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On an incomplete financial market, the stocks are modeled as pure jump processes subject
to defaults. The exponential utility maximization problem is investigated characterizing
the value function in term of Backward Stochastic Differential Equations (BSDEs), driven
by pure jump processes. In general, in this setting, there is no unique solution. This is
the reason why, the value function is proven to be the limit of a sequence of processes.
Each of them is the solution of a Lipschitz BSDE and it corresponds to the value function
associated with a subset of bounded admissible strategies. Given a representation of the
jump processes driving the model, the aim of this note is to give a recursive backward
scheme for the value function of the initial problem.
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1. INTRODUCTION

The interest on the problem of the existence and uniqueness of the solutions of Backward
stochastic differential equations (BSDEs), in a general setting, has increased quickly in
the last years, in particular, in the financial literature. As a matter of fact, BSDEs arise
in problems like hedging contingent claims or in the theory of recursive utility; see for
instance, Carbone, Ferrario, and Santacroce [6]. The theory of BSDEs has been developed
essentially in the Brownian setting; see among others Bielecki, Jeanblanc, and Rutkowski [3]
and Jeanblanc, Yor, and Chesney [17]. But this note deals with BSDEs in case of drivers
modeled by pure jump processes.

In the literature, financial activity prices have been widely modeled, among other
approaches, by using pure jump processes; see, for instance, Jing, Kong, and Liu [18] and
references therein.

Anyway, many are the models which can be considered from pure diffusion models to
pure-jump models and to some which combine the two. Between others, popular pure-jump
models for stock prices include, the Variance-Gamma model, Madan, Carr, and Chang [21],
while Carr et al. [7], to allow pure diffusion or pure jumps, introduce the CGMY model,
determined by the four parameters C, G, M and Y. C governs the overall level activity, G the
rate of the decay of the left tail, M of the right tail and Y the fine structure of the process.
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More, non-Gaussian Ornstein–Uhlenbeck processes are also popular, Barndorff-Nielsen and
Shephard [2]. All those papers start from the assumption, common to the diffusion or jump-
diffusion setting, that there exists an underlying unobservable process, which can be only
observed at some discrete time, fixed or random.

On the contrary, in the approach followed by the present paper, every price change
can be recorded together with the timestamp at which it took place, giving rise to a
piecewise constant trajectory with only a finite number of jumps in a finite time inter-
val. To better understand the motivation for this kind of modeling, let us think of a market
maker, who adjusts his/her quotations only from time to time, when the in stock quanti-
ties and the demand–supply considerations make these adjustments to become necessary.
Of course, it is not known in advance when and of which amount the price adjustments
will be. Processes of that kind have been used, for example, in the field of financial mod-
eling and filtering, between others, by Engle and Russell [12], Centanni and Minozzo [10],
Gerardi and Tardelli [15] and Martin, Jasra, and McCoy [24]. Furthermore, regarding
microstructure analysis see Bacry et al. [1], and for option pricing see Pringent [25], Frey
and Runggaldier [14], and Cartea [8].

Hence, starting from a problem of hedging a defaultable claim, here, the prices are
modeled by pure jump processes and represented as semimartingales. This setting brings
us to investigate BSDEs driven by pure jump processes.

The model presented is similar to that studied in some previous papers of the same
author, see between others Tardelli [27]. The main differences rely in the presence of the
default and in the fact that here a Markovian structure is assumed. The Markovianity
allows us for a particular representation of the processes involved (see Section 2), and it is
a necessary condition to perform the recursive backward scheme, presented in Section 6.

To clarify the link between the solutions of BSDEs driven by pure jump processes and
the defaultable hedging problems, note that due to the presence of a pure jump price process,
the market is incomplete and a perfect replication is not possible. In Section 3, the idea is
to maximize the mean value of an exponential utility function from the terminal wealth, see
Hu, Imkeller, and Muller [16] and Mania and Schweizer [22]. By the dynamic programming
approach, the value function is characterized as the largest solution to a suitable BSDE
with a non-Lipschitz generator.

In order to solve an hedging problem, a problem of utility maximization has to be
faced. In this context, the exponential form of the utility function has been widely used,
thanks to its nice analytic tractability, which allows for fundamental separation properties
when dealing with contingents claims. The procedure provides an easy to handle expression
for the associate value process, but it cannot be applied in case of Constant Relative Risk
Aversion (CRRA) utility function, and, in particular, the last part of Section 3 fails and
a different approach must be considered. On the other hand, in order to solve a pricing
problem, a similar procedure of that used in Section 3 could be utilized, since, in this last
case, some difficulties can be overcome thanks to the absence of the claim. For a detailed
discussion about this topic, see, for instance, Ceci [9], and references therein.

In Section 5, a non-increasing sequence of processes converging to the value function is
constructed. Any element of this sequence corresponds to the value function associated with
a subset of bounded admissible strategies. Hence, taking into account that the coefficients
are bounded, each of these approximating processes is the unique solution of a BSDE with
Lipschitz generator, not only the largest one. The procedure is along the lines of Lim and
Quenez [20], even if that paper investigates a diffusive model. One of the novelty of this
paper is to reach the same result, but for a pure-jump model.

The representation of the jump processes performed in Section 2 join with the unique-
ness result given in Section 5 are the essential tools for the construction of the recursive
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backward scheme for the value function, performed in Section 6, that is the main contribute
of this note. The recursive backward scheme is inspired by some of the methods presented
in Bouchard and Elie [4].

2. THE MODEL: REPRESENTATION

On a complete real-world probability space, (Ω,F , P ), endowed with a time window [0, T ],
there are two non-explosive stochastic point processes, N1 and N2, which do not have
common jump times. Let F := {Ft}t∈[0,T ] be a filtration such that Ft is the σ-algebra
generated by N1 and N2 until the time t,

Ft = σ{N1
s , N2

s , 0 ≤ s ≤ t}.
For i = 1, 2, the process N i admits a (P,Ft)-predictable intensity. This means that

there exist λ1
t and λ2

t , bounded non-negative (P,Ft)-adapted processes, such that, for a real
positive constant Λ,

0 < λi
t ≤ Λ < +∞ (1)

and M i
t := N i

t −
∫ t

0
λi

s ds is a (P,Ft)-martingale. Thus, the jump times of N1 and N2 are
F-stopping times.

