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Parametric study of the transition in the wake of
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An exhaustive parametric study of the transition scenario in the wake of oblate
spheroids and flat cylinders placed with their rotation axis parallel to the flow is
presented. The flatness of the investigated objects is classified by the aspect ratio χ

defined as χ = d/a for spheroids (with d the diameter and a the length of the polar
axis) and as χ = d/h for cylinders (with h the cylinder height). We find a significant
qualitative similarity between both configurations. At large aspect ratios (χ > 2.3 for
spheroids and χ � 4 for cylinders), the secondary bifurcation giving rise to a periodic
state without planar symmetry is subcritical with a hysteresis interval of about two
Reynolds number units. For spheroids, the sphere-like scenario is recovered only at
aspect ratios very close to one (χ � 1 are considered), while for cylindrical bodies
the same holds for χ � 1.7. For intermediate aspect ratios, a domain of states with
non-zero net helicity separates states typical for the sphere wake from those of an
infinitely flat disk.
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1. Introduction
The pioneering linear analysis of the breaking of axisymmetry in wakes of

axisymmetric bodies of Natarajan & Acrivos (1993) focused on two prototypical
bodies: a sphere and a disk. While the wake of a sphere has been the topic of
extensive experimental research, the topic of a flat disk and flat cylindrical bodies has
been taken up only in a handful of recent, mostly numerical and theoretical papers.
For a cylinder, the aspect ratio is defined as χ = d/h, where d is the cylinder diameter
and h is the cylinder height. In what follows, a ‘flat disk’ is considered to correspond
to an infinite aspect ratio, while if the body is cylindrical with non-zero height it will
be called a flat cylinder if χ > 1. It clearly appears that the transition scenario in
these wakes differs considerably from that of the fixed sphere wake; furthermore, the
transition process involves several new states that do not exist in the sphere wake.
The present literature on the transition from a steady symmetric to a chaotic flow
over a flat disk or a thin cylinder reveals seven transition stages.

(a) In all investigated configurations, the flat disk (χ = ∞), considered by
Natarajan & Acrivos (1993), Fabre, Auguste & Magnaudet (2008) and Meliga,
Chomaz & Sipp (2009), and flat cylinders of aspect ratio larger than one, investigated
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by Fernandes et al. (2007) (χ = 2–10), Shenoy & Kleinstreuer (2008) (χ = 10) and
Auguste, Fabre & Magnaudet (2010) (χ = 3), the primary bifurcation is regular in the
m =1 azimuthal subspace, leading to a steady non-axisymmetric but planar symmetric
state, the symmetry plane of which has an arbitrary orientation selected by initial
conditions (see Ghidersa & Dušek 2000). The breaking of axisymmetry yields a steady
lift oriented in the symmetry plane. This state is denoted by SS (steady state) in Fabre
et al. (2008) and Meliga et al. (2009) and ‘steady asymmetric’ in Shenoy & Kleinstreuer
(2008). The threshold of the primary bifurcation has been given by Fernandes et al.
(2007) as a function of χ for cylinders of finite aspect ratio. In the cited literature,
there is a good consensus as to the critical Reynolds number value of Re1 for a flat
disk. It is found to be between 115 and 117.

(b) While the steady non-axisymmetric state is common to all cases investigated,
including that of a sphere, the secondary bifurcation, albeit of Hopf type in all cases,
has been found to lead to a specific periodic state without planar symmetry for a flat
disk and a cylinder of aspect ratio χ = 10. This state is characterized by a ‘kinking
of trailing vortices’ past the body (see Shenoy & Kleinstreuer 2008) generating an
oscillating component of the lift. While the mean lift lies in the symmetry plane
selected at the primary bifurcation, the oscillating component is perpendicular. As a
consequence, it has been called RSB (reflectional symmetry breaking) by Fabre et al.
(2008), the MMπ (mixed mode with phase π) state by Meliga et al. (2009), ‘steady
3D periodic with regular rotation of the separation region’ by Shenoy & Kleinstreuer
(2008) or ‘yin-yang’ by Auguste et al. (2010). For the flat disk the critical Reynolds
number Re2 was found between 121 and 125.6.

