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We consider the Cauchy problem for the (strictly hyperbolic, genuinely nonlinear)
system of conservation laws with relaxation

ut vx = 0;

vt ¼ (u)x =
1

"
r(u; v):

Assume there exists an equilibrium curve A(u), such that r(u; A(u)) = 0. Under some
assumptions on ¼ and r, we prove the existence of global (in time) solutions of
bounded variation, u" , v" , for " > 0 ¯xed.

As " ! 0, we prove the convergence of a subsequence of u" , v" to some u, v that
satisfy the equilibrium equations

ut A(u)x = 0; v(t; ¢) = A(u(t; ¢)) 8 t 0:

1. Introduction

We consider the Cauchy problem for the following system of conservation laws with
relaxation term,

ut vx = 0;

vt ¼ (u)x =
1

"
r(u; v);

9
=

; (1.1)

where x 2 R, u(t; x); v(t; x) 2 R, ¼ : R ! R and r : R2 ! R are smooth functions,
and " > 0 is a ­ xed parameter.

System (1.1) arises in one-dimensional elasticity. In the particular case of r(u; v) =
v, one recovers the damped model arising in nonlinear wave equations, studied in

many papers (see, for instance, [9] and the references therein),

ut vx = 0;

vt ¼ (u)x = ¬ v;

)

(1.2)
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where ¬ = " 1. In [9], assuming that ¼ is a smooth increasing function, the author
proves a global existence result for weak solutions to (1.2), provided that the initial
data

u(0; x) = u0(x); v(0; x) = v0(x) (1.3)

have total variation and L1-norm su¯ ciently small.
Here we are concerned with the system (1.1), where the stress function ¼ satis­ es

the assumptions

¼ 0(u) > 0 (strict hyperbolicity);

¼ 00(u) 6= 0 (genuine nonlinearity):

)

(1.4)

Moreover, we require that

(i) either ¼ satis­ es the condition

2 ¼ 0(u) ¼ 000(u) 3¼ 00(u)2 > 0 (1.5)

for u in some open interval U of R;

(ii) or ¼ has the speci­ c form

¼ (u) =
1

u
: (1.6)

Condition (1.5) is a technical assumption and is satis­ ed, for instance, in the
nonlinear cases

¼ (u) = u® ; u > 0; 0 < ® < 1;

¼ (u) = u ® ; u > 0; 0 < ® < 1:

)

(1.7)

However, condition (1.5) is not satis­ ed in the main case of interest for isentropic
gas dynamics, namely ¼ (u) = p(u) = u ® with 1 < ® < 3. A model described
by the system (1.1), ¼ (u) = u ® with ® = 1

3 , is studied in [3].
Concerning (1.6), it corresponds to the case of ® = 1 (isothermal ®ow). Observe

that, for ¼ given by (1.6), conditions (1.4) are satis­ ed for all u 6= 0, while the
quantity in (1.5) vanishes identically.

On the source term, we require that

rv 6 0; jru(u; v)j 6 jrv(u; v)j
p

¼ 0(u) 8(u; v) 2 U £ R; (1.8)

and assume that there exists a C1 equilibrium curve A(u) such that

r(u; A(u)) = 0 8u 2 U : (1.9)

Condition (1.8) amounts to requiring that the source term in (1.1) is weakly
dissipative, in the sense that it satis­ es the weak diagonally dominant condition
(see [10]).

Indeed, denote by G = G(u; v) the vector source term and by R the invertible
matrix whose columns are the (normalized) right eigenvectors. Consider the matrix
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B = R 1 ¢ DG ¢ R, which in our case reads

R 1 ¢ DG ¢ R = (2"
p

¼ 0(u)) 1

0
@

ru + rv

p
¼ 0(u) ru + rv

p
¼ 0(u)

ru + rv

p
¼ 0(u) ru + rv

p
¼ 0(u)

1
A : (1.10)

In [10], the authors prove a global existence result assuming that B = (Bij) is
strictly diagonally dominant, in the sense that there exists a constant ¸ > 0 such
that

Bii +
X

j 6= i

jBjij 6 ¸ < 0; i = 1; 2: (1.11)

In our case, equation (1.11) is clearly not satis­ ed since, by (1.8), Bii +
P

j 6= i jBjij =
0. On the other hand, we can state the following existence theorem.

