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In the field of Life Sciences, it is very common to deal with extremely complex systems, from

both analytical and computational points of view, due to the unavoidable coupling of different

interacting structures. As an example, angiogenesis has revealed to be an highly complex,

and extremely interesting biomedical problem, due to the strong coupling between the kinetic

parameters of the relevant branching – growth – anastomosis stochastic processes of the

capillary network, at the microscale, and the family of interacting underlying biochemical

fields, at the macroscale. In this paper, an original revisited conceptual stochastic model

of tumour-driven angiogenesis has been proposed, for which it has been shown that it is

possible to reduce complexity by taking advantage of the intrinsic multiscale structure of the

system; one may keep the stochasticity of the dynamics of the vessel tips at their natural

microscale, whereas the dynamics of the underlying fields is given by a deterministic mean

field approximation obtained by an averaging at a suitable mesoscale. While in previous

papers, only an heuristic justification of this approach had been offered; in this paper, a

rigorous proof is given of the so called ‘propagation of chaos’, which leads to a mean field

approximation of the stochastic relevant measures associated with the vessel dynamics, and

consequently of the underlying tumour angiogenic factor (TAF) field. As a side, though

important result, the non-extinction of the random process of tips has been proven during

any finite time interval.

Key words: Cell movement; Interacting particle systems; Convergence of probability

measures; PDEs in connection with biology and other natural sciences; Stochastic

analysis.

1 Introduction

In Life Sciences, we may observe a wide spectrum of self-organisation phenomena.

In most of these phenomena, randomness plays a major role; see [7] for a general

discussion. As a working example, in this paper, we refer to tumour-driven angiogenesis;

in this case, cells organise themselves as a capillary network of vessels, the organisation

being driven by a family of underlying fields, such as nutrients, growth factors, and alike

[12,20,23]. Indeed, an angiogenic system is extremely complex due to its intrinsic multiscale

structure. We need to consider the strong coupling between the kinetic parameters of the

relevant stochastic processes describing branching, vessel extension, and anastomosis of
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the capillary network at the microscale, and the family of interacting underlying fields at

the macroscale [1, 10, 17, 22, 25].

The kinetic parameters of the mentioned stochastic processes depend on the concen-

trations of certain chemical factors, which satisfy reaction-diffusion equations (RDEs)

[1, 21, 35]. Viceversa, the RDEs for such underlying fields contain terms that depend on

the spatial distribution of vascular cells. As a consequence, a full mathematical model of

angiogenesis consists of the (stochastic) evolution of vessel cells, coupled with a system of

RDEs containing terms that depend on the distribution of vessels. The latter is random

and therefore the equations for the underlying fields are random RDEs; thus, inducing

randomness in the kinetic parameters of the relevant stochastic geometric processes de-

scribing the evolution of the vessel network; we might say that the vessel dynamics is a

‘doubly’ stochastic process.

This strong coupling leads to an highly complex mathematical problem from both

analytical and computational points of view. A possibility to reduce complexity is offered

by the so called hybrid models, which exploit the natural multiscale nature of the system.

The idea consists of approximating the random RDEs by deterministic ones, in which

the microscale (random) terms depending on cell distributions are replaced by their

(deterministic) mesoscale averages. In this way, the mentioned kinetic parameters may

be taken as depending on the mean field approximation of the underlying fields, thus,

leading to a ‘ simple’ stochasticity of the random processes of branching – vessel extension –

anastomosis [5].

The way to obtain a deterministic mesoscale approximation of the stochastic process

of the relevant empirical measures by means of laws of large numbers is known as

‘mean field approximation’. Examples of rigorous derivations of mean field equations

for stochastic individual-based models can be found, e.g., in [15, 28, 29], and references

therein; other authors refer to this kind of approximation as propagation of chaos’ (see,

e.g., [14, 33], [2, p. 235], and references therein). However, to the best of the authors’

knowledge, for the kind of models considered here, a rigorous proof of the required

mean-field approximation has not yet been given, though heuristic derivations by the

same authors are available (see [4], [5], and references therein). For a direct formulation

of similar systems in hybrid form the reader may refer to [27].

Eventually, in this paper, the authors have been able to derive mean field equations with

the required, non trivial, rigorous approach. As a side result to understand the impact of

anastomosis, in the appendix, it has been proven that the random measure of tips never

vanishes during any finite time interval (see Appendix A).

The proof that the number of new tips cannot grow without control, given in Section

5.3, is highly nontrivial. This is the first work that deals rigorously with this question,

namely the size of growth when tips may emerge from created vessels and the length of

the vessel is potentially unbounded, in finite time, due to the Gaussian fluctuations of the

noise. The usual control from above by a Yule process does not work here and new tools

have been used. At the technical level, let us also highlight the proof of uniqueness of

measure-valued solutions, that seems to be original with respect to the related literature.

We wish to mention that here we are referring to the early stages of the process of

tumour-driven angiogenesis, so that we may assume that the shape of the tumour mass
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does not change in time. This is the reason why in Section 2, the region Σ occupied by

the tumour, and the related tumour angiogenic factor (TAF) production function gΣ are

both taken as time independent.

The paper is organised as follows. Section 2 introduces our stochastic model and

all relevant random measures associated with. Section 3 is devoted to the evolution

of the empirical measure and an heuristic derivation of the mean field equations for

the deterministic measure of tips, and the associated TAF concentrations, based on

a conjectured ‘propagation of chaos’. Section 4 presents our main mathematical results.

Section 5 contains a detailed proof of Theorem 4.1, as far as the tightness of the sequence of

laws of (QN,CN)N∈� is concerned, and consequently, the existence of a weakly convergence

subsequence; thus, anticipating the existence part claimed in Theorem 4.3. All required

estimates are rigorously derived here. The proof of Theorem 4.3, concerning the claimed

uniqueness is concerned, can be found in Appendix C.

2 A mathematical model for tumour induced angiogenesis

The main features of the process of formation of a tumour-driven vessel network are

(see [5, 16, 22])

(i) vessel branching;

(ii) vessel extension;

(iii) chemotaxis in response to a generic TAF, released by tumour cells;

(iv) haptotactic migration in response to fibronectin gradient, emerging from the ex-

tracellular matrix and through degradation and production by endothelial cells

themselves;

(v) anastomosis, the coalescence of a capillary tip with an existing vessel.

We will limit ourselves to describe the dynamics of tip cells at the front of growing

vessels, as a consequence of chemotaxis in response to a generic tumour factor (TAF)

released by tumour cells, in a space �d, of dimension d ∈ {2, 3}.
The number of tip cells changes in time, due to proliferation and death. For our

convenience, we shall denote by Nt, the random number of tip cells however born up

to time t ∈ �+. We shall refer to N := N0 as the scale parameter of the system. The

ith tip cell is characterised by the random variables T i,N and Θi,N , representing the birth

(branching) and death (anastomosis) times, respectively, and by its position and velocity(
Xi,N (t) ,Vi,N (t)

)
∈ �2d, t ∈ [T i,N,Θi,N). Its entire history is then given by the stochastic

process (
Xi,N (t) ,Vi,N (t)

)
t∈[T i,N ,Θi,N

)
.

All random variables and processes are defined on a filtered probability space

(Ω,F ,Ft,�).

The growth factor is a random function CN : Ω × [0,∞) × �d → �, that we write as

CN (t, x).
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For the elongation of vessels, we assume a Langevin description, according to which

tip cells and growth factor satisfy the stochastic system

dXi,N (t) = Vi,N (t) dt, (2.1)

dVi,N (t) =
[
−k1V

i,N (t) + f
(
CN

(
t,Xi,N (t)

))
∇CN

(
t,Xi,N (t)

)]
dt

+ σdWi (t) , (2.2)

∂tCN (t, x) = k2gΣ (x) + d1ΔCN (t, x) − η
(
t, x, {QN (s)}s∈[0,t]

)
CN (t, x) , (2.3)

where k1, k2, σ, d1 > 0, are given; Wi (t), i ∈ N, are independent Brownian motions.

Let us denote by B�d the Borel sigma-algebra on �d; by Σ ∈ B�d , we denote the

tumoural region acting as a source of TAF; in the equation (2.3), we have taken gΣ ∈
UC1

b

(
�d
)
, with support Σ, to represent the spatial density of the tumour mass.

The initial condition CN (0, x) is also given, while the initial conditions on Xi,N (t) ,

and V i,N (t) depend upon the process at the time of birth T i,N of the ith tip; the term

η(t, x, {QN (s)}s∈[0,t]) will be described below.

As it will appear more explanatory in Section 2.1, the choice of the Langevin model

leads to more regular trajectories of the tip cells, with respect to pure Brownian trajectories.

Anyhow, it is well known that pure Brownian trajectories can be obtained from Langevin

trajectories as an approximation in the case of large frictions (see, e.g., [8, p. 439]).

In the equation (2.2), besides the friction force, there is a chemotactic force due to the

underlying TAF field CN(t, x); as in relevant literature (see, e.g., [1,31]), we assume that f

decreases as a function of CN(t, x); but here we assume further that it also depends upon

the absolute value of the gradient of the TAF field; with an abuse of notations, we will

write

f(CN(t, x)) :=
d2

(1 + γ1|∇CN(t, x)| + γ2CN(t, x))q
.

This choice, requested by mathematical issues, leads to upper bounds of the term

f
(
CN

(
t,Xi,N (t)

))
∇CN

(
t,Xi,N (t)

)
, (2.4)

for large values of the gradient of the TAF field; indeed, this makes the model more

realistic, since it bounds the effect of possible large values of this gradient. For q = 1, we

would have a saturating limit value for the term in equation (2.4).

Let us describe the term η
(
t, x, {QN (s)}s∈[0,t]

)
. For every t � 0, we introduce the scaled

measure on B�2d

QN (t) :=
1

N

Nt∑
i=1

�
t∈[T i,N ,Θi,N

)
ε(Xi,N (t),Vi,N (t)), (2.5)

where ε denotes the usual Dirac measure, having the Dirac delta δ as its generalised

density with respect to the usual Lebesgue measure. With these notations, and denoting

by M+

(
�d × �d

)
, the set of all finite positive Borel measures on �d × �d, we may

assume that, for every t � 0, the function η (t, ·, ·) maps �d × L∞ (
0, t;M+

(
�d × �d

))
into �

η (t, ·, ·) : �d × L∞ (
0, t;M+

(
�d × �d

))
→ �,
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for which we will assume the following structure:

η
(
t, x, {QN (s)}s∈[0,t]

)
=

∫ t

0

(∫
�d×�d

K1

(
x − x′) |v′|QN (s)

(
dx′, dv′

))
ds,

for a suitable smooth bounded kernel K1 : �d → �.

2.1 The capillary network

The capillary network of endothelial cells XN(t) consists of the union of all random

trajectories representing the extension of individual capillary tips from the (random) time

of birth (branching) T i,N, to the (random) time of death (anastomosis) Θi,N

XN(t) =

Nt⋃
i=1

{Xi,N (s) |T i,N � s � min{t,Θi,N}}, (2.6)

giving rise to a stochastic network. Thanks to the choice of a Langevin model for the

vessels extension, we may assume that the trajectories are sufficiently regular and have an

integer Hausdorff dimension 1.