On the same probability space, let τ be a non-negative random variable modeling the
default time, and, as usual, let us assume that, for t ∈ [0, T ], P (τ > t) > 0. Let N3

t := Iτ≤t

be the default indicating process. Consequently, defining G := {Gt}t∈[0,T ], with

Gt := σ
{
Ns = (N1

s , N2
s , N3

s ), 0 ≤ s ≤ t
}

,

τ is a G-stopping time. As usual, let us complete and take the right continuous version of
all the filtrations that we consider.

Let τ admit a positive (P,Ft)-predictable intensity. This means that there exists {γt}t≥0

bounded, non-negative, (P,Ft)-adapted process, such that

0 < γt ≤ Λ < +∞ (2)

and

M3
t := N3

t −
∫ t∧τ

0

γs ds = N3
t −

∫ t

0

(1 − N3
s )γs ds, t ≥ 0

is a (P,Gt)-martingale.
This means that τ is a totally inaccessible G-stopping time (see, e.g., Section VI78,

Dellacherie and Meyer [11]), while the jump times of N1 and N2 are G-totally inaccessible
F-stopping time.

Hence, N1, N2, and N3 do not have common jump times. This last condition introduces
a difficulty. In order to overcome it, all over this paper, let us assume the so-called Immersion
Property or (H)-hypothesis.

Definition 1: The filtration F is said to be immerse in the filtration G, or it is said to
satisfy the (H)-hypothesis under the measure P , whenever any (P,Ft)-local martingale is
also a (P,Gt)-local martingale.

Therefore, the (P,Ft)-martingales M1 and M2 are also (P,Gt)-martingales, see
Jeanblanc et al. [17], Bielecki et al. [3], Mansuy and Yor [23].
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Proposition 2: Under all the assumptions given up to now, let us assume that, for i =
1, 2, 3, the intensity of N i depends just on the value of the process itself in t and does not
depend on the past values of it, that is,

λ1
t = λ1(N1

t , N2
t ), λ2

t = λ2(N1
t , N2

t ), γt = γ(N1
t , N2

t ).

Since N3 ∈ {0, 1}, setting n = (n1, n2, n3) and

AtF (t, n) = λ1(n1, n2) [F (t, n1 + 1, n2, n3) − F (t, n)]

+ λ2(n1, n2) [F (t, n1, n2 + 1, n3) − F (t, n)]

+ γ(n1, n2)(1 − n3) [F (t, n1, n2, n3 + 1) − F (t, n)] ,

the process N = (N1, N2, N3) is Markovian. Furthermore, for a suitable function F , its
generator is given by the operator

AF (t, n) =
∂

∂t
F (t, n) + AtF (t, n).

Proof: For a bounded measurable real-valued function F ,

F (t,Nt) − F (0, N0) −
∫ t

0

AtF (s,Ns) ds

is a (P,Gt)-martingale and the generator At is bounded. By classical discussions, Ethier and
Kurtz [13], the Martingale Problem associated with A and initial condition N0 = (0, 0, 0) is
well posed, and its solution is a Markov process with trajectories in DN×N×{0,1}[0, T ]. �

In the real life, often, to distinguish between ‘good’ and ‘bad’ trends of a financial
market, not necessarily we have to look of all the history. This is the reason why the process
N has been assumed to be Markovian.

The last part of this section is devoted to the construction of a suitable representation
for the processes involved in this model, as presented in Ethier and Kurtz [13]. As well
known, recall that any realization can be used to prove properties related to the law of the
processes, but cannot be used to obtain properties of the paths.

To simplify the notation, let us denote

λi(n) := λi(n1, n2), i = 1, 2, λ3(n) := γ(n1, n2)(1 − n3)

and
λ(n) := λ1(n) + λ2(n) + λ3(n).

Setting y := (y1, y2, y3), dy := (dy1, dy2, dy3), ei = (δ1(i), δ2(i), δ3(i)), where δj(i) = 1 if
i = j and it is null otherwise, the generator can be written as

AtF (n) := λ(n)
∫

N2×{0,1}

[
F (y) − F (n)

]
μ(n, dy),

where the measure μ(n, dy) is defined by

μ(n, dy) :=
∑

i=1,2,3

λi(n)
λ(n)

δ(y+ei)(dy).

The structure itself of the measure μ(n, dy) guarantees that the processes N1, N2, and N3

cannot have common jump times.
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Hence, let {N(k)}k≥0 := {(N1(k), N2(k), N3(k))}k≥0 be the Markov chain such that
the first two components take value in N and the third one in {0, 1}. The Markov chain is
determined by the initial condition N(0) := {N1(0), N2(0), N3(0)} and, for Γ ⊂ N2 × {0, 1},
by the transition probabilities

P
(
N(k + 1) ∈ Γ

∣∣∣N(k)
)

= μ(N(k),Γ).

Then, let {Ti}i≥1 be a sequence of independent random variables, independent to
{N(k)}k≥0, having an exponential law of parameter 1. Let {(ρk

1 , ρk
2 , ρk

3)}k≥0 be a sequence
where, (ρ0

1, ρ
0
2, ρ

0
3) = (0, 0, 0), and for k ≥ 1,

ρk
i =

Tk

λi(N(k − 1))
, i = 1, 2 ρk

3 =

⎧⎨⎩
Tk

λ3(N(k − 1))
N3(k − 1) = 0

+∞ otherwise.

Thus, the sequence of the jump times of Nt is

tn =
n∑

k=1

ρk, for ρk = min
{
ρk
1 , ρk

2 , ρk
3

}
.

Summarizing, the process Nt is represented in term of the Markov chain, defining,

Nt := N(k), for t ∈ [tk, tk+1),

and, the process counting all the jump times of Ñt is represented as

Ñt =
∑
j≥0

j I[tj ,tj+1)(t) =
∑
j≥0

I[tj ,+∞)(t).

