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DIMENSION INEQUALITY FOR A DEFINABLY COMPLETE

UNIFORMLY LOCALLY O-MINIMAL STRUCTURE

OF THE SECOND KIND

MASATO FUJITA

Abstract. Consider a definably complete uniformly locally o-minimal expansion of the second kind of

a densely linearly ordered abelian group. Let f : X → Rn be a definable map, where X is a definable set

and R is the universe of the structure. We demonstrate the inequality dim(f(X ))≤ dim(X ) in this paper.

As a corollary, we get that the set of the points at which f is discontinuous is of dimension smaller than

dim(X ). We also show that the structure is definably Baire in the course of the proof of the inequality.

§1. Introduction. A uniformly locally o-minimal structure of the second kind
was first defined and investigated in the author’s previous work [4]. It enjoys several
tame properties such as local monotonicity. In addition, it admits local definable
cell decomposition when it is definably complete.
In [4], the author defined dimension of a set definable in a locally o-minimal struc-

ture admitting local definable cell decomposition. Many assertions on dimension
known in o-minimal structures [8] also hold true for locally o-minimal structures
admitting local definable cell decomposition which are not necessarily definably
complete [4, Section 5]. An exception is the inequality dim(f(X ))≤ dim(X ), where
f : X → Rn is a definable map. Here, R denotes the universe of the structure
and X is a definable set. The author gave an example which does not satisfy the
above dimension inequality in [4, Remark 5.5]. The structure in the example is not
definably complete. A question is whether the dimension inequality holds true when
the structure is definably complete. This paper gives an affirmative answer to this
question. Our main theorem is as follows:

Theorem 1.1. Let R = (R, < ,+ ,0, ...) be a definably complete uniformly locally
o-minimal expansion of the second kind of a densely linearly ordered abelian group.

The inequality

dim(f(X ))≤ dim(X )

holds true for any definable map f : X →Rn.
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We get the following corollary:

Corollary 1.2. LetR= (R, < ,+,0, ...) be as in Theorem 1.1. Let f :X →R be
a definable function. The set of the points at which f is discontinuous is of dimension

smaller than dim(X ).

The author proved the dimension inequality in [3, Theorem 2.4] when the universe
of the structure is the set of reals. This fact is not a direct corollary of the above
theorem, that deals with expansions of abelian groups.
The paper is organized as follows. In Section 2, we first review the previous works

relevant to this study. We prove several basic facts in Section 3. Satisfaction of the
dimension inequality is relevant to definablyBaire property introduced in [2]. Section
4 treats the definably Baire property. We show that a definably complete uniformly
locally o-minimal expansion of the second kind of a densely linearly ordered abelian
group is definably Baire in the section. We finally demonstrate Theorem 1.1 in
Section 5.
We introduce the terms and notations used in this paper. The term ‘definable’

means ‘definable in the given structure with parameters.’ For any set X ⊆ Rm+n

definable in a structureR= (R, ...) and for any x ∈Rm, the notationXx denotes the
fiber defined as {y ∈Rn | (x,y)∈X}. For a linearly ordered structureR=(R, <, ...),
an open interval is a definable set of the form {x ∈R | a < x< b} for some a,b ∈R.
It is denoted by (a,b). We define a closed interval in the same manner and it is
denoted by [a,b]. An open box in Rn is the direct product of n open intervals. A
closed box is defined similarly. A CBD set is a closed, bounded and definable set.
Let A be a subset of a topological space. The notations int(A), A and ∂A denote
the interior, the closure and the frontier of the set A, respectively. The notation |S|
denotes the cardinality of a set S.

§2. Review of previous works. We review the definitions and the assertions given
in the previous works. A densely linearly ordered structure without endpoints R=
(R, < , ...) is definably complete if every definable subset of R has both a supremum
and an infimum in R∪{±∞}. The definition of a definably complete structure is
found in [1, 6]. The structure R is locally o-minimal if, for every point a ∈ R and
every definable setX ⊂R, there exists an open interval I containing the point a such
that X ∩ I is a finite union of points and intervals. A locally o-minimal structure
is defined and investigated in [7]. We review the definition of uniformly locally
o-minimal structures of the second kind [4].