Since 1 < d, the random measure

B ∈ B�d �→ H1(XN(t) ∩ B) ∈ �+ (2.7)

is singular with respect to the usual Lebesgue measure on �d. Hence, [11] it admits a

random generalised density δXN (t)(x) such that, for any B ∈ B�d ,

H1(XN(t) ∩ B) =

∫
B

δXN (t)(x)dx. (2.8)

By Theorem 11 in [9], we may then state that

H1
(
XN(t) ∩ B

)
=

∫ t

0

Ns∑
i=1

εXi,N (s) (B)

∣∣∣∣ ddsXi,N (s)

∣∣∣∣ �s∈[T i,N ,Θi,N
)
ds. (2.9)

Hence,

δXN (t) (x) =

∫ t

0

Ns∑
i=1

δXi,N (s) (x)

∣∣∣∣ ddsXi,N (s)

∣∣∣∣ �s∈[T i,N ,Θi,N
)
ds. (2.10)

With this in mind, we may write

η
(
t, x, {QN (s)}s∈[0,t]

)
=

1

N

∫ t

0

ds

Ns∑
i=1

�
s∈[T i,N ,Θi,N

)
K1(x − Xi,N (s))|Vi,N (s) |

=
1

N
(K1 ∗ δXN (t))(x). (2.11)
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Remark 2.1 We wish to remark here that, while apparently the term η
(
t, x, {QN (s)}s∈[0,t]

)
contains a memory of the whole history of the measure process QN up to time t, if we

refer to joint process {(QN(t),XN(t)); t � 0}, this is not true any more. The same will

apply in the process of branching and anastomosis, so that the Markov properties of the

whole process still hold true.

2.1.1 Branching

Two kinds of branching have been identified, either from a tip or from a vessel. The birth

process of new tips can be described in terms of a marked point process (see, e.g., [6]),

by means of a random measure Φ on B�+×�d×�d such that, for any t � 0 and any

B ∈ B�d×�d ,

Φ((0, t] × B) :=

∫ t

0

∫
B

Φ(ds× dx × dv), (2.12)

where Φ(ds × dx × dv) is the random variable that counts those tips born either from

an existing tip, or from an existing vessel, during times in (s, s + ds], with positions in

(x, x + dx], and velocities in (v, v + dv]. By our definition of Nt, as the number of tip cells,

however, born up to time t � 0, we may state that

Nt = N0 + Φ((0, t] × �d).

As an additional simplification, we will further assume that the initial value of the state

of a new tip is (XNt+1,N
TNt+1,N ,V

Nt+1,N
TNt+1,N ), where TNt+1,N is the random time of branching, XNt+1,N

TNt+1,N

is the random point of branching, and VNt+1,N
TNt+1,N is a random velocity, selected out of a

probability distribution Gv0
with mean v0.

Given the history Ft− of the whole process up to time t−, we assume that the com-

pensator (intensity measure) of the random measure Φ(ds × dx × dv) is given by (see,

e.g., [8], pp. 122, and 157)

�
[
Φ(ds× dx × dv) | Fs−

]
= α(CN(s, x))Gv0

(v)

Ns−∑
i=1

�
s∈[T i,N ,Θi,N

)
εXi,N (s) (dx) dvds

+ β(CN(s, x))Gv0
(v)εXN (s) (dx) dvds,

where α(C), β(C) are non-negative smooth functions, bounded with bounded derivatives;

for example, we may take

α(C) = α1
C

CR + C
,

where CR is a reference density parameter [10]; and similarly for β(C).

The term corresponding to tip branching

α(CN(s, x))Gv0
(v)

Ns−∑
i=1

�
s∈[T i,N ,Θi,N

)
εXi,N (s) (dx) dvds, (2.13)
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comes from the following argument: a new tip may arise only at positions Xi,N (s) with

s ∈ [T i,N,Θi,N) (the positions of the tips existing at time s); the birth is modulated by

α(CN(s, x)), since we want to take into account the density of the growth factor; and the

velocity of the new tip is chosen at random with density Gv0
(v). It can be rewritten as

Nα(CN(s, x))Gv0
(v)dv

∫
�d

QN(s) (dx, dv) ds, (2.14)

The term corresponding to vessel branching

β(CN(s, x))Gv0
(v)εXN (s) (dx) dvds, (2.15)

tells us that a new tip may stem at time s from a point x belonging to the stochastic

network XN(s) already existing at time s, at a rate depending on the concentration of the

TAF via β(CN(s, x)), for the reasons described above. Again the velocity of the new tip is

chosen at random with density Gv0
(v). Because of (2.9), it can be rewritten as

Nβ(CN(s, x))Gv0
(v)dv

∫ s

0

∫
�d

|v|QN (r) (dx, dv) drds. (2.16)

It may be useful to remind that, thanks to Doob–Meyer decomposition theorem, what

is left of the measure process Φ(ds × dx × dv) after subtracting its compensator, is a

zero-mean martingale (see, e.g., [8, p. 122]).

2.1.2 Anastomosis

When a vessel tip meets an existing vessel, it joins it at that point and time and it stops

moving. This process is called tip-vessel anastomosis.

As in the case of the branching process, we may model this process via a marked

counting process; anastomosis is modelled as a ‘death’ process.

Let Ψ denote the random measure on B�+×�d×�d such that, for any t � 0, and any

B ∈ B�d×�d

Ψ ((0, t] × B) :=

∫ t

0

∫
B

Ψ (ds× dx × dv), (2.17)

where Ψ (ds × dx × dv) is the random variable counting those tips that are absorbed by

the existing vessel network during time (s, s+ ds], with position in (x, x+ dx], and velocity

in (v, v + dv].

We assume that the compensator of the random measure Ψ (ds× dx × dv) is

�
[
Ψ (ds× dx × dv) | Fs−

]
(2.18)

= γ

Ns∑
i=1

�
s∈[T i,N ,Θi,N

)
h

(
1

N

(
K2 ∗ δXN (s)

)
(x)

)
ε(Xi,N (s),Vi,N (s))(dx × dv) ds

= γNh

(
1

N

(
K2 ∗ δXN (s)

)
(x)

)
QN(s)(dx, dv)ds, (2.19)

where γ is a suitable constant, and K2 : �d → � is a suitable mollifying kernel,
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h : �+ → �+ is a saturating function of the form h (r) =
r

1 + r
. This compensator

expresses the death rate of a tip located at
(
Xi,N (s) ,Vi,N (s)

)
at time s; the death rate is

modulated by γ and by a scaled thickened version of the capillary network existing at

time s, given by (see equation (2.9))

1

N

(
K2 ∗ δXN (s)

)
(x) =

∫ s

0

1

N

Nr∑
i=1

K2

(
x − Xi,N (r)

) ∣∣Vi,N (r)
∣∣ �

r∈[T i,N ,Θi,N
)
dr

=

∫ s

0

∫
�d×�d

K2

(
x − x′) |v′|QN (r)

(
dx′, dv′

)
dr.

Let us set

g(s, x, {QN(r)}r∈[0,s]) := h

(
1

N

(
K2 ∗ δXN (s)

)
(x)

)
.

Thanks to the above, the compensator (2.19) can be rewritten as

γNg(s, x, {QN(r)}r∈[0,s])QN (s) (dx, dv) ds. (2.20)

Here, we wish to stress a couple of technical issues, which have led to the substantial

modification of the structure of the compensator with respect to previous models (see,

e.g., [5]). The first one is mainly motivated by the case of dimension d = 3, but then for

simplicity, we adopt it also in d = 2; since, for mathematical convenience, we have modelled

a vessel as a 1-dimensional curve in �d, it is essentially impossible that anastomosis takes

place, since the probability that two curves meet in �3 is negligible, even though they

may get very close to each other: the mathematical abstraction ‘vessel=curve’ would have

not been realistic here. In order to overcome this technical issue, we have introduced a

thickness of the curve, described by a kernel K2 (this is equivalent to keep vessels as

curves and introduce a thickness of tips). With this technical modification, the model has

become more realistic, since real vessels do not have dimension 1. Anyhow, this choice

has implied a second issue. The thickening of vessels induce a mathematical modelling

problem whenever the vessel network is highly dense in space; indeed, in such a situation

at a same point x more than one vessel may contribute to the quantity

1

N

(
K2 ∗ δXN (s)

)
(x), (2.21)

which is not realistic. In order to compete with this anomalous effect, we have introduced

a saturation via the function h.

Thanks to the above considerations, on one hand, we have solved significant modelling

biases, on the other hand, we have made the model more tractable from a mathematical

point of view.
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3 Evolution of the empirical measure

The evolution of the empirical measure QN (t) is obtained by application of Itô formula

to the expression

1

N

Nt∑
i=1

�
t∈[T i,N ,Θi,N

)
φ
(
Xi,N (t) ,Vi,N (t)

)
,

where φ is a C2 test function.

From Itô–Levy formula and the expressions of the compensators of the branching and

anastomosis processes, we obtain the identity∫
�d×�d

φ (x, v)QN (t) (dx, dv) =

∫
�d×�d

φ (x, v)QN (0) (dx, dv)

+

∫ t

0

∫
�d×�d

v · ∇xφ (x, v)QN (s) (dx, dv) ds

+

∫ t

0

∫
�d×�d

[f (CN (s, x))∇CN (s, x) − k1v] · ∇vφ (x, v)QN (s) (dx, dv) ds

+

∫ t

0

∫
�d×�d

σ2

2
Δvφ (x, v)QN (s) (dx, dv) ds

+

∫ t

0

∫
�d×�d

φG (x) α(CN(s, x))QN (s) (dx, dv) ds

+

∫ t

0

∫
�d×�d

φG (x) β(CN(s, x)) |v|
∫ s

0

QN (r) (dx, dv) drds

− γ
∫ t

0

∫
�d×�d

φ (x, v) g
(
s, x, {QN (r)}r∈[0,s]

)
QN (s) (dx, dv) ds

+ M̃N (t) . (3.1)

The martingale

M̃N (t) = M̃1,N (t) + M̃2,N (t) + M̃3,N (t)

is the sum of three zero-mean martingales, namely

M̃1,N (t) =

∫ t

0

1

N

Ns∑
i=1

∇vφ(Xi,N(s), V i,N(s))I
s∈[T i,N ,Θi,N

)
· dWi(s); (3.2)

M̃2,N (t) =

∫ t

0

∫
�d×�d

[φ(x, v)ΦN(ds× dx × dv)

− φG (x) α(CN(s, x))QN (s) (dx, dv) ds

− φG (x) β(CN(s, x)) |v|
∫ s

0

QN (r) (dx, dv) drds]; (3.3)
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M̃3,N (t) =

∫ t

0

∫
�d×�d

φ(x, v)[ΨN(ds× dx × dv)

− γg
(
s, x, {QN (r)}r∈[0,s]

)
QN (s) (dx, dv) ds]. (3.4)

In the above, we have denoted

φG (x) :=

∫
�d

Gv0 (v)φ (x, v) dv. (3.5)

3.1 Heuristic derivation of the limit PDE

It is now clear that the only source of stochasticity in the above system is in

the martingale terms. Classical laws of large numbers for martingales, allow us to conjec-

ture that the martingales are negligible. Consequently, if we assume we already know that

the sequences (QN)N∈� and (CN)N∈� converge, to a deterministic time-dependent meas-

ure pt (dx, dv) and a deterministic function Ct (x), respectively, the limit partial differential

equation (PDE) for the measure pt is conjectured to be∫
�d×�d

φ (x, v) pt (dx, dv) =

∫
�d×�d

φ (x, v) p0 (dx, dv)

+

∫ t

0

∫
�d×�d

v · ∇xφ (x, v) ps (dx, dv) ds

+

∫ t

0

∫
�d×�d

[f (CN (s, x))∇Cs (x) − k1v] · ∇vφ (x, v) ps (dx, dv) ds

+

∫ t

0

∫
�d×�d

σ2

2
Δvφ (x, v) ps (dx, dv) ds

+

∫ t

0

∫
�d×�d

φG (x) α(Cs (x))ps (dx, dv) ds

+

∫ t

0

∫ s

0

∫
�d×�d

φG (x) β(Cs (x)) |v| pr (dx, dv) drds

− γ
∫ t

0

∫
�d×�d

φ (x, v) g
(
s, x, {pr}r∈[0,s]

)
ps (dx, dv) ds, (3.6)

with

g
(
s, x, {pr}r∈[0,s]

)
= h

(∫ s

0

∫
�d×�d

K2

(
x − x′) |v′| pr (dx′, dv′

)
dr

)
= h

(∫ s

0

∫
�d

K2

(
x − x′) p̃r (dx′) dr) ,

having set

p̃r (dx) =

∫
�d

|v| pr (dx, dv) .
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Notice that ∫
�d×�d

φG (x) α(Cs (x))ps (dx, dv)

=

∫
�d×�d×�d

Gv0 (v
′)φ

(
x, v′

)
α(Cs (x))ps (dx, dv) dv

′

=

∫
�d×�d×�d

Gv0 (v)φ (x, v) α(Cs (x))ps
(
dx, dv′

)
dv

=

∫
�d×�d

Gv0 (v)φ (x, v) α(Cs (x))

(∫
�d

ps
(
dx, dv′

))
dv

=

∫
�d×�d

Gv0 (v)φ (x, v) α(Cs (x)) (π1ps) (dx) dv,

where we set

(π1ps) (dx) =

∫
�d

ps (dx, dv)

and similarly ∫ s

0

∫
�d×�d

φG (x) β(Cs (x)) |v| pr (dx, dv) dr

=

∫ s

0

∫
�d×�d×�d

Gv0 (v
′)φ

(
x, v′

)
β(Cs (x)) |v| pr (dx, dv) drdv′

=

∫ s

0

∫
�d×�d×�d

Gv0 (v)φ (x, v) β(Cs (x)) |v′| pr
(
dx, dv′

)
drdv

=

∫
�d×�d

Gv0 (v)φ (x, v) β(Cs (x))

∫ s

0

∫
�d

|v′| pr
(
dx, dv′

)
drdv

=

∫
�d×�d

Gv0 (v)φ (x, v) β(Cs (x))

∫ s

0

p̃r (dx) drdv.