(c) Alternatively, for χ = 3, Auguste et al. (2010) evidenced a transition to the
periodic state with planar symmetry, as observed many times in the sphere wake
(see e.g. Johnson & Patel 1999) at the secondary bifurcation. In this state, the lift
oscillates in the symmetry plane and keeps a non-zero mean value. It has been called
the RSP state by Fabre et al. (2008), the MM0 state by Meliga et al. (2009) or ‘zig-zig’
by Auguste et al. (2010). The change of the bifurcated state does not significantly
influence the trend of the critical Reynolds number as a function of the aspect ratio.
It was fitted to a smooth function by Fernandes et al. (2007).

(d) State (c) is to be distinguished from the periodic state with a zero-mean lift
although both have a symmetry plane. The mean value of the oscillating lift in the
periodic state without planar symmetry (b) has been observed to vanish upon an
increase in the Reynolds number until the planar symmetry is recovered (but with
a symmetry plane perpendicular to that chosen at the primary bifurcation). The lift
oscillates in this symmetry plane with a zero-mean value. This periodic state with
a zero-mean lift has been observed for the flat disk and for the cylinder of aspect
ratio χ = 10. It is to be noted that the same state arises when the Hopf bifurcation
directly breaks the axisymmetry of the flow, which happens for the opposing flow in
the wake of a heated sphere (see Kotouč, Bouchet & Dušek 2009a). In the literature
concerning disks, this state is called the SW (standing wave) mode (Fabre et al. 2008;
Meliga et al. 2009) or ‘unsteady with plane of symmetry and zero lift force’ (Shenoy &
Kleinstreuer 2008). Its threshold has been found at Re ≈ 140 (Fabre et al. 2008) and
143 (Meliga et al. 2009).

(e) In a single case, for the cylinder with χ = 3 (Auguste et al. 2010), the existence
of a state with non-zero helicity has been reported. The net non-zero helicity arises
due to unequal amplitudes of spiral modes appearing in the weakly nonlinear analysis
of Fabre et al. (2008) and Meliga et al. (2009). On the time scale of a vortex shedding
period, the helicity yields an elliptic path of the lift. The latter moves periodically in
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the plane perpendicular to the flow axis so that the lift path can roughly be described
as a slowly oscillating or rotating ellipse. Because of the two scales present and the
form of the lift trajectory, the state is called ‘quasi-periodic pulsating’ or ‘knit-knot’
by Auguste et al. (2010). Similar states have also been observed in the opposing flow
past a heated sphere by Kotouč et al. (2009a).

(f) The transition to chaos is preceded by a quasi-periodicity characterized by the
presence of a slower frequency close to 1/3 of the ‘leading frequency’ of the previous
regimes (Fabre et al. 2008). The same behaviour has been observed in the unheated
and heated sphere wake (Bouchet, Mebarek & Dušek 2006; Kotouč, Bouchet & Dušek
2009b). A similar modulation occurs in states with non-zero net helicity (Kotouč et al.
2009b).

(g) The chaotic states have no symmetry. The lift coefficient describes a chaotic
path in the plane perpendicular to the flow axis.

In spite of significant progress in the understanding of the transition scenario of flat
axisymmetric bodies, especially of a flat disk, the existing literature does not provide
a more systematic picture, taking into account variations in the aspect ratio. For flat
cylinders, the parametric study of the first two bifurcation thresholds of Fernandes
et al. (2007) can be improved, extended and refined with reference to the progress in
identification of more complex regimes. The linear analysis of Natarajan & Acrivos
(1993) takes up the flat disk and a sphere as two extreme cases. The link between
them is represented by oblate spheroids rather than by flat cylinders. The former
have, however, never been investigated. The wakes of cylinders and spheroids can
both be characterized by just two parameters, allowing a relatively easily feasible
two-parametric study providing an exhaustive picture of the transition scenario. The
purpose of this paper is to present the results of such an investigation.

