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Abstract

A shared ledger is a record of transactions that can be updated by any member of a
group of users. The notion of independent and consistent record-keeping in a shared
ledger is important for blockchain and more generally for distributed ledger technolo-
gies. In this paper we analyze a stochastic model for the shared ledger known as the
tangle, which was devised as the basis for the IOTA cryptocurrency. The model is a
random directed acyclic graph, and its growth is described by a non-Markovian stochas-
tic process. We first prove ergodicity of the stochastic process, and then derive a delay
differential equation for the fluid model which describes the tangle at high arrival rate.
We prove convergence in probability of the tangle process to the fluid model, and also
prove global stability of the fluid model. The convergence proof relies on martingale
techniques.
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1. Introduction

In this paper we analyze a stochastic growth process for a family of directed acyclic graphs,
and show that the fluid limit of this process is described by a delay differential equation. This
stochastic process describes a type of shared ledger which was introduced as the foundation
of the cryptocurrency IOTA [20], and the result about the fluid limit was used previously to
analyze the persistence of competing transaction records in this ledger [10]. The main contri-
bution of this paper is to provide a precise formulation of the results about the fluid limit. We
first prove ergodicity of the growth process. We then use martingale techniques to establish
that the process converges weakly in the limit where the arrival rate goes to infinity, and show
that the fluid limit is given as the solution of a suitable delay differential equation. We also
prove a convergence result for the solutions of the delay differential equation.

The term ‘shared ledger’ refers to a record of transactions which may be amended
independently by any member of a group of users. The goal of designing a shared ledger is
to allow users to add transactions to the record without centralized control, while at the same
time protecting the record against tampering by malicious agents. As background on this
topic we will review below the well-known blockchain protocol [16], which involves linking
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FIGURE 1: (a) Blockchain where each block is linked to the previous one. (b) Miners compete to add the
next block to the head of the chain, and (c) the winner becomes the new head of the chain.

blocks (collections of transactions) by complicated hash function computations. If blocks are
represented by vertices on a graph and the hashing link between two blocks is represented by
a directed edge between those vertices, then the whole blockchain ledger can be viewed as a
directed graph. This point of view leads to our random graph analysis, and will form the basis
for the stochastic process that will be analyzed in this paper.

1.1. The blockchain protocol

The blockchain technology underlying Bitcoin is a well-known implementation of a shared
ledger which provides security against malicious users [16], [24]. Recall that the blockchain is
an ordered string of blocks, each containing several hundred transaction records (see Figure 1
for a pictorial representation); each block has a unique numerical ID (256 bits for Bitcoin)
that satisfies a challenging constraint. The ID of a block is computed using a complicated
hash function, and the input for the hash function involves the block’s own data, the ID of the
previous block, and some extra bits which are chosen so that the output satisfies the constraint.
Thus, every block’s ID depends on the data of the previous block, and hence also on the data
in all previous blocks. Therefore any change in the data of a block would change the IDs of all
subsequent blocks, and the altered IDs would almost certainly not satisfy the tight constraint
mentioned above. This failure would be a signal to all observers that the ledger had been
altered, and so the existence of a ledger with valid IDs for all blocks is its own guarantee of
security. The key mechanism for security is the difficulty of computing a valid ID for a block.
This task is called the proof of work, and requires finding an input to a complicated hash
function which will produce an output of the specified form. Blockchain miners compete to
find this inverse, and the first successful one adds the new block to the chain (see Figure 1).

One essential constraint in Bitcoin is that a new block can only be linked to the most recent
block in the chain. This constraint ensures that the blockchain is a linear graph. It also ensures
that every transaction record in the chain is linked to all subsequent records, and indeed the
security of a transaction increases as later blocks are added (a typical rule of thumb is that a
transaction record in blockchain is ‘safe’ after at least six subsequent blocks have been added).
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FIGURE 2: The attachment of a new vertex to the DAG. (a) The new vertex arrives at time tn and selects
x1(n), x2(n) for validation. (b) After delay h, at time tn + h = tn+m the new vertex yn is added to the
tangle.

However this constraint leads to a ‘winner takes all’ rule for the miners, who must compete to
be first to add a new block. Consequently mining has become a dedicated enterprise requiring
specialized technology, and there is much effort wasted (and energy expended) by the miners.

1.2. Modifying the blockchain protocol

There have been many proposed modifications of the blockchain protocol. In this paper
we consider one such proposal [20], which involves removing the constraint that a new block
can only be linked to the most recent block in the chain. Removing this constraint has several
immediate consequences. First, there is no competition between miners; hence each user can
perform their own proof of work (which is much easier than in Bitcoin), and there are no
rewards for adding a new block. Second, since a new block can link to any previous block,
the graph of links for the ledger is no longer linear, and can be much more complicated than
in Bitcoin. Furthermore, since there are many possible ways to link a new block to the ledger,
it is reasonable to view the ledger as a randomly growing graph and to investigate its typical
properties. We will pursue this point of view for the modification known as the tangle protocol,
which was introduced in [20].

1.3. The tangle protocol

In the tangle protocol [20] each new block contains just one transaction. A new transaction
links to two existing transactions in the ledger (this is another change from the blockchain
protocol), and the proof of work uses the IDs of these two transactions as part of its input.
Therefore the ledger grows by the addition of transactions each with two directed edges which
link to existing transactions in the ledger. These directed edges indicate that the two existing
transactions have been approved. The resulting graph of links is a connected directed acyclic
graph (DAG) (see Figures 2 and 3 for examples of how the DAG grows). The proof of work
lasts for some amount of time h, so there is a delay between the time when a new transaction
starts its proof of work and the time when it is added to the DAG as a new vertex. This time
delay h plays a crucial role in the growth of the ledger.

The security of a transaction increases as later transactions are added which are linked either
directly or indirectly to it. Although in principle a new transaction may choose to link to any
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FIGURE 3: The growth of the DAG over several successive steps. (a) The vertices a, b, c are tips on the
DAG; each is connected to two other vertices somewhere in the graph. A new arrival has selected a, b for
proof of work, so these are pending tips, while c is a free tip. (b) A new arrival selects a, c for proof of
work, so a, b, c are all pending tips. (c) The vertex d completes its proof of work and is attached to the
DAG, so a, b are no longer tips. Meanwhile a new arrival has selected c and d for proof of work. (d) The
vertex e is added to the DAG, so c is no longer a tip, while a new arrival selects d and some other tip for
proof of work.

existing transaction in the ledger, it is advantageous to select two recently arrived transactions
for linking. Transactions which have not yet been linked by subsequent transactions are called
tips; in the tangle protocol all users select tips for linking. Note that for blockchain the security
relies on the community solving one exceedingly difficult hash function inversion for each new
block, whereas for the tangle the security relies on a large community of users each performing
relatively simple computations in parallel.

https://doi.org/10.1017/apr.2020.48 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.48


Fluid limit of ledger 85

1.4. Summary of results

The arrival process is assumed to be deterministic, with arrival times {nλ−1} for
n = 1, 2, . . . , and each new transaction is assumed to randomly select two tips for linking.
There are two time scales in this model, namely the interarrival time λ−1 and the duration h of
the proof of work. We are interested in how the average number of tips in the tangle depends
on these quantities as the arrival rate λ goes to infinity. Let L(t) be the number of tips at time t.
Several approaches to this question [20], [10] have shown that L(t) is roughly proportional to
the product λh, at least for large λ. We investigate in this paper the limit where λ approaches
infinity, so we define the rescaled variable B(λ)(t) = λ−1L(t). The first result, Theorem 4.1,
shows that the stochastic process L(t) converges to a stationary distribution as t → ∞. The
second result, Theorem 4.2, shows that B(λ)(t) converges in probability to a deterministic func-
tion b(t) as λ→ ∞ for t in a fixed interval [0, T]. The bound in Theorem 4.2 also shows
that the fluctuations in |B(λ)(t) − b(t)| are no larger than O(λ−1/2). The third result, Theorem
4.3, shows that the function b(t) converges exponentially to 2h as t → ∞. Putting these results
together shows that for large λ and large t, L(t) can be written approximately as 2λh + O(λ1/2).
These results support the conclusion that the random tip selection algorithm leads to eventual
approval for all transactions in the tangle, which is one of the most important features of the
protocol. In Appendix A we discuss some implications of this work for the security of the
tangle in our setting of the random tip growth model.

