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We demonstrate that the critical magnetic Reynolds number Rmc for a turbulent non-
helical dynamo in the limit of low magnetic Prandtl number Pm (i.e. Pm=Rm/Re�
1) can be significantly reduced if the flow is subjected to global rotation. Even for
moderate rotation rates the required energy injection rate can be reduced by a factor
of more than 103. This strong decrease in the onset is attributed to the transfer of
energy to the large scales, forming a large-scale condensate, and the reduction in the
turbulent fluctuations that cause the flow to have a much larger cutoff length scale
than in a non-rotating flow of the same Reynolds number. The dynamo thus behaves
as if it is driven just by the large scales that act as a laminar flow (i.e. it behaves as
a high Pm dynamo) even though the actual Reynolds number is much higher than the
magnetic Reynolds number (i.e. low Pm). Our finding thus points to a new paradigm
for the design of new experiments on liquid metal dynamos.
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1. Introduction

The existence of planetary and stellar magnetic fields is attributed to the dynamo
instability, the mechanism by which a background turbulent flow spontaneously
generates a magnetic field by the constructive refolding of magnetic field lines
(Moffatt 1978). Many efforts have been made by several experimental groups to
reproduce the dynamo instability in the laboratory using liquid metals (Gailitis
et al. 2001; Stieglitz & Mueller 2001; Shew & Lathrop 2005; Nornberg et al. 2006;
Monchaux et al. 2007; Giesecke et al. 2012). However, so far, unconstrained dynamos
driven just by turbulent flows have not been achieved in the laboratory. Successful
experimental dynamos rely either on constraining the flow or using ferromagnetic
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materials. One of the major challenges to achieving a liquid metal dynamo is the
large energy injection rate required to reach the dynamo onset, which is determined
by the magnetic Reynolds number Rm = UL/η (where U is the r.m.s. velocity, L is
the domain size and η is the magnetic diffusivity), which should be larger than a
critical value Rmc. The low value of the magnetic Prandtl number Pm≡ ν/η ∼ 10−5

of liquid metals (where ν is the viscosity) implies that the required Reynolds number
Re=UL/ν = Rm/Pm must be very large. The energy injection rate ε is proportional
to the cubic power of Re, which makes the dynamo onset extremely costly (in
energy consumption) to reach in the laboratory. Given that technical constraints
limit the size L of laboratory experiments on liquid metal to be no more than a
couple of metres, the magnetic diffusivity of liquid sodium is η ' 10−1 m2 s−1 and
its density ρ ' 103 kg m−3, we arrive at an energy consumption rate larger than
100 kW assuming Rmc ' 50, which is approximately the critical Reynolds number
in the constrained dynamos mentioned above (see Pétrélis, Mordant & Fauve 2007).
The VKS dynamo, for example, consumed 300 kW at its peak (Monchaux et al.
2007). This large required size and the large energy consumption rate limit dynamo
experiments to laboratories of industrial size. Note that a reduction of Rmc even by
a factor of 2, i.e. Rmc ' 25, reduces this consumption rate to ∼10 kW, which is
attainable in small-scale laboratories.

From the other side, numerical simulations in the last decade have been able to
reach high enough Reynolds numbers to study the dependence of Rmc as the low Pm
limit is approached (Mininni & Montgomery 2005; Ponty et al. 2005; Iskakov et al.
2007). It was shown that as Re was increased the turbulent fluctuations prevented the
dynamo instability, resulting in a value of Rmc much larger than that of organized
laminar flows. The value of Rmc was shown to increase monotonically for values of
Pm around 1, but finally for high enough values of Re (low enough Pm) a finite
value of Rmc was reached independent of Re. This finite value is the turbulent critical
magnetic Reynolds number defined as Rmturb

c ≡ limRe→∞ Rmc. Different values of Rmturb
c

were obtained for the different flows under study, implying that this number is not
universal and that the flows can be optimized to reduce Rmturb

c . This was performed
in Sadek, Alexakis & Fauve (2016) by varying the forcing length scale.