Consequently, the limit PDE for Ct (x) is conjectured to be

∂

∂t
Ct (x) = k2δA (x) + d1ΔCt (x) − η

(
t, x, {ps}s∈[0,t]

)
Ct (x) ,

where

η
(
t, x, {ps}s∈[0,t]

)
=

∫ t

0

(∫
�d×�d

K1

(
x − x′) |v′| ps (dx′, dv′

))
ds. (3.7)

4 Main results

A rigorous proof of the above mentioned convergence of the evolution equations for the

empirical measure QN(t) to the evolution equation of the corresponding deterministic limit

measure pt requires various steps, including (i) tightness of the sequences of the laws of

(QN)N∈�, and (CN)N∈�; (ii) existence and uniqueness of the solution of the deterministic

evolution equation of the limiting measure pt (see, e.g., [8] and references therein).
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4.1 Assumptions and notations

Denote by M+

(
�d × �d

)
, the space of positive Radon measures and by M1

(
�d × �d

)
the space of those ρ (dx, dv) such that∫

�2d

(
1 + |v|

)
ρ (dx, dv) <∞.

Denote by L∞ (
0, T ;M1

(
�d × �d

))
, the space of time-dependent Radon measures

pt (dx, dv) such that t �→
∫

�2d φ (x, v)
(
1 + |v|

)
pt (dx, dv) is measurable for all φ ∈

C∞
c

(
�d × �d

)
and

sup
t∈[0,T ]

∫
�2d

(
1 + |v|

)
pt (dx, dv) <∞.

Denote by C
(
[0, T ] ;M+

(
�d × �d

))
the space of time-dependent measures that are

continuous when M+

(
�d × �d

)
is endowed of a metric corresponding to weak conver-

gence of measures.

Moreover, denote by �
(
[0, T ] ;M+

(
�d × �d

))
, the Skorohod space of càdlàg func-

tions with values in M+

(
�d × �d

)
, as defined in [3]. We use the Skorohod space

because birth and death of particles change discontinuously the empirical measure

of the process. However, the limit (deterministic) process is continuous, it belongs to

C
(
[0, T ] ;M+

(
�d × �d

))
and therefore, even on �

(
[0, T ] ;M+

(
�d × �d

))
, it is suffi-

cient to use the uniform topology, also for tightness arguments, as explained in [3, p. 157].

For a positive integer k, we denote by Ck
b

(
�d
)

the space of all functions on �d,

which are differentiable k times with bounded derivatives up to order k. We denote by

UCk
b

(
�d
)

the subspace of Ck
b

(
�d
)

of functions, which are uniformly continuous, with

their derivatives up to order k.

We assume that the initial conditions
(
XN

0 ,V
N
0

)
are independent and identically distrib-

uted (i.i.d.) random vectors, with a compact support law p0 ∈ M1

(
�d × �d

)
. Recall the

definition of the empirical measure QN (t) given in (2.5). From the previous assumption

on the initial conditions
(
XN

0 ,V
N
0

)
, we deduce that QN (0) converges to p0 in the following

sense: ∫
�d×�d

φ (x, v)
(
1 + |v|

)
QN (0) (dx, dv) →

→
∫

�d×�d

φ (x, v)
(
1 + |v|

)
p0 (dx, dv) ,

for every φ ∈ Cb
(
�d × �d

)
, where the convergence is understood in probability.

The initial condition C0 of the concentration is independent of N, just for simplicity.

We assume it of class UC2
b

(
�d
)
. Moreover, we assume

0 � C0 (x) � Cmax,

for some constant Cmax > 0. The convolution kernel K1 appearing in the TAF absorption

rate η and the convolution kernel K2 of the anastomosis, are both assumed of class

https://doi.org/10.1017/S0956792518000347 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000347


On the mean field approximation 631

UC1
b

(
�d
)

and nonnegative

K1 (x) � 0, K2 (x) � 0.

for all x ∈ �d. The function Gv0 (v) appearing in the vessel branching rate is assumed of

class UC1
b

(
�d
)
, with compact support, non negative, and such that∫

�d

Gv0 (v)
(
1 + |v|

)
dv <∞.

Several constants appear in the model; we assume

k1, k2, d1, d2, γ1, α1, CR > 0.

4.2 Theorems of convergence and well posedness of the limit PDE system

Under these assumptions, we prove our main result.

Theorem 4.1 As N → ∞, QN(t) converges in probability, in the space � ([0, T ] ;

M+

(
�d × �d

))
with the uniform topology, to a time-dependent deterministic Radon

measure pt on �d × �d, also of class L∞ (
0, T ;M1

(
�d × �d

))
and CN converges in

C
(
[0, T ] ;C1

b

(
�d
))

to a deterministic function C of this space. The measure pt is a weak

solution in the sense specified in Definition 4.2 (unique in L∞ (
0, T ;M1

(
�d × �d

))
thanks

to Theorem (4.3) below) of the equation

∂tpt + v · ∇xpt + divv ([f (Ct)∇Ct − k1v] pt) =
σ2

2
Δvpt

+ Gv0
(v) dv

(
α(Ct) (π1pt) (dx) + β(Ct)

∫ t

0

p̃r (dx) dr

)
− γpth

(∫ t

0

(K2 ∗ p̃r) (x) dr

)
. (4.1)

The function Ct is a mild solution (in the sense specified in Definition 4.2) of the equation

∂tCt (x) = k2gΣ (x) + d1ΔCt (x) − η
(
t, x, {ps}s∈[0,t]

)
Ct (x) , (4.2)

where η is given in equation (3.7).

Definition 4.2 We say that a measure-valued function pt of class

C
(
[0, T ] ;M+

(
�d × �d

))
∩ L∞ (

0, T ;M1

(
�d × �d

))
is a weak solution of equation (4.1) if, for every compact support test function φ (x, v) of

class C2, identity (3.6) holds true.

Moreover, we say that a function Ct of class

C
(
[0, T ] ;UC1

b

(
�d
))
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is a mild solution of equation (4.2) if, it satisfies the identity

Ct = etAC0 +

∫ t

0

e(t−s)A
(
k2δA − η

(
s, ·, {pr}r∈[0,s]

)
Cs

)
ds,

where etA is the heat semigroup in UCb
(
�d
)

generated by the operator A = d1Δ.

As anticipated above, the proof of Theorem 4.1 is based on several arguments including

a uniqueness result for the system of PDEs (4.1)–(4.2), which we state separately because

of its independent interest.

Theorem 4.3 There exists a unique solution of System (4.1)–(4.2), with

p ∈ L∞ (
0, T ;M1

(
�d × �d

))
and C ∈ C

(
[0, T ] ;C1

b

(
�d
))

.

The proof of Theorem 4.1 is given in Section 5. The proof of Theorem 4.3 is given in

Appendix C.

Remark 4.4 In the framework of this paper, the PDE for the measure pt will be always

interpreted as a PDE for measure-valued functions. However, under suitable assumptions,

the relevant measure may admit a density ρt(x, v), which is a classical function, so that

the PDE can be interpreted in a more classical sense (we do not investigate rigorously

this issue here, we only give the heuristic result). The formal expression for the evolution

equation of the density ρt(x, v) would then be

∂tρt (x, v) + v · ∇xρt (x, v) + divv ([f (Ct (x))∇Ct (x) − k1v] ρt (x, v))

=
σ2

2
Δvρt (x, v) + Gv0

(v)

(
α(Ct (x)) (π1ρt) (x) + β(Ct (x))

∫ t

0

ρ̃r (x) dr

)
− γρth

(∫ t

0

(K2 ∗ ρ̃r) (x) dr

)
. (4.3)

Here, we have taken

(π1ρt) (x) =

∫
�d

ρt (x, v) dv,

and

ρ̃r (x) =

∫
�d

|v|ρr (x, v) dv.

5 Proof of Theorem 4.1

Let us explain the steps of the proof. First, we prove bounds, uniform in N, on the particle

system (2.1) and the PDE (2.3). This is the core of the method. From these bounds, we

deduce tightness of the sequence of laws of {QN , N ∈ �} and {CN , N ∈ �}, and therefore

the existence of a weakly convergent subsequence. Then, we show that the limit of this

subsequence is concentrated on solutions of the limit system (4.1)–(4.2). This provides, in

particular, the existence claim of Theorem 4.3. From the uniqueness claim of that theorem,
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proved in Appendix C, we deduce that the whole sequence {(QN,CN), N ∈ �}, converges

weakly; and converges also in probability because the limit is deterministic (again due to

uniqueness).

5.1 Regularity of η and CN

We interpret equation (2.3) for CN in the mild semigroup form

CN (t) = etAC0 +

∫ t

0

e(t−s)A
(
k2gΣ − η

(
s, ·, {QN (r)}r∈[0,s]

)
CN (s)

)
ds.

Here, etA denotes the heat semigroup associated with the operator A := d1Δ on �d;

A : UC2
b

(
�d
)
⊂ UC0

b

(
�d
)
→ UC0

b

(
�d
)
.

Lemma 1 Given a measure μ ∈ L∞ (
0, T ;M1

(
�d × �d

))
, the function

η (t, x) := η
(
t, x, {μs}s∈[0,t]

)
=

∫ t

0

(∫
�d×�d

K1

(
x − x′) |v′| μs (dx′, dv′

))
ds

is of class C
(
[0, T ] ;UC1

b

(
�d
))

.

Proof It follows from the assumption K1 ∈ C1
b

(
�d
)

and repeated application of Le-

besgue dominated convergence theorem and the definition of uniform continuity, ap-

plied first to check continuity, then differentiability, finally, uniform continuity of the

derivatives. Boundedness of η
(
t, x, {QN (s)}s∈[0,t]

)
and its derivatives comes from the

boundedness of K1 and its derivatives and from the bound fulfilled by elements of

L∞ (
0, T ;M1

(
�d × �d

))
. �

The equation for CN is not closed, since it depends on QN , which depends on CN via

(2.1). However, let us first understand the regularity of CN when QN is given. So, in the

next lemma, the tacit assumption is that QN is a well-defined adapted random element of

L∞ (
0, T ;M1

(
�d × �d

))
.

Corollary 1 CN is an adapted process with paths of class C
(
[0, T ] ;UC1

b

(
�d
))

. Moreover,

‖∂iCN (t)‖∞ � c ‖∂iC0‖∞

+

∫ t

0

c√
t− s

(
‖k2δA‖∞ +

∥∥∥η (s, ·, {QN (r)}r∈[0,s]

)∥∥∥
∞

‖CN (s)‖∞
)
ds

for some constant c > 0.