1.5. Relation to previous work

The subject of this paper is the fluid limit of a growth model for shared ledgers, with delays.
The precise model for a shared ledger considered in this paper is relatively new; however, there
is a vast literature on the related topics of growth models for random graphs, fluid limits for
stochastic processes, and delay models. Well-known examples of stochastic growth models
for random graphs include the preferential attachment model [2], [9] and the CHKNS model
(named after the authors of the paper [6]), although in both cases the mechanism of attachment
is quite different from the one analyzed here. The notion of attaching new vertices at the tips of
the graph is closer in spirit to diffusion-limited aggregation (DLA) models [14], although the
application and the kind of results obtained are quite different. Queueing models arising from
the Bitcoin protocol have been analyzed in the papers [15], [12]. Our approach to the fluid
limit is based on prior work for Markov jump processes [7], where martingale techniques are
used to obtain convergence in probability. The novel ingredient in our work is the delay, which
means that the process is not Markov. Stochastic models with delays have been studied in many
contexts, including queueing theory [18], [19], [17] and stochastic differential equations [22],
[21], [13]. The application of these methods to shared ledger models seems to be new.

1.6. Outline of the paper

In Section 2 we formulate a stochastic process for the number of tips on the DAG which
represents the tangle. In Section 3 we describe the fluid limit of the rescaled process (the fluid
limit refers to the limit where the arrival rate of new transactions goes to infinity) and also
describe how initial conditions can be consistently formulated for the process and the fluid
limit. The main results of the paper, Theorems 4.1, 4.2, and 4.3, are stated in Section 4, and are
proved in Sections 5, 6, and 7. Section 8 contains proofs of some lemmas used in the earlier
sections. Future directions of research on this topic are discussed in Section 9. Appendix A
describes some implications of this work for security of the tangle.
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2. Definition of the DAG model

Let G = (V, E) be a finite connected acyclic directed graph (DAG) where V is the vertex
set and E is the edge set. If an edge e ∈ E is directed from vertex x to vertex y we will write
e = 〈x, y〉 and say that y is the head and x is the tail. A tangle is a DAG with two additional
properties: first, there is a unique vertex which is not the tail in any edge—this is called the
genesis vertex. Second, every vertex is the tail in at most two edges. The subset of vertices
which are not the heads of any edges will be called the tips of the tangle.

We will define a stochastic growth model for the tangle. New transactions are created at
the sequence of times {tn = λ−1n : n = 1, 2, . . . }, so the arrival rate of new transactions is λ.
At time tn, two tips x1(n) and x2(n) on the tangle are selected for the proof of work by the
new transaction (it will be explained shortly how these tips are selected; it may happen that
x1(n) = x2(n)). The proof of work lasts for a fixed length of time h. For simplicity we will
assume that λ is always chosen so that λh is an integer:

m = λh. (2.1)

At time tn + h = tn+m the new transaction is added to the tangle as a tip yn, and the two directed
edges 〈yn, x1(n)〉 and 〈yn, x2(n)〉 are also added to the graph. This is the only mechanism by
which the tangle grows (see Figure 2 for illustration).

Obviously the vertices x1(n) and x2(n) are no longer tips after time tn + h; however, it may
happen that these vertices had already ceased to be tips at an earlier time, owing to their being
linked to some previous new transaction. We say that a tip is pending if it has been selected for
proof of work by a transaction but has not yet been linked. We say that a tip is free if it is not
pending. See Figure 3 for an example showing new vertices being added to the tangle.

Definition 2.1. We define the following quantities:

Wn = number of pending tips at time tn, (2.2)

Xn = number of free tips at time tn, (2.3)

Ln = Wn + Xn = number of tips at time tn, (2.4)

Un = number of free tips selected for proof of work at time tn. (2.5)

We have defined Un to be the number of the vertices {x1(n), x2(n)} which are free at time
tn, so Un ∈ {0, 1, 2}. After selection these free vertices immediately become pending vertices;
hence they will never contribute to any of the subsequent values Un+1,Un+2, . . . . Furthermore
at any time there are exactly m new transactions which are each in the process of carrying out
their proof of work on two vertices on the graph (this holds because m = λh and we assume
that the value of h is fixed and identical for all users). Therefore the total number of pending
vertices at any time tn is the sum of {Un,Un−1, . . . ,Un−m+1}; that is,

Wn =
n∑

j=n−m+1

Uj. (2.6)

We also have the evolution relations

Xn+1 = Xn + 1 − Un+1,

Ln+1 = Ln + 1 − Un−m+1, (2.7)
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and the relation

Ln = Wn + Xn. (2.8)

Note that the term ‘+1’ appears on the right sides of (2.7) because a new free tip is added to
the tangle at each step. Also the term −Un+1 appears in Xn+1 because this is the number of
free tips that are selected at the (n + 1)th step, and the term −Un−m+1 appears in Ln+1 because
this counts the number of vertices which cease being tips at the (n + 1)th step. Finally, all tips
which were pending at the (n − m)th step will no longer be tips at the nth step, and all of the m
new arrivals in this interval will still be tips at the nth step; therefore, for all n ≥ m,

Ln = Xn−m + m. (2.9)

We will refer to (Wn, Xn, Ln) as the tangle process. It follows from (2.9) that the process {Ln}
(for n ≥ m) is in fact fully determined by {Xn : n ≥ 0}.

We will discuss shortly how the processes Xn and Ln can be defined using appropriate initial
conditions. For this purpose it will be convenient to use the evolution relations (2.7) starting at
n = 0. These relations imply that

Xn+1 = X0 +
n∑

i=0

(1 − Ui+1) for all n ≥ 0,

Ln+m+1 = Lm +
n∑

i=0

(1 − Ui+1) for all n ≥ 0. (2.10)

2.1. The random tip growth model

The remaining ingredient in the definition of the DAG model is the method of choosing
vertices x1(n) and x2(n). We will assume in this paper that the tips x1(n) and x2(n) are chosen
independently and uniformly from the set of tips, and we call this the random tip growth (RTG)
model for the tangle process. Thus, the numbers {Un} are random variables whose distributions
depend on the number of tips at time tn. The RTG model is one of the tip selection algorithms
discussed in [20], [11], and it is expected that the fluid limit methods presented in this paper
can be extended to those other tip selection algorithms.

