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Abstract
During the movement of an optical mirror processing robot (OMPR), the movement error of each branch chain
leads to contour errors of the grinding tool, which reduce the accuracy of the optical mirror surface. To improve
the processing accuracy of an OMPR, it is necessary to study the control and compensation strategy of its contour
error. In this study, first, a kinematics analysis of an OMPR is conducted, and the trajectory of the end execution
point in the world coordinate system is transformed into the fixed coordinate system of the robot. Combined with
the common trajectory of optical mirror processing, based on the Frenet coordinate system, contour error models of
the OMPR in straight line, arc, and spiral trajectories are established. Subsequently, the contour error, feedforward
channel gain, and compensation channel gain models of the parallel module are established in the task space, and
concurrently, the control variables and stability of the system are analyzed. Finally, the established feedforward
combined multi-axis cross-coupling contour control compensation strategy is analyzed experimentally to verify its
accuracy and effectiveness. It provides a theoretical basis for a robot to directly face the precision processing object
using the control and compensation strategy in a future research study to improve the molding accuracy of a surface
and optimize the processing technology of a large-scale optical mirror.

1. Introduction
Using evolving technology, modern optical mirrors are being developed with increased apertures
and enhanced precision, which have high requirements in optical mirror processing robots (OMPRs)
[1, 2]. In the optical mirror processing process, the grinding system of an OMPR is required to reach
any position in the processing space with any posture. The four processing steps of the mirror surface—
rough grinding, milling, fine grinding, and polishing—can be completed by the OMPR [3, 4]. Based on
this, a five-degree-of-freedom (5-DOF) hybrid processing robot is designed [5–7]. In the OMPR pro-
cess, the motion error of each motion branch and the rotation axis [8, 9] causes a contour error of the
end execution point of the grinding system [10]. Moreover, if the theoretical trajectory deviates from
the actual track, it will lead to an uncertainty of the dwell time, and the removal amount of the optical
mirror will not meet the Gaussian distribution [11]. Therefore, it is necessary to analyze and study the
end contour error of an OMPR and improve its machining accuracy by control compensation [12, 13].

Numerous research studies have been conducted on contour error modeling methods. To improve the
estimation accuracy of contour errors, Liu et al. developed an iterative algorithm based on the osculat-
ing circle method to re-evaluate chord errors [14]. Izadbakhsh et al. proposed a new observer–controller
structure based on function approximation techniques and Stone–Weierstrass theorem using differential
equations and proved that the controller has good performance in overcoming uncertainty and reducing
tracking error [15]. To reduce the contour error in contour-following tasks, Du et al. proposed a contour
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error estimation method based on a third-order osculating helix [16]. Yang et al. focused on developing a
nearest point projection curvature circle iterative algorithm to achieve real-time estimation of multi-axis
contouring errors [17]. Song et al. proposed a third-order estimation algorithm for a defined joint-space
contour error, using the concept of a generalized curve [18]. Ma et al. proposed a subregional toolpath
regeneration method for contour-parallel processing based on the isoscallop method, which reduced the
profile arithmetic average error and the maximum of profile deviation decrease [19]. Considering the
geometric characteristics of corner-smoothed five-axis tool paths, Hu et al. proposed an online and high-
accuracy contour error estimation algorithm for five-axis computer numerical control (CNC) machining
[20]. To obtain an accurate analytical expression of free space contour errors, Wang et al. proposed a
spatial contour error estimation method based on the double Taylor expansion [21]. Song et al. proposed
a third-order contour error estimation algorithm to improve contour error estimation accuracy without
iterative computation [22]. Sheng et al. proposed a comparison strategy to improve the accuracy of
traditional contour error estimation [23]. A novel computationally efficient contouring error estimation
method for contouring control was presented by Yang et al., which eliminates the abrupt changes in con-
touring error vector directions that are encountered by traditional contouring error estimation methods in
large-curvature regions [24]. To simultaneously achieve accurate contouring error estimation and high-
performance contouring control for three-dimensional contouring-following tasks, Hu et al. proposed a
numerical calculation-based contouring error estimation and contour compensation scheme [25].

Machine tools have their own dynamic characteristics to improve the adaptability of the control
compensation. Numerous scholars have also conducted research and application for the contour error
control and compensation of different machine tools. To improve the accuracy of large-curvature posi-
tion tracking and contour control, Zhang et al. proposed a position compensation method composed
of a cross-coupling controller and an improved position error compensator [26]. Izadbakhsh et al.
designed the controller of electric manipulator with Szász–Mirakyan operator as the basis function and
proved that Szász–Mirakyan operator plays a good role in uncertainty compensation and improving
tracking error [27]. To improve the contour error control accuracy of a networked multi-axis motion
system with a time-varying time delay, Wang et al. designed a linear active disturbance rejection con-
troller for uniaxial trajectory tracking control [28]. Li et al. presented the method of online self-tuning
proportional–derivative controller to improve the control performance of robot contour control [29]. For
five-axis machine tools, Chen et al. proposed a new contour error precompensation method that inte-
grates the analytical prediction of the contour error, an optimal path-reshaping model, and a decoupling
solution algorithm [30]. Aiming at high-precision control of CNC machine tools, Li et al. presented
a contour error estimation algorithm for digital curves based on a geometrical method [31]. To solve
the problems of time delay and time lag of contour error compensation by a feedback control, Wang
et al. proposed a new position loop feedforward contour control method [32]. Duong et al. presented
an offline gain adjustment approach to reduce the contour error in five-axis high-speed machining [33].
Cho et al. presented a novel neural network-based proportional–integral–derivative (PID) controller
gain update algorithm. The proposed algorithm aimed to improve machining quality and efficiency by
adjusting the PID gains in real time to minimize the contour error [34]. In order to improve the trajectory
tracking precision of a six-DOF lightweight robot, Liu et al. proposed a nonlinear proportion-deviation
cross-coupling synchronization control strategy based on adjacent coupling error analysis [35]. Wang
et al. proposed a Newton extremum-seeking algorithm-based iterative learning coordinated control strat-
egy for contouring motion accuracy of precision multi-axial systems [36]. By considering the coupling
effects among multiple axes, Ouyang et al. proposed a cross-coupled PID control developed in the posi-
tion domain and subsequently applied the controller to a multi-axis CNC machine for contour tracking
performance improvement [37].