Proof It is clear that the sum of the first two terms

w (t) := etAC0 +

∫ t

0

e(t−s)Ak2gΣds
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is an element of C
(
[0, T ] ;UC1

b

(
�d
))

, since derivatives commute with the heat semig-

roup and we use the assumption C0, gΣ ∈ UC1
b

(
�d
)
. Then, taken a single realisation

of η
(
t, x, {QN (s)}s∈[0,t]

)
, thanks to the previous lemma, it is sufficient to apply the

contraction principle to the map

CN �→ Λ (CN) (t) := w (t) −
∫ t

0

e(t−s)Aη
(
s, ·, {QN (r)}r∈[0,s]

)
CN (s) ds,

in the space C
(
[0, T ] ;UC1

b

(
�d
))

(first locally in time, then on repeated intervals of equal

length). A posteriori, the unique fixed point CN depends measurably on the randomness,

being the limit of iterates that are measurable by direct construction. To check that CN
is adapted, it is sufficient to apply the previous measurability argument to each interval

[0, t]. Let us prove the inequality in the claim of the corollary. From the mild formulation

of the PDE for CN , we have

∂iCN (t) = etA∂iC0 +

∫ t

0

∂ie
(t−s)A

(
k2gΣ − η

(
s, ·, {QN (r)}r∈[0,s]

)
CN (s)

)
ds, (5.1)

where we have used the fact that ∂je
tAf = etA∂jf for every f ∈ UC1

b

(
�d
)
. It is well

known that there exists a constant C > 0 such that∥∥∂ie
tAf
∥∥
∞ �

C√
t
‖f‖∞ , (5.2)

for all t > 0 and f ∈ C0
b

(
�d
)
. The inequality of the corollary readily follows. �

In fact, due to the regularisation properties of the heat semigroup, the paths of CN are

more regular. We express here only one regularity property, not the maximal one.

Proposition 5.1 CN has a.e. path of class C
(
[0, T ] ;UC2

b

(
�d
))

, and

‖∂i∂jCN (t)‖∞ � c ‖∂i∂jC0‖∞ +

∫ t

0

c√
t− s

k2 ‖∂jgΣ‖∞ ds

+

∫ t

0

c√
t− s

∥∥∥∂jη
(
s, ·, {QN (r)}r∈[0,s]

)∥∥∥
∞

‖CN (s)‖∞ ds

+

∫ t

0

c√
t− s

∥∥∥η (s, ·, {QN (r)}r∈[0,s]

)∥∥∥
∞

‖∂jCN (s)‖∞ ds,

for some constant c > 0.

Proof From the mild formulation of the PDE for CN , as in the previous proof, we have

∂i∂jCN (t) = etA∂i∂jC0

+

∫ t

0

∂ie
(t−s)A∂j

(
k2gΣ − η

(
s, ·, {QN (r)}r∈[0,s]

)
CN (s)

)
ds, (5.3)
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where we have used the fact that C0 ∈ UC2
b

(
�d
)

by assumption. We know from the

assumption on gΣ , from Lemma 1 and Corollary 1, that

∂j

(
k2gΣ − η

(
s, ·, {QN (r)}r∈[0,s]

)
CN (s)

)
has paths in C

(
[0, T ] ;UC0

b

(
�d
))

. Hence,∥∥∥∂ie
(t−s)A∂j

(
k2gΣ − η

(
s, ·, {QN (r)}r∈[0,s]

)
CN (s)

)∥∥∥
∞

�
C√
t− s

∥∥∥∂j

(
k2gΣ − η

(
s, ·, {QN (r)}r∈[0,s]

)
CN (s)

)∥∥∥
∞

�
C ′

√
t− s

,

for a suitable constant C ′ > 0. Since
1√
t− s

is integrable on [0, t], it follows that

∫ t

0

∂ie
(t−s)A∂j

(
k2gΣ − η

(
s, ·, {QN (r)}r∈[0,s]

)
CN (s)

)
ds

is an element of C
(
[0, T ] ;UC0

b

(
�d
))

. The same holds for etA∂i∂jC0 since C0 ∈ UC2
b

(
�d
)
.

Therefore, ∂i∂jCN is in C
(
[0, T ] ;UC0

b

(
�d
))

. This proves the regularity claim. The in-

equality is obtained by the estimates explained during the proof. �

Finally, from the property 0 � C0 (x) � Cmax, by classical maximum principle estimates,

we deduce:

Lemma 2

0 � CN (t, x) � Cmax,

for all t � 0 and x ∈ �d.

We have used also the fact that η
(
t, x, {QN (s)}s∈[0,t]

)
� 0.

5.2 Preliminary estimates on CN based on
∣∣Vi,N

∣∣
We summarise the result of the previous section in the following lemma.

Lemma 3 There exist constants a0, a1, a2, a3, a4 > 0 such that, for i, j = 1, ..., d,

‖∂iCN (t)‖∞ � a0 +

∫ t

0

a1√
t− s

∫ s

0

1

N

Nr∑
i=1

�
r∈[T i,N ,Θi,N

)

∣∣Vi,N (r)
∣∣ drds, (5.4)

‖∂i∂jCN (t)‖∞ � a2 +

∫ t

0

a3√
t− s

∫ s

0

1

N

Nr∑
i=1

�
r∈[T i,N ,Θi,N

)

∣∣Vi,N (r)
∣∣ drds, (5.5)

+

∫ t

0

a4√
t− s

(∫ s

0

1

N

Nr∑
i=1

�
r∈[T i,N ,Θi,N

)

∣∣Vi,N (r)
∣∣ dr) ‖∂jCN (s)‖∞ ds.
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Proof Recall that

η
(
s, x, {QN (r)}r∈[0,s]

)
=

∫ s

0

1

N

Nr∑
i=1

�
r∈[T i,N ,Θi,N

)
K1

(
x − Xi,N (r)

) ∣∣∣Vi,N (r)
∣∣∣ dr. (5.6)

Hence, ∥∥∥η (s, x, {QN (r)}r∈[0,s]

)∥∥∥
∞

� ‖K1‖∞
∫ s

0

1

N

Nr∑
i=1

�
r∈[T i,N ,Θi,N

)

∣∣∣Vi,N (r)
∣∣∣ dr, (5.7)

∥∥∥∂jη
(
s, x, {QN (r)}r∈[0,s]

)∥∥∥
∞

� ‖∂jK1‖∞
∫ s

0

1

N

Nr∑
i=1

�
r∈[T i,N ,Θi,N

)

∣∣∣Vi,N (r)
∣∣∣ dr. (5.8)

From Lemma 2, we have

‖CN‖∞ � Cmax.

Then, from the inequality of Corollary 1, we have

‖∂iCN (t)‖∞ � c ‖∂iC0‖∞ +

∫ t

0

c√
t− s

‖k2gΣ‖∞ ds

+

∫ t

0

cCmax ‖K1‖∞√
t− s

∫ s

0

1

N

Nr∑
i=1

�
r∈[T i,N ,Θi,N

)

∣∣Vi,N (r)
∣∣ drds,

hence, we have the first inequality of the lemma, taking

a0 = c ‖∇C0‖∞ + 2ck2 ‖gΣ‖∞ T 1/2, and a1 = cCmax ‖K1‖∞ .

Now, from the inequality of Proposition 5.1, we have

‖∂i∂jCN (t)‖∞ � c ‖∂i∂jC0‖∞ +

∫ t

0

c√
t− s

k2 ‖∂jδA‖∞ ds

+

∫ t

0

cCmax ‖∂jK1‖∞√
t− s

∫ s

0

1

N

Nr∑
i=1

�
r∈[T i,N ,Θi,N

)

∣∣Vi,N (r)
∣∣ drds

+

∫ t

0

c√
t− s

‖K1‖∞
∫ s

0

1

N

Nr∑
i=1

�
r∈[T i,N ,Θi,N

)

∣∣Vi,N (r)
∣∣ dr ‖∂jCN (s)‖∞ ds.

Hence, we have the second inequality of the lemma, taking

a2 = c
∥∥D2C0

∥∥
∞ + 2ck2 ‖∇gΣ‖∞ T 1/2, a3 = cCmax ‖∇K1‖∞ and a4 = c ‖K1‖∞ .

�

5.3 Upper bound on the number of particles

Let us recall that Nt denotes the number of tip cells however born up to time t � 0.

Clearly, this number depends on the initial number N of tips; we might have written NN
t

to emphasise this dependence, but we have preferred to keep the simpler notation Nt. In

https://doi.org/10.1017/S0956792518000347 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000347


On the mean field approximation 637

this section, we establish bounds on Nt; actually, we mean bounds on the ratio

Nt

N

since this is the only quantity that may have bounds (on the average) independent of N.

Theorem 5.2 There exists a λ > 0 such that

�

[
sup
t∈[0,T ]

Nt

N

]
� eλT ,

for all N ∈ � and T � 0.

Remark 5.3 The rest of this section is devoted to the proof of this result. In the classical

case, when branching of particles occurs only at the particle position, it is usual to

introduce a Yule process that dominates the branching process under study: one has to

take, as parameter of the Yule process, any number that bounds from above the variable

rates of branching of the particles, see for instance [21]. In the case of the system studied

here, we are faced with two difficulties. The first one is that branching occurs also along

the vessels; there is now a spatial density rate and it is less easy to relate this variable

density rate with a constant upper bound of Yule type. This is made even more difficult

by the presence of the factor |v| in the branching rates, a factor that is a priori unbounded

(see (2.15), and (2.16)). We thus have to work much more than in the classical case.

5.3.1 Proof of Theorem 5.2

In order to obtain a preliminary domination from above of the counting process {Nt, t �

0}, it is sufficient to obtain a bound for the ratio
Nt

N
for the case γ = 0, Θi,N = +∞, i =

1, . . . , Nt.

With reference to this modified process, denote by(
Xi,N (t) ,Vi,N (t)

)
t�T i,N , i = 1, . . . , Nt,

the active tips of this system. Each i-tip, for i = 1, . . . , Nt, is able to create new tips

either by branching at the tip itself, at position Xi,N (t), or by branching along the vessel(
Xi,N (s)

)
s∈[T i,N ,t] that it has generated up to time t � T i,N. The time-rate of creation of

new particles, either by Xi,N (t) or by its vessel is obtained by the integral on space of the

relevant space-time rates (2.13), or (2.15), respectively, and it tells us the rate of creations

in time, independently of the position where creation occurs. The time-rate of creation at

the tip position is then given by

λi,1 (t) := �t�T i,N α(CN(t,Xi,N (t)))g0,

where g0 =
∫

�d Gv0
(v)dv; and the time-rate of creation along the vessel

(
Xi,N (s)

)
s∈[T i,N ,t]
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is given by

λi,2 (t) := �t�T i,N β(CN(t,Xi,N (t)))g0

∫ t

0

∣∣Vi,N (s)
∣∣ �s�T i,N ds.

The two branching processes introduced above can be represented as two inhomogen-

eous Poisson processes with random rates, Ni,1
(∫ t

0
λi,1 (s) ds

)
, and Ni,2

(∫ t
0
λi,2 (s) ds

)
, for

each particle i = 1, . . . , Nt; here, Ni,1 (t), Ni,2 (t), are standard Poisson processes of rate 1.

Notice that all processes in the family
{
Ni,1, Ni,2,Wi; i = 1, . . . , Nt

}
are independent.

When the process Ni,1
(∫ t

0
λi,1 (s) ds

)
jumps from 0 to 1 a new particle is created at

Xi,N (t); when the process Ni,2
(∫ t

0
λi,2 (s) ds

)
jumps from 0 to 1 a new particle is created

along the vessel
(
Xi,N (s)

)
s∈[T i,N ,t] (the position where it is created is assumed to be

uniformly distributed along the vessel, with respect to the relevant Hausdorff measure).

After each new creation, there is a new tip with a new index, and its own dynamics.