Theorem 1.1. Let ¼ be a C4 map satisfying (1.4), (1.5) on some open interval
U 2 R. Assume that r is C1 and satis¯es (1.8), (1.9).

Then, for every compact K » U , there exist constants C; ¯ ; L > 0 (independent
on ") such that the following holds.

The Cauchy problem for (1.1), with initial data (u0; v0) such that

lim
x ! 1

u0(x) 2 K ; TotVar(u0; v0) 6 ¯ ; (1.12)

has a global weak (entropic) solution (u; v)(t) that satis¯es

TotVar(u; v)(t) 6 C ¢ TotVar(u; v)(0): (1.13)

Moreover, for any t > s > 0 and for any a < b, there exists a constant L" (possibly
depending on ") such that

Z b

a

ju(t; x) u(s; x)j dx 6 Ljt sj; (1.14)

Z b

a

jv(t; x) v(s; x)j dx 6 (L + L")jt sj: (1.15)

We remark that ¯ , L and the Lipschitz estimate (1.14) do not depend on ".
Moreover, we do not require any assumptions on the L1-norm of the initial data.

Let us now turn to the case of (1.6), namely to the system

ut vx = 0;

vt +

³
1

u

´

x

=
1

"
r(u; v):

9
>=

>;
(1.16)

For this system, we can drop the smallness assumptions on the data. Indeed, we
prove the existence (globally in time) of weak entropic solutions for data of arbitrary
(but ­ nite) total variation.

Theorem 1.2. Let r be a C1 map satisfying (1.8), (1.9) with U = (0; 1) and
¼ = u 1.
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Then, for every compact K » (0; 1) and constant M > 0, there exist constants
C; L > 0 (independent of ") such that the following holds. The Cauchy problem
for (1.16), with initial data (u0; v0) such that

u0(x) 2 K 8x 2 R; TotVar(u0; v0) 6 M; (1.17)

has a global weak (entropic) solution (u; v)(t) satisfying (1.13){(1.15).

The proofs of theorems 1.1 and 1.2 are based on a wavefront tracking algorithm
(see [1,4,5]) combined with a fractional-step method (see [8,10]). The key point is
the special de­ nition (2.5) (see also [15]) for the amplitude of waves, which ­ ts well
both with the geometry of the curves for the homogeneous system

ut vx = 0;

vt ¼ (u)x = 0;

)

(1.18)

and with the presence of the source term in (1.1). This allows us to de­ ne global
in time approximate solutions for the system (1.1). As remarked before, it is not
possible to apply here the methods and results in [10].

More precisely, if ¼ satis­ es either (1.4) and (1.5) or (1.6), only the linear part of
the Glimm functional is enough to control the total variation for the approximate
solutions of the homogeneous system. The idea of using only the linear functional
was used by Nishida [20] for the homogeneous system (1.18) with ® = 1, and later
in [2,12] for other classes of homogeneous systems.

We remark that if either (1.4) and (1.5) or (1.6) are satis­ ed, then the homoge-
neous system (1.18) belongs to the class studied by Bakhvalov [2] (see also [15, x 2]
and [11]).

On the other hand, concerning (1.1), a more careful choice of the wave size allows
us to also control the growth of total variation due to the source term, across the
time-steps. This works for a general increasing and strictly convex (or concave) ¼ ,
provided that the dissipativity condition (1.8) is satis­ ed.

In the case ® = 1, our de­ nition (2.5) of the waves amplitude reduces to the
one given in Luskin and Temple [18], where the authors studied a problem for a
dissipative p-system in Eulerian coordinates. In their paper, the source term in
Lagrangian form was given by u2K(u=v), together with some assumptions on
K ; it was also assumed jvj < 1. We remark that these hypotheses imply that
condition (1.8) is satis­ ed (see also [21]).