3. A DEFAULTABLE HEDGING PROBLEM

Taking into account all this setting, let us consider a financial market with one risky asset
and one risk-free asset. The price of the risk-free asset is taken equal to 1 (i.e., the riskless
interest rate is supposed to be equal zero). The price S of the stock, discounted with respect
to the price of the bond, is modeled as a pure jump process, such that

St = S0 exp{Yt} S0 ∈ R+.

The logreturn price Y is assumed to be a non-explosive real valued marked point process.
Its initial condition is Y0 = 0 and its dynamics is given by assuming

Yt :=
∑

i=1,2,3

∫ t

0

ηi
u dN i

u.

The jump sizes η1, η2, and η3 are (P,Gt)-predictable processes, and for some constant η,
η ∈ R+,

η ≤ η1
t ≤ η and − η ≤ η2

t ≤ −η. (3)

Many authors in this framework assume that η3
τ > −1. According to (Lim and Quenez [20]),

this condition is equivalent to η3
t > −1 for 0 ≤ t ≤ T a.s. In this way, Sτ = Sτ−(1 + η3

τ ), then
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S is still positive after the default τ . However, for our model this condition is not necessary,
it is rather obvious that S is positive, since it is an exponential, Sτ = Sτ−e

η3
τ .

Remark 3: Setting

cu :=
∑

i=1,2,3

(eηi
u − 1)λi

u,

by a standard application of Itô formula, the representation of the price process as a
(P,Gt)-semimartingale is

St = S0 +
∫ t

0

Sucu du + MS
t ,

where MS
t is a (P,Gt)-local martingale represented as

MS
t =

∑
i=1,2,3

∫ t

0

Su−(eηi
u − 1)dM i

u.

Note that (H)-hypothesis is a necessary condition to obtain last formula.

Proposition 4: For i = 1, 2, 3, assuming that ηi
t = ηi(Nt), then, for t ∈ [tk, tk+1), ηi

t =
ηi(N(k)), and (Nt, Yt, St) is a Markov process.

The proof is along the line of Proposition 2 and it allows us to write all the processes
involved in this model in terms of the Markov chain {N(k)}k≥0 and of the sequence of
random variables {Tk}k≥1.

On an incomplete financial market, the investors can trade in a finite time window
[0, T ]. They invest in risky stocks and a riskless bond, assuming also that there exists a
default time on the market. According to Bielecki et al. [3], it is enough to formally define a
generic defaultable European contingent claim with maturity date T through Definition 5
below.

Definition 5: Fix a finite horizon date T > 0. On a suitable filtered probability space, a
defaultable contingent claim with maturity date T consists in a triplet (X,Z, τ):

(1) The default time τ is a random variable specifying the random time of default, and
the default events {τ ≤ t}, for t ∈ [0, T ]. More, let us assume that τ is strictly positive
with probability 1.

(2) The promised payoff X represents the random payoff received by the owner of the
claim at time of the maturity T , if there was no default prior to or at T . This is
a GT -measurable random variable such that 0 ≤ X ≤ B, for a positive real constant
B. The actual payoff at T , associated with X, equals X if τ is greater than T .

(3) The G-adapted recovery process Z specifies the recovery payoff, which is the random
variable given by the value of Z at τ . This is the quantity received by the owner of a
claim at time of default (or at maturity), provided that the default occurred prior to
or at maturity date and such that 0 ≤ Z ≤ B.

In practice hedging of a derivative after default is usually of minor interest, Bielecki
et al. [3]. In a model with a single default, hedging after that time reduces to replication of
a non-defaultable claim. See, for instance, Tardelli [27].
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3.1. Replication

A (P,Gt)-predictable real-valued process θt is called a trading strategy, if it is S-integrable
and self-financing and such that

∫ t

0
θudSu is uniformly bounded from below, Schacher-

mayer [26]. Let Θ be the class of such strategies. At any t ∈ [0, T ], θt corresponds to the
number of risky traded assets invested. Since Gt is a σ-algebra generated by counting pro-
cesses and {tn}n≥0 is the sequence of the jump times of N , any (P,Gt)-predictable process
has the structure,

θt =
∑
n≥0

θn(t1, t2, . . . , tn, t) I(tn,tn+1](t),

where θn are real-valued measurable functions, (Bremaud [5]). Hence any admissible
strategy is completely characterized by the family {θn}n≥0.

For a strategy θ ∈ Θ and for initial capital w0 ∈ R+, constant, the associated wealth
process, W θ

t , is defined as

W θ
t − w0 =

∫ t

0

θudSu =
∑

i=1,2,3

∫ t

0

θuSu−(eηi
u − 1)dN i

u.

A hedging problem consists in finding an investment strategy to trade in the available assets,
in order to reduce (or avoid) potential losses arising from having to honor the contract.
For the purpose of replication of defaultable claims of the form (X,Z, τ), it is sufficient to
consider prices stopped at T ∧ τ . Hence, it is natural to define the replication of a defaultable
claim in the following way.

Definition 6: A self-financing strategy θ ∈ Θ replicates a defaultable claim (X,Z, τ), if its
wealth process W θ

t satisfies the hedging conditions

W θ
T IT<τ = XIT<τ and W θ

τ IT≥τ = Zτ IT≥τ .

Since in this setting the market is incomplete, perfect replication is not possible. Thus,
we have to use a hedging criterion under incompleteness. Many methods are possible. In
this note, the choice consists in maximizing the expected exponential utility function of the
wealth on the time interval [0, T ∧ τ ], that is, to maximize, for θ ∈ Θ,

E
[
1 − exp

{−α
(
W θ

T∧τ − X(1 − N3
T ) − ZτN3

T

)}]
,

where α ∈ R+ is the risk aversion parameter. Hence, we face with an agent with exponential
utility function. After receiving the premium, the seller has to hedge to reduce the risk
exposure. The expected utility of his final wealth gives him a measure of the quality of a
self-financing strategy. At any t ∈ [0, T ], the agent invests the quantity θt in the risky traded
assets. The investment process θt controls the dynamics of the wealth process, W θ

t . Hence,
a stochastic control problem with only final reward arises.