At the analytical level, we have the inequalities

λi,1 (t) � �t�T i,N ‖α‖∞ g0;

λi,2 (t) � �t�T i,N ‖β‖∞ g0T

(
C + CT + σ sup

s∈[0,T ]

∣∣∣∣∫ s

0

ek1rdWi (r)

∣∣∣∣) ,
the second one due to the following lemma, used also below in other sections. In the

stochastic equation for Vi,N (t), it is not restrictive to assume that the Brownian motion

Wi (t) are defined for all t � 0, not only for t � T i,N .

Lemma 4 There exists a constant C > 0 such that

∣∣Vi,N (t)
∣∣ � e−k1(t−T i)

∣∣∣Vi,N
0

∣∣∣+ ∫ t

T i

Cds+ σ

∫ t

0

ek1sdWi (s)

and also ∣∣Vi,N (t)
∣∣ � C (1 + T ) + σ

∫ t

0

ek1sdWi (s) .

Proof From the variation of constant formula, we have

∣∣Vi,N (t)
∣∣ � e−k1(t−T i)

∣∣∣Vi,N
0

∣∣∣
+

∫ t

T i

e−k1(t−s)f
(
CN

(
s,Xi,N (s)

)) ∣∣∇CN (s,Xi,N (s)
)∣∣ ds

+ σ

∫ t

T i

e−k1(t−s)dWi (s) .

Then, we use the bound from above for f (r) r by a constant, see (2.4), and the boundedness

of Vi,N
0 (recall we have assumed that their laws are compact support). �
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We now introduce a new dominating process, without space structure, where the times

of birth of new particles are denoted by T̃ i,N , for i = 1, . . . , Ñt, having denoted by Ñt, the

total number of particles at time t in this dominating process.

Given the same standard processes Ni,1, Ni,2,W i of the previous process, take now as

time-rates of branching

λ̃i,1 (t) = �
t�T̃ i,N ‖α‖∞ g0

λ̃i,2 (t) = �
t�T̃ i,N ‖β‖∞ g0T

(
C + CT + σ sup

s∈[0,T ]

∣∣∣∣∫ s

0

ek1rdWi (r)

∣∣∣∣) .
We then consider the inhomogeneous Poisson processes

Ni,j

(∫ t

0

λ̃i,j (s) ds

)
, i = 1, . . . , Ñt, j = 1, 2;

when they jump from 0 to 1, a new particle is created and the system with the two new

particles restart with the same rules.

Due to the path by path inequalities λi,j (t) � λ̃i,j (t) and the fact that Ni,1 (t), Ni,2 (t) are

the same, the times when the processes Ni,j(
∫ t

0
λi,j(s)ds) jump from 0 to 1 are posterior

to the times when the processes Ni,j(
∫ t

0
λ̃i,j(s)ds) jump from 0 to 1; precisely, this fact is

established in iterative manner, first on the particles that have T i,N = T̃ i,N = 0 (for which

the inequalities λi,j (t) � λ̃i,j (t) are directly true), then for the newborn particles, where

T i,N � T̃ i,N , hence, �t�T i,N � �
t�T̃ i,N and thus again λi,j (t) � λ̃i,j (t).

The fact that the dominating process has the times of branching before the original

process implies that the total number of particles in the dominating process is larger than

in the original process, namely

Nt � Ñt.

This is the result we wanted to obtain. Therefore, in order to have bounds from above for

Nt, it is sufficient to have them for Ñt. Until now, however, we have solved only one of

the difficulties posed by branching along paths: we have dominated the space-dependent

original process by a much simpler one, without space structure. However, the dominating

process is not Yule, because the rate λ̃i,2 (t) is random, it depends on Wi. This dominating

process, without spatial structure, is of Cox-type, being made of inhomogeneous Poisson

processes with random rates of jump, but independent of the process itself. Hence, we are

now faced with the second difficulty, namely estimating the number of particles in this

new process.

When we deal with the dominating process itself, without exploiting the stochastic

coupling with the original one, we may formalise it by saying that we have random

variables Zi distributed as

Zi Law∼ ‖α‖∞ g0 + C ‖β‖∞ g0T (T + 1) + ‖β‖∞ g0Tσ sup
s∈[0,T ]

∣∣∣∣∫ s

0

ek1rdWi (r)

∣∣∣∣ ,
that are independent and equally distributed. Particle i has a rate of branching given by

λ̃i (t) = �
t�T̃ i,NZ

i.
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We perform now a further reduction. The process we are considering starts with N

particles. But due to its nature, completely non interacting, it is the same as N independent

copies of the same process starting from one particle. Thus,

Ñt =

N∑
k=1

Ñ
(k)
t ,

where for each k, Ñ(k)
t is a process like the dominating one, but with only one particle

at the beginning; and the processes with cardinality Ñ
(k)
t are independent and equally

distributed. We have

�

[(
Ñt

N

)p]
= �

[(
1

N

N∑
k=1

Ñ
(k)
t

)p]
� �

[
1

N

N∑
k=1

(
Ñ

(k)
t

)p]

=
1

N

N∑
k=1

�
[(
Ñ

(k)
t

)p]
= �

[(
Ñ

(1)
t

)p]
.

Hence, for the sake of p-moments of Ñt

N
(and a fortiori Nt

N
), it is sufficient to bound the

p-moments of Ñ(1)
t . A similar fact holds for exponential moments, with a little more work.

In the sequel, we shall denote Ñ(1)
t by Nt.

Let us analyse the dominating process Nt with analogous formalism as the original

space-dependent process; we do not need however to index by N all quantities, since this

process starts with one particle only. Let us denote by T
i
the birth time of particle i, by

Z
i
independent and identically distributed (i.i.d.) random variables as those above, and

prescribe that the first particle has index i = 1, the second particle (the first newborn) has

index i = 2, the third one i = 3, and so on. Then, branching is described by a random

measure Φ on B�+ with compensator given by

Ns∑
i=1

�
s�T iZ

i
ds.

Moreover, the random measure Φ is given by Φ (ds) =
∑Ns

i=1 δT i (ds). Therefore, Nt satisfies

Nt = 1 +

∫ t

0

Ns∑
i=1

�
s�T iZ

i
ds+Mt,

where Mt is the martingale

Mt =

∫ t

0

Φ (ds) −
∫ t

0

Ns∑
i=1

�
s�T iZ

i
ds.
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We thus have

�
[
Nt

]
= 1 +

∫ t

0

�

⎡⎣ Ns∑
i=1

�
s�T iZ

i

⎤⎦ ds
� 1 +

∫ t

0

�

⎡⎣ Ns∑
i=1

Z
i

⎤⎦ ds.
Wald’s identity (proved below) tells us that �

[∑Ns

i=1 Z
i
]

= �
[
Z

1
]
�
[
Ns

]
; hence,

�
[
Nt

]
� 1 +

∫ t

0

�
[
Z

1
]
�
[
Ns

]
ds,

which implies

�
[
Nt

]
� e

�
[
Z

1
]
t
.

Since �
[
sups∈[0,T ]

∣∣∫ s
0
ek1rdW1 (r)

∣∣] < ∞, we have completed the proof of the theorem,

with λ = E
[
Z

1
]
.

Let us explain the validity of Wald’s identity. Notice that Nt increases from value n to

n + 1 at time Tn+1; this time depends only on the first n particles; hence, on the r.v.’s

Z1, ..., Zn. Hence, Tn+1 and Zn+1 are independent. Therefore,

�

⎡⎣ Nt∑
n=1

Z
n

⎤⎦ =

∞∑
k=1

k∑
n=1

�
[
Z
n
1Nt=k

]
=

∞∑
n=1

∞∑
k=n

�
[
Z
n
1Nt=k

]

=

∞∑
n=1

�
[
Z
n
1Nt�n

]
=

∞∑
n=1

�
[
Z
n
1Tn�t

]
=

∞∑
n=1

�
[
Z
n
]
P (Tn � t)

= �
[
Z
] ∞∑
n=1

P
(
Nt � n

)
= �

[
Z
]
�
[
Nt

]
.

5.4 Final bounds on CN

Proposition 5.4 For every ε > 0, there is R > 0 such that

�

(
sup
t∈[0,T ]

‖∇CN (t)‖E > R

)
� ε, (5.9)

�

(
sup
t∈[0,T ]

∥∥D2CN (t)
∥∥
E
> R

)
� ε, (5.10)

for all N ∈ �.
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Proof Using Lemma 4 in (5.4), we get

‖∂iCN (t)‖∞ � a0 +

∫ t

0

a1√
t− s

∫ s

0

1

N

Nr∑
i=1

�
r∈[T i,N ,Θi,N

)

∣∣Vi,N (r)
∣∣ drds

� a0 +

∫ t

0

a1√
t− s

∫ s

0

Nr

N
C (1 + T ) drds

+

∫ t

0

a1√
t− s

∫ s

0

1

N

Nr∑
i=1

(
σ

∫ r

0

ek1udWi (u)

)
drds

� C + C sup
r∈[0,T ]

Nr

N
+ C

1

N

supr∈[0,T ] Nr∑
i=1

sup
r∈[0,T ]

∣∣∣∣∫ r

0

ek1udWi (u)

∣∣∣∣ ds,
for some constant C > 0. We apply the estimates and arguments of the previous section

(dominating supr∈[0,T ]Nr from above as in that section), including Wald’s identity for the

second term, to get

�

[
sup
t∈[0,T ]

‖∇CN (t)‖E
]

� C

and thus (5.9). Using this bound and the same arguments, one gets (5.10) (here a bound

in expected value is not known). �

5.5 End of the proof

Denote by M+

(
�d × �d

)
, the space of finite positive Borel measures on �d × �d.

Following [32], Chapter 1, (see [24], Chapter 4), weak convergence of measures in

M
(
�d × �d

)
is metrisable and a metric is given by

δ (μ1, μ2) =

∞∑
k=1

2−k
(
|μ1 (φk) − μ2 (φk)| ∧ 1

)
,

where {φk} is a suitable dense countable set in Cb
(
�d × �d

)
, and one can take φk of

class UC1
b

(
�d × �d

)
, the space of bounded uniformly continuous functions on �d ×�d,

with their first derivatives. Consider the space Y := �
(
[0, T ] ;M+

(
�d × �d

))
endowed

with the uniform topology. Our first aim in this section is to prove that the family of laws

of QN , N ∈ �, is tight on Y , namely for every ε > 0 there is a compact set Kε ⊂ Y such

that P (QN ∈ Kε) > 1 − ε. From Proposition 1.7 of [24], if we show that for every k ∈ �
the family of laws on � ([0, T ]) (with the uniform topology) of the real-valued stochastic

processes 〈QN (t) , φk〉, N ∈ �, is tight, then the family of laws of QN , N ∈ �, is tight on

Y . For every k ∈ �, thanks to Aldous criterion (see [24], Chapter 4), it is sufficient to

prove two conditions: for every ε > 0 there is R > 0 such that

�
(
|〈QN (t) , φk〉| > R

)
� ε, (5.11)
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for all t ∈ [0, T ] and N ∈ �; and that for every ε > 0

lim
η→0

lim sup
N→∞

sup
τ∈ΥT
θ∈[0,η]

�
(
|〈QN (τ+ θ) , φk〉 − 〈QN (τ) , φk〉| > ε

)
= 0, (5.12)

where ΥT is the family of stopping times bounded by T .

Proposition 5.5 Conditions (5.11) and (5.12) hold true.

Proof See Appendix B. �

We have proved that the family of laws of {QN,N ∈ �}, is tight on Y . The tightness

of the sequence of laws of {CN,N ∈ �}, on C
(
[0, T ] ;C1

loc

(
�d
))

can be proved using

(5.9)–(5.10) and a few classical additional PDE arguments for the compactness in time. A

posteriori, using the mild formulations of the equations for CN and C and the uniform

convergence of η(t, x, {QN (s)}s∈[0,t]) to η(t, x, {ps}s∈[0,t]), we deduce convergence of CN to

C in C
(
[0, T ] ;UC1

b

(
�d
))
. We omit the details.