Although there have been considerable research and application efforts on contour error modeling
and contour control compensation using different methods, the contour error models are established
under different working conditions, the contour error compensation control strategies are formulated
under related tasks, and certain results are achieved. Moreover, most studies have focused on multi-
axis CNC machine tools, and there is no in-depth study on a 5-DOF hybrid robot, which has complex
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dynamic characteristics. In addition, there is no relevant literature to analyze the contour error of the
dwell point combined with the polishing process characteristics of the optical mirror.

In this study, the contour error and control compensation strategy of a five-DOF OMPR are studied
and analyzed. The Frenet coordinate system is established based on the principle of differential geome-
try. Using the tangential approximation and osculating circle approximation methods, three-dimensional
contour error models of the machining robot in grid trajectory, concentric circle trajectory, and spiral
trajectory processing modes are derived. The control strategy of the entire machine is determined, and
a parallel module feedforward combined cross-coupling control system is built. Based on the kinematic
transformation relationship, the contour error control, feedforward channel gain, and compensation
channel gain models are established in the parallel module task space. Subsequently, the transfer function
of the cross-coupling system is deduced, and the key control variables and stability of the system are
analyzed. Finally, using an experimental prototype, a contour error control compensation experiment
analysis is conducted on the tool path commonly used in optical mirror processing, and the contour
control strategy and related theories are verified.

2. OMPR
Based on the grinding process requirements, the OMPR requires at least five DOFs. The robot used in
this study was a five-DOF OMPR developed using a three-DOF parallel (3UPS + UP: U - hook joint,
P - moving pair, S - ball joint) manipulator combined with a two-DOF serial manipulator. The five-DOF
OMPR consisted of a fixed platform, drive branch chain, constrained branch chain, moving platform,
and two-DOF serial manipulator. The topological structure and prototype of the OMPR are shown in
Fig. 1(a) and (b); there are three UPS drive branches and one UP constraint branch link between the
movable and fixed platforms. The world coordinate system, O–XYZ , is established at the center point,
O, of the mirror to be processed, the Z axis is downward, the Y axis points to the center point of the robot
fixed platform, and the X axis is determined based on the right-hand rule. The fixed platform is installed
at an angle of 30◦ with the Z axis of the world coordinate system. A fixed coordinate system, O1–X1Y 1Z1,
is established on the center, O1, of the fixed platform, the Y 1 axis is along the O1U1 direction, the Z1 axis
is perpendicular to the fixed platform, and the X1 axis is determined by the right-hand rule. A moving
coordinate system, O2–x2y2z2, is established on the central point, O2, of the moving platform, the y2 axis
is along the O2u1 direction, and the z2 axis is perpendicular to the moving platform. Moreover, the x2 axis
is determined by the right-hand rule. The coordinate system, O3–x3y3z3, is established on the junction
point, O3, of the two series rotating heads. The x3 axis is collinear with the axis of the secondary rotating
head, and the y3 axis is determined by the right-hand rule. The secondary rotating head coordinate
system, O4–x4y4z4, is set up on tool spindle O4 point, the z4 axis is down the tool spindle, the y4 axis is
along the direction, and the x4 axis is determined by the right-hand rule. The tool coordinate system,
S–uvw, is established on the end tool execution point, S, and the w axis is the normal direction of the
mirror to be processed. The u axis is the tangent direction of the tool path, and the v axis is determined
based on the right-hand rule. The end grinding tool uses computer controlled optical surfacing (CCOS)
grinding system, and its structure is shown in Fig. 1(c). The CCOS grinding system consists of a rotating
motor and a revolving motor, which uses a smaller grinding head for grinding.

When the OMPR performs a processing task, a transformation relationship needs to be established
to convert the end execution point in the world coordinate system to the fixed coordinate system.

OP = q1 + ORO1

O1P, (1)

where OP is the position vector of any point in the world coordinate system, q1 is the position vector of the
center point of the fixed platform under O–XYZ , O1P is the position vector of point P under O1–X1Y 1Z1,
and ORO1

is the transformation matrix from O–XYZ to O1–X1Y 1Z1.
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Figure 1. OMPR.

(1) Inverse solution of series module

In the world coordinate system, the end point of the grinding tool on the curved surface is S =[
x0 y0 z0

]T, and a smooth trajectory curve through the point S is given as follows:

� :

⎧⎪⎪⎨
⎪⎪⎩

x = x(t)

y = y(t)

z = z(t).

(2)

Subsequently, the tangent vector, u, of � at point S and the normal vector, w, of the surface are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u =
[

ẋ0 (t0) ẏ0(t) ż0(t)
]T

√
ẋ0 (t0)

2 + ẏ0(t)2 + ż0(t)2

w =
[
�x

(
x0 y0 z0

)
�y

(
x0 y0 z0

)
�z

(
x0 y0 z0

)]T

√
�x

(
x0 y0 z0

)2 + �y

(
x0 y0 z0

)2 + �z

(
x0 y0 z0

)2
,

(3)

where �x is the partial derivative of the surface equation to x, and t0 is the value at a certain time.
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(b)

(a)

Figure 2. Schematic of numerical search method.

Subsequently, the posture matrix of the end grinding tool coordinate system in the O–XYZ coordinate
system is obtained as

Rd = [ u v w ]3×3. (4)

where v = u × w.
Thus, the vector of point O4 in the O–XYZ coordinate system is

OO4 = S − Rd · q2 (5)

where q2 is the position vector of point S in the O4–x4y4z4.
In Figure 2(a), the relative position vector of O3 and O2 is typically unchanged in the moving platform

coordinate system, O2–x2y2z2. Therefore,

r2 = r3 − d1n, (6)

where r2 is the position vector of O2 under O1–X1Y 1Z1, r3 is the position vector of O3 under O1–X1Y 1Z1,
n is the direction vector of O3O1, and d1 is the distance between O2 and O3.