Definition 2.1. A locally o-minimal structure R = (R, < , ...) is a uniformly
locally o-minimal structure of the second kind if, for any positive integer n, any
definable set X ⊆Rn+1, a ∈Rn and b ∈R, there exist an open interval I containing
the point b and an open box B containing a such that the definable sets Xx ∩ I are
finite unions of points and open intervals for all x ∈ B .
For a densely linearly ordered structure without endpoints R = (R, < , ...), cells

in Rn are definable subsets of Rn defined inductively as follows:

• A cell in R is a point or an open interval.
• A cell in Rn is the graph of a continuous definable function defined on a cell in
Rn–1 or a definable set of the form {(x,y) ∈C ×M | f(x)< y< g(x)}, where
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C is a cell in Rn–1 and f and g are definable continuous functions defined on C
with f< g, f = –∞ or g =+∞.

We inductively define a definable cell decomposition of an open box B ⊆ Rn. For
n = 1, a definable cell decomposition of B is a partition B =

⋃m
i=1Ci into finite

cells. For n > 1, a definable cell decomposition of B is a partition B =
⋃m
i=1Ci into

finite cells such that ð(B) =
⋃m
i=1ð(Ci) is a definable cell decomposition of ð(B),

where ð :Rn→Rn–1 is the projection forgetting the last coordinate. A definable cell
decomposition of B partitioning a finite family {Aë}ë∈Λ of definable subsets of B is a
definable cell decomposition of B such that the definable sets Aë are unions of cells
for all ë ∈Λ.

The following local definable cell decomposition theorem is a main theorem
of [4].

Theorem 2.2 (Local definable cell decomposition theorem). Consider a definably
complete uniformly locally o-minimal structure of the second kindR= (R, < , ...). For
any positive integer n, the following assertions hold true:

(D): Let {Aë}ë∈Λ be a finite family of definable subsets of R
n. For any point

a ∈ Rn, there exist an open box B containing the point a and a definable
cell decomposition of B partitioning the finite family {B ∩Aë | ë ∈ Λ and
B ∩Aë 6= ∅}.

(C): Let A⊆Rn be a definable subset and f : A→R be a definable function. For
any a ∈Rn, b ∈R and any sufficiently small open interval J with b ∈ J , there
exist an open box B containing the point a and a definable cell decomposition

of B partitioning f–1(J )∩B such that the function f is continuous on any cell
contained in f–1(J )∩B .

(U): Let X be a definable subset of Rn+1. For any a ∈ Rn and b ∈ R, there exist
an open interval I containing the point b, an open box B with a ∈ B and a
positive integer N such that, for any x ∈ B , the definable set Xx ∩ I contains
an interval or |Xx ∩ I | ≤N for any x ∈ B .

Proof. [4, Theorem 4.2] ⊣

A locally o-minimal structure admits local definable cell decomposition if the
assertions (D) hold true for all positive integers n. A definably complete locally
o-minimal structure admits local definable cell decomposition if and only if it is a
uniformly locally o-minimal structure of the second kind by [4, Corollary 4.1]. We
can obtain the following corollary:

Corollary 2.3. Consider a definably complete uniformly locally o-minimal

structure of the second kind R = (R, < , ...). Let X be a definable subset of Rn+1

whose fibers Xx are closed for all x ∈ Rn. For any a ∈ Rn and b ∈ R, there exist a
closed interval I, a closed box B in Rn and a positive integer N satisfying the following

conditions:

• The point a is contained in the interior of B;

• The point b is contained in the interior of I;

• The definable set Xx ∩ I is a disjoint union of at most N points and N closed
intervals for any x ∈ B .
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Proof. We consider the definable set

Y = {(x,y) ∈Rn×R | Xx includes an open interval containing the point y}.

Take a sufficiently small open interval J with b ∈ J and a sufficiently small open box
C with a ∈ C . For any x ∈ C , the definable set (Xx \Yx)∩J is a union of at most
N points for some positive integer N or contains an interval by Theorem 2.2(U).
However, the latter situation never occurs by the definition of Y. Shrinking J and
C if necessary, we may further assume that Xx is a finite union of points and open
intervals because the structure R is a uniformly locally o-minimal structure of the
second kind. Take a closed interval I ⊂ J with b ∈ int(I ) and a closed box B ⊂ C
with a ∈ int(B). Fix an arbitrary point x ∈ B . Since Xx ∩ I is closed and a finite
union of points and open intervals,Xx ∩I is a finite disjoint union of discrete points
and closed intervals. The points in (Xx \Yx)∩I are endpoints of the closed intervals
or the discrete points. Therefore, the definable set Xx ∩ I is a disjoint union of at
most N points and N closed intervals. ⊣

