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Objectives: The aim of cost-effectiveness analysis is to maximize health benefits from a
given budget, taking a societal perspective. Consequently, the comparison of alternative
treatments or technologies is solely based on their expected effectiveness and cost.
However, the expectation, or mean, poses important limitations as it might be a poor
summary of the underlying distribution, for instance when the effectiveness is a
categorical variable, or when the distributions of either effectiveness or cost present a high
degree of asymmetry. Clinical variables often present these characteristics.
Methods: In this study, we present a framework for cost-effectiveness analysis based on
the whole posterior distribution of effectiveness and cost.
Results: An application with real data is included to illustrate the analysis.
Decision-making measures such as the incremental cost-effectiveness ratio, incremental
net-benefit, and cost-effectiveness acceptability curves, can also be defined under the
new framework.
Conclusions: This framework overcomes limitations of the mean and offers
complementary information for the decision maker.

Keywords: Bayesian analysis, Cost-effectiveness, Net benefit, Binary effectiveness,
Predictive posterior densities

1. INTRODUCTION AND MOTIVATION

The field of health economics, and in particular the compar-
ison of health technologies through cost-effectiveness ana-
lysis (CEA), is growing rapidly. In the analysis of data that
have been collected in a clinical trial, many authors (2;15)
have proposed the use of Bayesian statistical methods, which
provide a natural framework for quantifying uncertainty and
decision making.

This research has been partially support by the grants SEJ-02814 (Junta de
Andalucı́a), SEJ2007-65200 and SEJ2006-12685 (Ministerio de Educación
y Ciencia (MEC), Spain). We thank an anonymous referee for constructive
comments and suggestions.

The most used tool for health technology assessment is
the incremental cost-effectiveness ratio (ICER). It is defined
as:

ICER = γ2 − γ1

µ2 − µ1
= �γ

�µ
, (1)

where γ i and µi denote the mean of the cost and effectiveness
of treatment i (i = 1,2), and �γ and �µ are the incremental
cost and incremental effectiveness, respectively.

The ICER presents serious interpretation problems, in-
stability, as well as difficulties for estimating confidence or
credible intervals (8;19). The net benefit is a close related
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tool which was proposed as an alternative to ICER (21). The
incremental net benefit (INB) of treatment 2 compared with
treatment 1 is defined as:

INB(Rc) = Rc · �µ − �γ, (2)

that depends on the deterministic threshold cost Rc (ceiling
ratio), which is defined as the “value the health provider
assigns to increasing the effectiveness one unit” (17). From
the Bayesian point of view, the interest might be on the
probability that the INB(Rc) is positive for each value of Rc,

Q(Rc) = Pr(INB(Rc) > 0), (3)

which is called the cost-effectiveness acceptability curve
(6;10) (CEAC). We remark that this curve is based on the
means of the effectiveness (µ) and cost (γ ) of each treat-
ment, as it is the ICER.

Seminal papers on Bayesian CEA assumed that both ef-
fectiveness and cost are normally distributed (17), and so it is
for the frequentist approach. In this case, the mean is indeed a
meaningful characteristic of the distribution. In fact, the nat-
ural candidates for the location, for example, mean, median,
and mode, all coincide. However, asymmetric distributions
do not have a natural location parameter. The median is of-
ten used instead of the mean, because it is less sensitive to
extreme values. In the clinical literature, there are examples
where the difference in median survival time in two arms of a
clinical trial is used to make decisions (11). It is recognized,
however, that many clinical trials have either effectiveness or
costs (or both) that are not normally distributed. For instance,
effectiveness is often a binary variable that takes the value 1
when success, and 0 when not success (1;9).

The use of the mean to make decisions has been sup-
ported in the health economic literature because of a social
objective in cost-effectiveness analysis is to maximize the
total (or average) health gain (7). So according with the cri-
terion of potential compensation of net benefit among indi-
viduals of Kaldor and Hicks—the individuals having a higher
net benefit will compensate those with a lower net benefit—
the decision maker should choose the treatment with the
greatest expected net benefit (14). However, some authors
have recently argued that the mean is not the only quantity
that matters to medical decision makers because compensa-
tion of health is not so acceptable as compensation of wealth.
Variance (or other moments) may matter as well (12;25).