Based on the structure of the two tandem rotating heads and cutter tools, the O3 point is continuously
distributed on the plane circle with the O4 point as the center and d2 as the radius. According to the
characteristics of the vector cross-product, two vertical vectors in the plane circle are found,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
λ1 =

OO4 × E1∣∣OO4 × E1
∣∣

λ2 = λ1 ×O O4

|λ1 ×O O4| ,

(7)

where E1 is a unit vector, λ1 is the unit direction vector perpendicular to OO4, and λ2 is the unit direction
vector perpendicular to λ1 and OO4.

Using the numerical search method, on the circle having O4 as the center, w as the central axis, and
d2 as the radius, vectors λ1 and λ2 are searched clockwise in a certain step ς from 0 to 2 π, and a series
of scattered points are obtained. The positions of the scattered points in the world coordinate system can

https://doi.org/10.1017/S0263574722000352 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000352


Robotica 3481

(a) (b)

Figure 3. Attitude diagram of series module.

be expressed as ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xs =O O4x + d2λ1x cos (ς)+ d2λ2x sin (ς)

ys =O O4y + d2λ1y cos (ς)+ d2λ2y sin (ς)

zs =O O4z + d2λ1z cos (ς)+ d2λ2z sin (ς) ,

(8)

where OO4x, OO4y, and OO4z are the components of OO4 along the coordinate axis of the world coordinate
system; λ1x, λ1y, and λ1z are the components of λ1 along each coordinate axis of the world coordinate
system; and λ2x, λ2y, and λ2z are the components of λ2 along each coordinate axis of the world coordinate
system.

As shown in Fig. 2(b), the motion of point O3 in the parallel module essentially adopts the fixed
platform center point, O1, as the fulcrum to swing around the X1 and Y 1 axes. Therefore, the minimum
distance to the O1 point can be used to constrain the scattered points, and the position vector of the O3

point in the world coordinate system O–XYZ can be obtained.
During the machining process, angles ψ and ϕ of the two tandem rotating heads are fine-tuned.

Figure 3 shows the posture of the OMPR.
At present, the positions of points S, O4, O3, and O1 in the world coordinate system are known, and

the rotation angle of the first rotating head and secondary rotating head is obtained as

ϕ = arccos

⎛
⎝ O3O4 · O3O1∣∣∣O3O4

∣∣∣ ∣∣∣O3O1

∣∣∣
⎞
⎠ . (9)

ψ = arccos (x3 · x2
′) (10)

where x3 and x2
′ are the unit vector expressions of the x3 and x2

′ axes.
(2) Kinematics of parallel module

Based on Fig. 1, O1, O2, Ui, and ui can form closed-loop vectors (i = 1, 2, 3); therefore,⎧⎨
⎩

rUi + liei = rui + r2

r2 = L2eL,
(11)
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where L2 is the length of the UP branch chain with O2 as the end, li and ei are the length and unit direction
vector of branch chain i, eL = n is the unit direction vector of the UP branch chain under O1–X1Y 1Z1, r2

is the position vector of point O2 under O1–X1Y 1Z1, rUi is the position vector of Ui in O1–X1Y 1Z1, and
rui is the position vector of ui in O1—X1Y 1Z1.

The lengths of the UPS and UP chains change as follows:

li =
√
(r2 + rui − rUi)

T
(r2 + rui − rUi) (12)

and

L2 = eL
Tr2. (13)

Furthermore, the velocity of the UP constrained branch chain and the angular velocity of the moving
platform are obtained as follows:

L̇2 = eL
Tṙ2 and (14)

ω = eL × ṙ2

L2

= eL×
L2

ṙ2, (15)

where eL× =
⎡
⎢⎣

0 −eLz eLy

eLz 0 −eLx

−eLy eLx 0

⎤
⎥⎦ is the third-order antisymmetric matrix of eL and ṙ2 is the speed of

the moving platform.
The expansion acceleration of the UP branch chain and the angular acceleration of the moving

platform are

L̈2 = eL
Tr̈2 + (ω × eL)

T ṙ2 = JLr̈2 + J̇Lṙ2, (16)

ω̇ = eL×
L2

r̈2 +
[
(eL × ωd)×

L2

− L̇2

L2
2 eL×

]
ṙ2 = Jdω r̈2 + J̇dω ṙ2. (17)

The speed and acceleration of the UPS branch chain are⎧⎨
⎩

L̇ = Jṙ2

L̈ = Jr̈2 + J̇ṙ
, (18)

where J =
[

e1 − e1
TeLru1
L2

e2 − e2
TeLru2
L2

e3 − e3
TeLru3
L2

]T

3×3
,

J̇ = [
ω1 × e1 ω2 × e2 ω3 × e3

]T + L̇2
L2

2

[
e1

TeLru1 e2
TeLru2 e3

TeLru3

]T

− 1
L2

⎡
⎢⎣
(ω1 × e1)

T eLru1
T + e1

T (ωd × eL) ru1
T + e1

TeL (ωd × ru1)
T

(ω2 × e2)
T eLru2

T + e2
T (ωd × eL) ru2

T + e2
TeL (ωd × ru2)

T

(ω3 × e3)
T eLru3

T + e3
T (ωd × eL) ru3

T + e3
TeL (ωd × ru3)

T

⎤
⎥⎦ ,

L̇ = [
l̇1 l̇2 l̇3

]T
, L̈ = [

l̈1 l̈2 l̈3

]T.
The angular velocity and angular acceleration of the UPS branch chain are

ωi = 1

li

[
ei× + (

ei
TruiE − ruiei

T
) eL×

L2

]
ṙ2 = Jωiṙ2, (19)

ω̇i = Jωir̈2 + J̇ωiṙ2, (20)

where J̇ωi = − l̇i

li
2

[
ei× + (

ei
TruiE − ruiei

T
)

Jdω

]+ 1

li

(ωi × ei)× + (
ei

TruiE − ruiei
T
)