The dimension of a set definable in a locally o-minimal structure admitting local
definable cell decomposition is defined in [4, Section 5]. A definable setX ⊆Rn is of
dim(X )≥m if there exists an open boxB ⊆Rm and a definable continuous injective
map f : B → X which is homeomorphic onto its image. A definable set X ⊆ Rn is
of dim(X ) =m if it is of dim(X )≥m and it is not of dim(X )≥m+1. The empty
set is defined to be of dimension –∞. The dimension satisfies the following basic
properties:

Proposition 2.4. Consider a locally o-minimal structureR= (R, < , ...) admitting
local definable cell decomposition. The following assertions hold true:

(a): Let X ⊆ Y be definable sets. Then, the inequality dim(X ) ≤ dim(Y ) holds
true.

(b): Let X and Y be definable subsets of Rn. We have

dim(X ∪Y ) = max{dim(X ), dim(Y )}.

(c): The inequality dim(∂S)< dim(S) is satisfied for any definable set S.

Proof. (a) [4, Lemma 5.1]; (b) [4, Corollary 5.4(ii)]; (c) [4, Theorem 5.6]. ⊣

Recall that the purpose of this paper is to demonstrate another basic inequality
dim(f(X ))≤ dim(X ), where f : X →Rn is a definable map, when the structureR
is definably complete.
We get the following lemma on the dimension of the projection image. A lemma

similar to it is found in [3], but we give a complete proof here.

Lemma 2.5. Consider a locally o-minimal structureR= (R, < , ...) admitting local
definable cell decomposition. Let X be a definable subset ofRm+n and ð :Rm+n→Rm

be a coordinate projection. Assume that the fibers Xx are of dimension ≤ 0 for all
x ∈Rm. Then, we have dimX ≤ dimð(X ).

Proof. For any (a,b) ∈ Rm×Rn, there exist open boxes Ba ⊆ R
m and Bb ⊆ R

n

with (a,b)∈Ba×Bb and dim(X ∩(Ba×Bb)) = dimð(X ∩(Ba×Bb)) by [4, Lemma
5.4]. We have dimð(X ∩ (Ba×Bb))≤ dimð(X ) by Proposition 2.4(a). On the other
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hand, we have dim(X ) = sup(a,b)∈Rm×Rn dim(X ∩ (Ba ×Bb)) by [4, Corollary 5.3].
We have finished the proof. ⊣

We also review DΣ-sets introduced in [1].

Definition 2.6 (DΣ-sets). Consider an expansion of a linearly ordered structure
R= (R, < ,0, ...). A parameterized family of definable sets {X 〈x〉}x∈S is the family
of the fibers of a definable set; that is, there exists a definable set X with X 〈x〉= Xx
for all x in a definable set S. A parameterized family {X 〈r,s〉}r>0,s>0 of CBD
subsetsX 〈r,s〉 ofRn is called a DΣ-family ifX 〈r,s〉 ⊆X 〈r′,s〉 andX 〈r,s ′〉 ⊆X 〈r,s〉
whenever r < r′ and s < s ′. Note that X 〈r,s〉 is not necessarily strictly contained in
X 〈r′,s〉. It is the same for the inclusion X 〈r,s ′〉 ⊆ X 〈r,s〉. A definable subset X of
Rn is a DΣ-set if X =

⋃

r>0,s>0X 〈r,s〉 for some DΣ-family {X 〈r,s〉}r>0,s>0.
A parameterized family of definable sets {X 〈s〉}s>0 is a definable decreasing family

of CBD sets if we have X 〈s〉 = X 〈r,s〉 for some DΣ-family {X 〈r,s〉}r>0,s>0 with
X 〈r1,s〉= X 〈r2,s〉 for all r1, r2 and s.

We next review definably Baire property introduced in [2].

Definition 2.7. Consider an expansion of a densely linearly ordered structure
R = (R, < ,0, ...). A parameterized family of definable sets {X 〈r〉}r>0 is called a
definable increasing family ifX 〈r〉 ⊆X 〈r′〉whenever 0< r< r′. A definably complete
expansion of a densely linearly ordered structure is definably Baire if the union
⋃

r>0X 〈r〉 of any definable increasing family {X 〈r〉}r>0 with int
(

X 〈r〉
)

= ∅ has an

empty interior.

The following proposition is a direct corollary of the local definable cell
decomposition theorem.