We denote by Fn the σ -algebra generated by {U1, . . . ,Un}:
Fn = σ (U1, . . . ,Un) . (2.11)

It follows from (2.10) that Xn − X0 and Ln+m − Lm are measurable with respect to Fn. We also
have the filtration relation

Fn1 ⊂Fn2 for all n1 < n2. (2.12)

The conditional distribution of the random variable Un+1 for the RTG model is

P(Un+1 = 2 |Fn) = Xn(Xn − 1)

L2
n

,

P(Un+1 = 0 |Fn) = W2
n

L2
n
,

P(Un+1 = 1 |Fn) = 2WnXn + Xn

L2
n

. (2.13)
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Note that

E[Un+1 |Fn] = 2
Xn

Ln
− Xn

L2
n

. (2.14)

It is clear that (Xn, Ln) is not a Markov process, as the distribution of Ln+1 depends on Un−m+1,
which in turn depends on (Xn−m, Ln−m) through (2.13).

2.2. Generating the process from initial conditions

The stochastic process (Xn, Ln) defined by (2.7) and (2.13) must be supplemented with
initial conditions in order to be well-defined. This is done most easily by assigning values to the
variables (U−m+1, . . . ,U0) and X0. Once these assignments have been made, the distribution
of the process (Xn, Ln) is determined for all n ≥ 0, as will be explained below. In particular
the variables X−m, . . . , X−1 and L−m, . . . , L−1 do not play any role, and we will ignore their
values.

Let (u−m+1, . . . , u0) be a sequence with ui ∈ {0, 1, 2} for all i = −m + 1, . . . , 0, and let
ξ0 ≥ 1 be an integer. Then we assign as initial conditions

Ui = ui, i = −m + 1, . . . , 0,

W0 =
0∑

i=−m+1

ui,

X0 = ξ0,

L0 = X0 + W0 = ξ0 +
0∑

i=−m+1

ui. (2.15)

It follows from (2.15) that L0 ≥ ξ0 ≥ 1, so the distribution of U1 is well-defined. Similarly
Ln ≥ Xn ≥ 1, so the distribution of Un+1 is well-defined for all n ≥ 0.

From (2.10) and (2.15) we also deduce that

L1 = ξ0 + 1 +
0∑

i=−m+2

ui, (2.16)

and so L1 is also fixed by the initial conditions. The same is true for L2, . . . , Lm, and we have
the formula

Lj = ξ0 + j +
0∑

i=−m+j+1

ui for j = 0, . . . ,m. (2.17)

3. The fluid limit

Given the process {Xn, Ln} we rescale variables and define for all t> 0

A(λ)(t) = λ−1 Xn(t), B(λ)(t) = λ−1 Ln(t), where n(t) = 
λ t�. (3.1)

The variables (A(λ)(t), B(λ)(t)) are piecewise constant in the intervals [tn, tn+1), and change
by at most ±λ−1 at each time tn. Therefore it is reasonable that in the limit λ→ ∞ these
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variables will converge to continuous functions a(t) and b(t). Furthermore after rescaling (2.7)
the evolution equations become

A(λ)(tn+1) − A(λ)(tn)

tn+1 − tn
= 1 − Un+1,

B(λ)(tn+1) − B(λ)(tn)

tn+1 − tn
= 1 − Un−m+1. (3.2)

The left sides of (3.2) are expected to converge to a’(t) and b’(t) as λ→ ∞, so it is reasonable
to expect that the fast variations on the right side will be averaged out in the limit, leaving the
expected values of the variables Un+1 and Un−m+1. From (2.14) we have

E[Un+1 |Fn] = 2
A(λ)(tn)

B(λ)(tn)
− λ−1 A(λ)(tn)

B(λ)(tn)
� 2

A(λ)(tn)

B(λ)(tn)
� 2

a(t)

b(t)
(3.3)

and similarly

E[Un−m+1 |Fn] � 2
A(λ)(tn − h)

B(λ)(tn − h)
� 2

a(t − h)

b(t − h)
. (3.4)

Assuming that the right sides of (3.2) converge to these average values, we are led to the
following pair of coupled delay differential equations for the fluid limit:

da

dt
= 1 − 2

a(t)

b(t)
,

db

dt
= 1 − 2

a(t − h)

b(t − h)
. (3.5)

The second equation implies that b(t) = a(t − h) + c for some constant c, and the value of c
will be identified in Lemma 3.1.

3.1. Delay differential equations

The equations (3.5) must be supplemented with suitable initial conditions. We will say that
the combination α= (a(0), {u(t) : − h ≤ t ≤ 0}) is a DDE initial condition if a(0)> 0, u(t) is
integrable, and

0 ≤ u(t) ≤ 2 for all −h ≤ t ≤ 0. (3.6)

These initial conditions can be used to define a solution of the fluid equations (3.5) for t ≥ 0
using the method of steps [8] in the same way as the initial conditions (2.15) were used to
construct the tangle process. The idea is that the function u(t) plays the same role as the initial
sequence {ui} for the discrete process. Therefore we first define the initial value b(0) as

b(0) = a(0) +
∫ 0

−h
u(s) ds, (3.7)

and we then define b(t) for 0 ≤ t ≤ h as the solution of the delay equation

db

dt
= 1 − u(t − h). (3.8)

This leads to the solution

b(t) = b(0) + t −
∫ t−h

−h
u(s) ds

= a(0) + t +
∫ 0

t−h
u(s) ds for 0 ≤ t ≤ h. (3.9)
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We then compute a(t) for t ∈ [0, h] as the solution of the equation

da

dt
= 1 − 2

a(t)

b(t)
, (3.10)

which gives

a(t) = Q(0, t)−1a(0) + Q(0, t)−1
∫ t

0
Q(0, s) ds, for t ∈ [0, h], (3.11)

where

Q(x, y) = exp

(
2
∫ y

x
b(s)−1 ds

)
. (3.12)

Note that (3.9) implies b(t) ≥ a(0)> 0 for all 0 ≤ t ≤ h, so (3.12) is well-defined for
(x, y) = (0, t) with t in this interval, and (3.11) also implies that a(t)> 0 for all 0 ≤ t ≤ h. The
equation (3.9) also implies that b(h) = a(0) + h. Having obtained the functions (a(t), b(t)) in
the interval [0, h], we then extend the solutions to the interval [h, 2h] by first defining

b(t) = a(t − h) + h for all h ≤ t ≤ 2h, (3.13)

and then solving the differential equation for a(t) to obtain

a(t) = Q(h, t)−1a(h) + Q(h, t)−1
∫ t

h
Q(h, s) ds for h ≤ t ≤ 2h. (3.14)

From (3.13) we have b(t) ≥ h, and thus Q(h, t) is well-defined for h ≤ t ≤ 2h and again implies
positivity of a(t). This construction can be continued in the same way for subsequent intervals
[2h, 3h], . . . , and produces a solution of the equations (3.5) for all t> h. We collect our results
about this solution in the following lemma, which will be proved in Section 8.