J̇dω

+[(ωi × ei)TruiE + ei
T(ωd × rui)E − (ωd × rui)ei

T − rui(ωi × ei)T]Jdω}
and E is the

third-order unit matrix.
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The center of mass velocity of the UPS and UP branch chains is

vci = eiJ iṙ2 − (li − lbi) ei×Jωiṙ2, (21)

vLy = eLeL
Tṙ2 − (

L2 − Ly

) 1

L2

(
E − eLeL

T
)

ṙ2. (22)

The accelerations of the center of masses of the UPS and UP branch chains are
v̇ci =

{
(ωi × ei) J i + eiJ̇ i + l̇iei×Jωi − (li − lbi)

[
(ωi × ei)×

]
Jωi − (li − lbi) ei×J̇ωi

}
ṙ2

+ [eiJ i − (li − lbi) ei×Jωi] r̈2

, (23)

v̇Ly =
[
(ωd × eL) Jy + eLJ̇y − (

L2 − Ly

) 1

L2

(ωd × eL) (ωd × eL)
T + LyL̇2

L2
2

(
E − eLeL

T
)]

ṙ2

+
[
eLeL

T − (
L2 − Ly

) 1

L2

(
E − eLeL

T
)]

r̈2

, (24)

where Ly is the distance from the center of mass of driving chain 2 to O2, and Jy is the component of J
in the y-direction.

Then, the dynamic model of the OMPR can be expressed as:

τ = Mq · L̈ + Cq · L̇ + Gq (25)

where τ is the control input torque, Mq is the inertia matrix, Mq = (
J−1
)T MJ−1, Cq is Coriolis force,

Cq = (
J−1
)T MJ̇−1 + (

J−1
)T CJ−1, and Gq is gravity, Gq = (

J−1
)T G. Due to the coupling force in the

motion process of the parallel manipulator, the diagonal parts of Mq and Cq represent the force on the
current joint, namely inertial force, Coriolis force, and centrifugal force, while the nondiagonal part is
the force generated by one joint on other joints, that is, the coupling force. The following relationship
can be obtained: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Mqf = Mqc · L̈

Cqf = Cqc · L̇

Fo = Mqo · L̈ + Cqo · L̇

(26)

where Mqf , Cqf , Fo are inertia force, Coriolis force and coupling force, respectively. And,

Mqc =
⎡
⎢⎣

Mq (1, 1)

Mq (2, 2)

Mq (3, 3)

⎤
⎥⎦ , Mqo =

⎡
⎢⎣

Mq (1, 2) Mq (1, 3)

Mq (2, 1) Mq (2, 3)

Mq (3, 1) Mq (3, 2)

⎤
⎥⎦,

Cqc =
⎡
⎢⎣

Cq (1, 1)

Cq (2, 2)

Cq (3, 3)

⎤
⎥⎦ , Cqo =

⎡
⎢⎣

Cq (1, 2) Cq (1, 3)

Cq (2, 1) Cq (2, 3)

Cq (3, 1) Cq (3, 2)

⎤
⎥⎦.

Then, the dynamic model can be further expressed as:

τ = Mqf · L̈ + Cqf · L̇ + Gq + Fo (27)

Since the active branch chain of the OMPR belongs to the single input single output model, it can be
expressed as a linear constant continuous system:⎧⎨

⎩
ẋ(t) = Ax(t) + Bu

y = Cx(t)
(28)

where x(t) ∈ Rn, u ∈ Rm, A ∈ Rn×n is a nonsingular matrix, B ∈ Rn×m, C ∈ Rr×n.
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Figure 4. Tool paths.

3. Contour error analysis
In the process of optical mirror surface processing, the grinding tool accurately traverses each removal
point on the mirror surface to be processed at a certain speed. As shown in Fig. 4, the commonly used
tool paths at present are the grid, concentric circle, and spiral types.

For the OMPR to meet the processing requirements of different types of optical mirrors, the robot
must be driven by the control system ensuring that the grinding tool can complete the above three types
of contour movements.

The motion trajectory of the end grinding tool of the OMPR is composed of a series of interpolation
points. The positions of these points can be described as vectors along the x, y, and z directions in the
reference coordinate system, O–XYZ .

s(t) = [
sx(t) sy(t) sz(t)

]T, t ∈ R, (29)

where s(t) represents the trajectory parameter of the grinding tool, which is a second-order derivable
continuous smooth ideal contour.

Subsequently, the unit tangent vector of the motion trajectory can be expressed as

t(t) = ṡ(t)

|ṡ(t)| , (30)

where ṡ(t) is the velocity vector.
Thus, the principal normal vector at any point of the ideal trajectory of the grinding tool is defined

as follows:

n(t) = ρ · ṫ(t)∣∣ρ · ṫ(t)
∣∣ , (31)

where ρ is the radius of curvature.
The tangent vector and the principal normal vector define a two-dimensional plane, which is called

the osculating plane. In the three-dimensional space, there is a secondary normal vector at each point
on the trajectory curve, which is perpendicular to the tangent vector and the principal normal vector. It
is the second normal vector of the trajectory curve and is expressed as

b(t) = t(t) × n(t). (32)

t(t), n(t), and b(t) form the Frenet coordinate system in the ideal position. As shown in Figure 5, D and A
are the vectors of points D and A in O–XYZ , respectively, and the tracking error of the two points in O–
XYZ is Ed . AF is the position vector of point A in the Frenet coordinate system. Thus, the transformation
relationship between the reference coordinate system, O–XYZ , and the Frenet coordinate system of point
A is expressed as follows:

TF : A = RFAF + D

TW : AF = RF
−1Ed

, (33)
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Figure 6. Three-dimensional contour error based on osculating circle.

where RF = [
t n b

]
3×3

is the coordinate transformation matrix, and RF
−1 = RF

T. TF represents the
transformation from the Frenet coordinate system to the reference coordinate system, and TW represents
the transformation from the reference coordinate system to the Frenet coordinate system.

In the three-dimensional space, based on the Frenet coordinate system, the curvature and radius of
curvature at a certain point can be obtained from the ideal trajectory of the grinding tool, and an osculat-
ing circle can be drawn. The contour error is solved using the shortest distance from the actual movement
point of the grinding tool to the osculating circle.