Proposition 2.8. A definably complete uniformly locally o-minimal structure of

the second kind is definably Baire if and only if the union
⋃

r>0X 〈r〉 of any definable
increasing family {X 〈r〉}r>0 with int(X 〈r〉) = ∅ has an empty interior.

Proof. Because int
(

X 〈r〉
)

6= ∅ iff int(X 〈r〉) 6= ∅ iffX 〈r〉 contains an open cell in

this case by Theorem 2.2(D). ⊣

§3. Preliminaries. From now on, we consider a definably complete uniformly
locally o-minimal expansion of the second kind of a densely linearly ordered abelian
groupR= (R, < ,+ ,0, ...). We demonstrate several basic facts in this section.
The notation dist(x,S) denotes the distance of a point x = (x1, ...,xn) ∈ R

n to a
definable subset S of Rn given by

dist(x,S) = inf
{

max
1≤i≤n

abs(xi – yi) | y = (y1, ...,yn) ∈ S
}

,

where abs(·) denotes the absolute value. It is used in the proof of the following
lemma.We need to employ the assumption thatR is a definably complete expansion
of densely linearly ordered abelian group in order to define the distance.

Lemma 3.1. Let X be a bounded definable set. There exists a definable decreasing

family of CBD sets {X 〈s〉}s>0 with X =
⋃

s>0X 〈s〉.

https://doi.org/10.1017/jsl.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.31


A DEFINABLY COMPLETE UNIFORMLY LOCALLY O-MINIMAL STRUCTURE 1659

Proof. Wedemonstrate the lemmaby the induction on d =dim(X ).When d =0,
X is discrete and closed by [4, Corollary 5.3]. We have only to set X 〈s〉= X for all
s > 0 in this case.
We next consider the case in which d > 0. We have dim∂X < d by Proposition

2.4(b),(c). We get dim(X ∩∂X )< d by Proposition 2.4(a). There exists a definable
decreasing family of CBD sets {Y 〈s〉}s>0 withX ∩∂X =

⋃

s>0Y 〈s〉 by the induction

hypothesis. Set Z〈s〉= {x ∈ X | dist(x,∂X )≥ s} for all s > 0. They are CBD. It is

obvious that
⋃

s>0Z〈s〉 = X \∂X = X \∂X . Set X 〈s〉 = Y 〈s〉∪Z〈s〉. The family
{X 〈s〉}s>0 is a definable decreasing family we are looking for. ⊣

Lemma 3.2. Any definable set X is a DΣ-set. That is, there exists a DΣ-family
{X 〈r,s〉}r>0,s>0 with X =

⋃

r>0,s>0X 〈r,s〉.

Proof. Let X be a definable subset of Rn. Set X 〈r〉 = X ∩ [– r,r]n. We can
construct subsets X 〈r,s〉 of X 〈r〉 satisfying the condition in the same manner as the
proof of Lemma 3.1. We omit the details. ⊣

Lemma 3.3. Let X be a bounded definable set and {X 〈s〉}s>0 be a definable
decreasing family of CBD sets with X =

⋃

s>0X 〈s〉. If X has a nonempty interior,
then there exists a positive s ∈R such that X 〈s〉 has a nonempty interior.

Proof. We prove the lemma following the same strategy as the proof of [1, 3.1].
Let X be a definable subset of Rn. We prove the lemma by induction on n. We
first consider the case in which n = 1. Assume that int(X 〈s〉) = ∅ for all s > 0.
Fix an arbitrary point a ∈ R. Apply Theorem 2.2(U) to the point (0,a) ∈ R2, then
we can get a positive integer M, an interval I with a ∈ I and t > 0 such that,
for any 0 < s < t, I ∩X 〈s〉 contains an open interval or consists of at most M
points. The sets I ∩X 〈s〉 consist of at mostM points because int(X 〈s〉) = ∅. We get
|X ∩ I |=

∣

∣

⋃

s>0(I ∩X 〈s〉)
∣

∣ ≤M . We have demonstrated that, for any point a ∈R,
there exists an open interval I containing the point a such that X ∩ I has an empty
interior. It implies that X has an empty interior.
We next consider the case in which n> 1. Assume thatX has a nonempty interior.