Lemma 3.1. Let α be a DDE initial condition. There are unique functions (a(t), b(t)) defined
for all t> 0 which satisfy the equations (3.9) and (3.11) in the interval [0, h], and which satisfy
the differential equations (3.5) for all t> h. For t ≥ h the solutions also satisfy the following
conditions:

(1) a(t) ≥ 0; (3.15)

(2) b(t) = h + a(t − h); (3.16)

(3) b(t) ≥ h; (3.17)

(4) b(t) − a(t) =
∫ t

t−h
2

a(s)

b(s)
ds; (3.18)

(5) 0 ≤ b(t) − a(t) ≤ 2h. (3.19)

3.2. Fluid limit: initial conditions for the tangle from DDE initial condition

Let α be a DDE initial condition. As Lemma 3.1 shows, α provides the necessary infor-
mation to generate a unique solution of the delay equations (3.5). We will now show that α
can be used to generate the initial conditions for a tangle process. Recall that L0, . . . , Lm are
determined by the initial conditions ξ0, u−m+1, . . . , u0 through the relation (2.17), and that the
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function {b(t) : 0 ≤ t ≤ h} is determined by a(0), {u(s) : − h ≤ s ≤ 0} through the formula (3.9).
We will choose the initial values u−m+1, . . . , u0 for the tangle process depending on the func-
tion u(s) in such a way that the difference B(λ)(t) − b(t) is small for all t ∈ [0, h], where B(λ)(t)
is the rescaled variable defined in (3.1). Define the set of all initial value sequences:

S(m) = {v = (v−m+1, . . . , v0) : vi ∈ {0, 1, 2}, i = −m + 1, . . . , 0}. (3.20)

Definition 3.1. Let α = (a(0), {u(s) : − h ≤ s ≤ 0}) be a DDE initial condition, and let bα(t) be
defined for 0 ≤ t ≤ h by the formula (3.9). Let ξα = max (
λa(0)�, 1). Given an initial condition
(ξα, v) for the tangle process, where v ∈ S(m), let {B(λ)

v (t) : 0 ≤ t ≤ h} be given by (3.1), where
L0, . . . , Lm are defined by the formula (2.17) with ξ0 = ξα and ui = vi. Define

F(α, λ) = {v ∈ S(m) : sup
0≤n≤m

|B(λ)
v (tn) − bα(tn)| ≤ 4h1/2λ−1/2 + λ−1}. (3.21)

Lemma 3.2. The set F(α, λ) is non-empty.

The result of Lemma 3.2, which will be proved in Section 8, implies that for each DDE
initial condition it is possible to define initial conditions for the tangle process so that B(λ)(t) −
b(t) is small for all t ∈ [0, h]. This will allow us to prove that the difference B(λ)(t) − b(t) is
small for all t, as stated in Theorem 4.2.

4. Statement of results

The first result establishes ergodicity for the process {Xn}. We will write ψ =
(u−m+1, . . . , u0; ξ0) to denote a set of initial conditions as described in (2.15) in Section 2.2,
and write Pψ (·) for the probability distribution of {Xn : n ≥ 0} when the process is created with
initial condition ψ .

Theorem 4.1. There is a unique stationary distribution π such that

Pψ (Xn = k) → π (k) as n → ∞, for all k = 1, 2, . . . , and for all ψ . (4.1)

The next result concerns the limiting behavior of the process when the arrival rate λ→ ∞.

Theorem 4.2. Let α be a DDE initial condition, and let (aα(t), bα(t)) be the associated
solutions of the fluid equations (3.5) as described in Lemma 3.1. Let v ∈ F(α, λ), and let
(A(λ)

v (t), B(λ)
v (t)) be the rescaled tangle process with initial conditions (ξα, v) as described in

Sections 2.2 and 3.2. For all T ≥ h, and for all δ > 0, there is a constant C<∞ (depending on
T, α) and λ0 <∞ (depending on T, δ, α) such that for all λ≥ λ0

P

(
sup

h≤t≤T
|B(λ)

v (t) − bα(t)|> δ
)

≤ P

(
sup

0≤t≤T
|A(λ)

v (t) − aα(t)|> δ
)

≤ C λ−1 δ−2. (4.2)

Remark. Theorem 4.2 confirms that the rescaled processes (A(λ)(t), B(λ)(t)) converge in
probability to the deterministic solutions of the delay equations as λ→ ∞ for all t in the
interval [0, T]. This kind of behavior is familiar for Markov jump processes. One novelty of
Theorem 4.2 is that although the processes are not Markov, because of the delay time h, nev-
ertheless the same kind of limiting behavior holds, albeit with the more complicated delay
differential equation.

The proof of Theorem 4.2 relies on martingale techniques. The constants C and λ0 that
appear in the theorem depend on α, the initial conditions for the process. Simulations of the
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tangle process [10] have shown that the delay equations (3.5) give an accurate representation
of the tangle even for relatively small values of λ.

The next result shows that the solution of the delay equation (3.5) converges to a constant
as t → ∞.

Theorem 4.3. Let α be a DDE initial condition, and let (aα(t), bα(t)) be the associated
solutions of the fluid equations (3.5) as described in Lemma 3.1. Define

C1= sup
0≤s≤h

|aα(s) − h|,

κ(u)=max

{
3

4
, exp

(
− h

3(u + h)

)}
, u ≥ 0,

μ=− 1

2h
log (κ(C1/2)). (4.3)

Then for all t ≥ 3h,

|b(t + h) − 2h| = |a(t) − h| ≤ C1 κ(C1/2)−3/2 e−μt. (4.4)

Theorem 4.3 shows that the solutions of the delay equation converge exponentially to their
stationary values with rate at least μ. This limiting behavior shows that the number of tips
behaves as 2λh to leading order for large arrival rates.

5. Proof of Theorem 4.1

Theorem 4.1 will be proved by embedding the process {Xn} in a discrete Markov chain {Xn}
and using standard techniques to prove ergodicity of {Xn}. We define the extended state space


= {v = (v0, v1, . . . , vm) ∈Z
m+1 | vi ≥ 1, (i = 0, . . . ,m),

|vi − vi+1| ≤ 1, (i = 0, . . . ,m − 1)}, (5.1)

and for n ≥ m we define the 
-valued process

Xn = (Xn−m, Xn−m+1, . . . , Xn). (5.2)

The transition matrix for Xn is defined by

P(Xn+1 = v |Xn = u) =
{
P(Xn+1 = vm |Xn = u) if v0 = u1, . . . , vm−1 = um,

0 else.
(5.3)

The conditional distribution of Xn+1 is determined by Xn and Xn−m, as shown in (2.7), (2.8),
(2.9), and (2.13), and these values are determined by Xn. Hence {Xn} is a Markov chain on 
.
Let ω denote the state

ω= (m,m, . . . ,m) ∈
. (5.4)

Every state in 
 communicates with ω (meaning that for every v ∈
 there is a path with posi-
tive probability from v to ω, and vice versa), so the chain is irreducible. Furthermore P(Xn+1 =
ω |Xn =ω)> 0; hence the chain is also aperiodic. Shortly we will prove the existence of a
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unique stationary distribution σ for {Xn}. Assuming this for the moment, a standard coupling
argument can be applied to show that for any initial condition ψ and every state v ∈
,

Pψ (Xn = v) → σ (v) as n → ∞. (5.5)

We define for each k ≥ 1

N (k) = {v ∈
 | vm = k}, (5.6)

and note that

Pψ (Xn = k) =
∑

v∈N (k)

Pψ (Xn = v). (5.7)

We also define

π (k) =
∑

v∈N (k)

σ (v), (5.8)

and hence immediately deduce the desired convergence result

Pψ (Xn = k) → π (k) as n → ∞. (5.9)

In order to prove the existence of a unique stationary distribution σ for {Xn}, we will prove
that the chain is positive recurrent. We will use the following lemma.