In this work we demonstrate that rotation can be used to reduce the dynamo
threshold Rmturb

c . Rotation is recognized as one of the key elements that determines
the main characteristics of the resulting flows and magnetic fields of planets and stars
(Proctor & Gilbert 1994). This is confirmed by observations over the last decade,
which have measured the magnetic activity of stars as a function of their rotation
period (Reiners, Basri & Browning 2009; Morin et al. 2010). It has also been argued
that rotation can reduce the dynamo onset (Christensen & Aubert 2006). At fast
rotation rates variations along the axis of rotation are suppressed, rendering the flow
quasi-2-D in the sense that the flow varies weakly along the direction of rotation
while retaining all three velocity components (Alexakis 2015; Dallas & Tobias 2016),
a situation referred to in the literature as 2.5-dimensional (2.5-D) flow. These 2.5-D
flows have been shown to be effective dynamos (Smith & Tobias 2004; Seshasayanan
& Alexakis 2016a,b). The fact that turbulent fluctuations inhibit the dynamo instability
while more organized flows reduce the dynamo threshold (Tobias & Cattaneo 2008a,b;
Tobias, Cattaneo & Boldyrev 2011) indicates that background rotation can provide
an efficient way to suppress fluctuations and optimize the flow so that the value of
Rmturb

c is reduced. In this work, we demonstrate that this is indeed the case. The effort
to achieve the dynamo onset in rotating turbulent flows is modest in comparison to
that in non-rotating turbulent flows, with the columnar vortices playing a key role in
the spontaneous generation of the magnetic field.
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2. Numerical set-up

In this paper we study the kinematic dynamo problem in a rotating frame of
reference. Thus, the governing equations involved in this study are

∂tu+ u · ∇u=−
1
ρ
∇p− 2Ω × u+ ν1u+ f , (2.1)

∂t B=∇× (u× B)+ η1B, (2.2)

where u and B are the velocity and the magnetic field respectively with ∇ · u =
∇ · B = 0, ρ is the mass density and p is the pressure. The rotation Ω = Ω êz is
applied along the z-direction. We integrate these equations numerically in a cubic
periodic box of length 2πL using the pseudo-spectral code GHOST (Mininni et al.
2011) with a fourth-order Runge–Kutta scheme for the time advancement and the
2/3 de-aliasing rule. The body force is taken to be a 2.5-D non-helical Roberts flow,
f = f0(cos(kf y), sin(kf x), cos(kf y)+ sin(kf x)). Since we are interested in optimizing the
flow to reduce the energy consumption in dynamo experiments, we define the non-
dimensional parameters in terms of the energy injection/dissipation rate in the system
measured by ε = ν〈|∇u|2〉, where 〈·〉 denotes volume and time average. The non-
dimensional parameters in terms of ε are the Reynolds number Re= (ε/kf )

1/3/(kfν),
the magnetic Reynolds number Rm = (ε/kf )

1/3/(kfη) and the Rossby number Ro =
(ε/kf )

1/3kf /(2Ω). With this choice of non-dimensionalization Rmturb
c can be related

directly to the power εc required to obtain a dynamo by εc = ρ(2πL)3k4
f η

3(Rmturb
c )3.

To recover other definitions based on the r.m.s. velocity U = 〈|u2
|〉

1/2 of the flow,
ReU = U/(kfν) and RoU = Ukf /(2Ω), we provide the dependence of ε and U on
the control parameters of the system in figure 1(a,b) and their asymptotic values in
table 1.

We are interested in different limits of the parameters in this problem. To model the
limit Re� 1 (or the limit Pm� 1) we also use hyperviscosity where the Laplacian
in the Navier–Stokes equation (2.1) is changed to 14. The use of hyperviscosity
assumes that the large scales do not depend on the exact mechanism by which
energy is dissipated in the small scales, and thus in principle it should always be
compared to the results of large Re simulations.