We show that the definable set X 〈s〉 has a nonempty interior for some s > 0. A
closed box B = C × I ⊆Rn–1×R is contained in X. We have B =

⋃

s>0(B ∩X 〈s〉).
Hence, we may assume that X is a closed box B without loss of generality.
Shrinking B if necessary, we may assume that there exists N > 0 such that, for

everyx ∈C , the fiber (X 〈s〉)x is a disjoint union of finite points and atmostN closed
intervals for any sufficiently small s > 0 by Corollary 2.3. Set I = [c1,c2]. Take 2N
distinct points in the open interval (c1,c2), say b1, ...,b2N .Wemay assume that bi <bj
whenever i < j. Set b0 = c1 and b2N+1 = c2. Put Ij = [bj–1,bj ] for all 1≤ j ≤ 2N +1.
Consider the setsY k〈s〉= {x ∈C | Ik ⊆ (X 〈s〉)x} for all s > 0 and 1≤ k ≤ 2N+1.

They are CBD. Therefore,
{

⋃2N+1
k=1 Y

k〈s〉
}

s>0
is a definable decreasing family of

CBD sets.We demonstrate thatC =
⋃

s>0

⋃2N+1
k=1 Y

k〈s〉. Let x ∈C be fixed.We have
only to show that Ik ⊆ (X 〈s〉)x for some k and s. For any k, there exists sk > 0 such
that int(Ik ∩ (X 〈sk〉)x) 6= ∅ by the induction hypothesis because {Ik ∩ (X 〈s〉)x}s>0 is
a decreasing family of CBD sets with Ik =

⋃

s Ik ∩(X 〈s〉)x . Take smin =min{sk | 1≤
k ≤ 2N +1}. We have int(Ik ∩ (X 〈smin〉)x) 6= ∅ for all 1≤ k ≤ 2N +1. Assume that
Ik 6⊂ (X 〈smin〉)x for all k. Recall that (X 〈smin〉)x is a disjoint union of finite points
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and at most N closed intervals. The closed intervals should be contained in Ik ,
Ik ∪ Ik+1 or Ik–1∪ Ik for some k. Therefore, int(IjN ∩ (X 〈smin〉)x) is empty for some
1≤ jN ≤ 2N+1. Contradiction.We have proven that Ik ⊆ (X 〈s〉)x for some k and s.

Apply the induction hypothesis to C =
⋃

s>0

⋃2N+1
k=1 Y

k〈s〉. The set
⋃2N+1
k=1 Y

k〈s〉
has a nonempty interior for some s > 0. The CBD setY k〈s〉 has a nonempty interior
for some k by [4, Theorem 3.3]. The CBD setX 〈s〉 has a nonempty interior because
Ik×Y

k〈s〉 is contained in X 〈s〉. ⊣

Lemma 3.4. Assume that R is definably Baire. Let X be a definable set and
{X 〈r,s〉}r>0,s>0 be a DΣ-family with X =

⋃

r>0,s>0X 〈r,s〉. If X has a nonempty
interior, the CBD set X 〈r,s〉 has a nonempty interior for some r > 0 and s > 0.

Proof. Let X be a definable subset of Rn. Set X ′〈r,s〉 = X 〈r,s〉 ∩ [– r,r]n.
We have X =

⋃

r>0,s>0X
′〈r,s〉. We may assume that X 〈r〉 =

⋃

r>0,s>0X 〈r,s〉 is
bounded considering X ′〈r,s〉 instead of X 〈r,s〉. The lemma is now immediate from
Proposition 2.8 and Lemma 3.3. ⊣

§4. On definably Baire property. We demonstrate that the structureR is definably
Baire. We first show the following lemma.

Lemma 4.1. Let X be a bounded definable subset of Rn+1. Set

S = {x ∈Rn | Xx contains an open interval}.

The set S has an empty interior if X has an empty interior.

Proof. Assume that S has a nonempty interior. There exists a definable
decreasing family of CBD sets {X 〈s〉}s>0 with X =

⋃

s>0X 〈s〉 by Lemma 3.1.
Set S〈s〉 = {x ∈ Rn | ∃t ∈ R, [t – s,t + s] ⊆ (X 〈s〉)x} for all s > 0. They are
CBD by [6, Lemma 1.7] because they are the projection images of the CBD sets
{(x,t) ∈ Rn ×R | [t – s,t + s] ⊆ (X 〈s〉)x}. We have S =

⋃

s>0S〈s〉. In fact, it is
obvious that

⋃

s>0S〈s〉 ⊆ S by the definition. Take a point x ∈ S, then we have
int(Xx) 6= ∅. We have int(X 〈s1〉)x 6= ∅ for some s1 > 0 by Lemma 3.3. We get
[t – s2,t+ s2] ⊆ (X 〈s1〉)x for some s2 > 0 and t. Set s = min{s1,s2}, then we have
x ∈ S〈s〉. We have demonstrated that S =

⋃

s>0S〈s〉.
Again byLemma 3.3, we have int(S〈s〉) 6= ∅ for some s> 0.We obtain int(X 〈s〉) 6=

∅ by [1, 2.8(2)]. We get int(X ) 6= ∅. ⊣

We reduce to the one-dimensional case.