We provide below some very simple examples where the
conventional decision-making measures based on the mean
achieve controversial conclusions.

Example 1 (Categorical Effectiveness)

For simplicity, we assume that the costs of treatment 1 and 2
are the same, and without loss of generality that they are zero.
Hence, we focus on the analysis of a hypothetical effective-
ness, which is measured by a discrete variable whose values

are 0, 1, and 2, resulting from a health status indicator of
bad, good, and excellent. To simplify the example, suppose
that the evaluation of the effectiveness is carried out under
perfect knowledge, so we know the population distribution
for both treatments are:

Pr(e1) =
⎧⎨
⎩

0.1 if e1 = 0,

0.5 if e1 = 1,

0.4 if e1 = 2,

and P r(e2) =
⎧⎨
⎩

0.3 if e2 = 0,

0.1 if e2 = 1,

0.6 if e2 = 2.

Both treatments are certainly different, but an analysis
based on the mean is not able to discriminate between them.
In fact,

INB(Rc) = Rc · (µ2 − µ1) = Rc · (1.3 − 1.3) = 0, ∀Rc ≥ 0.

An analysis of the distribution of the difference between
effectiveness (e2 − e1), instead of the difference between
means of effectiveness, provides important information to the
decision maker to discriminate between treatments. Indeed,
from:

Pr(e2 − e1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.12 if e2 − e1 = −2,

0.19 if e2 − e1 = −1,

0.32 if e2 − e1 = 0,

0.31 if e2 − e1 = 1,

0.06 if e2 − e1 = 2,

it follows that the probability that both treatments are equally
effective is:

Pr(e2 − e1 = 0) = 0.32,

the probability that treatment 2 is more effective that treat-
ment 1 is:

Pr(e2 − e1 > 0) = 0.37,

and the probability that treatment 1 is more effective that
treatment 2 is:

Pr(e2 − e1 < 0) = 0.31.

The implications for the decision maker of the last three
sentences is that the proportion of times that treatment 2 will
be more effective than treatment 1 is of 6 percent, and thus
treatment 2 is the optimal decision.

Example 2 (Asymmetric Costs)

For simplicity, we assume that the effectiveness of both treat-
ments are the same, thus the CEA is reduced to a costs ana-
lysis. Suppose that the population distributions of c2 and c1

are the following log-normal densities:

log c1 ∼ N (3, 10) and log c2 ∼ N (6, 4).
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Table 1. Three CEAC Curves Based on the Mean and
on the Whole Distribution

Population
means Pr(INB > 0|R) Pr(e2 − e1 > 0|R)

29, 29.1 1 0.5063
29, 30 1 0.5628
29, 300 1 ≈ 1

See Supplementary Figure 1, which can be viewed online
at www.journals.cambridge.org/thc.

Both densities are quite different but the INB does not
provide this information, it is a constant equal to 0, that is:

INB(Rc) = (c2 − c1) = (2980.96 − 2980.96) = 0,

for any Rc ≥ 0.

However, the density of the variable c2 −c1 provides im-
portant supplementary information. For instance, from this
density we find that the probability that treatment 1 is pre-
ferred to treatment 2 is 0.79.

Example 3 (Uncertainty)

Assuming for simplicity that the costs of both treatments are
zero, we consider the case where the population effectiveness
can be modeled through the following normal densities:

e1 ∼ N (29, 20) and e2 ∼ N (30, 20).

Both distributions are very similar and the distribution
of the difference of effectiveness is (e2 − e1) ∼ N (1, 40).
The probability of preference for treatment 2 is only of 0.56
but the probability that the mean of treatment 2 is bigger
than that of treatment 1 is 1. That is, an analysis based on the
mean chooses treatment 2 with no uncertainty, but an analysis
based on the whole distribution indicates that treatment 2 is
to be chosen with a large uncertainty.