The contour error of the spiral trajectory of the grinding tool in the three-dimensional space is shown
in Fig. 6(a). Point Q is the projection point of point A on the osculating plane. Point E, which is
closest to point A on the osculating circle, can be obtained. Thus, the contour error vector, ε, can be
expressed as

ε =
[
OoA · b(t)

]
· b(t) +

[
ρ −

(
OoA · be

)]
· be, (34)

where be = OoQ∣∣∣OoQ
∣∣∣ , and it is the unit orthogonal vector of b in the osculating plane.

The front view of a point projected onto the osculating plane is shown in Fig. 6(b), and the osculating
circle is located in the osculating plane of the Frenet coordinate system. Among them, points E, Q, and
Oo are on the same straight line. The contour error based on the osculating circle can be obtained as

ε =
⎡
⎢⎣

0

0

−Eb

⎤
⎥⎦+

(
ρ√

Et
2 + (En − ρ)

2
− 1

)
·
⎡
⎢⎣

Et

En − ρ

0

⎤
⎥⎦ . (35)
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Figure 7. Contour control strategy of OMPR.

where Et , En, and Eb are the components of the actual point of the end track along each axis of the Frenet
coordinate system.

4. Feedforward combined multi-axis cross-coupling contour control
Compared to the parallel module, the series module has a lower speed, smaller range of motion, and
smaller error. The series module can achieve higher motion accuracy by adopting a three-loop feedback
control and speed feedforward. In this study, a cross-coupling control system is used to compensate the
contour error at the end of the parallel module. Moreover, the parallel module single-joint servo control
comprises speed and dynamic feedforward. The contour control strategy of the OMPR is shown in Fig. 7.
Transfer functions G1

P(s), G2
P(s), G3

P(s), G4
P(s), and G5

P(s) are used to replace the relationship between
the input and the output. qa1, qa2, qa3, qa4, and qa5 are the actual output joint displacements of the control
system. Tracking errors Eq1, Eq2, and Eq3 of the parallel module single-branch chain control system are
input into the contour error model, and the contour error, ε, in the task space is calculated. The contour
error control quantity, εc, is obtained using the cross-coupling controller, and a mathematical model of
the compensation channel is established. The control variable, εc, is converted into the joint space and
assigned to position loop input terminals uq1, uq2, and uq3 of the three drive branch chain servo control
systems to obtain actual kinematic servo system input values q1, q2, and q3 after compensation. Cx, Cy,
and Cz are the forward channel gain coefficients; Cq1, Cq2, and Cq3 are the compensation channel gain
coefficients, and Gc is the cross-coupling controller. Gv4(s) and Gv5(s) are the transfer functions of the
speed loop, Gi4(s) and Gi5(s) are the transfer functions of the current loop, and Ksv is the feedforward
function of the speed loop.

The closed-loop control of UPS branch chain includes position loop, speed loop, current loop, and
servo motor. And the structure of single-branch chain servo control system is shown in Fig. 8.

In the figure, Kp is the proportional coefficient of the position loop, Kpv is the proportional coefficient
of the speed loop, τv is the time constant of the velocity loop, KpI is the proportional coefficient of the
current loop, τI is the current loop time constant, Kw is the proportional coefficient of PWM inverter,
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Figure 8. Servo control system of the UPS branch chain.

Tw is the switching frequency of PWM inverter, Th = 0.3 ∼ 0.5Tw, Kh = 1, R is the armature resistance,
L is the armature inductance, KT is the torque coefficient, Ke is the back EMF coefficient, J is the load
moment of inertia of the motor, and B1 is the viscous resistance.

To simplify the calculation, make: Kpv

(
1+ 1

τvs

)
= G1, KpI

(
1+ 1

τI s

)
= G2, Kw

Tw+1
= G3, 1

Ls+R
=

G4, KT
Js+B1

= G5, Khe
The+1

= G6. Then, the transfer function of UPS branch chain is

Gi
P
(s)= G1G2G3G4G5Kp

(1–G2G3G4G6) (1–G4G5Ke) s–G1G2G3G4G5s–G1G2G3G4G5Kp

i = 1, 2, 3 (36)

(1) Forward channel cross-coupling gain

To establish the transfer function for system analysis, the inverse of the error Jacobian matrix, Je
-1,

is used to map the tracking error of the parallel module from the joint space to the task space, and the
tracking error of the end moving platform of the parallel module is obtained as follows:

Ed =
[(

e1 e2 e3

)T − 1

L2

(
ru1e1

TeL ru2e2
TeL ru3e3

TeL

)T
]

3×3

−1

·
⎡
⎢⎣

Eq1

Eq2

Eq3

⎤
⎥⎦

3×1

. (37)

The tracking errors in any direction of X1, Y 1, and Z1 at the end of the parallel module are caused
by the coupling of the tracking errors of the three UPS branches. So the end tracking error, FEd , of the
parallel module in the Frenet coordinate system can be calculated using the single-axis tracking error of
the driving branch chain as follows:

FEd = [
t n b

]
3×3

−1 · Je
−1 · Eq. (38)

The contour error in the task space of the parallel module can be calculated utilizing FEd based on
the osculating circle approximation methods.

ε = K · FEd + δ, (39)

where K is the contour error transfer matrix, K =
⎡
⎢⎣

H 0 0

0 H 0

0 0 −1

⎤
⎥⎦ , δ =

⎡
⎢⎣

0

−H · ρ
0

⎤
⎥⎦, and

H = ρ√[
(Je

−1·Eq)
T t
]2+

[
(Je

−1·Eq)
Tn−ρ

]2
− 1.
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Combining Fig. 7 and Eqs. (37) and (38), the forward channel gain of the cross-coupling control
system is as follows: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Cx = K ·
[

t n b
]

3×3

−1 · Je
−1
( : ,1)

Cy = K ·
[

t n b
]

3×3

−1 · Je
−1
( : ,2)

Cx = K ·
[

t n b
]

3×3

−1 · Je
−1
( : ,3)

, (40)

The forward channel gain, ε, is obtained as follows:

ε = Cx · Eq1 + Cy · Eq2 + Cz · Eq3 + δ. (41)