Lemma 4.2. The structure R is definably Baire if the union
⋃

r>0S〈r〉 of any
definable increasing family {S〈r〉}r>0 of subsets of R has an empty interior whenever
S〈r〉 have empty interiors for all r > 0.

Proof. Let {X 〈r〉}r>0 be a definable increasing family of subsets of R
n. Set

X =
⋃

r>0X 〈r〉. We have only to show that the definable set X 〈r〉 has a nonempty
interior for some r > 0 under the assumption that X has a nonempty interior by
Proposition 2.8. Under this assumption, the definable set X contains a bounded
open box B. We may assume that X is a bounded open box B without loss
of generality by considering B and {X 〈r〉 ∩B}r>0 in place of X and {X 〈r〉}r>0,
respectively.
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We prove the lemma by the induction on n. The lemma is obvious by the
assumption of the lemma when n = 1. We next consider the case in which n > 1.
We lead to a contradiction assuming that X 〈r〉 have empty interiors for all
r > 0. Let ð : Rn → Rn–1 be the projection forgetting the last coordinate. We have
B = B1× I for some open box B1 in R

n–1 and some open interval I. Consider the
setY 〈r〉= {x ∈B1 | the fiber (X 〈r〉)x contains an open interval} for all r > 0. They
have empty interiors by Lemma 4.1. The union

⋃

r>0Y 〈r〉 has an empty interior by
the induction hypothesis. In particular, we have B1 6=

⋃

r>0Y 〈r〉 and we can take a
point x ∈B1 \

(
⋃

r>0Y 〈r〉
)

. Since x 6∈
⋃

r>0Y 〈r〉, the fiber (X 〈r〉)x does not contain
an open interval for any r > 0. Therefore, the union

⋃

r>0(X 〈r〉)x has an empty
interior by the assumption. On the other hand, we have I =

⋃

r>0(X 〈r〉)x because
B =

⋃

r>0X 〈r〉. It is a contradiction. ⊣

We prove thatR is definably Baire now.

Theorem 4.3. A definably complete uniformly locally o-minimal expansion of the

second kind of a densely linearly ordered abelian group is definably Baire.

Proof. Let R = (R, < ,+ ,0, ...) be the considered structure. Let {X 〈r〉}r>0 be
a definable increasing family of subsets of R. Set X =

⋃

r>0X 〈r〉. We have only to
show that the definable set X has an empty interior under the assumption that X 〈r〉
have empty interiors for all r > 0 by Lemma 4.2. Under this assumption, X 〈r〉 are
discrete and closed because the structure is locally o-minimal.
Assume that X has a nonempty interior. The definable set X contains an open

interval. Take a point a contained in the open interval. Consider the function f :
{r ∈ R | r > 0} → {x ∈ R | x > a} defined by f(r) = inf{x > a | x ∈ X 〈r〉}. It is
definable because the set {(r,x) ∈ R2 | a < x,x ∈ X 〈r〉} is definable and taking the
infimum of a parameterized definable set yields a definable map. It is obvious that
f is a decreasing function because {X 〈r〉}r>0 is a definable increasing family. We
demonstrate that limr→∞f(r) = a. Let b be an arbitrary point sufficiently close to
a with b > a. Since X =

⋃

r>0X 〈r〉 contains a neighborhood of a, there exists a
positive element r ∈ R with b ∈ X 〈r〉. We have a < f(r)≤ b by the definition of f.
We have shown that limr→∞f(r) = a.
Consider the image Im(f) of the function f. Take a sufficiently small open interval