Table 1 contemplates three normal scenarios with dif-
ferent population means and a variance of 20, and gives the
CEAC curves based on the means and those based on the
whole distribution.

The CEAC curve based on the mean gives the same re-
port for the three different scenarios, it is constantly equal
to 1. The alternative CEAC curves, based on the distribution
of effectiveness and cost, report that, in the first scenario,
the advantage of the second treatment over the first one is
very small, it is bigger in the second scenario, and it is over-
whelming in the third scenario.

Recently, Vanness and Mullahy (22) pointed out that
“because clinicians and administrators make choices that im-
pact nonexchangeable, nonanonymous individuals, they may
care about features of the distributions of costs and health
outcomes beyond the mean”.

In this study, we propose an alternative framework for
CEA, where the quantity of interest is not a point estimator

of the means outcome of effectiveness and costs, but the
full posterior distribution of the net benefit. In the Bayesian
literature, this posterior distribution is known as the posterior
predictive distribution of the net benefit (14).

More precisely, the conventional analysis solves an opti-
mization problem where the objective is to maximize the total
(or average) wealth gain, which is accomplished by choosing
the treatment with higher expected net benefit. We note that
the net benefit is expressed in monetary units, and that for
small values of Rc the main component of the net benefit
is the treatment cost. Therefore, this conventional approach
would be reasonable when the decision maker assumes small
values for Rc, and hence the wealth gain is the goal.

In the new approach, one is interested in choosing the
treatment having, in probability, the higher net benefit. This
decision rule solves an optimization problem where the ob-
jective function is to maximize the proportion of patients in
the population having a net benefit gain (24). We note that
for large values of Rc the main component of the net benefit
is the treatment effectiveness, so for such values the health
gain is the goal.

Both objectives are of interest for the decision maker
and, in general, will provide complementary information. In
formulas, for a given value Rc, the conventional Bayesian
analysis chooses treatment 2 if:

E[Rc�e − �c|data] > 0,

and the new one choose treatment 2 if:

Pr[Rc�e − �c > 0|data] > 1/2,

where, �e = e2 − e1,�c = c2 − c1, and both the expec-
tation and the probability are computed with respect to the
posterior predictive distribution of the cost and effective-
ness.

The rest of the study is organized as follows. In Section
2, we present the new framework based on the predictive dis-
tribution of effectiveness and cost. In Section 3, we analyze
a common case in the CEA: normal distribution for effec-
tiveness and log-normal distribution for costs. In Section 4,
a detailed illustration is presented as a case study using real
data. Section 5 presents some conclusions.

2. GENERAL FRAMEWORK

Suppose we have independent patient-level data {(eij , cij ) :
i = 1, 2; j = 1, 2, . . . , ni} from a clinical trial, where eij

refers to the observation on effectiveness for subject j re-
ceiving treatment i, and cij refers to cost. Consider the sam-
pling model of treatment i f (ei, ci |θi), i = 1, 2 where θi

represents the unknown unobservable parameters. The like-
lihood of (θ1, θ2) for the above data is given by:

�(θ1, θ2|data) = �2
i=1�

ni

j=1f (eij , cij |θi). (4)

INTL. J. OF TECHNOLOGY ASSESSMENT IN HEALTH CARE 25:4, 2009 539

https://doi.org/10.1017/S0266462309990444 Published online by Cambridge University Press

https://doi.org/10.1017/S0266462309990444


Negrı́n et al.

We have assumed that the treatments are independent, an
assumption that seems to us realistic, although a conspicuous
referee has pointed out that exchangeability would be a more
appropriate assumption for some applications.