By noting that It≤τ = 1 − N3
t−, then

W θ
T∧τ = w0 +

∫ T

0

(1 − N3
u−)θudSu−.

Let w be the amount of capital at time t and let Θt be the set of the admissible strategies
on [t, T ∧ τ ]. Since the process Nt is Markovian, for

BT = X(1 − N3
T ) + ZτN3

T ,
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a representation for the associated value process is

Vt(w) = ess sup
θ∈Θt

E
[
1 − exp

{−α
(
W θ

T∧τ − W θ
t∧τ + w − BT

)}∣∣Nt

]
= 1 − ess inf

θ∈Θt

E

[
exp

{
−α

(
w +

∫ T

t

(1 − N3
u−)θudSu − BT

)}∣∣∣∣∣Nt

]
.

As a consequence of the definition of Θ,

E

[
exp

{
−α

∫ T

t

(1 − N3
u−)θu dSu

}]
< ∞

and the value process reduces to Vt(w) = 1 − e−αwVt, where

Vt = ess inf
θ∈Θt

E

[
exp

{
−α

(∫ T

t

(1 − N3
u−)θudSu − BT

)}∣∣∣∣∣Nt

]
. (4)

4. BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS

Section 4.1 below recalls some properties of the process Vt defined in (4). Even if, in Lim and
Quenez [20], diffusion processes are concerned, their procedures to obtain these properties
can be easily extended to model with pure jump processes; see, for instance, Tardelli [27]
in a non-defaultable case. The generalization to a defaultable model is rather obvious.

All this properties allow us to characterize Vt, (4), and, consequently, the value function,
as the largest solution to a suitable BSDE (Section 4.2). Note that we are not able to prove
an uniqueness result for this BSDE and this justifies the discussion performed in Section 5.

4.1. Properties of Vt

Proposition 7: The process Vt is positive and bounded. Moreover, since BT is NT -
measurable VT = E[eαBT |NT ] = eαBT .

Proof: Noting that the strategy θ ≡ 0 belongs to Θt, then

Vt ≤ E
[
exp {αBT }

∣∣∣Nt

]
= E

[
exp

{
α(X(1 − N3

T ) + ZτN3
T )
}∣∣∣Nt

]
≤ eαB .

Furthermore, by Theorem 2.2 given in Schachermayer [26], there exists an optimal
strategy θ∗ ∈ Θ such that

Vt = IE

[
exp

{
−α

(∫ T

t

(1 − N3
u−)θ∗udSu − BT

)}∣∣∣∣∣Nt

]
.

As a consequence eαB ≥ Vt > 0. �

Proposition 8: For each t ∈ [0, T ∧ τ ], the following results hold true:

(i) For any θ ∈ Θ, the process Vt exp {−αW θ
t∧τ} is a (P,Gt)-submartingale.
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(ii) Vt is the largest process Gt-adapted verifying (i) such that VT = eαBT .
(iii) The process θ∗ ∈ Θ is an optimal strategy if and only if Vt exp {−αW θ∗

t∧τ} is a
(P,Gt)-martingale.

The proof can be achieved following a procedure analogous to that used in Tardelli [27],
for a non-defaultable model.

Proposition 9: The process Vt admits an indistinguishable G-adapted cadlag representa-
tion.

Proof: Let D = [0, T ] ∩ Q, where Q denotes the set of rational numbers. Since Vt is a
submartingale, by Karatzas and Shreve [19], for any t ∈ [0, T ), there exist the limits Vt+ =
lims∈D,s↓t Vs and Vt− = lims∈D,s↑t Vs. So that Vt+ , for each t ∈ [0, T ], is well defined by
setting VT+(ω) := VT and by the previous limit for 0 ≤ t < T .

From the right-continuity of Gt, Vt+ is G-adapted and a G-submartingale. More, for
θ ∈ Θ, e−αW θ

t∧τ Vt+ is G-submartingale. Note also that, for s ≤ t and for any sequence of
rationals {tn}n≥1 converging down to t

IE[e−αW θ
tn∧τ Vtn

|Gs] ≥ e−αW θ
s∧τ Vs.

By the Lebesgue theorem for conditional expectation, for n → +∞,

IE[e−αW θ
t∧τ Vt+ |Gs] ≥ e−αW θ

s∧τ Vs.

Again, IE[e−αW θ
t∧τ Vt+ |Gsn

] ≥ e−αW θ
sn∧τ Vsn

, for any sequence of rationals {sn}n≥1 converg-
ing down to s. More, by the Lebesgue theorem for conditional expectation, for n → +∞,
by the right-continuity of G

IE[e−αW θ
t∧τ Vt+ |Gs] ≥ e−αW θ

s∧τ Vs+ ,

which gives the submartingale property of the process e−αW θ
t∧τ Vt+ . For θ = 0, for s = t

and by the right-continuity of G, Vt+ = IE[Vt+ |Gt] ≥ Vt a.s. On the other hand, since
Vt is the largest process G-adapted, verifying (i) and, for each θ ∈ Θ, e−αW θ

t∧τ Vt+ is a
G-submartingale, then for each t ∈ [0, T ], Vt+ ≤ Vt a.s., which implies that Vt+ = Vt a.s. �

4.2. Backward Stochastic Differential Equations

As a consequence of Propositions 7 and 8, for a vanishing strategy, Vt is a bounded and
strictly positive (P,Gt)-submartingale. Then its Doob–Meyer decomposition join with the
classical representation of martingales gives us

Vt = V0 +
∑

i=1,2,3

[∫ t

0

Ri
u dM i

u +
∫ t

0

Ri
uλi

udu

]
where R1

u, R2
u, and R3

u measurable (P,Gt)-predictable processes such that

E

⎧⎨⎩ ∑
i=1,2,3

∫ t

0

(
Ri

u

)2
λi

u du

⎫⎬⎭ < +∞,

∑
i=1,2,3

∫ t

0
Ri

u dM i
u is a square integrable (P,Gt)-martingale and

∑
i=1,2,3 Ri

uλi
u is increasing

and (P,Gt)-predictable process.
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Theorem 10: Setting Qu(θ) =
∑

i=1,2,3

(Vu + Ri
u)Kθ

u(ηi)λi
u and

Kθ
u(x) = exp

{−α(1 − N3
u−)θuSu− (ex − 1)

}− 1, (5)

(a) for t ∈ [0, T ∧ τ ], the process (Vt, R
1
t , R

2
t , R

3
t ) verifies the BSDE

Vt = eαBT −
∑

i=1,2,3

∫ T

t

Ri
udM i

u +
∫ T

t

ess inf
θ∈Θu

Qu(θ) du,

(b) Vt is the largest solution to this BSDE and (R1
t , R

2
t , R

3
t ) is uniquely determined by

the martingale representation theorem.