Lemma 5.1. Recall the definition of the state ω (5.4). There are positive constants γ , c such
that for all u, v ∈
 with um > 4m, vm ≤ 4m, and all n ≥ m,

P(Xn+4m =ω |Xn = v) ≥ γ (5.10)

and

Eψ [Xn+1 |Xn = u] ≤ um − c. (5.11)

Lemma 5.1 will be proved in Section 8. We now apply the result to prove that the chain is
positive recurrent. First, (5.10) implies that the subset A = {v ∈
 | vm ≤ 4m} is a small set [3]:
let μω be the atom at ω, and let Pv denote the distribution of X with initial value X0 = v; then

Pv(X4m ∈ B) ≥ γμω(B) (5.12)

for all B ⊂
. Second, (5.11) implies that Eψ [V(Xn+1) |Xn = u] ≤ V(u) − c for u ∈ Ac where
V(u) = um (and of course V is uniformly bounded on A). We now apply Proposition 2.3 from
[3] (which is a version of Theorem 9.1 in Tweedie [23]) to deduce that the chain is positive
recurrent. So in particular the chain has a unique stationary distribution σ , as required.

6. Proof of Theorem 4.2

Theorem 4.2 will be proved using standard martingale techniques, as presented, for exam-
ple, in [7]. For convenience we will drop the subscripts v, α on the variables. We assume that
λ is sufficiently large so that ξα = λa(0) ≥ 1. Define

l = min (h, a(0)). (6.1)
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The quantity l will appear in many of the bounds derived later in this proof, and will represent
the effect of the initial conditions on the constants C and λ0 appearing in Theorem 4.2. It
follows from (2.17) and (2.9) that

B(λ)(t) ≥ l for all t ≥ 0, (6.2)

and from (3.9) and (3.13) that

b(t) ≥ l for all t ≥ 0. (6.3)

Define for t ∈ [0, T]

g(t) = sup
0≤s≤t

|A(λ)(s) − a(s)|, (6.4)

so that the quantity of interest in Theorem 4.2 is P(g(T)> δ).
We next derive the first inequality in (4.2). Recall from (3.15) that b(t) = a(t − h) + h for

all t ≥ h, and from (2.9) that Ln = Xn−m + m for all n ≥ m. Therefore if t ≥ h and t ∈ [tn, tn+1)
we have

B(λ)(t) − b(t) = B(λ)(tn) − b(t)

= A(λ)(tn−m) − a(t − h)

= A(λ)(t − h) − a(t − h), (6.5)

and therefore (since g(·) is non-decreasing)

sup
h≤s≤t

|B(λ)(s) − b(s)| = g(t − h) ≤ g(t). (6.6)

This establishes the first inequality in (4.2). The following lemma extends the bound (6.6) to
the interval [0, t].

Lemma 6.1. For all t ≥ h,

sup
0≤s≤t

|B(λ)(s) − b(s)| ≤ g(t) + 6h1/2λ−1/2. (6.7)

Lemma 6.1 will be proved in Section 8. Next we will derive a bound for the quantity
A(λ)(t) − a(t). For all j ≥ 0 we define

Gj+1 = Xj+1 − Xj −E[1 − Uj+1 |Fj], (6.8)

Hj+1 =E[1 − Uj+1 |Fj] − λ (a(tj+1) − a(tj)). (6.9)

Then since X0 = λa(0) = λa(t0) we have

A(λ)(tn) − a(tn) = λ−1 (Xn − X0) − (a(tn) − a(t0))

= λ−1
n−1∑
j=0

(
Gj+1 + Hj+1

)
. (6.10)

The sum
∑n−1

j=0 Gj+1 is a martingale, and we will use this fact to bound the probability that it
grows too large. The following bounds are derived in Section 8.
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Lemma 6.2. We have

P

(
sup

0≤n≤
λT�

∣∣∣∣λ−1
n−1∑
j=0

Gj+1

∣∣∣∣ ≥ θ
)

≤ 4 θ−2 λ−1 T . (6.11)

Lemma 6.3. We have

λ−1

∣∣∣∣∣∣
n−1∑
j=0

Hj+1

∣∣∣∣∣∣ ≤ 4 l−1 λ−1
n−1∑
j=0

g(tj+1) + 13 l−1 h1/2 λ−1/2 tn

≤ 4 l−1 λ−1
n−1∑
j=0

g(tj+1) + 13 l−1 h1/2 λ−1/2 T . (6.12)

We will apply the bounds in Lemmas 6.2 and 6.3 to (6.10). Define the event

E =
⎧⎨
⎩ sup

0≤n≤
λT�

∣∣∣∣∣∣λ−1
n−1∑
j=0

Gj+1

∣∣∣∣∣∣< θ
⎫⎬
⎭ , (6.13)

so that we have

P(E) ≥ 1 − 4 θ−2 λ−1 T . (6.14)

Combining (6.10), (6.11), and (6.12), it follows on the event E that for any 0 ≤ n ≤ 
λT�,

|A(λ)(tn) − a(tn)| ≤ ρ + 4 l−1 λ−1
n−1∑
j=0

g(tj+1), (6.15)

where

ρ = θ + 13 l−1 h1/2 λ−1/2 T . (6.16)

Since g(t) ≥ 0, and (6.15) holds for all 0 ≤ n ≤ 
λT�, this also implies that

sup
0≤k≤n

|A(λ)(tk) − a(tk)| ≤ ρ + 4 l−1 λ−1
n−1∑
j=0

g(tj+1). (6.17)

Furthermore if t ∈ [h, T] and t ∈ [tk, tk+1) we have

|A(λ)(t) − a(t)| = |A(λ)(tk) − a(tk) + a(tk) − a(t)|
≤ |A(λ)(tk) − a(tk)| + |a(tk) − a(t)|
≤ |A(λ)(tk) − a(tk)| + (t − tk)

≤ |A(λ)(tk) − a(tk)| + λ−1,

where we used the bound |a′(s)| ≤ 1 for all s> 0 (which follows from (3.5)). Therefore, on the
event E,

g(tn) ≤ sup
0≤k≤n

|A(λ)(tk) − a(tk)| + λ−1 ≤ ρ + λ−1 + 4 l−1 λ−1
n−1∑
j=0

g(tj+1). (6.18)
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Now applying the discrete Gronwall inequality [1] to (6.18) we deduce that on the event E, for
all 0 ≤ n ≤ 
λT�,

g(tn) ≤ (ρ + λ−1) e4 l−1 λ−1 n ≤ (ρ + λ−1) e4 l−1 T . (6.19)

Given δ > 0 we choose

θ = δ

3
e−4 l−1 T , (6.20)

λ0 = max

{
θ−1,

(
13 θ−1 l−1 h1/2 T

)2
}

. (6.21)

Then for λ≥ λ0 we have ρ + λ−1 ≤ 3 θ and

(ρ + λ−1) e4 l−1 T ≤ δ, (6.22)

and hence (6.19) implies that g(T) ≤ δ on the event E. Therefore

P (g(T)> δ)≤ 1 − P(E) ≤ 4 θ−2 λ−1 T, (6.23)

and this completes the proof with

C = 36 e8 l−1 T T . (6.24)

7. Proof of Theorem 4.3

Recall the delay equation (3.5) for a(t). Applying Lemma 3.1 we get

da

dt
= 1 − 2

a(t)

a(t − h) + h
. (7.1)

Given the solution a(t) for t ≤ T , (7.1) is a linear equation for a(t) in the interval [T, T + h],
and we can write down an explicit solution in terms of the solution in the interval [T − h, T].
Then by translating coordinates the equation (7.1) can be viewed as providing a map from the
space of functions on [0, h] into itself. In order to prove (4.4) we will consider instead a(t) − h,
so define for t ∈ [0, h]

x(t) = a(T − h + t) − h

2
, y(t) = a(T + t) − h

2
; (7.2)

then from (7.1) we derive

dy

dt
= x(t) − 2y(t)