To complete the specification of the Bayesian model, we
need a prior distribution π (θi), i = 1, 2 reflecting our prior
belief on the behavior of the parameter θi . Then, assuming
prior independence of θ1 and θ2, the joint posterior density
of (θ1, θ2) is given by Bayes’ theorem as:

π (θ1, θ2|data) = �(θ1, θ2|data)π (θ1)π (θ2)

∫ �(θ1, θ2|data)π (θ1)π (θ2)dθ1dθ2
. (5)

From Equation [4], it follows that the above equation
can be written as:

π (θ1, θ2|data) = π (θ1|data) · π (θ2|data), (6)

that is, θ1 and θ2 are also independent a posteriori.
Conventional CEA requires to compare expected effi-

cacies and expected costs for each treatment. Let the distri-
bution f (e, c|θ ) have mean (µ(θ ), γ (θ )), so that the mean
efficacy for treatment i is µi(θi) and the mean cost for treat-
ment i is γi(θi), and both can be obtained as functions of
θi .

The alternative analysis is based on the posterior predic-
tive distribution of effectiveness and cost, conditional on the
data,

f (e, c|data) = ∫ f (e, c|θ )π (θ |data)dθ, (7)

which is decomposed as:

f (e, c|data) = f (e1, c1|data1) · f (e2, c2|data2).

From this density, we can compute some measures of
cost-effectiveness. For instance, the density of the cost-
effectiveness ratio for treatment i, CERi = ci/ei , as:

f (CERi |data) = ∫ |ei |f (ei, CERi · ei |data i)dei . (8)

In a similar way, the posterior distribution of the net
benefit for treatment i, NBi = Rc · ei − ci , is computed
as:

f (NBi |Rc, data i) = ∫ f (ei, Rc · ei − NBi |data i)dei . (9)

Assuming a common value of Rc for both treatment 1
and 2, the posterior joint distribution of net benefit of the
treatments turns out to be:

f (NB1, NB2|Rc, data)
= f (NB1|Rc, data1) · f (NB2|Rc, data2). (10)

From Equation [10], we can also obtain the probability
that treatment 2 is preferable to treatment 1, conditional on a
value Rc and the available data. That is:

Pr(NB2 − NB1 > 0|Rc, data)
= ∫ f (NB1, NB2|Rc, data)I(NB2>NB1)(NB1, NB2)dNB1dNB2,

where IA denotes the indicator function of event A. The
graphical representation of this probability for different
values of Rc is an alternative to the conventional CEAC
curve.

3. NORMAL DISTRIBUTION FOR
EFFECTIVENESS AND LOG-NORMAL
DISTRIBUTION FOR COSTS

In this section, we assume an asymmetric lognormal model
for the cost. The joint distribution of effectiveness and cost
is defined as

f (eij , log(cij )|θ ) = N2(e1j , log(c1j )|(µ1, γ1), �1)
× N2(e2j , log(c2j )|(µ2, γ2), �2). (11)

The symbol N2 denotes the bivariate normal distribution
with parameters θi = (µi, γi, �i) where µi denotes the mean
of the effectiveness of treatment i, γi the mean of the log of
the cost, and �i the covariance matrix.

We propose a flexible prior structure, with normal distri-
butions for location parameters (µi, γi) and inverse-Wishart
distributions for variance-covariance matrices, factorized
as:

π (θ1, θ2) = 2
�
i=1

N2

(
(µi, γi)|(µ0

i , γ
0
i ), Vi

) · IW (�i |Ai, vi).

This prior distribution enables us to incorporate prior
information through the values of the hyperparameters
µ0

i , γ
0
i , Vi, Ai, vi . In this way, the elicitation process might

play an important role in modeling the empirical or historical
evidence using the prior distribution (13). Section 4 presents
an illustration of how to incorporate prior information into
the analysis.

The joint posterior distribution of the parameters
(µ1, γ1, µ2, γ2), given data, follows from Equation [5] us-
ing Bayes’ theorem, as:

π (µ1, γ1, µ2, γ2|eij , cij )

∝ |�1|−(n1+v1+3)/2|�2|−(n2+v2+3)/2exp(−H/2), (12)

where:

H = ((µ1, γ1) − (µ0
1, γ

0
1 ))′V −1

1 ((µ1, γ1) − (µ0
1, γ

0
1 ))