Let us now turn to the relaxation problem. Assume that, in addition to (1.8),
(1.9), there holds

rv(u; v) 6 c < 0 8(u; v) 2 U £ R (1.19)

for some constant c > 0. A typical form for r is given by r(u; v) = A(u) v. One can
easily verify that (1.8), (1.9) and (1.19) together imply the weak sub-characteristic
condition

p
¼ 0(u) 6 A0(u) 6

p
¼ 0(u): (1.20)
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As " ! 0, we consider a sequence (u"; v") obtained in either theorem 1.1 or 1.2,
and study the convergence of a subsequence to the equilibrium equations:

v = A(u); ut A(u)x = 0: (1.21)

The result is the following.

Theorem 1.3. In the assumptions of theorem 1.1 (respectively theorem 1.2), for
" > 0 ¯xed, and assuming in addition (1.19), let (u"; v") be a solution of (1.1)
(respectively (1.16)), with initial data u"

0, v"
0 satisfying (1.12) (respectively (1.17))

for the compact K (and the constant M ) independent of ".
Then the constant L" at (1.15) takes the form

L"
:
=

2c

"
exp

³
c ¢ s

"

´
¢
Z b

a

jr(u0; v0)(x)j dx: (1.22)

Moreover, assume that, as " ! 0,

u"
0 ! u0 in L1

loc; (1.23)

and that the sequence fv"
0g is uniformly bounded, in the sup-norm, as " ! 0. Then

there exists a subsequence "k ! 0 such that

(u"k ; v"k ) ! (~u; ~v) in L1
loc([0; 1) £ ( 1; 1)); (1.24)

where ~u(t; ¢); ~v(t; ¢) 2 BV (R), ~u is a weak solution of

ut A(u)x = 0; u(0; ¢) = u0 (1.25)

and, for all t > 0,

~v(t; ¢) = A(~u(t; ¢)): (1.26)

Moreover, for any t > s > 0,

Z b

a

j~u(t; x) ~u(s; x)j dx 6 Ljt sj; (1.27)

where L is the Lipschitz constant in (1.14).

It is still not clear, at the moment, if the limit ~u of theorem 1.3 is the unique
entropy solution of (1.25). A partial answer in this direction can be given following
the lines of [7,14].

A previous result of relaxation in the BV framework was obtained in [16], where
the authors considered a quasilinear system arising in viscoelasticity. We also men-
tion [17] for a contemporary and independent approach to the case ® = 1. For a
general review on relaxation problems, we refer to [19].

2. Proof of theorem 1.1

By condition (1.4) if u 2 U , then ¼ 00(u) has constant sign and the system (1.1)
becomes genuinely nonlinear. Now we assume ¼ 00(u) < 0 (in the other case, a
completely similar procedure can be followed). The rarefaction-shock curve of the
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u

Figure 1. Shock-rarefaction curves.

­ rst characteristic family, starting at the point (u0; v0), is given by the equations
(see ­ gure 1)

u < u0; v = v0 + © 1(u; u0) = v0

p
(u u0)( ¼ (u) ¼ (u0));

u > u0; v = v0 + © 1(u; u0) = v0 +

Z u

u0

p
¼ 0(s) ds;

9
>=

>;
(2.1)

while the equations for the rarefaction-shock curves, of the second family, are the
following:

u < u0; v = v0 + © 2(u; u0) = v0

Z u

u0

p
¼ 0(s) ds;

u > u0; v = v0 + © 2(u; u0) = v0

p
(u u0)( ¼ (u) ¼ (u0)):

9
>=

>;
(2.2)

Observe that, for any u > u0,
Z u

u0

p
¼ 0(s) ds 6

p
(u u0)( ¼ (u) ¼ (u0)); (2.3)

and moreover, for any u, u0, i = 1; 2, one has

p
¼ 0(u) 6

­­­­
@© i(u; u0)

@u

­­­­: (2.4)