2. Mathematical formulation and numerical method
The mathematical formulation and numerical method used are basically those

of Ghidersa & Dušek (2000). The three-dimensional Navier–Stokes equations are
non-dimensionalized with respect to the inflow velocity U and the diameter of the
transverse cross-section d:

∇ · v = 0, (2.1)

∂v

∂t
+ (v · ∇) · v = −∇p +

1

Re
∇2v, (2.2)

and are solved in a cylindrical coordinate system (z, r, θ), with the z-axis parallel to
the free-stream direction, r the distance to the axis and θ the azimuthal angle. The
non-dimensionalization yields the Reynolds number defined as Re = Ud/ν and the
aspect ratio defined in the Introduction (§ 1) for cylinders and given by χ = d/a for
the spheroids, where d is the transverse diameter and a is the length of the streamwise
axis of the spheroid.

The equations are discretized using the spectral–spectral-element discretization (see
Ghidersa & Dušek 2000; Jenny & Dušek 2004, for more details), combining the
Fourier expansion in the azimuthal direction with a spectral-element discretization in
the (z, r)-plane. The cylindrical computational domain of radius R =8d extends 12d
upstream and 25d downstream of the considered objects. The extent of the domain
has many times been tested in previous work. It needs to be modified depending on
flow conditions, namely, on the considered Reynolds numbers. For example, for low
Reynolds numbers, very large domains must be used (see e.g. Kotouč et al. 2009a). At
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Re N = 6 N = 8

Re1 117.17 116.92
Re2 125.18 (4) 125.15 (6) 125.12 (4) 125.11 (6)

Table 1. Mesh test results for a flat disk. The values in parentheses indicate the number
of azimuthal modes of a Fourier expansion. N denotes the number of collocation points in
spectral elements.

Figure 1. Spectral element discretization of the radial–axial plane of the computational
domain of an oblate spheroid of χ = 2. The inflow is situated on the left.

Reynolds numbers exceeding 100, the dimensions of the mentioned domain together
with no-stress boundary conditions at the outflow and lateral boundary were always
found to provide the instability thresholds with an error smaller than 1%. The
(z–r)-plane is broken up into spectral elements with N Gauss–Lobatto–Legendre
collocation points in each direction (z, r) (see figure 1). The azimuthal direction is
discretized by Fourier expansion. The flow is forced by a uniform Dirichlet boundary
condition at the inflow basis of the cylindrical domain.

The spectral-element breakup of the (z–r)-plane had to be adapted to the new
configuration. Especially for that of the flat disk and the cylindrical bodies, the flow
conditions at the body surface differ from those of a sphere. The mesh had to be refined
close to the sharp edges to capture the sharp gradients accurately. Nevertheless, the
mesh modification, as compared to the mesh presented in Ghidersa & Dušek (2000),
is limited roughly to a domain of radius 1d . Several meshes have been developed
for each configuration considered and tested for the dependence of the primary and
secondary thresholds on the number of collocation points. (A bad mesh yields a
solution sensitive to the refinement within spectral elements.) The retained meshes
contain 215–241 elements. The influence of the number of azimuthal modes m on
the secondary instability threshold was also investigated. The results for the flat disk
are presented in table 1. They show that six collocation points and an azimuthal
expansion truncated at m =4 provide values that are almost insensitive to further
mesh refinement and agree with those of data from the literature.