+ ((µ2, γ2) − (µ0
2, γ

0
2 ))′V −1

2 ((µ2, γ2) − (µ0
2, γ

0
2 ))
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+ n1((µ1, γ1) − (ē1, c̄1))′�−1
1 ((µ1, γ1) − (ē1, c̄1))

+ n2((µ2, γ2) − (ē2, c̄2))′�−1
2 ((µ2, γ2) − (ē2, c̄2))

+ tr�−1
1 (A1 + S1) + tr�−1

2 (A2 + S2)

trA denotes the trace of matrix A, ēi = �
ni
j=1θij

ni
, c̄i =

�
ni
j=1 log(cij )

ni
, and

Si = �
ni

j=1((eij , log(cij )) − (ēi , c̄i))((eij , log(cij )) − (ēi , c̄i))
′.

Sampling from this posterior distribution requires
Markov Chain Monte Carlo (MCMC) algorithms. In fact,
the form of Equation [12] is particularly well suited for an
application of Gibbs sampling. We have used the standard
package WinBUGS (20).

4. EXAMPLE

The Trial

We present an example of a clinical trial in which a com-
parison was made between four highly active antiretroviral
treatment protocols applied to asymptomatic HIV patients,
developed in 1999 (18). Each treatment protocols combined
three drugs. We obtained data on the direct costs (of drugs,
medical visits, and diagnostic tests), and on the effective-
ness, quality-adjusted life-years (QALYs), using EQ-5D in-
strument. EQ-5D is an instrument for the self-evaluation of
personal health, consisting of five questions that investigate
five aspects of health-related life quality, based on a visual
analogue scale. We have calculated the QALYs as the area
under the curve defined by the utility values at each time
point during the study period. All patients used a monthly di-
ary during 6 months to keep record of resource consumption
and quality of life progress.

Most CEA compare two alternative technologies only,
namely the control treatment and the new treatment. Al-
though this example includes four treatments, we take the
treatments d4T+3TC+IND (that combines the drugs es-
tavudine (d4T), lamivuidne (3TC) and indinavir (IND)) and
d4T+ddl+IND (that combines estavudine (d4T), didanosine
(ddl), and indinavir (IND)) to illustrate how a CEA for two
treatments would be carried out. Hereafter, we refer to these
treatments as T1 and T2, respectively.

The sample data seem to indicate that T2 is slightly
the most effective treatment, with a sample mean QALY of
0.4024 versus a sample mean of 0.3958 for T1. However, the
sample also suggests that T2 is the most expensive treatment
(7,302.70 euros versus 7,142.28 euros). The large standard
deviations (1,702.85 and 1,568.12, for T2 and T1 respec-
tively) indicate a high degree of overlapping of the samples.
See Supplementary Table 1, which can be viewed online at
www.journals.cambridge.org/thc.

Weak Prior Information

In this subsection, we assume weak prior information about
the value of the parameters of the model. We follow the prior
structure described in Section 3, where the hyperparameters
are chosen to be:

(
µ0

1, γ
0
1

) = (0, 0),
(
µ0

2, γ
0
2

) = (0, 0),

= V1

(
1010 0

0 1010

)
and V2 =

(
1010 0

0 1010

)
.

It should be pointed out that WinBUGS does not allow
the completely noninformative prior distributions for �1 and
�2. Thus, we set:

A1 = A2 =
(

1 0
0 1

)
and v1 = v2 = 2,

which will be essentially similar to those produced under the
totally weak prior specification (17).

After following a burn-in of 100,000 iterations, the pos-
terior distributions were monitored over a further 100,000
iterations of the chain. Convergence was checked by rerun-
ning the MCMC process from four different initial starting
values and using the diagnosis tools provided by the CODA
package. The complete code for the examples is available
from the authors upon request.

The posterior mean, median, standard deviation, and 95
percent probability interval of the mean effectiveness (µ) and
mean cost (γ ) under the two treatments are given in Table 2
(also see Supplementary Figure 2, which can be viewed on-
line at www.journals.cambridge.org/thc).