Proof: Regarding assertion (a), recalling the definition of W θ and setting Cθ
t :=

e−α(W θ
t∧τ−w0), Itô formula provides

Cθ
t = 1 +

∑
i=1,2,3

[∫ t

0

Cθ
u−Kθ

u(ηi) dM i
u +

∫ t

0

Cθ
uKθ

u(ηi)λi
u du

]
.

The product formula with Vt, by using its Doob–Meyer decomposition, gives

Cθ
t Vt = V0 +

∑
i=1,2,3

∫ t

0

Cθ
s−
[
Ri

s + (Vs− + Ri
s)K

θ
s (ηi)

]
dM i

s

+
∫ t

0

Cθ
s

⎡⎣Qs(θ) +
∑

i=1,2,3

Ri
sλ

i
s

⎤⎦ ds.

Since Cθ
t Vt = Vte

−α(W θ
t∧τ−w0) has to be a (P,Gt)-submartingale, the bounded variation

term has to be increasing in t, for any strategy. Furthermore, Proposition 8 (iii), if θ is the
optimal strategy, Cθ

t Vt is a (P,Gt)-martingale, which implies that its bounded variation
term is null. Consequently, ∑

i=1,2,3

Ri
sλ

i
s = −ess inf

θ∈Θs

Qs(θ),

where, as usual, ess infθ∈Θu
Qu(θ) := supa∈R{a : P (θ ∈ Θu : Qu(θ) < a) = 0}.

The assertion (b) is a consequence of Proposition 8 (ii), by noting that

Vt = VT −
∑

i=1,2,3

∫ T

t

Ri
u dM i

u −
∑

i=1,2,3

∫ T

t

Ri
uλi

udu.

�

5. CONVERGING SEQUENCE: UNIQUENESS RESULT

Taking into account that the recursive backward scheme requires the uniqueness for the
solution of the BSDE, a sequence {V k

t }k≥1 is constructed such that

(1) The sequence {V k
t }k≥1 is non-increasing and it converges to Vt.

(2) For each k, V k
t is the unique solution to a BSDE with Lipschitz generator.
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From now, let us assume that, for t ∈ [0, T ],

η3
t is uniformly bounded. (6)

Definition 11: For a positive integer k, let us define

Θk = {θ ∈ Θ : |θuSu| ≤ k, ∀u ∈ [0, T ], a.s.} .

More, let Θk
t be the set of the strategies in Θk on the time interval [t, T ∧ τ ].

Analogously with the definition of Vt, (4), for a positive integer k, let

V k
t = ess inf

θ∈Θk
t

E
[
exp

{−α(W θ
T∧τ − W θ

t∧τ − BT )
}∣∣∣ Nt

]
. (7)

Remark 12: Since the argument of the expectation in the definition of V k
t has finite mean

value and Θk is a bounded set, then the Lebesgue theorem applies and, consequently, there
exists an optimal strategy θ∗k ∈ Θk.

All the results of Propositions 7 and 8 hold for V k
t , which means that V k

t is bounded
and positive and it is a (P,Gt)-submartingale. Hence,

V k
t = V k

0 +
∑

i=1,2,3

∫ t

0

Ri,k
u dM i

u +
∫ t

0

AV k

u du,

where
∑

i=1,2,3

∫ t

0
Ri,k

u dM i
u is a square integrable (P,Gt)-martingale and R1,k

u , R2,k
u , R3,k

u

are measurable (P,Gt)-predictable processes such that

E

⎧⎨⎩
∫ t

0

∑
i=1,2,3

(
Ri,k

u

)2
λi

u du

⎫⎬⎭ < +∞.

Then, AV k

t is an increasing (P,Gt)-predictable process such that AV k

0 = 0 and

AV k

u =
∑

i=1,2,3

Ri,k
u λi

u.

Proposition 13: For each k ∈ N, the process (V k
t , R1,k

t , R2,k
t , R3,k

t ) is the unique positive
cadlag G-adapted solution of the following BSDE with Lipschitz continuous generator:

V k
t = eαBT −

∑
i=1,2,3

∫ T

t

Ri,k
u dM i

u +
∫ T

t

ess inf
θ∈Θk

u

Qk
u(θ) du, (8)

where, defining Kθ
u(x) as in (5),

Qk
u(θ) =

∑
i=1,2,3

(
V k

u + Ri,k
u

)
Kθ

u(ηi)λi
u.

Proof: By (7) and Remark 12, there exists an optimal strategy θ∗k ∈ Θk, such that

V k
t = E

[
exp

{
−α(W θ∗

k

T∧τ − W
θ∗

k
t∧τ − BT )

}∣∣∣ Nt

]
. (9)

The process (V k
t , Rk

t ), Rk
t = (R1,k

t , R2,k
t , R3,k

t ), is a solution of (8) and the procedure to get
it is the same used in Theorem 10.
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On the other hand, note that the generator of the BSDE (8) is given by

f(t, V k
t , Rk

t ) := ess inf
θ∈Θk

t

Qk
t (θ) = ess inf

θ∈Θk
t

∑
i=1,2,3

[(
V k

t + Ri,k
t

)
Kθ

t (ηi)λi
t

]
.