Therefore, the family of laws of the pair {(QN,CN) , N ∈ �}, is tight on Y ×
C
(
[0, T ] ;UC1

b

(
�d
))

. By Prohorov theorem, there exist weakly convergent subsequences.

A uniform in N bound in expectation on QN in L∞ (
0, T ;M1

(
�d × �d

))
implies that

that the same bound holds for any limit point of (QN,CN).

The proof that the limit is supported on solutions of the limit system is again classical

(see, e.g., [24], Chapter 4). The conclusion of the proof of Theorem 4.1 has been outlined

at the beginning of the section.

6 Concluding remarks

As we have mentioned in Section 1, a large literature has been devoted to the mathematical

modelling of angiogenesis, including tumour-driven angiogenesis, and retinal vasculogen-

esis. The existing literature offers a variety of interesting results based on hybrid models,

consisting of discrete and stochastic models at the scale of cells, coupled with continuous

models for the underlying fields that drive the dynamics of the cells. Interesting numerical

simulations have been carried out, which exhibit realistic behaviours.

Actually, to the knowledge of the authors, for the kind of models considered here, a

rigorous proof of the widely accepted mean-field approximation of the RDEs governing

the underlying fields had not yet been given, though heuristic derivations are available

for various models.

Eventually, in this paper, the authors have been able to derive mean field equations

with the required, non trivial, rigorous approach. The reader may notice that throughout

the proofs, peculiar mathematical structures have been adopted for functional responses;

it is important to remark that these modifications, though required as sufficient conditions

for the rigorous mathematical treatment, may inspire a more realistic structure of the

proposed model.

An interesting fall out of the convergence results is the identification of a limit mean

field equation for the relevant spatial measure of active tips. This equation, different
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from existing ones, presents a very peculiar structure, corrected with respect to the one

anticipated in [4, 5] via heuristic derivations, thanks to a more rigorous treatment. It has

been left to additional investigation a proper proof of the existence of a density for this

measure, as mentioned in Remark 4.4.

The proofs presented here are based on several methodologies. The estimates on the

TAF field are based on methods of semigroup theory, see for instance [30]. The estimates

on tip cells contain a very difficult technical question, the control of the average number

of cells, completely new with respect to classical Yule processes because of the generation

along the paths; this is handled in Section 5.3 using a coupling argument with a Cox-type

process and employing Wald’s identity. Tightness and convergence argument are classical,

see [24], [28]. The proof of uniqueness of measure-valued solutions is based on a strategy,

which has been used sometimes in the literature [28], but estimates are more demanding

than in classical cases and include specialised results like Lemma 5, see for instance [18]

for related techinques. The proof of strict positivity of solutions is based on ideas from

the theory of inverse uniqueness, see for instance [34].

Future investigations may concern the qualitative behaviour of the limiting equations,

including regularity issues like the one mentioned in Remark 4.4, a rigorous justification

of the statistical many replicas approach (see [5]) in contrast to the mean field approach

presented here, and the numerical simulation of the system.

A more ambitious project would be to extend the modelling to the later evolution of the

system, by including blood flow in the vessel network. Some attempts along this direction

can be found in [26].
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3rd ed., Birkhäuser, Boston.

https://doi.org/10.1017/S0956792518000347 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000347


On the mean field approximation 645

[9] Capasso, V. & Flandoli, F. (2016) On stochastic distributions and currents. Math. Mech.

Complex Syst. 4, 373–406.

[10] Capasso, V. & Morale, D. (2009) Stochastic modelling of tumour-induced angiogenesis.

J. Math. Biol. 58, 219–233.

[11] Capasso, V. & Villa, E. (2008) On the geometric densities of random closed sets. Stoch. Anal.

Appl. 26, 784–808.

[12] Carmeliet, P. F. (2005) Angiogenesis in life, disease and medicine. Nature 438, 932–936.

[13] Carmeliet, P. & Tessier-Lavigne, M. (2005) Common mechanisms of nerve and blood

vessel wiring. Nature 436, 193—200.

[14] Cercignani, C. & Pulvirenti, M. (1993) Nonequilibrium problems in many-particle systems.

An introduction. In: C. Cercignani & M. Pulvirenti (editors), Nonequilibrium Problems in

Many-Particle Systems, Lecture Notes in Mathematics, Vol. 1551, Springer-Verlag, Heidel-

berg, pp. 1–13.
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Appendix A Strict positivity of the solution of the mean field PDE system

Let (p, C) be the solution on [0, T ] of the PDE system, with p0 a non-negative measure.

For every t ∈ [0, T ], pt is also a non-negative measure. Let us denote by

Mt :=

∫
�d×�d

pt (dx, dv) ,

its total mass. Moreover, let us denote by

MN
t :=

∫
�d×�d

QN (t) (dx, dv) ,

the total empirical mass.
The following theorem excludes extinction of the tip cells, in the PDE limit, during any

finite time interval [0, T ]; as a consequence, for large N, the same holds for the random

empirical measure of tips.

Theorem A.1 If M0 > 0 then, for any choice of T > 0,

Mt > 0 for every t ∈ [0, T ] .

More precisely, there is a constant Cp0 ,T > 0, depending on p0 and T such that Mt � Cp0 ,T

for all t ∈ [0, T ]. Due to the weak convergence result for the empirical measures, we also

have

lim
N→∞

�
(
MN

t � Cp0 ,T /2 for all t ∈ [0, T ]
)

= 1.

Proof In the weak formulation (21) of the equation for pt, let us take the test function

φ (x, v) identically equal to 1 (more precisely, one has to take the limit of test functions

converging to 1; we omit the details). We get, with g0 :=
∫

�d Gv0 (v) dv,

Mt = M0 + g0

∫ t

0

∫
�d

α (Cs (x)) (π1ps) (dx) ds

+ g0

∫ t

0

∫
�d

β (Cs (x))

∫ s

0

p̃r (dx) drds

− γ

∫ t

0

∫
�d×�d

h

(∫ s

0

(K2 ∗ p̃r) (x) dr

)
ps (dx, dv) ds.

Since M0 > 0 and the function Mt is continuous (pt is weakly continuous), there is an

open interval (0, τ), where Mt > 0, such that either τ = +∞, or τ < ∞ and Mτ = 0. We
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have to exclude the second case. For t ∈ (0, τ), we have

− logMt = − logM0 −
∫ t

0

1

Ms

d

ds
Msds,

hence, from the previous identity

− logMt = − logM0 −
∫ t

0

1

Ms

g0

∫
�d

α (Cs (x)) (π1ps) (dx) ds

−
∫ t

0

1

Ms

g0

∫
�d

β (Cs (x))

∫ s

0

p̃r (dx) drds

+

∫ t

0

1

Ms

γ

∫
�d×�d

h

(∫ s

0

(K2 ∗ p̃r) (x) dr

)
ps (dx, dv) ds.

Since g0 � 0, α (·) � 0, β (·) � 0, π1ps and p̃r are non-negative measures, the first two

integral terms are positive; hence, we have

− logMt � − logM0 +

∫ t

0

1

Ms

γ

∫
�d×�d

h

(∫ s

0

(K2 ∗ p̃r) (x) dr

)
ps (dx, dv) ds.

Since h is bounded, we have

− logMt � − logM0 + γ

∫ t

0

1

Ms

∫
�d×�d

ps (dx, dv) ds

= − logM0 + γ

∫ t

0

1ds � − logM0 + γT .

It follows that

Mt � Cp0 ,T := exp (logM0 − γT ) > 0.

The last claim of the theorem, on MN
t , is direct consequence of the convergence in

probability of QN (t) to pt, in L∞ (
0, T ;M1

(
�d × �d

))
. �

Appendix B Proof of Proposition 5.5

Step 1. To prove the first condition, notice that

〈QN (t) , φk〉 =

∫
�d×�d

φk (x, v)QN (t) (dx, dv) � ‖φk‖∞
Nt

N

Hence, we deduce (5.11) from Chebyshev inequality and Theorem 5.2.
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Step 2. To prove the second condition, notice that, from the identity satisfied by QN ,

〈QN (τ+ θ) , φk〉 − 〈QN (τ) , φk〉 =

=

∫ τ+θ

τ

∫
�d×�d

v · ∇xφk (x, v)QN (s) (dx, dv) ds

+

∫ τ+θ

τ

∫
�d×�d

[f (CN (s, x))∇CN (s, x) − k1v]

×∇vφk (x, v)QN (s) (dx, dv) ds

+

∫ τ+θ

τ

∫
�d×�d

σ2

2
Δvφk (x, v)QN (s) (dx, dv) ds

+

∫ τ+θ

τ

∫
�d×�d

φkG (x) α(CN(s, x))QN (s) (dx, dv) ds

+

∫ τ+θ

τ

∫
�d×�d

φkG (x) β(CN(s, x)) |v|
∫ s

0

QN (r) (dx, dv) drds

− γ
∫ τ+θ

τ

∫
�d×�d

φk (x, v) g
(
s, x, {QN (r)}r∈[0,s]

)
QN (s) (dx, dv) ds

+ M̃k
N (τ+ θ) − M̃k

N (τ) ,

where φkG (x) :=
∫

�d Gv0 (v)φk (x, v) dv and M̃k
N (t) is the martingale corresponding to the

test function φk . Then,

|〈QN (τ+ θ) , φk〉 − 〈QN (τ) , φk〉|

� ‖∇xφk‖∞
∫ τ+θ

τ

∫
�d×�d

|v|QN (s) (dx, dv) ds

+ ‖∇vφk‖∞
∫ τ+θ

τ

∫
�d×�d

[
Cf + k1 |v|

]
QN (s) (dx, dv) ds

+
σ2

2
‖Δvφk‖∞

∫ τ+θ

τ

∫
�d×�d

QN (s) (dx, dv) ds

+ ‖Gv0‖1 ‖φk‖∞ ‖α‖∞
∫ τ+θ

τ

∫
�d×�d

QN (s) (dx, dv) ds

+ ‖Gv0‖1 ‖φk‖∞ ‖β‖∞
∫ τ+θ

τ

∫
�d×�d

|v|
∫ s

0

QN (r) (dx, dv) drds

+ γ ‖φk‖∞ ‖g‖∞
∫ τ+θ

τ

∫
�d×�d

QN (s) (dx, dv) ds

+
∣∣∣M̃k

N (τ+ θ) − M̃k
N (τ)

∣∣∣ .
Using this inequality, if we prove the validity of the limit (5.12) for each term of this sum,

then we have proved (5.12). In the next steps, we shall analyse the various terms.
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Step 3. Some of the terms above have the form (C > 0 is a constant)

C

∫ τ+θ

τ

∫
�d×�d

QN (s) (dx, dv) ds = C

∫ τ+θ

τ

Ns

N
ds � Cθ sup

s∈[0,T ]

Ns

N

and therefore, for such terms,

lim
ς→0

lim sup
N→∞

sup
τ∈ΥT
θ∈[0, ς ]

�

[
C

∫ τ+θ

τ

∫
�d×�d

QN (s) (dx, dv) ds

]

� C lim
ς→0

lim sup
N→∞

ς�

[
sup
s∈[0,T ]

Ns

N

]
= 0,

because lim sup
N→∞

�

[
sup
s∈[0,T ]

Ns

N

]
is finite by Theorem 5.2. Therefore, for such terms, we have

(5.12) by Chebishev inequality.