From this table, it follows that while the probability of a
positive increment in mean effectiveness of T2 to T1 is 68.9
percent, we find that from the new approach the posterior
probability that T2 is more effective than T1 is only of 52.2
percent. Furthermore, the probability of a positive increment
in mean cost of T2 to T1 is as large as 88.4 percent, but we
find that the posterior probability that T2 is more costly than
T1 is only of 53.9 percent.

Note that the above comparison between cost and effec-
tiveness can be carried out for the net benefit of the treatments
conditional on each value of Rc.

Figure 1 shows CEACs for both the analysis based on
the mean and for the analysis of the posterior predictive
distribution. Both decision rules differ when the values of Rc

are in the interval (20500, 25100).

Informative Prior

For illustrative purposes, we take the prior information stated
in the design of the original trial (18) for construct an informa-
tive prior. Recognizing the limitations of this example—for
instance the effect differences for which a design is planned
may be optimistic—in this retrospective analysis, we have
no more reliable prior information. Of course, in a real ap-
plication of the Bayesian approach it would be necessary to
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Table 2. Posterior Mean and Posterior Distribution of Effectiveness and Cost

MCMC
Mean SD error 2.5% Median 97.5%

T1 (d4T+3TC+IND)
µ 0.3958 0.0054 0.000017 0.3853 0.3958 0.4064
γ 7048.0 69.02 0.2161 6914.0 7047.0 7184.0
e 0.3954 0.08896 0.000275 0.2216 0.3949 0.5704
c 7138.0 1157.0 3.499 5127.0 7047.0 9682.0

T2 (d4T+ddl+IND)
µ 0.4024 0.0125 0.000039 0.3779 0.4025 0.4268
γ 7216.0 124.7 0.4083 6975.0 7214.0 7465.0
e 0.403 0.1223 0.000351 0.1627 0.4026 0.6436
c 7321.0 1256.0 4.236 5172.0 7221.0 10090.0
�µ 0.0066 0.0136 0.000042 −0.0203 0.0067 0.0332
�γ 168.4 142.7 0.452 −110.4 167.7 451.8
�e = e2 − e1 0.0071 0.1517 0.000457 −0.2913 0.0069 0.3065
�c = c2 − c1 168.9 1706.0 5.395 −3149.0 153.3 3587.0

Note. Column headings are mean, standard deviation, MCMC error, median, and 95% Bayesian interval. Weak prior information.

Figure 1. Black color, conventional cost-effectiveness acceptability curve based on the mean. Gray color, the new cost-
effectiveness acceptability curve based on the posterior distribution of effectiveness and cost. Weak prior information (top) and
informative prior (bottom).
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Table 3. Posterior Mean and Posterior Distribution of Effectiveness and Cost

MCMC
Mean SD error 2.5% Median 97.5%

T1 (d4T+3TC+IND)
µ 0.3958 0.0054 0.000017 0.3853 0.3958 0.4064
γ 7048.0 68.9 0.2159 6914.0 7047.0 7185.0
e 0.3952 0.0888 0.000275 0.2206 0.395 0.5696
c 7140.0 1157.0 3.499 5139.0 7052.0 9662.0

T2 (d4T+ddl+IND)
µ 0.4024 0.0124 0.000039 0.3779 0.4024 0.4268
γ 7216.0 124.9 0.4073 6976.0 7215.0 7466.0
e 0.4026 0.1224 0.000351 0.1631 0.4021 0.6426
c 7318.0 1255.0 4.236 5167.0 7215.0 10070.0
�µ 0.00658 0.0135 0.000042 −0.0202 0.00663 0.0330
�γ 168.8 142.6 0.4511 −109.8 168.3 451.1
�e = e2 − e1 0.007356 0.1511 0.000456 −0.2886 0.007648 0.3029
�c = c2 − c1 177.6 1705.0 5.395 −3144.0 157.1 3595.0

Note. Column headings are mean, standard deviation, MCMC error, median, and 95% Bayesian interval. Informative prior.

assess carefully the prior knowledge and to carry out a study
of the sensitivity of the posterior distribution of effectiveness
and cost to the incorporation of genuine prior information.