The other limit we would like to reach is the fast rotating limit Ro� 1, in which
the flow becomes 2.5-D (Gallet 2015). In this case the velocity field becomes invariant
along the axis of rotation, and its evolution reduces to the 2-D Navier–Stokes equation
for the horizontal components u2D and an advection diffusion equation for the vertical
component uz:

∂tu2D + u2D · ∇ u2D =−∇P+ ν∇2u2D + f 2D, (2.3)
∂tuz + u2D · ∇ uz =+ν∇

2uz + fz. (2.4)

The magnetic field in this case can be expressed in the form B= b(x, y, t)eikzz due to
the invariance of the flow along the z-direction, where b is a three-component complex
vector field. Each kz-mode evolves independently and the induction equation in this
case reads

∂tb+ u2D · ∇b+ uzikzb= b · ∇u+ η(1− k2
z )b. (2.5)

Then, the divergence-free condition ∇ · B= 0 for each magnetic mode gives

∂xbx(x, y, t)+ ∂xby(x, y, t)=−ikzbz(x, y, t). (2.6)
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FIGURE 1. The normalized total velocity squared U2/( f0/kf ) (a) and the normalized
dissipation rate ε/(U3kf ) (b) as functions of the Reynolds number Re for different values
of the rotation rate as mentioned in the legend. The points denoted by F at Re= 2000
denote hyperviscosity runs.

Ω Ro Re RoU ReU N Rmturb
c

0 ∞ 210 ∞ 580 512 23.6
1 1 200 3 600 512 34.9
3 0.21 64 2.4 720 512 1.81

50 0.011 55 0.18 920 256 —
∞ 0 60 0 950 2048 —

TABLE 1. Numerical parameters of the simulations. For all runs f0 = 1, L = 1 and kf =

4. N denotes the grid size. The reported values are for the largest values of Re (regular
viscosity); Rmturb

c is based on the hyperviscous runs. Ω = ∞ corresponds to the 2.5-D
simulations.

In this limit we follow only the kz=1 mode, which corresponds to the largest mode in
our cubic domain and was found to be the most unstable mode (Smith & Tobias 2004;
Seshasayanan & Alexakis 2016b). The range of the parameters used can be found in
table 1.

3. Results

We first describe the effect of rotation on the flow. Rotation affects the velocity field
through the Coriolis term. At low Re the flow is laminar and Ω does not modify the
velocity field because the laminar flow is invariant along the direction of rotation. As
we increase Re beyond a threshold the flow becomes turbulent, varying along all three
directions, and hence the effect of Ω becomes more important.

For Ω . 1, the effect of rotation is not dominant and the underlying flow is not far
away from 3-D isotropic turbulence (compared to the cases with Ω > 3). The total
energy U2 normalized by f0/kf and the normalized dissipation rate ε/(U3kf ) reach
asymptotic values for Re→∞ as shown in figure 1. These asymptotic values match
those obtained by the hyperviscous simulations, which are denoted by star symbols
F, and they are connected with the rest of the data set by dashed lines. This is the
classical Kolmogorov turbulence where the large-scale quantities become independent
of viscosity at large Re, and all the injected energy cascades via the nonlinearities to
the small scales, where it is dissipated at a finite rate (Frisch 1995).
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FIGURE 2. Relative helicity ρH as a function of time t for different values of Ω mentioned
in the legend. Darker shades of blue correspond to larger values of Ω .

For Ω = 3 the flow becomes anisotropic with lesser fluctuations along the
z-direction. There is an inverse cascade present in the system, which forms
condensates. The growth of the condensate saturates when the counter-rotating
vortex locally cancels the effect of global rotation for U ∼ ΩL (Bartello, Métais &
Lesieur 1994; Alexakis 2015). The normalized dissipation rate ε/(U3kf ) approaches
an asymptote but at a much smaller value than in the non-rotating case. For larger
rotation rates Ω = 50 and Ω =∞ saturation comes from viscous forces and ε/(U3kf )
decreases with Re. An Re-independent scaling of the Ω = 50 case is also expected
at large values of Re where a condensate of amplitude U∼ΩL is reached. However,
the realization of this behaviour at this large value of Ω is not possible even with
hyperviscous runs. Furthermore the 2.5-D runs (Ω =∞) will saturate due to viscous
forces at high amplitudes inversely proportional to viscosity. For these reasons we do
not investigate the Ω = 50 and Ω =∞ runs with hyperviscosity.