Step 4. Other terms above have the form

C

∫ τ+θ

τ

∫
�d×�d

|v|QN (s) (dx, dv) ds = C

∫ τ+θ

τ

1

N

Ns∑
i=1

�
s∈[T i,N ,Θi,N

)

∣∣∣Vi,N (t)
∣∣∣ ds. (B 1)

From Lemma 4, we have

� C ′
∫ τ+θ

τ

(
Ns

N
+

1

N

Ns∑
i=1

sup
r∈[0,T ]

∣∣∣∣∫ r

0

ek1udWi (u)

∣∣∣∣
)
ds

= C ′θ sup
s∈[0,T ]

(
Ns

N
+

1

N

Ns∑
i=1

sup
r∈[0,T ]

∣∣∣∣∫ r

0

ek1udWi (u)

∣∣∣∣
)
,

for a new constant C ′ > 0. We thus have

lim
ς→0

lim sup
N→∞

sup
τ∈ΥT
θ∈[0,ς]

�

[
C

∫ τ+θ

τ

∫
�d×�d

|v|QN (s) (dx, dv) ds

]

� C ′ lim
ς→0

lim sup
N→∞

ς�

[
sup
s∈[0,T ]

(
Ns

N
+

1

N

Ns∑
i=1

sup
r∈[0,T ]

∣∣∣∣∫ r

0

ek1udWi (u)

∣∣∣∣
)]

.

The limit is zero concerning the first term, the one with Ns

N
. Let us discuss the second

term. We have

sup
s∈[0,T ]

1

N

Ns∑
i=1

sup
r∈[0,T ]

∣∣∣∣∫ r

0

ek1udWi (u)

∣∣∣∣ =
1

N

N∗
T∑

i=1

sup
r∈[0,T ]

∣∣∣∣∫ r

0

ek1udWi (u) ,

∣∣∣∣
where N∗

T = sups∈[0,T ]Ns. Then, we apply the domination argument of Section 5.3 and

Wald’s identity, to deduce

�

⎡⎣ 1

N

N∗
T∑

i=1

sup
r∈[0,T ]

∣∣∣∣∫ r

0

e
k1udWi (u)

∣∣∣∣
⎤⎦ � �

[
NT

]
�

[
sup
r∈[0,T ]

∣∣∣∣∫ r

0

e
k1udWi (u)

∣∣∣∣] � C
′′
, (B 2)
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for a constant C ′′ > 0, for every N. We thus deduce

lim
ς→0

lim sup
N→∞

sup
τ∈ΥT
θ∈[0,ς]

�

[
C

∫ τ+θ

τ

∫
�d×�d

|v|QN (s) (dx, dv) ds

]
= 0

and, therefore, we have (5.12) by Chebishev inequality, for the terms just discussed. The

proof for the term ∫ τ+θ

τ

∫
�d×�d

|v|
∫ s

0

QN (r) (dx, dv) drds

is similar.

Step 5. Finally, we have to prove

lim
ς→0

lim sup
N→∞

sup
τ∈ΥT
θ∈[0,ς]

�
(∣∣∣M̃k

N (τ+ θ) − M̃k
N (τ)

∣∣∣ > ε
)

= 0. (B 3)

We prove this separately for each one of the three martingales which compose M̃k
N , that

we call M̃k
i,N , i = 1, 2, 3. We follow a standard approach (see, for instance, [24]). We use

the fact that

(
M̃k

1,N (t)
)2

−
∫ t

0

1

N2

Ns∑
i=1

∣∣∇vφk(X
i,N(s), V i,N(s))

∣∣2 �
s∈[T i,N ,Θi,N

)
ds

(
M̃k

2,N (t)
)2

−
∫ t

0

∫
�d×�d

∫
�d

Gv0 (v)φ
2
k

(
x, v′

)
dv′α(CN(s, x))QN (s) (dx, dv) ds

−
∫ t

0

∫
�d×�d

∫
�d

Gv0 (v)φ
2
k

(
x, v′

)
dv′β(CN(s, x)) |v|

∫ s

0

QN (r) (dx, dv) drds

(
M̃k

3,N (t)
)2

−
∫ t

0

∫
�d×�d

∫
�d

φ2
k (x, v) γg

(
s, x, {QN (r)}r∈[0,s]

)
QN (s) (dx, dv) ds

are martingales. One has

�

[∣∣∣M̃k
1,N (τ+ θ) − M̃k

1,N (τ)
∣∣∣2] = �

[∣∣∣M̃k
1,N (τ+ θ)

∣∣∣2]− E

[∣∣∣M̃k
1,N (τ)

∣∣∣2]
= �

[∫ τ+θ

τ

1

N2

Ns∑
i=1

∣∣∇vφk(X
i,N(s), V i,N(s))

∣∣2 �
s∈[T i,N ,Θi,N

)
ds

]

� θ ‖∇vφk‖2
∞ �

[
sup
s∈[0,T ]

Ns

N2

]
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and this implies (B 3) for M̃k
1,N . Similarly,

�

[∣∣∣M̃k
2,N (τ+ θ) − M̃k

2,N (τ)
∣∣∣2]

= �

[∫ τ+θ

τ

∫
�d×�d

∫
�d

Gv0
(v)φ2

k

(
x, v′

)
dv′α(CN(s, x))QN (s) (dx, dv) ds

]

+ �

[∫ τ+θ

τ

∫
�d×�d

∫
�d

Gv0
(v)φ2

k

(
x, v′

)
dv′β(CN(s, x)) |v|

∫ s

0

QN (r) (dx, dv) drds

]
.

We bound these terms as above by Cθ; we do not repeat the computations. Using the fact

that g is bounded, the proof for M̃k
3,N is similar. The proof of the proposition is complete.

Appendix C Proof of Theorem 4.3

The existence claim of Theorem 4.3 follows from the tightness and passage to the limit

result proved above, with the limit taken along any converging subsequence. Here, we

prove uniqueness; it provides the convergence of the full sequence above.

We will denote by Λt

(
Ct, pt, {p̃r}r∈[0,t]

)
(dx, dv) the measure defined on test functions

ψ ∈ C∞
c

(
�d × �d

)
as∫

�d×�d

ψ (x, v)Λt

(
Ct, pt, {p̃r}r∈[0,t]

)
(dx, dv)

=

∫
�d×�d

ψ (x, v)Gv0 (v)

(
α(Ct (x)) (π1pt) (dx) + β(Ct (x))

∫ t

0

p̃r (dx) dr

)
dv

− γ

∫
�d×�d

ψ (x, v) h

(∫ t

0

(K2 ∗ p̃r) (x) dr

)
pt (dx, dv) , (C 1)

where (K2 ∗ p̃r) (x) is the function defined as

(K2 ∗ p̃r) (x) =

∫
�d

K2

(
x − x′) p̃r(dx′).

We may shorten the notations and set

Λt (Ct, pt, p̃·) := Λt

(
Ct, pt, {p̃r}r∈[0,t]

)
(dx, dv) ;

ηt (p·) := η
(
t, x, {pr}r∈[0,t]

)
:=

∫ t

0

(∫
�d×�d

K1

(
x − x′) ∣∣v′∣∣ pr (dx′

, dv′
))

dr.

Further, we shall denote by

F (Ct) := f (Ct)∇Ct.
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With these notations in mind the PDE system (4.1)–(4.2) can be rewritten as follows:

∂tpt + v · ∇xpt + divv ([F (Ct) − k1v] pt)

=
σ2

2
Δvpt + Λt

(
Ct, pt, {p̃r}r∈[0,t]

)
(dx, dv) , (C 2)

∂tCt = k2gΣ + d1ΔCt − η
(
t, x, {pr}r∈[0,t]

)
Ct (C 3)

subject to initial conditions p0 ∈ M1

(
�d × �d

)
and C0 ∈ C1

b

(
�d
)
. We study this system

in the case when Ct = C (t, x) is a regular function, of class C
(
[0, T ] ;C1

b

(
�d
))

but

pt = pt (dx, dv) is only a time-dependent finite measure. As anticipated in Definition 4.2,

the solution of equation (C 2) has to be understood in the weak sense, while the solution

of equation (C 3) has to be understood in the mild sense.

Let us recall or explain several notations. Given a measure pt (dx, dv) in

L∞ (
0, T ;M1

(
�d × �d

))
, as above we denote by p̃t = p̃t(dx) and π1pt = (π1pt) (dx)

the measures defined as

p̃t(dx) :=

∫
�d

|v| pt (dx, dv) ,

(π1pt) (dx) :=

∫
�d

pt (dx, dv) .

More formally, on test functions φ ∈ C∞
c

(
�d
)
,

∫
�d

φ (x) p̃t(dx) :=

∫
�d×�d

φ (x) |v| pt (dx, dv) ,

∫
�d

φ (x) (π1pt) (dx) :=

∫
�d×�d

φ (x) pt (dx, dv) .

In the sequel, we denote by 〈μ, φ〉 the integral

〈μ, φ〉 =

∫
�2d

φ (x, v) μ (dx, dv) ,

when μ ∈ M1

(
�d × �d

)
and φ is such that this integral is well defined.

Let
(
p′, C ′) and

(
p′′, C ′′) be two solutions with the regularity required in the statement

of the theorem. We use the distance

d
(
μ′, μ′′

)
:= sup

‖φ‖∞�1

∣∣〈μ1
t − μ2

t ,
(
1 + |v|

)
φ
〉∣∣ ,

on M1

(
�d × �d

)
, where the supremum is taken over all measurable bounded functions
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φ : �d × �d → � with ‖φ‖∞ � 1. Below, we repeatedly use the inequality∣∣〈μ1
t − μ2

t ,
(
1 + |v|

)
φ
〉∣∣ � d

(
μ′, μ′′

)
‖φ‖∞ ,

which holds true for all bounded measurable functions φ; and therefore

∣∣〈μ1
t − μ2

t , ϕψ
〉∣∣ � d

(
μ′, μ′′

)
‖ϕ‖∞

∥∥∥∥ 1

1 + |v|ψ
∥∥∥∥
∞
,

for all bounded measurable functions ϕ and all measurable functions ψ such that
1

1 + |v|ψ
is bounded.

Let us introduce the operator Lf =
σ2

2
Δvf−v ·∇xf−k1 divv (vf) over all smooth functions

f : �d × �d → �. We denote by L∗ its dual operator

L∗φ =
σ2

2
Δvφ+ v · ∇xφ+ k1v · ∇vφ,

and by etL
∗

its associated semigroup. Formally, if pt is a solution of the equation above,

then we have (etL denotes the semigroup associated with L)

pt = etLp0 +

∫ t

0

e(t−s)L (Λs (Cs, ps, p̃·) − divv (F (Cs) ps)) ds

〈pt, φ〉 =
〈
p0, e

tL∗
φ
〉

+

∫ t

0

〈
Λs (Cs, ps, p̃·) − divv (F (Cs) ps) , e

(t−s)L∗
φ
〉
ds

and therefore

〈pt, φ〉 =
〈
p0, e

tL∗
φ
〉

+

∫ t

0

〈
Λs (Cs, ps, p̃·) , e

(t−s)L∗
φ
〉
ds

+

∫ t

0

〈
ps, F (Cs) · ∇ve

(t−s)L∗
φ
〉
ds. (C 4)

This identity can be rigorously proved from the weak formulation of the equation for p,

first extending it to time-dependent test functions and then by taking the test function

etL
∗
φ; we omit the lengthy but not difficult computations.

From the previous identity, we estimate∣∣〈p′t − p′′t ,
(
1 + |v|

)
φ
〉∣∣

�

∫ t

0

〈
Λs
(
C ′
s , p

′
s, p̃

′
·
)
− Λs

(
C ′′
s , p

′′
s , p̃

′′
·
)
, e(t−s)L

∗ (
1 + |v|

)
φ
〉
ds

+

∫ t

0

∣∣∣〈p′s, F (C ′
s

)
· ∇ve

(t−s)L∗ (
1 + |v|

)
φ
〉

−
〈
p′′s , F

(
C ′′
s

)
· ∇ve

(t−s)L∗ (
1 + |v|

)
φ
〉∣∣∣ ds. (C 5)
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Hence, with the notation φ̃ =
(
1 + |v|

)
φ,

|〈p′t − p′′t , φ〉| �

∫ t

0

(
I1
s,t + I2

s,t + I3
s,t

)
ds

I1
s,t =

∣∣∣〈Λs (C ′
s , p

′
s, p̃

′
·
)
− Λs

(
C ′′
s , p

′′
s , p̃

′′
·
)
, e(t−s)L

∗
φ̃
〉∣∣∣

I2
s,t =

∣∣∣〈p′s − p′′s , F
(
C ′
s

)
· ∇ve

(t−s)L∗
φ̃
〉∣∣∣

I3
s,t =

∣∣∣〈p′′s , (F (C ′
s

)
− F

(
C ′′
s

))
· ∇ve

(t−s)L∗
φ̃
〉∣∣∣ .