3. Results
3.1. Transition states

In the Introduction we listed seven states (a–g), which have been described in
the literature as representing the stages of transition in the wakes of flat disks. The
transition stages we observed in the wake of oblate spheroids are very similar. The
parametric investigation presented below (see the two following subsections) shows
that the classification in § 1 is valid for the whole parameter domain investigated for
oblate spheroids, namely χ � 1. Figure 2 provides sample illustrations of analogues
of the states reported in the literature on cylindrical bodies in the case of oblate
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Figure 2. Sample characterization of transition states in the wake of oblate spheroids. The
letters (a–g) refer to the states presented in § 1. (a) Steady asymmetric, χ = 1.25, Re = 225;
(b) periodic without planar symmetry, χ = 6, Re = 145; (c) periodic with planar symmetry
and non-zero mean lift, χ =1.25, Re = 268; (d) periodic with zero-mean lift, χ = 6, Re = 183;
(e) non-zero helicity, left two figures χ = 1.25, Re = 283, right figure χ = 1.85, Re =190; (f )
quasi-periodic pre-chaotic, χ = 1.11, Re = 324; (g) chaotic state, χ =1.5, Re = 310. The 3D plots
represent a pair of iso-vorticity surfaces corresponding to a positive and negative streamwise
vorticity value.
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spheroids. Converged states obtained after the decay of transients are represented.
The time evolution (including the transients) was monitored by plotting the three
components of the hydrodynamic force and the flow field at several points of the
wake. The lift coefficient is represented in the figures as best illustrating the nature of
the states. The simplest states have already been amply described elsewhere. Here we
briefly comment only on the states with non-zero helicity (e) and the quasi-periodic
pre-chaotic states (g).

As stated earlier, the state with non-zero helicity was reported only once, as the
‘knit-knot’ mode at χ =3 and Re = 187 in the wake of a cylinder (Auguste et al.
2010). Many cases of similar states have, however, been evidenced in the opposing
flow past a heated sphere at moderate Richardson numbers by Kotouč et al. (2009b).
As a rule, the domain of stability of purely biperiodic states is very limited (the main
period being the ‘leading frequency’ of vortex shedding linked to the Hopf bifurcation
and the secondary period being the frequency, sometimes very slow, characteristic for
the ‘migration’ of the ellipse representing the projection of the lift onto the plane
perpendicular to the flow axis at the scale of one vortex shedding period). Very often,
at least in the opposing flow past a sphere, the ellipse is very flat, which means that
there still remains a slightly distorted symmetry plane of the wake. The latter either
slowly oscillates or rotates (see figure 19 of Kotouč et al. 2009b). In the case of oblate
spheroids, we observed both a rotating (see figure 2e for χ = 1.25, Re = 283) and
oscillating version (see the same figure but the case of χ = 1.85, Re = 190) of the
state with non-zero net helicity. In the ‘rotating’ case, the path of the lift describes an
ellipse slowly rotating with constant angular velocity in the given direction, and in the
‘oscillating’ case, its rotation stops and reverses back so that the ellipse axis oscillates
only within a limited angle. The main difference between figure 19 of Kotouč et al.
(2009b) and the present figure 2(e) consists of the non-zero mean lift of the average
is taken over one short vortex shedding period. Such a state was also observed in
opposing flow but only in its rotating version.

The onset of chaos is not always quite clear-cut. If states with well-defined symmetry,
(c and d ), become chaotic, the onset of chaos can be associated with the loss of this
symmetry. The chaotic state described by Shenoy & Kleinstreuer (2008) arises from
state (d) and that by Auguste et al. (2010) from state (c). Auguste et al. (2010) clearly
show that a quasi- (multi-) periodicity (with a possible subharmonic lock-in) precedes
the onset of chaos. The same observation has been made for a sphere (Bouchet et al.
2006). The exact limit between a multi-periodic and a chaotic state is difficult to set.
This is even more true in the cases where chaos sets in from a state (e), in which
no symmetry is present. Nevertheless, we again observe a characteristic subharmonic
that distorts the travelling ‘ellipse’ of the lift path. The latter becomes more and more
complicated as large time scale modulations set in until both the time plots and the
lift path become completely disorganized. To sum up, unlike other thresholds that
can be determined potentially with arbitrary precision, the line delimiting the onset
of chaos in the state diagrams presented below is to be understood as approximate.