Another quantity that is important for large-scale dynamo action is the helicity
H = 〈u ·ω〉 where ω = ∇ × u is the vorticity of the flow. Figure 2 shows the
normalized helicity ρH = H/(‖u‖‖ω‖) as a function of time for different values of
Ω (here ‖ · ‖ denotes the L2 norm). As we can see for Ω = 3, we observe much
larger fluctuations of ρH whose average over time is zero. Note that the time scale of
the fluctuations is much longer than the eddy turnover time scale L/U ' 0.2. These
fluctuations are due to the formation of the condensate (Dallas & Tobias 2016). At
small Ω the helicity fluctuations are governed by the small scales, for which the
eddy turnover time is very short; for large Ω the helicity fluctuation is governed by
the kz= 0 mode, which fluctuates over a much longer time scale. We note that when
a condensate forms, most of the energy is concentrated in the largest scales and thus
there is no scale separation that would allow us to interpret our dynamo results in
terms of an α dynamo (Moffatt 1978).

A priori we do not know whether the transition from a flow with no inverse
cascade to a flow with an inverse cascade will decrease the dynamo threshold. To
look at the effect of rotation on a dynamo we need to solve for the evolution of
the magnetic field. To calculate Rmc we run simulations of the same flow (same Re
and Ro) but with different values of Rm. Rmc was determined by linear interpolation
of the growth rate between runs with a dynamo (positive growth rate) and runs
without (negative growth rate). We then repeat the runs for larger values of Re, thus
approaching the low Pm limit. Figure 3 shows the critical Reynolds number Rmc as
a function of Re for different values of Ω . The cases of Ω = 0 and 1 display similar
behaviour to other studies of non-rotating flows (Mininni & Montgomery 2005;
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FIGURE 3. Critical magnetic Reynolds number Rmc as a function of Re for different
values of Ω shown in the legend. The points denoted by F at Re = 2000 denote
hyperviscosity runs.
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FIGURE 4. (a) Compensated kinetic energy spectra k2E(k) and (b) magnetic energy
spectra for the two different cases of Ω= 0 and 3 for the hyperviscous runs (i.e. Pm� 1).

Ponty et al. 2005; Iskakov et al. 2007) in which Rmc initially increases with Re,
until it begins to become constant at large Re. For Ω = 1 the asymptotic value Rmturb

c
is larger than the Ω = 0 case, expressing an initial hindering effect for the dynamo
by rotation. For Ω > 3, however, we see a much lower threshold for the dynamo
instability and no such increase due to turbulence is observed. In fact the threshold
for Ω = 3 appears no different to that for Ω =∞, implying that the destructive effect
of the 3-D turbulent fluctuations on the dynamo has already disappeared. The ratio
between Rmturb

c for the case of Ω = 0 and that for Ω = 3 for the hyperviscous runs is
approximately ∼12. The injected power ε scales like (Rmturb

c )3, implying a reduction
in the power required for a dynamo instability by a factor of 2× 103 between Ω = 0
and 3 and a factor of 8× 103 between Ω = 1 and 3 (see figure 3).

To decipher the reason behind this drop in Rmturb
c at Ω = 3 we display in figure 4(a)

the enstrophy spectra k2E(k) for Ω = 0 and Ω = 3 obtained from the hyperviscous
runs. Large enstrophy implies a larger stretching rate of the magnetic field lines
(although not necessarily constructive). For Ω = 0 a behaviour close to Kolmogorov
type is observed, with the enstrophy spectrum k2E(k) increasing with k after the
forcing scale kf =4. The strongest stretching rate is thus clearly at the small incoherent
scales. In contrast, for Ω = 3 the enstrophy spectrum k2E(k) is decreasing with k.
Only at the smallest scales does k2E(k) start to increase again. Thus, the small-scale
fluctuations are suppressed and the dominant stretching rate u`/` is restricted to the
large coherent scales. Figure 5(b) shows the vertical vorticity field ωz for Ω = 3,

822 R3-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

32
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.324


The onset of turbulent rotating dynamos at the low Pm limit

(a) (b)

FIGURE 5. (a) Colour plot of the vertical vorticity ωz. (b) Vertical current jz. Red
corresponds to positive (co-rotating) values and blue to negative (counter-rotating) values.
Both panels have Ω = 3, Re≈ 60, Pm= 0.0375 and are extracted at the same time.