2(x(t) + h)
, y(0) = x(h). (7.3)

As explained above, we will view (7.3) as a map from x to y. Define the functional M as the
map which takes x to the solution y of the equation (7.3):

M(x)(t) = y(t), 0 ≤ t ≤ h, (7.4)

with the norms

‖x‖ = sup
0≤t≤h

|x(t)|, ‖y‖ = sup
0≤t≤h

|M(x)(t)|. (7.5)
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We will prove the following bounds: for all differentiable x,

‖M(x)‖ ≤ ‖x‖,
‖M(M(x))‖ ≤ κ(‖x‖) ‖x‖, (7.6)

where κ was defined in (4.3). Before proving (7.6) we note that it implies the bound (4.4):
indeed for t ≥ 4h, there is an integer n ≥ 2 such that (2n − 1)h ≤ t< (2n + 1)h. The first
inequality in (7.6) implies that

sup
2nh≤s≤(2n+1)h

|a(s) − h| ≤ sup
(2n−1)h≤s≤2nh

|a(s) − h|. (7.7)

Define x0(s) = (a(s) − h)/2 for s ∈ [h, 2h]. Then for any t ∈ [(2n − 1)h, (2n + 1)h] the inequal-
ities (7.6) and (7.7) imply

|a(t) − h| ≤ sup
(2n−1)h≤s≤2nh

|a(s) − h|

= 2 ‖M ◦(2n−2)(x0)‖
≤ 2 (κ(‖x0‖))n−1 ‖x0‖
≤ (κ(‖x0‖))(t−h)/2h−1 C1

= e−μt C1 κ(C1/2)−3/2, (7.8)

where we used C1 = 2‖x0‖, and also that κ is an increasing function.
So we have reduced the proof to that of (7.6). Given x, let y be the solution of (7.3), and let

t ∈ [0, h]. There are three cases.

Case 1.1: y′(t) = 0. In this case it follows from (7.3) that y(t) = x(t)/2, and hence

|y(t)| ≤ 1

2
‖x‖. (7.9)

Case 1.2: y′(t)> 0. Define

S1 = {s ∈ [0, t) : y′(s) ≤ 0},
S2 = {s ∈ (t, h] : y′(s) ≤ 0},

t1 =
{

sup S1 if S1 �= ∅,
0 if S1 = ∅,

t2 =
{

inf S2 if S2 �= ∅,
h if S2 = ∅.

(7.10)

Then y(t1)< y(t)< y(t2). By assumption x is differentiable, so y′ is continuous, so if t1 > 0 then
y′(t1) = 0, and so y(t1) = x(t1)/2. If t1 = 0 then y(t1) = y(0) = x(h). Therefore in either case

y(t)> y(t1) ≥ min{x(t1)/2, x(h)}. (7.11)
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Similarly, if t2 < h then y′(t2) = 0, and so y(t2) = x(t2)/2. If t2 = h then y(t2) = y(h) and
y′(h)> 0, so y(h)< x(h)/2. Therefore in either case

y(t)< y(t2) ≤ max{x(t2)/2, x(h)/2}. (7.12)

Therefore

|y(t)| ≤ max{x(t2)/2, x(h)/2,−x(t1)/2,−x(h)}, (7.13)

and so we deduce that

|y(t)| ≤ max

{
|x(h)|, 1

2
‖x‖

}
. (7.14)

Case 1.3: y′(t)< 0. Define

S3 = {s ∈ [0, t) : y′(s) ≥ 0},
S4 = {s ∈ (t, h] : y′(s) ≥ 0},

t3 =
{

sup S3 if S3 �= ∅,

0 if S3 = ∅,

t4 =
{

inf S4 if S4 �= ∅,

h if S4 = ∅.
(7.15)

Then y(t3)> y(t)> y(t4). By assumption y′ is continuous, so if t3 > 0 then y′(t3) = 0, and so
y(t3) = x(t3)/2. If t3 = 0 then y(t3) = y(0) = x(h). Therefore in either case

y(t)< y(t3) ≤ max{x(t3)/2, x(h)}. (7.16)

Similarly, if t4 < h then y′(t4) = 0, and so y(t4) = x(t4)/2. If t4 = h then y(t4) = y(h)> x(h)/2,
and thus in either case

y(t)> y(t4) ≥ min{x(t4)/2, x(h)/2}. (7.17)

Therefore

|y(t)| ≤ max{x(t3)/2, x(h),−x(t4)/2,−x(h)/2}, (7.18)

and so we deduce again that for this case

|y(t)| ≤ max

{
|x(h)|, 1

2
‖x‖

}
. (7.19)

Putting together these three cases we have the bound

|y(t)| ≤ max

{
|x(h)|, 1

2
‖x‖

}
. (7.20)

This immediately implies that ‖y‖ ≤ ‖x‖, which is the first inequality in (7.6). For the second
inequality, we will provide a bound for |y(h)| in terms of ‖x‖, which will be combined with
(7.20) to derive (7.6). Again we examine several cases.
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Case 2.1: y′(h) = 0. In this case y(h) = x(h)/2 and so |y(h)| ≤ ‖x‖/2.

Case 2.2: y′(h)< 0. In this case y(h)> x(h)/2. We assume that y′(t)< 0 for all t ∈ [0, h]: if
this is not true, then as with Case 3 we deduce the existence of t3 such that y(h)< y(t3) =
x(t3)/2, and then we have x(h)/2< y(h)< x(t3)/2, which implies |y(h)| ≤ ‖x‖/2. We also
assume that y(h)> 0: if y(h) ≤ 0 then the inequality y(h)> x(h)/2 implies |y(h)| ≤ ‖x‖/2. Since
y(t) is monotone decreasing and y(h)> 0, this implies that y(t)> 0 for all t ∈ [0, h]. Also
y′(t)< 0 implies

y(t)>
x(t)

2
, and y(t)> y(h)>

x(h)

2
for all t ∈ [0, h). (7.21)

Suppose first that there is some t ∈ [0, h) such that

y(t) ≤ 3x(t)

4
. (7.22)

Then

3x(t)

4
≥ y(t)> y(h)>

x(h)

2
, (7.23)

and therefore

|y(h)| ≤ 3

4
‖x‖. (7.24)

If no such t exists then we have

y(t)>
3x(t)

4
for all t ∈ [0, h), (7.25)

and hence (since by assumption y(t)> 0)

dy

dt
= −y − x/2

x + h
≤ −1

3

y

x + h
≤ −1

3

y

‖x‖ + h
. (7.26)

We immediately deduce that

y(h) ≤ y(0) exp

(
− h

3(‖x‖ + h)

)
. (7.27)

Putting together these two possibilities we get

|y(h)| ≤ κ(‖x‖) ‖x‖ where κ(u) = max
{

3
4 , exp

(
− h

3(u+h)

)}
. (7.28)

Case 2.3: y′(h)> 0. The analysis of this case is identical to that of Case 2.2 with some
signs reversed, and the same conclusion holds.

Combining Cases 2.1, 2.2, and 2.3, we conclude that the bound (7.28) holds in all cases.
Using (7.20) we conclude that

‖M(x)(h)‖ ≤ κ(‖x‖) ‖x‖. (7.29)
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Finally we return to the second inequality in (7.6), and deduce from (7.29) that

‖M(M(x))‖ ≤ max

{
‖M(x)(h)‖, 1

2
‖M(x)‖

}

≤ max

{
κ(‖x‖) ‖x‖, 1

2
‖M(x)‖

}

≤ max

{
κ(‖x‖) ‖x‖, 1

2
‖x‖

}

= κ(‖x‖) ‖x‖.

