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This paper deals with the blow-up of solutions to a class of parabolic problems with
time-dependent coefficients under homogeneous Neumann boundary conditions. For
one set of problems in this class we show that no global solution can exist. For
another we derive lower bounds for the time of blow-up when blow-up occurs.

1. Introduction

In recent years a strong interest in the phenomenon of blow-up of solutions to
various classes of nonlinear problems has developed. Much of the earlier work on
blow-up is referenced in the books of Straughan [7] and of Quittner and Souplet [6]
as well as in the survey papers of Bandle and Brunner [1] and of Levine [2]. Prob-
lems analogous to those considered here but with constant coefficients were treated
in [5], and problems with time-dependent coefficients under homogeneous Dirichlet
boundary conditions were investigated by Payne and Philippin in [3] for a single
equation, and in [4] for a related system. In the present paper it is shown that,
with certain restrictions on the form of the nonlinear term in the governing equa-
tion, no non-zero global positive solution can exist in L1. Under somewhat different
conditions, a lower bound for the time of blow-up is obtained when blow-up occurs.

2. Non-existence

Let Ω be a bounded domain in R
N with sufficiently smooth boundary ∂Ω. We

consider the following problem, whose solution may blow up at some finite time t�:

ut = ∆u + k(t)f(u), x = (x1, . . . , xN ) ∈ Ω, t ∈ (0, t�),
∂u(x, t)

∂ν
= 0, x ∈ ∂Ω, t ∈ (0, t�),

u(x, 0) = u0(x) � 0, (u0(x) �≡ 0), x ∈ Ω,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.1)
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Here ∆ is the Laplace operator, k(t) is a non-negative function of t for t > 0 and
∂u/∂ν := ∇u · ν is the normal derivative of u on ∂Ω. ν := (ν1, . . . , νN ) is the unit
exterior normal vector on the boundary ∂Ω. Our results in this section will hold
for functions f that satisfy

f(s) � g(s) � 0, s � 0, (2.2)

where g satisfies Jensen’s inequality, i.e.

1
|Ω|

∫
Ω

g(u) dx � g

(
1

|Ω|

∫
Ω

u dx

)
. (2.3)

In (2.3), |Ω| :=
∫

Ω
dx is the volume of Ω. We note that (2.3) is satisfied for convex

functions g. In establishing blow-up, we introduce the auxiliary function

Ψ(t) :=
1

|Ω|

∫
Ω

u dx. (2.4)

A differentiation of Ψ gives

Ψ ′(t) =
1

|Ω|k(t)
∫

Ω

f(u) dx � k(t)g(Ψ(t)). (2.5)

An integration over the time-interval of existence leads to

∫ Ψ(t)

Ψ(0)

dη

g(η)
�

∫ t

0
k(τ) dτ. (2.6)

Clearly, if the condition ∫ ∞

Ψ(0)

dη

g(η)
= M < ∞ (2.7)

is satisfied, and if the function k(t) satisfies

lim
t→∞

∫ t

0
k(τ) dτ = ∞, (2.8)

then no non-zero solution of (2.1) in L1 can exist for all time, and an upper bound
T for t� is given by ∫ T

0
k(τ) dτ = M. (2.9)

We have established the following result.

Theorem 2.1. If f(u) and g(u) satisfy (2.2), (2.3) and (2.7), and if k(t) satis-
fies (2.8), then no non-zero L1 solution of (2.1) can exist for all time, but the
solution will blow up in L1 at time t� � T , where T is defined by (2.9).

We note that the blow-up of u(x, t) in L1 implies the blow-up in Lq for any q > 1.
This follows from Hölder’s inequality.
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3. Lower bound for t�

In this section we assume that Ω is a bounded convex region in R
3, and we make

the following assumptions on the data:

0 � f(s) � sp, p > 1, (3.1)

k(t) > 0,
k′(t)
k(t)

� β, (3.2)

for some constant β � 0. The case where k(t) = 0 for some value of t will be
considered at the end of this section. In deriving a lower bound for t�, we introduce
the auxiliary function

Φ(t) := (k(t))2n

∫
Ω

u2n(p−1) dx, (3.3)

where n is a constant which satisfies

n � max
{

1
p − 1

, 1
}

. (3.4)

A differentiation of (3.3) gives

Φ′(t) = 2n
k′

k
Φ + 2n(p − 1)k2n

∫
Ω

u2n(p−1)−1[∆u + kup] dx. (3.5)

For convenience we set
v(x, t) := un(p−1). (3.6)

Making use of the divergence theorem and of (3.2), we obtain

Φ′(t) � 2nβΦ − 2[2n(p − 1) − 1]
n(p − 1)

k2n

∫
Ω

|∇v|2 dx + 2n(p − 1)k2n+1
∫

Ω

v2+1/n dx.