Taking into account (3), (6) and Definition 11, Kθ
t (x) is bounded. More, recalling that

λ3
t := γt(1 − N3

t ), by (1) and (2), for each i = 1, 2, 3, λi
t is also bounded. Consequently,

given two solutions of (8), (V k
t , Rk

t ) and (Ṽ k
t , R̃k

t ), there exists a real constant L such that

|f(t, V k
t , Rk

t ) − f(t, Ṽ k
u , R̃k

u)| ≤ L ·
⎛⎝∣∣∣V k

t − Ṽ k
t

∣∣∣+ ∑
i=1,2,3

∣∣∣Ri,k
t − R̃i,k

t

∣∣∣
⎞⎠ .

Thus, the Lipschitz property for the generator f allows us to apply the results of uniqueness,
given in Carbone et al. [6], Section 2. This means that the value function given by (9) is
the solution to the BSDE (8). �

Theorem 14: Since η3
t is uniformly bounded Vt = limk→+∞ V k

t a.s., ∀t ∈ [0, T ].

For the sake of completeness, the proof is in Appendix, even if this result could be
achieved generalizing the proof given in Lim and Quenez [20].

6. A RECURSIVE BACKWARD SCHEME

All the discussions performed in Section 5 allow us to consider a function Vt which is the
unique solution to a suitable BSDE. Recall that the uniqueness is an essential tool to get, in
this section, a recursive backward scheme for Vt, which is the main contribute of the paper.

In order to get a reasonable recursive backward scheme and to avoid too many tech-
nicalities, let us assume that the recovery process coincides with a GT -measurable random
variable Z, that is, Zτ = Z, then

BT = X(1 − N3
T ) + ZN3

T .

Taking into account that, for i ≥ 1, θti
= θi−1(t1, t2, . . . , ti−1, ti) and that

W θ
T∧τ − W θ

t∧τ =
∑

Ñt≤i≤ÑT −1

(1 − N3
ti

)θti

(
Sti+1 − Sti

)
,

then, for a fix positive integer k, a representation of the value function is obtained by setting

V k
t =

∑
Ñt≤i≤ÑT −1

V k
ti

I[ti,ti+1)(t).

Hence, V k
tNT

= VT = eαBT , while, for j = 0, . . . , ÑT − 1,

V k
tj

= eαBT −
∑

i=1,2,3

∫ T

tj

Ri,k
u dM i

u +
∫ T

tj

ess inf
θ∈Θk

r

Qk
u(θ) du.

Proposition 15: For t ∈ [tj , tj+1)

Ri,k
t = Ri,k

tj
, i = 1, 2, 3, and V k

t = V k
tj

.
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Proof: By the Doob–Meyer decomposition and by the classical representation of
martingales,

V k
tj

= V k
0 +

∑
i=1,2,3

∫ tj

0

Ri,k
u dM i

u +
∫ tj

0

AV k

u du.

Consequently, as before, for AV k

u = −ess infθ∈Θk
u

Qk
u(θ),

V k
tj

= V k
tj+1

−
∑

i=1,2,3

∫ tj+1

tj

Ri,k
u dM i

u +
∫ tj+1

tj

ess inf
θ∈Θk

u

Qk
u(θ) du.

Again, by the Doob–Meyer decomposition,

V k
tj

= V k
tj+1

−
∑

i=1,2,3

∫ tj+1

tj

Ri,k
u dN i

u.

Thus, for t ∈ [0, T ],

V k
t =

∑
Ñt≤j≤ÑT −1

V k
tj

I[tj ,tj+1)(t).

On the other hand, for i = 1, 2, 3, setting ΔN i
tj

= N i
tj+1

− N i
tj

and, in a similar way, ΔM i
tj

,
we get that

V k
tj+1

− V k
tj

=
∑

i=1,2,3

Ri,k
tj

ΔN i
tj

=
∑

i=1,2,3

[∫ tj+1

tj

Ri,k
tj

dM i
u −

∫ tj+1

tj

Ri,k
tj

λi
u du

]
.

Since λ1
u, λ2

u, and λ3
u just depend on N , then, by the uniqueness of the Doob–Meyer

decomposition, the thesis is achieved. �

Setting Hk
tj

(V,R,N) := −ess infθ∈Θk
tj

Qk
tj

(θ) = AV k

tj
and Δtj = tj+1 − tj , the previous

proposition allows us to claim that

V k
tj

= V k
tj+1

−
∑

i=1,2,3

Ri,k
tj

ΔM i
tj
− Hk

tj
(V,R,N) Δtj (10)

where Hk
tj

(V,R,N) =
∑

i=1,2,3 Ri,k
tj

λi
tj

.
At this point, we need some technical preliminaries.

Lemma 16: Setting Λj := λ1(N(j)) ∨ λ2(N(j)) ∨ λ3(N(j)), then

E
[
Δtj |Ntj

]
=

1
Λj

, E
[
(Δtj)

2 |Ntj

]
=

2
Λ2

j

, (11)

and, for i = 1, 2, 3,

E
[
ΔN i

tj
|Ntj

]
=

λi(N(j))
Λj

, E
[
ΔtjΔN i

tj
|Ntj

]
=

λi(N(j))
Λ2

j

.

Proof: These results can be achieved by taking into account that all the quantities involved
can be represented in term of the sequences of the jump times {tj}j≥0 and in term of the
Markov chain {N(k)}k≥0, which are independent. Recalling the construction performed to
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get the representation of the process N and that {Tn}n≥1 is a sequence of random variables
having exponential law of parameter 1, then

E
[
Δtj |Ntj

]
= E

[
tj+1 − tj |Ntj

]
= E

[
ρj+1|Ntj

]
= E

[
min

{
Tj+1

λ1(N(j))
,

Tj+1

λ2(N(j))
,

Tj+1

λ3(N(j))

}
|Ntj

]
= E

[
Tj+1

Λj
|Ntj

]
=

1
Λj

E [Tj+1] =
1
Λj

.

Analogously

E
[
(Δtj)2|Ntj

]
= E

[
T 2

j+1

Λ2
j

|Ntj

]
=

1
Λ2

j

E
[
T 2

j+1

]
=

2
Λ2

j

.