I ⊆ X containing the point a. The intersection I ∩ Im(f) is a finite union of points
and open intervals because it is definable in the locally o-minimal structureR. Take
an arbitrary point b ∈ Im(f) and a point r > 0 with b = f(r). Since X 〈r〉 is closed,
we have b ∈ X 〈r〉. Any point b′ ∈ Im(f) with b′ > b is also contained in X 〈r〉. In
fact, take a point r′ > 0 with b′ = f(r′). If r′ > r, the set X 〈r′〉 contains the point b
becauseX 〈r〉 ⊆X 〈r′〉. Then we have b′ =f(r′)≤ b by the definition of the function
f, and this is a contradiction. If r′ < r, we have b′ ∈ X 〈r′〉 ⊆ X 〈r〉.
Set b1 = inf{b

′ ∈ Im(f) | b′ > b}. We have b1 ∈ X 〈r〉 and b1 > b because {b
′ ∈

Im(f) | b′ > b} ⊆X 〈r〉 andX 〈r〉 is closed and discrete. The open interval (b,b1) has
an empty intersection with Im(f). We have shown that I ∩ Im(f) does not contain
an open interval. The set I ∩ Im(f) consists of finite points. This contradicts the
fact that limr→∞f(r) = a. ⊣

Remark 4.4. It is already known that a definably complete expansion of an
ordered field is definably Baire [5]. Our research target is a uniformly locally
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o-minimal structure of the second kind. A uniformly locally o-minimal expansion
of the second kind of an ordered field is o-minimal by [4, Proposition 2.1]. In this
case, it is trivially definably Baire by the definable cell decomposition theorem [8,
Chapter 3, (2,11)]. We have more interest in the case in which the structure is not an
expansion of an ordered field.

§5. The proof of the main theorem. We demonstrate Theorem 1.1 in this section.
Recall that we consider a definably complete uniformly locally o-minimal expansion
of the second kind of a densely linearly ordered abelian groupR= (R, < ,+ ,0, ...).
We first show that a definable map is continuous on an open subset of the domain
of definition.

Lemma 5.1. A definable map f : U → Rn defined on an open set U is continuous
on a nonempty definable open subset of U.

Proof. The structure R is definably Baire by Theorem 4.3. So we can use
Lemma 3.4.
Let U be a definable open subset of Rm. Consider the projection ð :Rm+n →Rm

onto the firstm coordinates. Let Γ(f) denote the graph of f. There exists aDΣ-family
{X 〈r,s〉}r>0,s>0 with Γ(f) =

⋃

r>0,s>0X 〈r,s〉 by Lemma 3.2. Note that ð(X 〈r,s〉) is
CBD by [6, Lemma 1.7]. The family {ð(X 〈r,s〉)}r>0,s>0 is a DΣ-family and we have
U =

⋃

r>0,s>0ð(X 〈r,s〉). The CBD set ð(X 〈r,s〉) has a nonempty interior for some

r and s by Lemma 3.4. The fiber ð–1(x)∩Γ(f) is a singleton for any x ∈ U . The
CBD set X 〈r,s〉 is the graph of the restriction of f to ð(X 〈r,s〉). Since the graph of
the restriction of f to ð(X 〈r,s〉) is closed, f is continuous on int(ð(X 〈r,s〉)). ⊣

We finally prove Theorem 1.1.

Proof of Theorem 1.1. Recall that we have to show:

(∗) The inequality dim(f(X )) ≤ dim(X ) holds true for any definable map
f : X →Rn.

Lemma 3.4 is available as in the proof of Lemma 5.1 for the same reason.
Set d = dim(f(X )). We demonstrate that dim(X ) ≥ d . We can reduce to the

case in which the image f(X ) is an open box B of dimension d. In fact, there
exist an open box B in Rd and a definable map g : B → f(X ) such that the map
g is a definable homeomorphism onto its image by the definition of dimension [4,
Definition 5.1]. Set Y = f–1(g(B)) and h = g–1 ◦f|Y : Y → B . When dim(Y )≥ d ,
we get dim(X )≥ d by Proposition 2.4(a) becauseY is a subset ofX. Wemay assume
that f(X ) = B by considering Y and h instead of X and f, respectively.
We next reduce to the case in which the map f is the restriction of a coordinate

projection. Consider the graph G = Γ(f) ⊆ Rm+d of the definable map f. Let ð :
Rm+d →Rd be the projection onto the last d coordinates. Assume that dim(G)≥ d ,
then we have dim(X )≥ dim(G)≥ d = dim(f(X )) by Lemma 2.5 because X is the
image of G under the projection ð′ onto the first m coordinates and G ∩ (ð′)–1(x)
is a singleton and of dimension ≤ 0 for any x ∈ X . The assertion (∗) holds true in
this case. We have succeeded in reducing to the case in which X = G and f is the
restriction of ð to G.
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We have a DΣ-family {X 〈r,s〉}r>0,s>0 with X =
⋃

r>0,s>0X 〈r,s〉 by Lemma 3.2.
The family {f(X 〈r,s〉)}r>0,s>0 is also a DΣ-family by [6, Lemma 1.7] because f
is the restriction of a projection. We have B =