(3.7)
The last term in (3.7) may be bounded as follows:

k2n+1
∫

Ω

v2+1/n dx �
(

k2n

∫
Ω

v2 dx

)1−1/n(
k3n

∫
Ω

v3 dx

)1/n

� n − 1
γn

k2n

∫
Ω

v2 dx +
γn−1

n
k3n

∫
Ω

v3 dx, (3.8)

where γ is a positive constant to be chosen later. The first inequality in (3.8) follows
from Hölder’s inequality and the second inequality follows from the inequality

arb1−r � ra + (1 − r)b, (3.9)

valid for a > 0, b > 0, r ∈ (0, 1). To obtain a bound for the last term in (3.8), we
make use of the following Sobolev-type inequality:

k3n

∫
Ω

v3 dx �
{

λk2n

∫
Ω

v2 dx + µk2n

( ∫
Ω

v2 dx

∫
Ω

|∇v|2 dx

)1/2}3/2

, (3.10)
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valid for Ω bounded convex in R
3, where λ and µ are defined as

λ :=
√

3
2ρ

, µ :=
1√
3

(
1 +

d

ρ

)
, (3.11)

with

ρ := min
∂Ω

( 3∑
i=1

xiνi

)
> 0, d2 := max

Ω

( 3∑
i=1

x2
i

)
. (3.12)

The inequality (3.10) was derived by Payne and Schaefer in [5]. It is a particular
case of their inequality (2.16). From (3.10), we obtain

k3n

∫
Ω

v3 dx �
{

λΦ + µ

(
Φk2n

∫
Ω

|∇v|2 dx

)1/2}3/2

�
√

2
{

λ3/2Φ3/2 + µ3/2Φ3/4
(

k2n

∫
Ω

|∇v|2 dx

)3/4}

�
√

2
{

λ3/2Φ3/2 + µ3/2
[

1
4σ3 Φ3 +

3σ

4
k2n

∫
Ω

|∇v|2 dx

]}
, (3.13)

valid for arbitrary positive σ. In (3.13), the first inequality is equivalent to (3.10);
the second inequality follows from Hölder’s inequality:

(a + b)3/2 �
√

2(a3/2 + b3/2) (3.14)

with a > 0, b > 0; the third inequality follows from (3.9). Combining (3.13), (3.8)
and (3.7), we obtain

Φ′(t) � c1Φ + c2Φ
3/2 + c3Φ

3

+
{

3√
2
(p − 1)σγn−1µ3/2 − 2[2n(p − 1) − 1]

n(p − 1)

}
k2n

∫
Ω

|∇v|2 dx, (3.15)

with
c1 := 2nβ + 2(p − 1)(n − 1)γ−1,

c2 := (2λ)3/2(p − 1)γn−1,

c3 :=
(p − 1)γn−1µ3/2

√
2σ3

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.16)

We now choose

σ :=
23/2[2n(p − 1) − 1]
3n(p − 1)2γn−1µ3/2 , (3.17)

leading to the first-order differential inequality

Φ′(t) � c1Φ + c2Φ
3/2 + c3Φ

3. (3.18)

Note that the constant γ(> 0) is still at our disposal for n �= 1. If the solution blows
up at time t�, then there is a time t1 (which might be 0) beyond which Φ(t) > Φ(0).
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Then, integrating (3.18) from t1 to t�, we obtain∫ ∞

Φ(0)

dη

c1η + c2η3/2 + c3η3 � t� − t1 � t�. (3.19)

This gives the desired lower bound for t� and leads to the following result.

Theorem 3.1. Let u(x, t) be the solution of (2.1) in a bounded convex region of R
3.

Assume that the data f and k satisfy the conditions (3.1), (3.2). We conclude that
if u(x, t) blows up in Φ norm at t�, then a lower bound for t� is given by (3.19),
where the ci are defined in (3.16).