The prior expectation of the effectiveness for both treat-
ments was 0.40 QALYs. There is typically less prior infor-
mation about costs in studies of this type. Considering the
results of previous studies of antiretroviral therapies with
symptomatic patients (4), T2 (d4T+dll+IND) was expected
to be more expensive than T1 (d4T+ddl+IND). The mean
cost was expected to be 7500 euros and 7100 euros for T2
and T1, respectively.

For the standard deviations of the prior, we assign the
value 0.1, suggesting 95 percent prior intervals of approxi-
mately ±0.2 around the prior mean. We take large standard
deviations for costs, 2000 euros, to model a large prior uncer-
tainty about the value of costs. The hyperparameters of the
log-normal distributions can be calculated solving the sys-
tem of equations with the expressions of mean and variance
for the log-normal distribution. The parameters of the prior
distributions turn out to be:

(
µ0

1, γ
0
1

) = (0.40, 8.8845),
(
µ0

2, γ
0
2

) = (0.40, 8.883),

V1 =
(

0.01 0
0 0.0764

)
and V2 =

(
0.01 0

0 0.0687

)
.

We use weak prior information about �1 and �2.
Table 3 shows the results of the analysis with “genuine”

prior information. In this illustrative example, we have as-
sumed a conservative prior distribution to reflect a relatively
mild amount of prior information. This is the reason why the
differences between noninformative and informative analysis
are not relevant.

Figure 1 shows the CEACs for both models. The re-
sults are that T2 is to be chosen when Rc ≥ 20600

euros for the analysis based on the mean, while T2 is to
be chosen when Rc ≥ 25300 euros for the analysis based
on the whole posterior distribution. These results are very
close to those obtained under weak prior information. See
Supplementary Figure 3, which can be viewed online at
www.journals.cambridge.org/thc.

5. CONCLUSIONS

This study proposes a new framework for CEA based on the
posterior predictive distribution of effectiveness and cost that
complements the conventional CEA. We argue that the mean
of the effectiveness and cost can be poor summaries to carry
out a complete CEA for treatments comparison, above all
when the effectiveness is a categorical variable, and a certain
degree of asymmetry in the cost is present. Clinical data often
present these characteristics.

This study has adopted a Bayesian methodology and uses
the predictive posterior distribution of the net benefit. The
analysis based on the whole posterior distribution, captures
the real uncertainty about the value of effectiveness and cost
of the treatment. For example, from Table 3 it follows that the
cost of the patients receiving T1 will be between 5,127.0 and
9,682.0 euros with a probability of 95 percent. This result is
not attainable from the analysis based on the mean. Besides,
the new approach does not necessarily coincide with that
based on the mean. For instance, Supplementary Figure 3
shows that treatment T2 is preferable to T1 for Rc ≥ 25100
euros. This threshold supposes an increase of a 22.44 percent
of the threshold of 20,500 euros obtained by the analysis
based on the mean.

The main reason to support the use of the mean for treat-
ments comparison is that, by doing so, we are maximizing the
social health gain, and thus alternative interventions should
be compared on their expected net benefit (16). However,
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there are other important criteria in economic evaluation as
risk (5) and equity (3;23) that should be considered.

The new framework compares the net benefit of two
treatments and chooses the one having, in probability, the
highest net benefit. By doing so it maximizes the proportion
of patients with health gains.

Throughout this study, we assumed the effectiveness
followed a normal distribution, and the cost a log-normal
one. Of course, other models might be of interest. Of special
interest is the case where the effectiveness is a binary variable
indicating success (value 1) and not success (value 0). In
addition, to model the skewness of the cost with distributions
such as gamma or log t-student, and to study the robustness of
the results with respect to these models is an open question.

SUPPLEMENTARY MATERIAL

Supplementary Figure 1: www.journals.cambridge.org/thc
Supplementary Figure 2: www.journals.cambridge.org/thc
Supplementary Figure 3: www.journals.cambridge.org/thc
Supplementary Table 1: www.journals.cambridge.org/thc
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