(2) Compensation channel cross-coupling gain

After the contour error, ε, is calculated using the cross-coupling controller, the contour error com-
pensation amount, εc, is obtained. It is converted into the task space of the parallel module, and the
contour error, εr, is obtained in the fixed platform coordinate system using Eq. (33) as follows:

εr = [
εrx εry εrz

]T = [
t n b

]
3×3

· εc, (42)

Thus, the position loop compensations, uq1, uq2, and uq3, of the three driving branches in the joint
space corresponding to the task space compensation are as follows:

uq = Jeεr, (43)

where uq = [
uq1 uq2 uq3

]T.
Combining Fig. 7 and Eqs. (42) and (43), the gain coefficient matrix of the compensation channel is

obtained as follows: ⎧⎪⎨
⎪⎩

Cq1 = Je(1, :) · [t n b]3×3

Cq2 = Je(2, :) · [t n b]3×3

Cq3 = Je(3, :) · [t n b]3×3

, (44)

(3) Lyapunov stability analysis

According to Eq. (28), the observer of linear system can be defined as:⎧⎨
⎩

˙̂x = Ax̂ + Bu + Og

(
y − ŷ

)
ŷ = CTx̂

(45)

where Og is the observation gain matrix. Then the dynamic error can be expressed as:

E = (
A − OgCT

)
x̃ (46)

where x̃ is the state estimation error matrix. From Fig. 7, the tracking error x̃ = [Eq1, Eq2, Eq3] of the
single-axis UPS branch chain of the control system can be expressed as:

Eq1 = l1

(
1 − G1

P
) (

1 + Cq1CxGcG1
P
)

1 + ClGc

+ l2

(
1 − G2

P
)

Cq1CyGcG1
P

1 + ClGc

+ l3

(
1 − G3

P
)

Cq1CzGcG1
P

1 + ClGc

+ GcCq1δG1
P

1 + ClGc

(47)

Eq2 = l1

(
1 − G1

P
)

Cq2CxGcG2
P

1 + ClGc

+ l2

(
1 − G2

P
) (

1 + Cq2CyGcG2
P
)

1 + ClGc

+ l3

(
1 − G3

P
)

Cq2CzGcG2
P

1 + ClGc

+ GcCq2δG2
P

1 + ClGc

(48)
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Eq3 = l1

(
1 − G1

P
)

Cq3CxGcG3
P

1 + ClGc

+ l2

(
1 − G2

P
)

Cq3CyGcG3
P

1 + ClGc

+ l3

(
1 − G3

P
) (

1 + Cq3CzGcG3
P
)

1 + ClGc

+ GcCq3δG3
P

1 + ClGc

(49)

where Cl = Gp
1Cq1Cx + Gp

2Cq2Cy + Gp
3Cq3Cz.

Similarly, from Fig. 7, the system input x = [q1, q2, q3] adjusted by the multi-axis cross-coupling
contour control system is deduced, and the following is obtained:

q1 = l1

1 + (
Cq1Cx + Cq1CxG1

P
)
Gc

1 + ClGc

+ l2

Cq1Cy

(
1 + G2

P
)
Gc

1 + ClGc

+ l3

Cq1Cz

(
1 + G3

P
)
Gc

1 + ClGc

+ GcCq1δ

1 + ClGc

(50)

q2 = l1

Cq2Cx

(
1 + G1

P
)
Gc

1 + ClGc

+ l2

1 + (
Cq2Cy + Cq2CyG2

P
)
Gc

1 + ClGc

+ l3

Cq2Cz

(
1 + G3

P
)
Gc

1 + ClGc

+ GcCq2δ

1 + ClGc

(51)

q3 = l1

Cq3Cx

(
1 + G1

P
)
Gc

1 + ClGc

+ l2

Cq3Cy

(
1 + G2

P
)
Gc

1 + ClGc

+ l3

1 + (
Cq3Cz + Cq3CzG3

P
)
Gc

1 + ClGc

+ GcCq3δ

1 + ClGc

(52)

Based on Eqs. (50)–(52), system inputs q1, q2, and q3 regulated by the cross-coupling controller are
cross-coupling terms. The cross-coupling control system outputs a certain correction signal based on the
contour error generated by the OMPR during the contour movement process and compensates it to the
position loop input end of the single-joint control system, completing the closed-loop contour control.

Based on this, the Lyapunov closed-loop equation can be constructed as follows:

V(t) = xTPx + 1

2
ETP1E (53)

where P = PT > 0 and P1 = P1
T > 0·

The necessary and sufficient conditions for the stability of the control system are as follows: for the
scalar function V with continuous first-order partial derivative, if V is positive definite and V̇ is negative
definite. Given Q = QT > 0, Q0 = Q0

T > 0, and⎧⎨
⎩

−Q = −PA − ATP

−Q1 = (
A − OgCT

)T
P1 + P1

(
A − OgCT

) (54)

Find the full derivative of V ,

V̇ = −xTQx − ETQ1E. (55)

Order, Q0 =
[

Q 0

0 1
2
Q1

]
. Then,

V̇ =
[

xT E
T
]

Q0

[
x

E

]
≤ −λmin (Q0)

∣∣∣∣∣
∣∣∣∣∣
[

x

E

]∣∣∣∣∣
∣∣∣∣∣

2

(56)

where λmin (Q0) is the minimum eigenvalue of matrix Q0. Because of λmin (Q0) > 0, it can prove that V̇
is negative definite, and it is proved that the closed-loop system is asymptotically stable.
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(4) Simulation analysis

According to the feedforward combined multi-axis cross-coupling contour control system estab-
lished, the control system is simulated and analyzed by Matlab/Simulink. Three trajectories of line,
arc, and spiral in the world coordinate system are analyzed respectively. The trajectory equations are

Line :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X = 70t − Rg

Y = 0 × t1

Z = 0 × t1 + 1097

t1 = 0: 10

Arc :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X = 200 cos

(
0.2π t2 + 3

2
π

)