8. Proofs of lemmas

8.1. Proof of Lemma 3.1

The formulas (3.9) and (3.11) show that (a(t), b(t)) is uniquely defined and differentiable in
the interval (0, h), and is continuous at t = h. The iterative construction described for the inter-
vals [0, h], [h, 2h], . . . produces a unique differentiable solution in every interval (jh, (j + 1)h)
for j = 1, 2, . . . . The solution is clearly continuous at t = jh for all j ≥ 1. It is also differen-
tiable at t = jh for all j ≥ 2, because it satisfies the differential equations (3.5) in both intervals
((j − 1)h, jh) and (jh, (j + 1)h). Properties (1), (2), (3) follow by construction. To see that
Property (4) holds, let c(t) = b(t) − a(t) and consider first the interval [0, h], where we have

c′(t) = b′(t) − a′(t) = 2
a(t)

b(t)
− u(t − h). (8.1)

Therefore for some constant K we have

c(t) =
∫ t

0
2

a(s)

b(s)
ds +

∫ 0

t−h
u(s) ds + K. (8.2)

Evaluating at t = 0 we see from (3.7) that K = 0, and hence we have at t = h the relation

c(h) =
∫ h

0
2

a(s)

b(s)
ds. (8.3)

Now for t ≥ h we have

c′(t) = b′(t) − a′(t) = 2
a(t)

b(t)
− 2

a(t − h)

b(t − h)
, (8.4)

and thus for some constant K′

c(t) =
∫ t

t−h
2

a(s)

b(s)
ds + K′. (8.5)

Evaluating at t = h we deduce that K′ = 0, and this establishes Property (4). Property (5)
follows immediately.
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8.2. Proof of Lemma 3.2

From (2.17) and (3.9) we derive for 0 ≤ n ≤ m that

B(λ)
v (tn) − bα(tn) = λ−1

0∑
i=n−m+1

vi −
∫ 0

tn−m

u(s) ds + λ−1ξα − a(0)

= λ−1
0∑

i=n−m+1

(vi − xi) + λ−1ξα − a(0), (8.6)

where

xj = λ

∫ tj

tj−1

u(s) ds, j = −m + 1, . . . , 0. (8.7)

We also have from the definition of ξα that

|λ−1ξα − a(h)| ≤ λ−1. (8.8)

We now introduce a product probability measure on S(m) so that the coordinates
v−m+1, . . . , v0 are independent random variables: for any sequence (u−m+1, . . . , u0),

P(v = (u−m+1, . . . , u0)) =
0∏

j=−m+1

Pj(vj = uj). (8.9)

The distribution Pj is chosen so that

E[vj] =
∑

k=0,1,2

k Pj(vj = k) = xj (8.10)

(since 0 ≤ xj ≤ 2 this is always possible). Define

Mn =
n∑

j=−m+1

(vj − xj), −m + 1 ≤ n ≤ 0. (8.11)

Since the {vj} are independent with finite variances and (8.10) holds, we can apply
Kolmogorov’s maximal inequality [4] and deduce that for any δ > 0

P

(
max−m+1≤n≤0

|Mn|> δ
)

≤ δ−2 Var[M0]. (8.12)

Since |vj| ≤ 2 for all j, we have Var[vj − xj] ≤ 4, and hence by independence

Var[M0] ≤ 4m = 4λh. (8.13)

Taking δ = 4h1/2 λ1/2 we deduce that

P

(
max

0≤n≤m

∣∣∣∣
0∑

i=n−m+1

(vi − xi))

∣∣∣∣> 4h1/2 λ1/2
)

≤ 1/4. (8.14)

Therefore, using (8.8) and the formula (8.6), we get

P(F(α, λ)) ≥ P

⎛
⎝ max

0≤n≤m

∣∣∣∣∣∣λ−1
0∑

i=n−m+1

(vi − xi))

∣∣∣∣∣∣ ≤ 4h1/2 λ−1/2

⎞
⎠ ≥ 3/4, (8.15)

and so we deduce that F(α, λ) is non-empty.
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8.3. Proof of Lemma 5.1

For every v ∈ A, we have |vm − m| ≤ 3m. Thus, there is a sequence Xn,Xn+1, . . . ,Xn+3m

with positive probability such that Xn = v and Xn+3m = m. We choose Xn+3m+1 =
m, . . . , Xn+4m = m, so that Xn+4m =ω, and thus we have constructed a path with positive
probability leading from Xn = v to Xn+4m =ω. Let

κ = min
v∈A

min
ε=0,1,2

P(Un+1 = ε |Xn = v); (8.16)

then we have

P(Xn+4m =ω |Xn = v) ≥ κ4m. (8.17)

This establishes (5.10) with γ = κ4m.
We also have for u ∈ Ac that

Eψ [Xn+1 |Xn = u] = Xn + 1 − 2
Xn

Ln
+ Xn

L2
n

(8.18)

= um + 1 − 2
um

u0 + m
+ um

(u0 + m)2
(8.19)

≤ um + 1 − 2
um

um + 2m
+ 1

um
(8.20)

≤ um + 1 − 2
4m

4m + 2m
+ 1

4m
≤ um − 1

3
+ 1

4m
, (8.21)

and this establishes (5.11) with c = 1/12 (since m ≥ 1).

8.4. Proof of Lemma 6.1

We derive a uniform bound for the difference B(λ)(s) − b(s) in terms of the function g and an
error term coming from the initial conditions. Recall that by assumption v ∈ F(α, λ); therefore

sup
0≤n≤m

|B(λ)(tn) − b(tn)| ≤ 4h1/2λ−1/2 + λ−1. (8.22)

Furthermore, if t ∈ [0, h] and t ∈ [tn, tn+1), then

|b(t) − b(tn)| =
∣∣∣∣
∫ t

tn
(1 − u(s − h)) ds

∣∣∣∣ ≤ t − tn ≤ λ−1. (8.23)

Therefore (8.22) and (8.23) together imply that

sup
0≤s≤h

|B(λ)(s) − b(s)| ≤ 4h1/2λ−1/2 + 2 λ−1 ≤ 6h1/2λ−1/2, (8.24)

where we have used hλ≥ 1. Combining (6.6) and (8.24) we get the uniform bound

sup
0≤s≤t

|B(λ)(s) − b(s)| ≤ g(t) + 6h1/2λ−1/2 for all t ≥ 0. (8.25)
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8.5. Proof of Lemma 6.2

We use the martingale property to bound the first sum on the left side of (6.10). Using (6.8)
we have

Gj+1 = 1 − Uj+1 − (
1 −E[Uj+1 |Fj]

)
(8.26)

= 2
Xj

Lj
− Xj

L2
j

− Uj+1. (8.27)

It follows that Gj+1 is Fj+1-measurable, and

E[Gj+1 |Fj] = 0. (8.28)

Furthermore |Gj+1| ≤ 2, so {Gj} is a bounded martingale difference series relative to the filtra-

tion Fn. Therefore
∑n−1

j=0 Gj+1 is a martingale, and
(∑n−1

j=0 Gj+1
)2 is a submartingale, so we

can apply Doob’s martingale inequality [4] to deduce that for N = 
λT� and any θ > 0,