Given a wavefront with left and right state Ul = (ul; rl), Ur = (ur; vr), respectively,
connected by a rarefaction-shock curve, we de­ ne the size of the wave as follows

"(Ul; Ur) =

­­­­
Z ur

ul

p
¼ 0(s) ds

­­­­; (2.5)

which, on compact sets, is clearly equivalent, along (2.1) and (2.2), to the distance
in R2, jUl Urj. Note that the size can be written in terms of the Riemann invariants

z(u; v) =

Z u p
¼ 0(s) ds + v; w(u; v) =

Z u p
¼ 0(s) ds v:

Moreover, for a rarefaction wave, the size corresponds to the distance of the v coor-
dinate, jvl vrj.
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Similarly to [1, 5], in order to have a piecewise constant approximate solutions,
we adopt a piecewise constant Riemann solver for the homogeneous system (1.18).
Shocks are not modi­ ed and satisfy exactly the Rankine{Hugoniot relations. For a
­ xed parameter ² > 0, a rarefaction of size " is approximated by a fan of N waves,
N = ["=² ] + 1, of equal size "=N (which is smaller than ² ), and speed equal to the
characteristic speed of the state at the right.

This approximation is applied for all newly generated rarefactions, while pre-
existing rarefactions can be simply prolonged by a single discontinuity with speed,
again, equal to the characteristic speed of the state at the right.

The Rankine{Hugoniot relations are approximately satis­ ed by each rarefaction;
denoting by Ul = (ul; vl), Ur = (ur; vr) the left and right state, respectively, sepa-
rated by a discontinuity x(t), one has

_x(ur ul) + (vr vl) = O(1)(ur ul)
2; (2.6)

_x(vr vl) + ( ¼ (ur) ¼ (ul)) = O(1)(ur ul)
2: (2.7)

Let us construct a sequence of approximate solutions (u; v) = (u ¸ ; v ¸ )(t; x) as
follows. Fix a time-step ¢t = ¢t ¸ > 0, a parameter ² = ² ¸ for rarefactions
(¢t ¸ ; ² ¸ ! 0 as ¸ ! 1), and take a sequence of piecewise constant functions
(u ¸

0 ; v ¸
0 ), ¸ 2 N, such that

TotVar(u ¸
0 ; v ¸

0 ) 6 TotVar(u0; v0); lim
x ! 1

(u¸
0 ; v ¸

0 )(x) = lim
x ! 1

(u0; v0)(x); (2.8)

k(u¸
0 ; v ¸

0 ) (u0; v0)k1 6 1

¸
;

Z ¸

¸

j(u¸
0 ; v ¸

0 )(x) (u0; v0)(x)j dx 6 1

¸
: (2.9)

Solve each Riemann problem, arising at the points of jump, with the approximate
Riemann solver for (1.18) introduced before. Then (u; v)(t; ¢) is de­ ned until no
interactions occur.

By slightly changing the speed of some waves, we can assume that only two
wavefronts interact at any single time. When this occurs, the solution is prolonged
by solving the Riemann problem arising at the interaction point.

Assuming that the approximate solution is de­ ned at some time k¢t, k > 1, the
damping term is added, which a¬ects only the v variable:

u(k¢t+; x) = u(k¢t ; x);

v(k¢t+; x) = v(k¢t ; x) +
¢t

"
¢ r(u; v)(k¢t ; x):

9
=

; (2.10)

Observe that, according to (2.10), (1.8), (1.9), the functions jr(u; v)j, jv A(u)j
decrease across time-steps,

jr(u; v)(k¢t+; x)j 6 jr(u; v)(k¢t ; x)j ¢
³

1
¢t

"
¢ inf

w
jrv(u(k¢t ; x); w)j

´
;

(2.11)

j[v A(u)](k¢t+; x)j 6 j[v A(u)](k¢t ; x)j ¢
³

1
¢t

"
¢ inf

w
jrv(u(k¢t ; x); w)j

´
:

(2.12)

https://doi.org/10.1017/S0308210500000767 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500000767


8 D. Amadori and G. Guerra

(um,vm)

(ur,vr)
(ul,vl)

(u*,v*)

Figure 2. Interaction of wavefronts.