Furthermore, note that, for i = 1, 2, 3,

E
[
ΔN i

tj
|Ntj

]
= E

[∫ tj+1

tj

λi
s ds|Ntj

]
= λi

tj
E
[
Δtj |Ntj

]
=

λi(N(j))
Λj

and that, since {Tj}j≥1 and the Markov chain {N(k)}k≥0 are independent

E
[
ΔtjΔN i

tj
|Ntj

]
= E

[
ΔtjΔN i

tj
|Gtj

]
=

1
Λj

E
[
Tj+1ΔN i

tj
|Gtj

]
=

1
Λj

E
[
Tj+1ΔN i(j)|Gtj

]
=

1
Λj

E
[
Tj+1|Gtj

]
E
[
ΔN i(j)|Gtj

]
=

1
Λj

E [Tj+1] E
[
ΔN i

tj
|Ntj

]
=

λi(N(j))
Λ2

j

.
�

The last part of this section is inspired by some of the methods presented in (Bouchard
and Elie [4]).

Proposition 17: For j = 0, . . . , ÑT − 1,

V k
tj

= E
[
V k

tj+1

∣∣∣Ntj

]
− 1

Λj
Hk

tj
(V,R,N). (12)

Proof: Taking the conditional expectation with respect to Gtj
of both sides of (10), since

R1,k
tj

, R2,k
tj

, R3,k
tj

, and Hk
tj

(V,R,N) are Gtj
-measurable and

E

⎡⎣ ∑
i=1,2,3

Ri,k
tj

ΔM i
tj

∣∣∣Gtj

⎤⎦ = 0,

then V k
tj

= E[V k
tj+1

|Ntj
] − Hk

tj
(V,R,N)E[Δtj |Ntj

]. By (11) the claim follows. �

Thus, V k
t is uniquely determined by a backward scheme once we have a recursive scheme

for Ri,k
tj

, i = 1, 2, 3, and therefore for Hk
tj

.
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Proposition 18: For i = 1, 2, 3,

λi(Ntj
)

Λj
Hk

tj
(V,R,N) = −ΛjE

[
V k

tj+1
ΔN i

tj
|Ntj

]
+ λi(Ntj

)E
[
V k

tj+1
Tj+1|Ntj

]
+ Ri,k

tj
λi(Ntj

).

Proof: For i = 1, 2, 3

ΔM i
tj

= M i
tj+1

− M i
tj

= N i
tj+1

− N i
tj
−
∫ tj+1

tj

λi
s ds = ΔN i

tj
− λi

tj
Δtj .

Taking again (10) and pre-multiplying by ΔMh
tj

, h = 1, 2, 3, the expectation conditionally
to Gtj

on both sides provides

V k
tj

E
[
ΔMh

tj
|Ntj

]
= E

[
V k

tj+1
ΔMh

tj
|Ntj

]
−

∑
i=1,2,3

Ri,k
tj

E
[
ΔM i

tj
ΔMh

tj
|Ntj

]
− Hk

tj
(V,R,N) E

[
ΔtjΔMh

tj
|Ntj

]
.

Let us take into account successively that E[ΔMh
tj
|Ntj

] = 0 and that

E
[
V k

tj+1
ΔMh

tj
|Ntj

]
= E

[
V k

tj+1
ΔNh

tj
|Ntj

]
− λh

tj
E
[
V k

tj+1
Δtj |Ntj

]
.

Recalling that N1, N2, and N3 do not have common jump times and that the jump sizes
are equal to 1,

E
[
(ΔMh

tj
)2|Ntj

]
= E

[
(ΔNh

tj
− λh

tj
Δtj)2|Ntj

]
= E

[
ΔNh

tj
+ (λh

tj
)2(Δtj)2 − 2λh

tj
ΔtjΔNh

tj
|Ntj

]
=

λh
tj

Λj
+ (λh

tj
)2

2
Λ2

j

− 2λh
tj

λh
tj

Λ2
j

=
λh

tj

Λj
=

λh(Ntj
)

Λj
.

For i = h,

E
[
ΔMh

tj
ΔM i

tj
|Ntj

]
= E

[
−λh

tj
ΔtjΔN i

tj
− λi

tj
ΔtjΔNh

tj
+ λh

tj
λi

tj
(Δtj)2|Ntj

]
= 0

and

E
[
ΔtjΔMh

tj
|Ntj

]
= E

[
ΔtjΔNh

tj
|Ntj

]
− λh

tj
E
[
(Δtj)2|Ntj

]
= −λh(Ntj

)
Λ2

j

. �

Proposition 19: For j = 0, . . . , ÑT − 1,

Hk
tj

(V,R,N)
Λj

=
ΛjE

[
V k

tj+1
|Ntj

]
− λ(Ntj

)E
[
V k

tj+1
Tj+1|Ntj

]
Λj − λ(Ntj

)
. (13)

Proof: Adding the three conditions reached in Proposition 18 and recalling that λ = λ1 +
λ2 + λ3 and that Hk

tj
(V,R,N) =

∑
i=1,2,3

Ri,k
tj

λi
tj

, we have the claim. �
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Finally, the main result of this note is given by Theorem 20 below.

Theorem 20: The value function is uniquely determined by the recursive backward scheme

V k
tÑT

= E
[
eαBT

∣∣∣ NT

]
= eαBT

V k
tj

=
λ(Ntj

)
λ(Ntj

) − Λj
E
[
V k

tj+1
(1 − Tj+1)

∣∣∣Ntj

]
j = ÑT − 1, . . . , 0.

Proof: Substituting (13) into (12), we get

V k
tj

= E
[
V k

tj+1

∣∣∣Ntj

]
+

ΛjE
[
V k

tj+1
|Ntj

]
− λ(Ntj

)E
[
V k

tj+1
Tj+1|Ntj

]
λ(Ntj

) − Λj

=
λ(Ntj

)
λ(Ntj

) − Λj
E
[
V k

tj+1

∣∣∣Ntj

]
− λ(Ntj

)
λ(Ntj

) − Λj
E
[
V k

tj+1
Tj+1|Ntj

]
.

