat.

in common mdirect mdiff mdiff/mdirect

4 4.12 .10x3 1.06 .10x1 25.76

5 1.60 .10x3 6.89 .10x2 43.00

6 1.17 .10x3 4.63 .10x2 39.72

7 8.92 .10x4 3.19 .10x2 35.75

8 7.07 .10x4 1.89 .10x2 26.69

9 6.34 .10x4 1.24 .10x2 19.52

Figure 12. Inter-satellite separation on swap day.

Figure 11. Positioning error distribution with difference (Left) and direct algorithms (Right).
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Figure 15 presents the error percentage on the relative distance between
the GRACE satellites over time. The ‘direct ’ algorithm allowed for the reduction
of the average error percentage by two orders of magnitude: mdirect=1.53.10x2 ;
mdifference=1.55.

Figure 13. Distribution of the number of GPS satellites in common.

Figure 14. Cumulative error distributions.
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4. CONCLUSION. An innovative method allowing for the calculation of the
distance between two satellites was developed and validated. It is based on single-
frequency pseudorangemeasurements only.Unlike other single-frequency algorithms,
it does not feature differential operators and its foundation lies on pure vectorial
geometry. The average relative positioning error could be reduced by up to two or-
ders of magnitude. The concept of Relative Geometric Dilution of Precision
(RGDOP), which takes into account the configuration of the GPS satellites in com-
mon, was introduced. The impact of the number of common satellites on the rela-
tive positioning errors and the RGDOP was also quantified. Although the accuracy
level is not as good as that reached through carrier-phase methods, the technique
exhibited in this article still provides a commendable precision and offers an ease of
implementation and a substantial cost-reduction in relation to other methods.
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APPENDIX

GPS Satellite Position Determination

The equations described in this section allow for the calculation of the GPS sa-
tellites’ coordinates in the WGS-84 ECEF (Earth-Centred Earth-Fixed) reference
frame. They do so without using any of the reciprocal trigonometric functions ex-
hibited in Table 2.15 of Reference [6], which is a warranty for unambiguous compu-
tational results.

Let e denote the broadcast eccentricity, Ek the calculated eccentric anomaly and nk
the true anomaly. The true and eccentric anomalies are related as follows:

sin vk=

ffiffiffiffiffiffiffiffiffiffiffiffi
1xe2

p
sinEk

1xe cosEk
and cos vk=

cosEkxe

1xe cosEk
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The argument of latitude Wk is defined as Wk=vk+v, where v represents the
broadcast argument of perigee. The second harmonic perturbations (corrections to
the argument of latitude, radius and inclination) can be written as linear functions of
sin 2Wk and cos 2Wk :

dlk=ls sin 2Wk+lc cos 2Wk

drk=rs sin 2Wk+rc cos 2Wk

dik=is sin 2Wk+ic cos 2Wk

where ls, lc, rs, rc, is and ic respectively represent the broadcast latitude, radius and
inclination correction coefficients.

nk and Wk do not need to be explicitly calculated to compute dlk, drk and dik. The
terms sin 2Wk and cos 2Wk can be directly expressed as functions of sin nk and cos nk:

sin 2Wk=2 sin nk cos nk cos 2v+(2 cos2 nkx1) sin 2v

cos 2Wk=(2 cos2 nkx1) cos 2vx2 sin nk cos nk sin 2v

Similarly, the corrected argument of latitude lk=Wk+dlk does not have to be nu-
merically computed. The terms cos lk and sin lk, needed to calculate the perifocal
coordinates of each of the GPS satellites (i.e., the two-dimensional position in their
respective orbital plane), can be expressed as:

cos lk= cos (v+dlk) cos vkx sin (v+dlk) sin vk

sin lk= sin (v+dlk) cos vk+ cos (v+dlk) sin vk
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