The solution is then prolonged by solving the Riemann problems arising at the
points of jump. Again, we can assume that no interactions occur at a time k¢t.

Let us denote by xi < xi + 1, i = 1; : : : ; N (t), the points at which (u; v)(t; ¢) is
discontinuous, for some integer N (t). Using the de­ nition (2.5) for the strength of
the waves, we introduce the functional

V (t) =

N(t)X

i= 1

"i (2.13)

for any time t > 0 at which no interactions occur. We set V (0)
:
= limt ! 0+ V (t).

Remark 2.1. Since the strength of the waves solving a Riemann problem are
C2 functions of the right and the left states (u ; v ), (u + ; v + ), one has that

V (0) 6 C ¤ TotVar(u; v)(0; ¢); (2.14)

provided that (u; v)(0; ¢) is contained in a compact set Q » U £ R and has su¯ -
ciently small total variation. The constant C ¤ depends only on the compact set Q.
Moreover, for t > 0, V (t) is equivalent to the total variation of (u; v)(t; ¢), on every
set in which ¼ 0 remains bounded and away from 0. In other words, for any compact
set K 0 » U , there exists a constant C(K 0) > 1 such that, if u(t; x) 2 K 0 8x 2 R,

1

C(K 0)
TotVar(u; v)(t; ¢) 6 V (t) 6 C(K 0) TotVar(u; v)(t; ¢); t > 0: (2.15)

We claim that, until (u; v)(t; ¢) is de­ ned, the functional V is non-increasing.
Indeed, let us consider the di¬erent cases (for a complete description of waves
interactions, see [6]).

Assume that, at the time t, (k 1)¢t < t < k¢t, two wavefronts interact.
Denote by (ul; vl), (um ; vm ), (ur; vr) the left, middle and right states, respectively
(see ­ gure 2), and by (u¤ ; v ¤ ) the middle state after the interaction time. Then one
has

¢V = "(Ul; U ¤ ) + "(U ¤ ; Ur) "(Ul; Um ) "(Um ; Ur): (2.16)
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u* ul ur um u

v

1s

1s

2s

2s

Figure 3. Interaction of two shocks.

In the case of a 2-shock and a 1-shock interacting (see ­ gure 3), we have the
following.

Lemma 2.2. For any compact K 0 » U , there exists a ¯ 1 > 0 such that, if ul 2 K 0,
jul um j 6 ¯ 1, jum urj 6 ¯ 1, and, if the two wavefronts are shocks of di® erent
families, then ¢V 6 0.

Proof. Set

ª (ul; a)
:
=

Z ul + a

ul

p
¼ 0(s) ds

and denote by x, y, z the positive quantities um ul, um ur and ul u ¤ , respectively.
Consider the application

f (ul; x; y; z) =

Z ul

ul z

p
¼ 0(s) ds +

Z ul + x y

ul z

p
¼ 0(s) ds

Z ul + x

ul

p
¼ 0(s) ds

Z ul + x

ul + x y

p
¼ 0(s) ds

= 2[ ª (ul; x y) ª (ul; z) ª (ul; x)]; (2.17)

where z = z(ul; x; y) is implicitly de­ ned by

p
x( ¼ (ul + x) ¼ (ul)) +

p
y( ¼ (ul + x) ¼ (ul + x y))

=
p

z( ¼ (ul) ¼ (ul z)) +
p

(x y + z)( ¼ (ul + x y) ¼ (ul z)): (2.18)

The function g(ul; x; y)
:
= f (ul; x; y; z(ul; x; y)) is continuous up to the fourth deriva-

tives. Applying the implicit function theorem, after lengthy but straightforward
calculations, one obtains g(ul; x; 0) = 0, g(ul; 0; y) = 0,