displaying a strong coherent co-rotating vortex aligned with the global rotation and
a counter-rotating vortex responsible for the energy cascade to small scales. Note
that the same structure is observed in a flow driven by a Taylor–Green forcing
(Alexakis 2015) and in rotating convection (Guervilly, Hughes & Jones 2014). Thus,
this structure is not related to the particular choice of forcing used. The dynamo thus
behaves as if it is driven just by the organized large scales that act as a laminar flow
(i.e. it behaves similarly to a high Pm dynamo) even though the actual Reynolds
number is much higher than the magnetic Reynolds number (i.e. low Pm).

This suppression of small-scale fluctuations, however, is not due to a dissipative
mechanism since the Coriolis term is not dissipative and thus does not lead to an
extra cost in energy injection.

The magnetic energy spectra for Rm close to the onset (i.e. at the kinematic phase
of the dynamo) are shown in figure 4(b). For the case of Ω = 0 the magnetic energy
spectrum is almost flat with an exponential decay at high wavenumbers. The unstable
eigenmode (not shown here) takes the form of thin filamentary structures. On the other
hand, for Ω = 3 the magnetic energy spectrum decreases fast with k. The peak of
the magnetic energy is at the forcing scale (kf = 4), while the energy of the large-
scale component (k = 1) is more than an order of magnitude smaller. Thus despite
the presence of helicity this is not a large-scale dynamo (Ponty & Plunian 2011;
Cameron & Alexakis 2016). The structure of the vertical current field jz from an
unstable eigenmode of the dynamo at Ω = 3 is shown in figure 5(b). The magnetic
field as seen previously in the spectra is present at large scales, with the kz= 1 mode
being dominant. Most of the magnetic energy is concentrated along the coherent co-
rotating vortex in two oppositely directed spiral flux tubes.

4. Conclusions

The present study shows that global rotation can play a positive role in the dynamo
instability by (i) suppressing turbulent fluctuations and (ii) organizing the large scales
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in space and time, making them more effective in performing a constructive refolding
of the magnetic field lines. These two effects lead the flow to be more efficient in
driving the dynamo (at present we cannot be explicit on which of the two effects
is more important). This discovery provides a new paradigm for the design of new
dynamo experiments that include global rotation.

Our study was performed in an idealized set-up of a triple periodic box. Thus, the
question that arises naturally is to what extent these results can carry over to more
realistic domains and boundary conditions. Boundaries can delay the inverse cascade
(as has been noted in rotating convection (Kunnen et al. 2016; Plumley et al. 2016))
and can also introduce further dissipation mechanisms in the boundary layers such
as Ekman friction. To answer this question, further work needs to be pursued with
simulations in more realistic domains. Nevertheless we note that reaching rotation
rates in the laboratory that lead to quasi-2-D flows is feasible and has already been
achieved in water-tank experiments (Yarom, Vardi & Sharon 2013; Campagne et al.
2014). Furthermore, in Campagne et al. (2016) the dissipated power in rotating
turbulence was directly measured and was shown to decrease by a factor of 10
at the highest rotation examined, compared to the dissipated power in non-rotating
turbulence, due to a two-dimensionalization of the flow. At the examined rotation rates
no enhancement of the viscous dissipation due to Ekman layers was observed. So,
suppressing turbulent fluctuations and decreasing energy dissipation by adding global
rotation is indeed feasible experimentally. The additional energy cost of maintaining
the rotation is probably minimal compared to the large gain of the order of 103 due
to the suppression of turbulent fluctuations. Another issue that needs to be considered
is the design of the domain and the forcing, which should guarantee that all three
velocity components are present, so that the flow becomes 2.5-D and not 2-D. This
difficulty can be overcome by the proper design of the forcing mechanism that
amplifies all velocity components.

Finally, we note that this result also shows that in fast rotating systems, such as the
Earth, the critical magnetic Reynolds number based on the energy injected to sustain a
dynamo instability might stay very small, Rm∼O(1), even at large Reynolds numbers.
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