3.2. Oblate spheroids

The transition scenario for oblate spheroids (see figure 4) can be roughly divided
into a sphere-like and a flat-disk-like scenario. The difference starts to appear at the
secondary bifurcation, the primary steady non-axisymmetric state (a) being present
in the qualitatively same form for all aspect ratios. The sphere-like and flat-disk-
like scenarios are separated by the subdomain of states (e) with non-zero helicity
extending from the secondary bifurcation threshold at χ ≈ 2 almost to the sphere
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Figure 3. Logarithmic plot of the amplitude of the oscillation of the lift coefficient of a flat
disk (χ = ∞) at Re = 126 (solid line) compared with the purely exponential growth (dashed
line, obtained by a linear fit of the initial stage of growth). Note the super-exponential growth
in the time interval t ∈ [1950, 2350] time units.

case χ =1. We have taken special care to see why the states of non-zero helicity
have never been observed in the sphere wake. It appears that the corresponding
(e)-sub-domain is cutoff between 1/χ = 0.9 and 0.95. The most striking feature of the
flat-disk-like scenario is that the secondary bifurcation leading to the periodic state
without planar symmetry (b) appears to be subcritical. Any subcritical bifurcation
has two characteristic features (Strogatz 1994, §8.2): a bistability interval below the
linear instability threshold and a super-exponential growth above the threshold. An
example of the super-exponential growth is presented in figure 3. The bistability band
is represented by the grey area in figure 4. The subcriticality seems to be closely
linked to the Hopf bifurcation to the (b)-state. It is, however, difficult to trace it to the
point at which the bifurcations to the non-symmetric state and the symmetric state
meet (slightly above χ = 2 for spheroids and close to χ =4 for cylinders) because the
bistability interval becomes very narrow. At χ = 2.25, it either no longer exists or is
even narrower than one Reynolds number unit. The bistability interval is represented
graphically for several aspect ratios of spheroids and a cylinder of χ =6 in figure 5.
Figure 5(a) presents the amplitudes of oscillations of the lift coefficient. A non-zero
amplitude is synonymous with the state (b). The interval of stability of the steady
state (a) is shown by dashed lines traced along the horizontal axis (zero amplitude).
The same bistability can also be clearly seen in the plot of the mean lift as a function
of the Reynolds number. The curves of the steady lift in the state (a) do not connect
continuously with those of the mean lift in the unsteady periodic state (b) and the
intervals of existence of both states overlap (see figure 5b). The limits of the bistability
interval are provided in table 2.

3.3. Flat cylinders

The state diagram for flat cylinders of the aspect ratio χ � 1 is represented in figure 6.
It is seen that the intermediate scenario involving states with non-zero helicity does
not extend beyond χ = 1.8 and that the flat-disk-like scenario is limited by an aspect
ratio slightly smaller than 4. The first two thresholds, fitted by Fernandes et al. (2007)
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→0
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Re
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∞

χ
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1.11

1.25

1.43

1.67

2.00

2.50

3.33

5.00

10.00

Infinitely
thin disk

→Sphere

Figure 4. State diagram for oblate spheroids. A denotes axisymmetric state. The letters (a–g)
in the inset refer to the same states as in the caption of figure 2. The filled triangles (c) and
diamonds (e) represent pre-chaotic states (f ) with a subharmonic modulation. They can be
either with non-zero helicity (diamonds) or with planar symmetry (triangles). The narrow filled
band represents the domain of bistability at the subcritical bifurcation.