Note that for Φ(t) � Φ(0) we have

(Φ(t))3/2 � (Φ(t))3(Φ(0))−3/2. (3.20)

Substituting (3.20) into (3.18), we obtain the weaker differential inequality

Φ′(t) � c1Φ + c̃3Φ
3, (3.21)

with
c̃3 := c3 + c2(Φ(0))−3/2. (3.22)

Integrating (3.21), we obtain

(Φ(t))−2 �
(

(Φ(0))−2 +
c̃3

c1

)
e−2c1t − c̃3

c1
, (3.23)

from which we obtain the cruder lower bound

t� � T :=
1

2c1
log

[
1 +

c1

c̃3
(Φ(0))−2

]
. (3.24)

For p � 2, an appropriate choice of n is n = 1. In this case the values of the
constants ci and σ are greatly simplified. For p ∈ (1, 2), we may choose n = (p−1)−1.
For k = 1 and n = 1, we retrieve the lower bound for t� derived in [5].

If k′/k becomes infinite for some value of t we choose a different measure defined
as

χ(t) :=
∫

Ω

u2n(p−1) dx. (3.25)

Proceeding as before, we obtain

χ′(t) � −2[2n(p − 1) − 1]
n(p − 1)

∫
Ω

|∇v|2 dx + 2n(p − 1)k(t)
∫

Ω

v2+1/n dx, (3.26)

where v(x, t) is defined in (3.6). For the next step, we assume that n satisfies the
conditions

n � (p − 1)−1 and n > 1, (3.27)

and make use of the inequality

k

∫
Ω

v2+1/n dx �
(

kn/(n−1)
∫

Ω

v2 dx

)1−1/n( ∫
Ω

v3 dx

)1/n

� n − 1
nγ

kn/(n−1)
∫

Ω

v2 dx +
γn−1

n

∫
Ω

v3 dx, (3.28)
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which is analogous to (3.8). Setting k = 1 in (3.13), we obtain
∫

Ω

v3 dx �
√

2
{

λ3/2χ3/2 + µ3/2
[

1
4σ3 χ3 +

3σ

4

∫
Ω

|∇v|2 dx

]}
. (3.29)

Inserting (3.28), (3.29) into (3.26), and choosing σ according to (3.17), we obtain
the differential inequality

χ′(t) � c̃1(k(t))n/(n−1)χ + c2χ
3/2 + c3χ

3, (3.30)

with
c̃1 := 2(p − 1)(n − 1)γ−1, (3.31)

where c2 and c3 are defined in (3.16). We note again that the positive constant γ
is at our disposal for n �= 1. It is unlikely that (3.30) can be solved explicitly, but
a crude bound may be obtained using again the fact that if χ(t) blows up, there is
a time t1 beyond which χ(t) > χ(0), so that we have

χ(t) � (χ(t))3(χ(0))−2, (χ(t))3/2 � (χ(t))3(χ(0))−3/2, t ∈ (t1, t�). (3.32)

Inserting the inequalities (3.32) into (3.30) and integrating, we obtain

1
2 (χ(0))−2 �

∫ t�

t1

(c̃1(χ(0))−2(k(t))n/(n−1) + c2(χ(0))−3/2 + c3) dt, (3.33)

i.e.

1
2

�
∫ t�

0
(c̃1(k(t))n/(n−1) + c2(χ(0))1/2 + c3(χ(0))2) dt. (3.34)

We may take n = 2 for p � 2 and n = (p−1)−1 for p ∈ (1, 2). We have established
the following result.

Theorem 3.2. Let u(x, t) be the solution of (2.1) in a bounded convex region of R
3.

Assume that the data f satisfy the condition (3.1). We then conclude that if u(x, t)
blows up at time t�, then a lower bound for t� is implicitly given by (3.34).

4. Concluding remarks

Suppose that, instead of equation (2.1), for positive ki(t), u(x, t) satisfies

1
k1(t)

ut = k2(t)∆u + k3(t)f(u), (4.1)

with the same boundary and initial conditions as in (2.1). Then, as in [3], we may
introduce a new variable

z(t) :=
∫ t

0
k1(τ)k2(τ) dτ. (4.2)

Setting

K(z) :=
k3(t(z))
k2(t(z))

, (4.3)
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the solution u(x, z) now satisfies

uz = ∆u + K(z)f(u). (4.4)

Under appropriate assumptions we may then read off a lower bound for t� directly
from the results of § 3.
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