P

(
sup

0≤n≤N

∣∣∣∣λ−1
n−1∑
j=0

Gj+1

∣∣∣∣ ≥ θ
)

= P

(
sup

0≤n≤N

∣∣∣∣
n−1∑
j=0

Gj+1

∣∣∣∣
2

≥ λ2 θ2
)

≤ λ−2 θ−2
E

[( N−1∑
j=0

Gj+1

)2]

= λ−2 θ−2
N−1∑
j=0

E[G2
j+1]

≤ 4 θ−2 λ−2 N

= 4 θ−2 λ−1 T . (8.29)

8.6. Proof of Lemma 6.3

From (2.14) and (3.1) we get

Hj+1 =E[1 − Uj+1 |Fj] − λ

∫ tj+1

tj

(
1 − 2

a(s)

b(s)

)
ds

= −2
Xj

Lj
+ Xj

L2
j

+ 2 λ
∫ tj+1

tj

a(s)

b(s)
ds

= 2 λ
∫ tj+1

tj

(
a(s)

b(s)
− A(λ)(tj)

B(λ)(tj)

)
ds + λ−1 A(λ)(tj)

(B(λ)(tj))2

= 2 λ
∫ tj+1

tj

(
a(s)

b(s)
− A(λ)(s)

B(λ)(s)

)
ds + λ−1 A(λ)(tj)

(B(λ)(tj))2
. (8.30)

We write

a(s)

b(s)
− A(λ)(s)

B(λ)(s)
=a(s) − A(λ)(s)

b(s)
+ A(λ)(s)

B(λ)(s)

B(λ)(s) − b(s)

b(s)
. (8.31)

https://doi.org/10.1017/apr.2020.48 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.48


104 C. KING

Using the bounds A(λ)(s) ≤ B(λ)(s) and (6.2), (6.3), (6.4), and (6.7), we have from (8.31) that∣∣∣∣a(s)

b(s)
− A(λ)(s)

B(λ)(s)

∣∣∣∣ ≤ 2 l−1 g(s) + 6 l−1 h1/2 λ−1/2. (8.32)

Therefore we deduce from (8.30) that

|Hj+1| ≤ 4 l−1 g(tj+1) + 12 l−1 h1/2 λ−1/2 + l−1 λ−1

≤ 4 l−1 g(tj+1) + 13 l−1 h1/2 λ−1/2, (8.33)

which gives the bound

λ−1

∣∣∣∣∣∣
n−1∑
j=0

Hj+1

∣∣∣∣∣∣ ≤ 4 l−1 λ−1
n−1∑
j=0

g(tj+1) + 13 l−1 h1/2 λ−1/2 tn

≤ 4 l−1 λ−1
n−1∑
j=0

g(tj+1) + 13 l−1 h1/2 λ−1/2 T . (8.34)

9. Discussion and future directions

Theorem 4.2 confirms that the tangle process converges (in probability) to the solution of the
delay differential equation (3.5). This convergence was explored using numerical simulations
in the paper [10], and was observed to give an accurate representation of the behavior even for
relatively small values of the arrival rate λ. There are several interesting questions which arise
out of this result. One question is to describe fluctuations of the rescaled process A(λ)(t) around
the deterministic solution a(t) of the delay differential equation. Theorem 4.2 shows that the
scale of fluctuations is not larger than λ−1/2. This is also the scale of the martingale central
limit theorem, and it would be interesting to determine whether the fluctuations are Gaussian
in leading order. Another interesting question concerns h, the duration of the proof of work. In
this paper we assumed throughout that h is constant; however, it would be natural to consider
h as a random variable. Finally, the convergence of the tangle model to its fluid limit for other
tip selection algorithms is also an interesting problem.

Appendix A. Remarks on the security of the tangle

The result of Theorem 4.1 has some implications for the security properties of the tangle,
as we now discuss. The cumulative weight C (u, t) of a transaction u at time t is defined to
be the number of transactions which approve u at time t. Recall that a transaction v is said to
approve a transaction u if there is a directed walk which starts at v and ends at u. The security
of a transaction u is directly related to its cumulative weight; if an attacker wishes to alter
the transaction u without destroying the consistency of the ledger, then the attacker must also
alter all transactions which approve u. The most secure situation arises when the cumulative
weight of every transaction grows linearly in time, meaning that every transaction in the tangle
is approved by a fixed fraction of all new arrivals. (This is automatic for the blockchain, but it
is not guaranteed for a DAG-based ledger). As we will describe below, the ergodicity results
in Theorem 4.1 can be used to show that the tangle has this property.

Let y label the vertex which starts the approval process at time t0 = tn0 , and which is sub-
sequently attached to the tangle at time t0 + h (see Figure 2). Let n1 be the smallest integer
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such that the tangle contains the directed edge 〈yn1 , y〉, so that yn1 is the first subsequent vertex
which approves y. Similarly, let yn2 be the first transaction which approves yn1 , and so on for
yn3 , yn4 , etc. Then the cumulative weight of u at time t can be bounded below by

C(u, t) ≥ max
k≥1

{
k : tnk + h ≤ t

}
. (A.1)

In order to show that C(u, t) grows linearly as a function of t, it is sufficient to show that the
right side of (A.1) grows linearly. We now present a heuristic argument for why this should be
true. The sequence {nj} can be regarded as an arrival process, so the right side of (A.1) is the
number of arrivals in the interval [t0 + h, t]. It is reasonable to suppose that the sequence of
interarrival times {tnj+1 − tnj} is well-behaved, and behaves like a renewal process with finite
mean. By analogy with the elementary renewal theorem, this would support the conclusion
that the right side of (A.1) would grow linearly in t (almost surely as t → ∞), and thus we
would have a guarantee that the cumulative weight also grows linearly in t. This would be an
important security feature of the tangle, as it would compel an attacker to ‘outrun’ the honest
users on the tangle.

As noted before, this is a heuristic argument, but we can use the result of Theorem 4.1
to analyze one piece of the argument, namely to establish finiteness of the interarrival
time {tnj+1 − tnj}. We let D = n1 − n0 denote the number of steps until the first approval of the
vertex y. Then

lim
l→∞ P(D ≥ l) = 0. (A.2)

The relation (A.2) can be shown by conditioning on the process {Xj, Lj} and noting that for
l ≥ 1,

P(D ≥ m + l) =E
[
P(D ≥ m + l | {Xj, Lj})

]

=E

⎡
⎣n0+l∏

i=n0

(
1 − 1

Ln0+i

)2
⎤
⎦ .

Fix k, c> 0 and let El(c, k) denote the event

El(c, k) =
{
|{j ∈ [n0, n0 + l] such that Lj ≤ k}|< c l

}
.

Then

P(D ≥ m + l) ≤
(

1 − 1

k

)2cl

+ P(El(c, k)).

Theorem 4.1 can be used to show that l−1 |{j ∈ [n0, n0 + l] such that Lj ≤ k}| converges almost
surely to a positive constant as l → ∞. This follows because the quantity l−1 |{j ∈ [n0,

n0 + l] such that Lj ≤ k}| can be expressed as a function defined on the Markov chain {Xn},
and then the ergodic theorem for Markov chains gives the convergence [5]. Therefore for c
sufficiently small, P(El(c, k)) → 0 as l → ∞. This establishes the result (A.2). Furthermore, it
may be possible to derive large deviation bounds for the sequence {Xn}, which could be used
to provide an estimate for the exponential rate of convergence in (A.2).
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