@ ¬ + ­

@x ¬ @y­
g(ul; 0; 0) = 0 (2.19)
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for every ¬ , ­ satisfying ¬ + ­ 6 4, ( ¬ ; ­ ) 6= (1; 3); (3; 1), and

@4

@x3@y
g(ul; 0; 0) =

@4

@x@y3
g(ul; 0; 0) =

¼ 00(ul)(2¼ 0(ul) ¼
000(ul) 3 ¼ 00(ul)

2)

16 ¼ 0(ul)5=2
: (2.20)

Recalling that ¼ 00(ul) < 0, by assumption (1.5) and proposition A 1, there exists
¯ 1 > 0 such that g is non-positive in K 0 £ [0; ¯ 1] £ [0; ¯ 1].

In the case of two rarefactions of di¬erent families interacting, by (2.1), (2.2),
one has

vr = vl

Z um

ul

p
¼ 0(s) ds +

Z ur

um

p
¼ 0(s) ds

= vl +

Z u¤

ul

p
¼ 0(s) ds

Z ur

u¤

p
¼ 0(s) ds: (2.21)

Since ul > um , u ¤ > ur, one simply gets ¢V = 0. Note that, in this case, the two
wavefronts have the same size before and after the interaction. Indeed, by (2.21),
one has

2

Z ul

um

p
¼ 0(s) ds +

Z ur

ul

p
¼ 0(s) ds =

Z ur

ul

p
¼ 0(s) ds + 2

Z u¤

ur

p
¼ 0(s) ds; (2.22)

which gives "(Ul; Um ) = "(U ¤ ; Ur); the other equality follows from ¢V = 0. This is
not surprising since the size de­ ned in (2.5) is strictly related to Riemann invariants.

In the case of a rarefaction and a shock of the same i-family (i = 1; 2) interacting,
one can use Glimm estimates (see [13]). For any compact set K 0 » U , there exist
C; ¯ 0

2 > 0 such that the following hold. If ul 2 K 0 and "(Ul; Um ) 6 ¯ 0
2, "(Um ; Ur) 6 ¯ 0

2,
then

j&"0
i "(Ul; Um ) + "(Um ; Ur)j + "0

j 6 C"(Um ; Ur)"(Ul; Um ); (2.23)

where "0
i is the strength of the outgoing wave of the i-family, "0

j is the strength of the
outgoing wave of the other family, and & is +1 or 1, depending on the interaction.
Suppose & = +1 (the other case is similar). From (2.23) one gets

¢V = "0
i + "0

j "(Um ; Ur) "(Ul; Um )

6 "0
j + j"0

i "(Ul; Um ) + "(Um ; Ur)j 2"(Um ; Ur)

6 "(Um ; Ur)[C"(Ul; Um ) 2]

6 0 (2.24)

for "(Ul; Um ) 6 ¯ 2 = minf ¯ 0
2; 1=Cg.

In the remaining cases, one has

um ; u ¤ 2 [minful; urg; maxful; urg]; (2.25)

which implies ¢V = 0.
Assume now that t = k¢t. Denote by (ul; vl) and (ur; vr) the states at the left and

at the right of a wave approaching the time-step, and by (ul; v +
l ), (u ¤ ; v ¤ ), (ur; v +

r ),
respectively, the left, middle and right states after the time-step (see ­ gure 4).
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(ur,vr )(ul,vl )

(u*,v*)

(ul,vl)
(ur,vr)

++

kDt

Figure 4. Wavefronts through the step.

(ur,vr )

(ul,vl )

(u*,v*)

(ur,vr)

+

u

v

+

Figure 5. A 2-shock (with vl = 0) through the step.

We claim that

jv +
l v +

r j 6 jvl vrj: (2.26)

Indeed, recalling (2.10) and (2.1), (2.2), we can write

jv +
r v +

l j = jvr vlj ¢
­­­­1 +

¢t

"
¢ [r(ur; vr) r(ul; vl)]

vr vl

­­­­

= jvr vlj ¢
­­­­1 +

¢t

"
© i(ur; ul)

1

Z ur

ul

[ru + rv © i;s(s; ul)] ds

­­­­: (2.27)

Let us check the sign of the quantity, in (2.27), that multiplies ¢t=". Observe that,
using (1.8) and (2.4), either it vanishes or it has the same sign as © i;s ¢ © i(ur; ul) ¢
(ur ul). From (2.1), (2.2), one can check that this last quantity is always negative.
Hence the smallness of ¢t implies (2.26).