Now, we estimate

I1
s,t � I

1,1
s,t + I

1,2
s,t + I

1,3
s,t

I
1,1
s,t =

∣∣∣〈π1p
′
s ⊗ dLv, Gv0

α(C ′
s)e

(t−s)L∗
φ̃
〉

−
〈

π1p
′′
s ⊗ dLv, Gv0

α(C ′′
s )e(t−s)L

∗
φ̃
〉∣∣∣

�
∣∣∣〈(π1p

′
s − π1p

′′
s

)
⊗ dLv, Gv0

α(C ′
s)e

(t−s)L∗
φ̃
〉∣∣∣

+
∣∣∣〈π1p

′′
s ⊗ dLv, Gv0

(
α(C ′

s) − α(C ′′
s )
)
e(t−s)L

∗
φ̃
〉∣∣∣

�
∥∥Gv0

(
1 + |v|

)∥∥
L1 ‖α‖∞

∥∥∥∥ 1

1 + |v|e
(t−s)L∗

φ̃

∥∥∥∥
∞
d
(
p′s, p

′′
s

)
+ 〈π1p

′′
s , 1〉

∥∥Gv0

(
1 + |v|

)∥∥
L1 ‖α′‖∞

∥∥∥∥ 1

1 + |v|e
(t−s)L∗

φ̃

∥∥∥∥
∞

‖C ′
s − C ′′

s ‖∞ ;

I
1,2
s,t =

∫ s

0

∣∣∣〈p̃′r ⊗ dLv, Gv0
β(C ′

s)e
(t−s)L∗

φ̃
〉

−
〈
p̃′′r ⊗ dLv, Gv0

β(C ′′
s )e(t−s)L

∗
φ̃
〉∣∣∣ dr

�

∫ s

0

∣∣∣〈(p̃′r − p̃′′r
)
⊗ dLv, Gv0

β(C ′
s)e

(t−s)L∗
φ̃
〉∣∣∣ dr

+

∫ s

0

∣∣∣〈p̃′′r ⊗ dLv, Gv0

(
β(C ′

s) − β(C ′′
s )
)
e(t−s)L

∗
φ̃
〉∣∣∣ dr

�
∥∥Gv0

(
1 + |v|

)∥∥
L1 ‖β‖∞

∥∥∥∥ 1

1 + |v|e
(t−s)L∗

φ̃

∥∥∥∥
∞

∫ s

0

d
(
p′r, p

′′
r

)
dr

+
∥∥Gv0

(
1 + |v|

)∥∥
L1 ‖β′‖∞

∥∥∥∥ 1

1 + |v|e
(t−s)L∗

φ̃

∥∥∥∥
∞

(∫ s

0

〈p̃′′r , 1〉 dr
)
‖C ′

s − C ′′
s ‖∞ ;
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I
1,3
s,t = γ

∣∣∣∣〈p′s, h(∫ s

0

(
K2 ∗ p̃′r

)
dr

)
e(t−s)L

∗
φ̃

〉
−
〈
p′′s , h

(∫ s

0

(
K2 ∗ p̃′′r

)
dr

)
e(t−s)L

∗
φ̃

〉∣∣∣∣
� γ

∣∣∣∣〈p′s − p′′s , h

(∫ s

0

(
K2 ∗ p̃′r

)
dr

)
e(t−s)L

∗
φ̃

〉∣∣∣∣
+ γ ‖h′‖∞

∣∣∣∣〈p′′s ,∫ s

0

K2 ∗
(
p̃′r − p̃′′r

)
dre(t−s)L

∗
φ̃

〉∣∣∣∣
� γ

∥∥∥∥ 1

1 + |v|e
(t−s)L∗

φ̃

∥∥∥∥
∞
h

(∫ s

0

‖K2 ∗ p̃′r‖∞ dr

)
d
(
p′s, p

′′
s

)
+ γ ‖h′‖∞ 〈p′′s , 1 + |v|〉

∥∥∥∥ 1

1 + |v|e
(t−s)L∗

φ̃

∥∥∥∥
∞

∫ s

0

∥∥K2 ∗
(
p̃′r − p̃′′r

)∥∥
∞ dr.

Moreover, we estimate

I2
s,t � ‖F‖∞

∥∥∥∥ 1

1 + |v|∇ve
(t−s)L∗

φ̃

∥∥∥∥
∞
d
(
p′s, p

′′
s

)
;

I3
s,t � 〈p′′s , 1 + |v|〉

∥∥∥∥ 1

1 + |v|∇ve
(t−s)L∗

φ̃

∥∥∥∥
∞

‖∇F‖∞ ‖∇C ′
s −∇C ′′

s ‖∞ .

Now, we use Lemma 5 below, the finiteness of
∥∥Gv0

(
1 + |v|

)∥∥
L1 , ‖α‖∞ , ‖α′‖∞,

‖β‖∞ , ‖β′‖∞ , ‖K2‖∞ , ‖f‖∞ , ‖f′‖∞, the assumption ‖φ‖∞ � 1 and the properties

p′, p′′ ∈ C
(
[0, T ] ;M1

(
�2d

))
(which implies π1p

′, π1p
′′ ∈ C

(
[0, T ] ;M1

(
�d
))

) and ‖∇C ′‖∞ <∞, to get

I
1,1
s,t � c1d

(
p′s, p

′′
s

)
+ c2 ‖C ′

s − C ′′
s ‖∞

I
1,2
s,t � c3

∫ s

0

d
(
p′r, p

′′
r

)
dr + c4 ‖C ′

s − C ′′
s ‖∞

I
1,3
s,t � c5d

(
p′s, p

′′
s

)
+ c6

∫ s

0

d
(
p′r, p

′′
r

)
dr

(we have used the fact that
∣∣(K2 ∗

(
p̃′r − p̃′′r

))
(x)
∣∣ is bounded above by ‖K2‖∞ d

(
p′r, p

′′
r

)
thanks to the presence of the factor

(
1 + |v|

)
in the definition of the distance)

I2
s,t �

c7

|t− s|1/2
d
(
p′s, p

′′
s

)

I3
s,t �

c8

|t− s|1/2
‖∇C ′

s −∇C ′′
s ‖∞ .
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It follows:

|〈p′t − p′′t , φ〉| �

∫ t

0

(
c1 + c5 +

c7

|t− s|1/2

)
d
(
p′s, p

′′
s

)
ds

+

∫ t

0

(
(c2 + c4) ‖C ′

s − C ′′
s ‖∞ +

c8

|t− s|1/2
‖∇C ′

s −∇C ′′
s ‖∞

)
ds

+

∫ t

0

(
(c3 + c6)

∫ s

0

d
(
p′r, p

′′
r

)
dr

)
ds.

At the same time, from equation (C 3), we deduce

∂t
(
C ′
t − C ′′

t

)
= d1Δ

(
C ′
t − C ′′

t

)
−
(
ηt
(
p′·
)
− ηt

(
p′′·
))
C ′
t − ηt

(
p′′·
) (
C ′
t − C ′′

t

)
.

Hence, by reminding that A = d1Δ is the linear unbounded operator in UCb
(
�d
)

introduced in Section 5.1 (the initial conditions being the same),

(1 − A)1/2 (C ′
t − C ′′

t ) = −
∫ t

0

(1 − A)1/2 e(t−s)A
(
ηs
(
p′·
)
− ηs

(
p′′·
))
C ′
sds

−
∫ t

0

(1 − A)1/2 e(t−s)Aηs
(
p′′·
) (
C ′
s − C ′′

s

)
ds,

which gives us

‖∇C ′
t −∇C ′′

t ‖∞ �

∫ t

0

c10

|t− s|1/2
∥∥ηs (p′·)− ηs

(
p′′·
)∥∥

∞ ds

+

∫ t

0

c10

|t− s|1/2
∥∥ηs (p′′· )∥∥∞ ‖C ′

s − C ′′
s ‖∞ ds

and a similar easier estimate for ‖C ′
t − C ′′

t ‖∞. Since ‖K1‖∞ <∞, we have
∥∥η· (p′′· )∥∥∞ <∞

and ∥∥ηs (p′·)− ηs
(
p′′·
)∥∥

∞ � ‖K1‖∞
∫ s

0

d
(
p′r, p

′′
r

)
dr.

Putting all together, we find an integral inequality for the quantity

sup
r∈[0,t]

d
(
p′r, p

′′
r

)
+ ‖C ′

t − C ′′
t ‖∞ + ‖∇C ′

t −∇C ′′
t ‖∞ ,

to which a generalised form of Gronwall inequality can be applied. It implies

d
(
p′t, p

′′
t

)
+ ‖C ′

t − C ′′
t ‖∞ = 0, namely uniqueness.

Lemma 5 On a finite interval [0, T ], there is a constant C > 0 such that∣∣∣(etL∗ (
1 + |v|

)
φ
)

(x, v)
∣∣∣ � C ‖φ‖∞

(
1 + |v|

)
∣∣∣∇v

(
etL

∗ (
1 + |v|

)
φ
)

(x, v)
∣∣∣ �

C√
t
‖φ‖∞

(
1 + |v|

)
+ C ‖φ‖∞ .

https://doi.org/10.1017/S0956792518000347 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000347


On the mean field approximation 657

Proof. Step 1. The generator L∗ = σ2

2
Δvφ + v · ∇xφ + k1v · ∇vφ is associated with the

system

dxt = vtdt

dvt = k1vtdt+ σdBt,

where Bt is an auxiliary standard Brownian motion on �d. Set zt = e−k1tvt; we have

dzt = e−k1tσdBt.

Using this trick, the computations in the case k1 �= 0 are very similar to those of the case

k1 = 0, just more cumbersome. We thus set k1 = 0 for simplicity of notations; and we

take σ = 1 for the same reason. In this case the solution of the system, called (x, v) the

initial condition

vt = v + Bt

xt = x + vt+

∫ t

0

Bsds.

We use the probabilistic formula

(
etL

∗
φ
)

(x, v) = �

[
φ

(
x + vt+

∫ t

0

Bsds, v + Bt

)]
.

One can prove

(
∇ve

tL∗
φ
)

(x, v) =
6

t
�

[(
1

t

∫ t

0

Bsds−
1

3
vt

)
φ

(
x + vt+

∫ t

0

Bsds, v + Bt

)]
.

Step 2. We thus have

(
etL

∗ (
1 + |v|

)
φ
)

(x, v) = �

[(
1 + |v + Bt|

)
φ

(
x + vt+

∫ t

0

Bsds, v + Bt

)]

(
∇ve

tL∗ (
1 + |v|

)
φ
)

(x, v) =
6

t
�

[(
1

t

∫ t

0

Bsds−
1

3
Bt

)(
1 + |v + Bt|

)
×

× φ

(
x + vt+

∫ t

0

Bsds, v + Bt

)]
.

Hence, ∣∣∣(etL∗ (
1 + |v|

)
φ
)

(x, v)
∣∣∣ � ‖φ‖∞

(
1 +

√
t+ |v|

)
,
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which gives us the first bound; and∣∣∣(∇ve
tL∗ (

1 + |v|
)
φ
)

(x, v)
∣∣∣ � ‖φ‖∞

6

t
�

[
1

t

(∫ t

0

|Bs| ds
)(

1 + |v| + |Bt|
)]

+ ‖φ‖∞
2

t
E
[
|Bt|

(
1 + |v| + |Bt|

)]
�

C√
t
‖φ‖∞

(
1 + |v|

)
+ C ‖φ‖∞ ,

which gives the second bound.
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