⋃

r>0,s>0f(X 〈r,s〉). The CBD set
f(X 〈r,s〉) has a nonempty interior for some r > 0 and s > 0 by Lemma 3.4. We fix
such r > 0 and s > 0. Take an open box U contained in f(X 〈r,s〉). Note that the
inverse image {y ∈ X 〈r,s〉 | f(y) = x} of x ∈ U is CBD because the restriction of
the projection f|X 〈r,s〉 is continuous. Consider a definable function ϕ :U →X 〈r,s〉
given by ϕ(x) = lexmin{y ∈X 〈r,s〉 |f(y) = x}, where the notation lexmin denotes
the lexicographic minimum defined in [6]. We can get an open box V contained
in U such that the restriction ϕ|V of ϕ to V is continuous by Lemma 5.1. The
definable set X 〈r,s〉 is of dimension ≥ d by the definition of dimension because it
contains the graph of the definable continuous map ϕ|V defined on the open box V
in Rd . We have dimX ≥ dim(X 〈r,s〉) ≥ d by Proposition 2.4(a). We have proven
Theorem 1.1. ⊣

The proof of Corollary 1.2 is the same as that of [3, Corollary 2.6]. As it is short,
we give it here.

Proof of Corollary 1.2. Let D be the set of points at which the definable
function f is discontinuous. Assume that the domain of definition X is a definable
subset ofRm. LetG be the graph of f. We have dim(G) = dim(X ) by Lemma 2.5 and
Theorem 1.1. Set E = {(x,y) ∈ X ×R | y = f(x) and f is discontinuous at x}. We
get dim(E)< dim(G) by Theorem 2.2(C) and [4, Corollary 5.3]. Let ð :Rm+1→Rm

be the projection forgetting the last coordinate. We haveD = ð(E) by the definitions
of D and E . We finally obtain dim(D) = dim(ð(E))≤ dim(E)< dim(G) = dim(X )
by Theorem 1.1. ⊣

REFERENCES

[1] A. Dolich, C. Miller, and C. Steinhorn. Structure having o-minimal open core. Transactions of
the American Mathematical Society, vol. 362 (2010), pp. 1371–1411.
[2] A. Fornasiero and T. Servi. Definably complete Baire structure. Fundamenta Mathematicae,

vol. 209 (2010), pp. 215–241.
[3] M. Fujita, Uniform local definable cell decomposition for locally o-minimal expansion of the group

of reals, preprint, 2020, arXiv:2008.03494v1.
[4] ———, Uniformly locally o-minimal structures and locally o-minimal structures admitting local

definable cell decomposition. Annals of Pure and Applied Logic, vol. 171 (2020), p. 102756.
[5] P. Hieronymi, An analogue of the Baire category theorem, this Journal, vol. 78 (2013),

pp. 207–213.
[6] C. Miller, Expansions of dense linear orders with the intermediate value property, this Journal,

vol. 66 (2001), pp. 1783–1790.
[7] C. Toffalori andK.Vozoris, Notes on local o-minimality.Mathematical LogicQuarterly, vol. 55

(2009), pp. 617–632.
[8] L. van den Dries, Tame Topology and O-minimal Structures, London Mathematical Society

Lecture Note Series, vol. 248, Cambridge University Press, Cambridge, 1998.

DEPARTMENT OF LIBERAL ARTS,
JAPAN COAST GUARD ACADEMY,
5-1 WAKABA-CHO, KURE, HIROSHIMA 737-8512, JAPAN

E-mail: fujita.masato.p34@kyoto-u.jp

https://doi.org/10.1017/jsl.2020.31 Published online by Cambridge University Press

http://abc/arXiv:2008.03494v1
mailto:fujita.masato.p34@kyoto-u.jp
https://doi.org/10.1017/jsl.2020.31

	1 Introduction
	2 Review of previous works
	3 Preliminaries
	4 On definably Baire property
	5 The proof of the main theorem