0.025 0.08
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0.02

0

(a) (b)

�CL CL

0.020

0.015
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0.005

0
110 120 130 140

Re
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Spheroid χ � ∞
Spheroid χ � 6
Spheroid χ � 3
Cylinder χ � 6

Spheroid χ � ∞
Spheroid χ � 6
Spheroid χ � 3
Cylinder χ � 6

110 120 130 140

Re
150 160 170 180

Figure 5. (a) Oscillation amplitude �CL of the lift coefficient as a function of the Reynolds
number for oblate spheroids of χ = ∞, 6, 3 and a flat cylinder of χ = 6 (see inset). The stability
interval of the steady non-axisymmetric state is presented by dashed lines along the horizontal
axis. Their linear instability thresholds are plotted as empty triangles. (b) Mean lift as a
function of Reynolds number. Four triangles on the horizontal axis to the left of the value
140 represent the primary instability thresholds.

to straight lines in terms of 1/χ , are in agreement with our data close to χ = ∞ but
deviate from the thresholds evidenced in figure 6 at χ = 2. However, a closer look at
figure 18 of Fernandes et al. (2007) shows that the real computed values at χ = 2 lie
clearly above the fit. There is a very good agreement in the thresholds of all states
described by Fabre et al. (2008) and Meliga et al. (2009). The thresholds of Shenoy &
Kleinstreuer (2008) are systematically above those of figure 6. The difference grows
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Spheroids Cylinders

χ Re′
2 Re2 χ Re′

2 Re2

∞ [124] 125.2 ∞ [124] 125.2
6 [136] 137.7 6 [148] 150.1
3 [154] 155.7 4 [164] 165.6

Table 2. Linear stability thresholds Re2 and lower bounds of bistability Re′
2 (Re′

2 < Re2) of
the subcritical Hopf bifurcation for oblate spheroids and flat cylinders. (The values in square
brackets are closest integer upper bounds.)
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Figure 6. State diagram for cylinders. The meaning of the symbols is the same as in figure 4.
The band of bistability at the subcritical bifurcation is still present for 1/χ � 0.25.

considerably with the Reynolds number. The comparison of our data with those of
the literature is provided in table 3.

4. Conclusion
The state diagrams presented are intended to serve as a tool that allows us to

assess the expected asymptotic state for any numerical or experimental configuration
involving oblate spheroids and flat cylinders. Beyond this practical aspect, they may
provide a basis for theoretical reflection that has already been remarkably developed
for flat disks by Fabre et al. (2008) and Meliga et al. (2009). The subcriticality of the
secondary Hopf bifurcation can to some extent be neglected but, if it is to be taken
into account, the weakly nonlinear models must be developed to a higher order.
Finally, detailed knowledge of the transition scenario of fixed objects provides an
indispensable reference for simulations of freely falling disks. This topic has gained
significant attention from the scientific community since the experimental paper by
Field, Klaus & Moore (1997). It is the principal goal of the experimental paper by
Fernandes et al. (2007) but remains a stimulating numerical challenge.
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χ Re1 Re2/St2 Re3/St3 Re4/St4 Re5/St5 Re6

∞ [1] ≈115 ≈121 ≈140
0.119

∞ [2] 116.9 125.3 143.7∗

0.121 0.118
∞ [3] 116.92 (124, 125.2) [142, 143] [165, 170]

0.120 0.118

10 [4] 135 155 172 280
0.113

10 [3] 129.6 (136.3, 138.7) 154.4 188.8
0.115 0.114

3 [5] ≈159.4 ≈179.8 [184, 185] [190, 191] ≈215 ≈240
0.109

3 [3] 159.65 [181, 182] [185, 190] [195, 198] [220, 230] [235, 240]
0.112 0.112 0.112 0.111

Table 3. Bifurcation thresholds. Numbers in brackets indicate authors: [1] Fabre et al. (2008),
[2] Meliga et al. (2009), [3] present study, [4] Shenoy & Kleinstreuer (2008), [5] Auguste et al.
(2010). ∗Result obtained using asymptotic expansion. At χ = 10, the values of the present
study are obtained by interpolation between χ = ∞ and χ = 6. Re2 is understood as the
critical Reynolds number for the loss of stability of the steady non-axisymmetric state. Values
in italics below the critical Reynolds numbers are Strouhal numbers of the oscillations at
the corresponding threshold. For the quasi-periodic state at χ = 3, Re = Re4, the dominant
frequency is indicated. The parentheses denote the bistability interval; the square brackets
delimit the error margin.
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