�
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APPENDIX

The following propositions allow us to get the proof of Theorem 14. All over this section, fix a finite
time window [0, T ] and t ∈ [0, T ].

Proposition 21: There exists a cadlag G-submartingale V ∗
t , such that

lim
k→+∞

V k
t = V ∗

t ≥ Vt a.s.

Proof: By definition, the set of strategies are such that Θk
t ⊂ Θt, hence, for each k ∈ N, V k

t ≥
Vt > 0 a.s. Moreover, Θk

t ⊂ Θk+1
t , which implies that {V k

t }k∈N is a non-increasing sequence also
lower bounded. Thus, there exists

Ṽt := lim
k→+∞

↓ V k
t ≥ Vt a.s.,

which is an adapted process, not necessarily cadlag.
Fix 0 ≤ s ≤ t ≤ T and recall that, by Proposition 8, V k

t is a G-submartingale, then, for each
k ∈ N,

IE[V k
t |Gs] ≥ V k

s ≥ Ṽs ≥ Vs a.s.

Thus, by monotone convergence theorem for conditional expectation

IE[Ṽt|Gs] ≥ Ṽs a.s.,

which implies that the process Ṽ is a G-submartingale.
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Again, setting D = [0, T ] ∩ Q, as in the proof of Proposition 9, by Karatzas and Shreve [19],
the process

Ṽt+ := lim
s∈D,s↓t

Ṽt, and ṼT+ = ṼT = V k
T = IE

[
eαBT

∣∣∣GT

]
is well defined and it is a G-submartingale. Since the filtration G is right-continuous

Ṽt ≤ IE[Ṽt+ |Gt] = IE[Ṽt+ |Gt+ ] = Ṽt+ a.s.

and Vt ≤ Ṽt ≤ Ṽt+ a.s. Setting Ṽt+ = V ∗
t , the thesis is achieved. �

Proposition 22: For each θ ∈ Θ∗, where Θ∗ is the set of the essentially bounded admissible

strategies, e−α(W θ
t∧τ−w0)V ∗

t is a G-submartingale.

Proof: First, let us prove that the process e−α(W θ
t∧τ−w0)Ṽt is a G-submartingale, for each θ

admissible bounded strategy, namely θ ∈ Θ and θ bounded.
Indeed, if θ is a bounded strategy, there exists n ∈ N such that θ is uniformly bounded by

n and for each k ≥ n, θ ∈ Θk. Thus, e−α(W θ
t∧τ−w0)V k

t is a G-submartingale. This implies that,

by the monotone convergence theorem for conditional expectation, e−α(W θ
t∧τ−w0)Ṽt is also a G-

submartingale.
Next, we prove the claim for each strategy θ ∈ Θ∗. Recall that θ ∈ Θ∗, if ess sup θ := infa∈R{a :

P (ω : θ(ω) > a) = 0} < +∞.
To this end, we write down the Doob–Meyer decomposition of the cadlag G-submartingale V ∗,

V ∗
t = V ∗

0 +
∑

i=1,2,3

[∫ t

0
Ri∗

r dM i
r +

∫ t

0
Ri∗

r λi
r dr

]
.

As a consequence, for a bounded strategy θ, we deduce the Doob–Meyer decomposition of

e−α(W θ
t∧τ−w0)V ∗

t . Recalling Proposition 8 (i), ∀θ ∈ Θ∗, e−α(W θ
t∧τ−w0)V ∗

t is a G-submartingale
and its Doob–Meyer decomposition is given by

e−α(W θ
t∧τ−w0)V ∗

t =

∫ t

0
dMV ∗θ

s +

∫ t

0
AV ∗θ

s ds,

where

dMV ∗θ
s = e−α(W θ

s∧τ−w0)
∑

i=1,2,3

{[
Ri∗

s + (V ∗
s− + Ri∗

s )Kθ
s (ηi)

]
dM i

s

}
, (14)

AV ∗θ
s = e−α(W θ

s∧τ−w0)
∑

i=1,2,3

{(
V ∗

s + Ri∗
s

)
Kθ

s (ηi)λi
s + Ri∗

s λi
s

}
, (15)

AV ∗θ
0 = 0 and MV ∗θ

0 = V ∗
0 . For each θ ∈ Θ∗, since e−α(W θ

t∧τ−w0)V ∗
t is a G-submartingale, then

AV ∗θ
t ≥ 0 a.s. and hence,

AV ∗θ
s ≥ −ess inf

θ∈Θ∗

⎧⎨⎩ ∑
i=1,2,3

(
V ∗

t + Ri∗
t

)
Kθ

t (ηi)λi
t

⎫⎬⎭ .

�

Proposition 23: For each t ∈ [0, T ], then Vt ≥ V ∗
t a.s.
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Proof: Setting Q∗
t (θ) :=

∑
i=1,2,3(V

∗
t + Ri∗

t )Kθ
t (ηi)λi

t, then

ess inf
θ∈Θ∗

Q∗
s(θ) = ess inf

θ∈Θ
Q∗

s(θ).

This implies that ∀θ ∈ Θ (not necessarily bounded), given AV ∗θ
t and MV ∗θ

t as in (15) and (14),

e−α(W θ
t∧τ−w0)V ∗

t = MV ∗θ
t + AV ∗θ

t . Since dAV ∗θ
t ≥ 0 a.s., we have two consequences. First,

MV ∗θ
t ≤ e−α(W θ

t∧τ−w0)V ∗
t ,

which in turn implies that MV ∗θ
t is a local G-martingale bounded from above, namely MV ∗θ

t

is a G-submartingale. More, since the process AV ∗θ
t is non-decreasing, e−α(W θ

t∧τ−w0)V ∗
t is a G-

submartingale for all θ ∈ Θ. Finally, V ∗
t is cadlag G-adapted and V ∗

T = IE[eαBT |GT ] and by noting
that Vt is the largest process satisfying these properties, V ∗

t ≤ Vt a.s. �
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