Y = 200 sin

(
0.2π t2 + 3

2
π

)
Z = 0 × t2 + 1097

t2 = 0: 10

Spiral :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X = 20t3 cos
(π

2
t3 + π

2

)
Y = 20t3 sin

(π
2

t3 + π

2

)
Z = 0 × t3 + 1097

t3 = 0: 10

(57)

As can be seen from Fig. 9(a), when only cross-coupling contour control is used for compensation,
the contour error is significantly reduced. When the feedforward combined multi-axis cross-coupling
contour control is used, the contour error is reduced from 0.015 to 0.004 mm, and the overall variation
law of contour error is smoother. It can be seen from Fig. 9(b) that the contour error of the arc tra-
jectory presents a regular fluctuating trend, which is caused by the error accumulation of the motion
branch. When the feedforward combined multi-axis cross-coupling contour control is used, the error is
reduced from the peak value of 0.193 to 0.018 mm. As can be seen from Fig. 9(c), with the increase
of spiral contour, the contour error also increases, and the maximum contour error is obtained at the
maximum curvature. Using feedforward combined multi-axis cross-coupling contour control, the max-
imum contour error can be reduced from 0.218 to 0.022 mm, and the variation trend of contour error is
smoother. Therefore, the designed feedforward combined multi-axis cross-coupling contour control can
effectively reduce the contour error, and the effect is better than the cross-coupling contour compensation
control.

5. Experimental analysis
To verify the effectiveness of the established contour control model, a control system is built for the
OMPR. Contour control experiments are conducted for three types of common trajectories in optical
mirror processing. The experimental site and the topology of CCOS are shown in Fig. 10. The multi-
axis motion controller is a programmable multi-axes controller (PMAC). On a PC, the path contour
of the grinding tool in the world coordinate system is planned. Considering that the numerical search
method for the inverse solution of the series module reduces the operation speed of the controller, the PC
is used for the offline inverse solution of the series module. Moreover, the angle change of the two series
swivel heads and the position of the parallel module moving platform are input to the PMAC to complete
the control task. The displacement and velocity of five axes of the machining robot are collected, and the
position and velocity of the end execution point are calculated through the forward kinematics model.
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(a) (b)

(c)

Figure 9. Contour error simulation.

Figure 10. Experimental site.

Because the CCOS has pneumatic active position compensation function in the Z axis direction, only
the motion parameters in the X and Y directions have research significance. During the experiment, the
revolution speed of CCOS grinding system was set to 30 r/min and the rotation speed was set to 180
r/min. The linear contour, arc contour, and spiral contour are tested respectively. The trajectory equation
is the same as the simulation trajectory, as shown in Eq. (57).
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Figure 11. Driving force output signal in linear contour linear contour.

5.1 Linear contour control compensation experiment
In the experiment, the trajectory of the grinding tool was a linear contour along the X axis of the world
coordinate system, the length is 700 mm, the movement period was 20 s, and the sampling period was
20 ms. The experiment was conducted on an aluminum plate instead of an optical mirror. Based on the
established contour error model, the contour error of the OMPR can be obtained by mapping the tracking
error of each joint of the parallel module to the workspace. During the experiment, no compensation
control, traditional cross-coupling compensation, and feedforward combined multi-axis cross-coupling
compensation contour control experiments were conducted. The torque control mode is adopted for
the linear contour experiment, and the driving force of the three driving branches in the experiment
of feedforward combined multi-axis cross-coupling contour control compensation is shown in Fig. 11.
Due to the inclined arrangement of the OMPR, the gravity is different in the three driving components.
In order to counteract gravity, the UPS1 needs to output the force pointing to the moving platform
along the branch chain, which is specified as the positive direction here. The UPS2 and UPS3 need to
output the force pointing to the fixed platform along the branch chain, which is specified as the negative
direction here. The UPS1 bears most of the gravity component, so the output force of the UPS1 is the
largest.

The experimental results are shown in Fig. 12. When using the traditional PID control, the contour
error generated by the parallel modules is approximately 0.027 mm. When using the traditional cross-
coupling compensation control strategy, the contour error is reduced to 0.018 mm. When the feedforward
combined multi-axis cross-coupling control strategy is used for compensation, the contour error is fur-
ther reduced to 0.006 mm. The variation trend of the experimental value and the theoretical value is the
same, and the difference is only 0.002 mm, which is caused by the random error of the robot. It can be
seen that the effect of the feedforward combined multi-axis cross-coupling control strategy is better than
that of the traditional multi-axis cross-coupling control system.

The velocity stability has a direct impact on the surface accuracy of the optical mirror. In the exper-
iment, the velocity errors in X and Y directions in the processing of the optical mirror were tested
respectively. The experimental results are shown in Fig. 13. When the compensation control mode is
not adopted, the velocity errors in the X and Y directions of the linear contour are 0.025 and 0.021 mm/s.
Through traditional cross-coupling compensation, the velocity errors in X and Y directions are reduced
to 0.013 and 0.019 mm/s. Through feedforward combined multi-axis cross-coupling contour control, the
velocity errors in X and Y directions are reduced to 0.005 and 0.006 mm/s. Therefore, the designed con-
trol compensation strategy not only reduces the velocity errors of the OMPR but also makes its motion
more stable.

https://doi.org/10.1017/S0263574722000352 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000352


Robotica 3493

Time (s)

 rorre ruot no
C

 (m
m

)

No compensation
             Cross-coupling compensation
             Feedforward combined multi-axis cross-coupling compensation 

Figure 12. Experiment of linear contour error control compensation.
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Figure 13. Linear contour velocity error.

5.2 Arc contour control compensation experiment
Taking the machined mirror as the center point, given the space arc contour trajectory of the grinding
tool radius of 200 mm, the movement period is 20 s, and the sampling period is 20 ms. The experimental
steps are the same as those of the linear contour control experiment. The torque control mode is adopted
for the arc contour experiment, and the driving force of the three driving branches in the experiment
of feedforward combined multi-axis cross-coupling contour control compensation is shown in Fig. 14.
During the movement along the arc contour, the three UPS branch chains have the process of elongation
and shortening. When the branch chain moves to the longest position, the heavy torque is the largest,
and the driving force output value also reaches the maximum.

The experimental results are shown in Fig. 15. When the control compensation is not conducted,
the contour error of the OMPR is approximately sinusoidal, and the error peak is 0.223 mm. When
the traditional cross-coupling compensation control strategy is adopted, the contour error is reduced
to 0.069 mm. When the feedforward combined multi-axis cross-coupling control strategy is used for
compensation, the contour error is further reduced to approximately 0.021 mm. The variation trend of
the experimental value and the theoretical value is the same, and the difference is only 0.003 mm. It
is verified that the feedforward combined multi-axis cross-coupling control strategy still exhibits good
compensation performance in a circular motion trajectory.
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Figure 14. Driving force output signal in linear contour arc contour.
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Figure 15. Experiment of arc contour error control compensation.

At the same time, the velocity errors in X and Y directions during processing of the optical mirror
under arc contour are collected. The experimental results are shown in Fig. 16. When the compensation
control mode is not adopted, the velocity errors in the X and Y directions of the arc contour are 0.055 and
0.051 mm/s. Through traditional cross-coupling compensation, the velocity errors in X and Y directions
are reduced to 0.031 and 0.028 mm/s. Through feedforward combined multi-axis cross-coupling contour
control, the velocity errors in X and Y directions are reduced to 0.008 and 0.010 mm/s. It can be seen that
the designed control strategy also has a good effect on the velocity error compensation of arc contour.

5.3 Spiral contour control compensation experiment
The given end grinding tool is a spiral contour with the starting point at the origin of the world coordinate
system, the movement time is 40 s, and the sampling period is 40 ms. The experimental steps are the
same as before. The torque control mode is adopted for the spiral contour experiment, and the driving
force of the three driving branches in the experiment of feedforward combined multi-axis cross-coupling
contour control compensation is shown in Fig. 17. When the OMPR moves along the spiral contour, the
amplitude of elongation and shortening of the three UPS branches increases with the gradual increase
of the curvature radius of the spiral.

The experimental results are shown in Fig. 18. For the spiral contour, the contour error at the end of the
parallel module in the control system increases as the curvature of the spiral increases. When using the
traditional PID control, the maximum contour error is 0.213 mm. When the traditional cross-coupling
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(a) (b)

Figure 16. Arc contour velocity error.
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Figure 17. Driving force output signal in linear contour spiral contour.

compensation control strategy is adopted, the contour error is reduced to approximately 0.121 mm.
When the feedforward combined multi-axis cross-coupling control strategy is used for compensation,
the contour error is further reduced to approximately 0.030 mm. The variation trend of the experimental
value and the theoretical value is the same, and the difference is only 0.008 mm. It can be seen that
the feedforward combined multi-axis cross-coupling control strategy also exhibits good compensation
performance in the spiral trajectory.

Similarly, the velocity errors of the OMPR in the X and Y directions under the spiral contour are
measured. The experimental results are shown in Fig. 19. With the increase of the curvature of the spiral
contour, the motion velocity errors of the machining robot in the X and Y directions also fluctuate greatly
with the increase of the curvature. When the compensation control mode is not adopted, the velocity
errors in the X and Y directions of the arc contour are 0.083 and 0.062 mm/s. Through traditional cross-
coupling compensation, the velocity errors in X and Y directions are reduced to 0.037 and 0.025 mm/s.
Through feedforward combined multi-axis cross-coupling contour control, the velocity errors in X and
Y directions are reduced to 0.011 and 0.010 mm/s. It can be seen that the designed control strategy also
has a good effect on the trajectory of large curvature.
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Figure 18. Experiment of spiral contour error control compensation.
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Figure 19. Spiral contour velocity error.

6. Conclusion
This study is aimed at the problem of the contour error generated during the processing of an OMPR,
which decreases the accuracy of an optical mirror surface. Considering an OMPR under specific task
trajectories of the optical mirror technology, its contour error and control compensation strategy are
researched and analyzed. Considering that the world coordinate system is convenient for describing
the contour error of an optical mirror in the process of optical mirror machining, the robot workspace is
transformed into the world coordinate system to analyze the machining trajectory. Based on the principle
of differential geometry, the Frenet coordinate system is established. Using the tangential approximation
and osculating circle approximation methods, three-dimensional contour error models of the OMPR in
grid trajectory, concentric circle trajectory, and spiral trajectory processing modes are derived. The con-
trol strategy of the entire machine is determined, and a parallel module feedforward combined multi-axis
cross-coupling control system is built. Based on the kinematic transformation relationship, the contour
error control, feedforward channel gain, and compensation channel gain models are established in the
parallel module task space. Subsequently, the transfer function of the cross-coupling system is obtained,
and the key control variables and stability of the system are analyzed to ensure the theoretical stability of
the control system. Finally, an experimental analysis is conducted on an experimental prototype, and the
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results show that the established feedforward combined multi-axis cross-coupling control compensation
strategy can achieve a good compensation effect on the straight line, arc, and spiral machining trajec-
tories of the optical mirror. The contour errors were reduced to 22.2%, 9.4%, and 14.1%, respectively.
Moreover, through the feedforward combined multi-axis cross-coupling control compensation strategy,
the speed error of the OMPR is also greatly reduced. The speed error in the X and Y directions of the
linear contour is reduced to 20.0% and 28.6%, respectively; the speed error in the X and Y directions
of the arc contour is reduced to 14.5% and 19.6%, respectively; and the speed error in the X and Y
directions of the spiral contour is reduced to 13.3% and 16.1%, respectively.

The feedforward combined multi-axis cross-coupling control compensation strategy can effectively
reduce the contour error of the OMPR. It provides a theoretical basis for a robot to directly face the
precision processing object using the control and compensation strategy in a future research study to
improve the molding accuracy of a surface and optimize the processing technology of a large-scale opti-
cal mirror. It also provides an experimental basis for improving the surface forming accuracy, reducing
the number of iterations, and optimizing the processing technology of large-scale optical mirrors in
the future using control and compensation strategies. Simultaneously, it provides a feasible case for the
application of a five-DOF hybrid robot in the processing of ultra-precision machining.
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