Inequality (2.26) and the invariance of shock-rarefaction curves with respect
to translations along the v-direction ensure that u¤ 2 [minful; urg; maxful; urg]
(see ­ gure 5), which implies ¢V = 0. As a consequence, the following hold.

(i) A rarefaction of the 1th family becomes a smaller 1-rarefaction followed by a
small 2-shock.

(ii) A shock wave of the 1th family becomes a smaller 1-shock followed by a 2-
rarefaction.
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12 D. Amadori and G. Guerra

(iii) A rarefaction of the 2th family produces a small 1-shock followed by a 2-
rarefaction.

(iv) A shock of the 2th family produces a small 1-rarefaction followed by a 2-shock.

Hence the following lemma is proved.

Lemma 2.3. For any closed interval K 0 » U containing the compact set K in its
interior, there exists a ¯ 3 > 0, independent of ¸ , such that the following holds. If
V (0) 6 ¯ 3, until the approximate solution (u; v)(t; ¢) is de¯ned, ¢V (t) 6 0, and
consequently V (t) 6 ¯ 3. Moreover, u(t; x) 2 K 0 8x 2 R.

Indeed, consider a closed interval K 0 » U , such that the compact set is contained
in its interior. De­ ne

¯ 4 = inf
u1 2 K

u2 2 U nK 0

­­­­
Z u2

u1

p
¼ 0(s) ds

­­­­:

Let C(K 0) be the constant in remark 2.1. Then, if

¯ 3 6 minf ¯ 1=C(K 0); ¯ 2; ¯ 4g;

lemma 2.2, equation (2.24) and the subsequent consideration hold. Moreover, since
¯ 3 6 ¯ 4, we have u(t; x) 2 K 0 8x 2 R.

Remark 2.4. The size of a rarefaction wave does not increase in time. Indeed, this
is not the case for (2r : 1r ! 1r : 2r), due to (2.22).

The other cases to be considered are (2s : 1r ! 1r : 2s) and (2r : 1s ! 1s ! 2r)
(when a shock and a rarefaction of the same family interact, the rarefaction cannot
increase because there is a compensation, which can be seen with a computation
similar to (2.24)). In the ­ rst case, for instance, proceed as in the proof of lemma 2.2.
Consider the application

f (ul; x; y; z) = ª (ul; 0; z) = ª (ul; x; x + y); (2.28)

where

ª (ul; a; b)
:
=

Z ul + b

ul + a

p
¼ 0(s) ds;

x = um ul, y = ur um and z = z(ul; x; y) = u ¤ ul is implicitly de­ ned by

h(ul; x; y; z) = ª (ul; 0; z)
p

(x + y z)( ¼ (u + x + y) ¼ (u + z))

ª (ul; x; x + y) +
p

x( ¼ (u + x) ¼ (u)) ² 0; (2.29)

hence z(ul; x; 0) = 0, z(ul; 0; y) = y. Clearly, f gives the di¬erence of the amplitude
of the rarefaction, after and before the interaction. We prove that g(ul; x; y)

:
=

f (ul; x; y; z(ul; x; y)) is negative in a su¯ ciently small neighbourhood of zero.
Indeed, g is continuous up to the fourth derivatives in the variables x, y. It is

easy to check that

g(ul; x; 0) ² 0; g(ul; 0; y) ² 0: (2.30)
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Moreover,

hx(ul; x; y; z(ul; x; y))jx = 0;y = 0 = 2gx(ul; 0; y) ² 0; (2.31)

hxx(ul; x; y; z(ul; x; y))jx = 0;y = 0 = 2gxx(ul; 0; y) ² 0; (2.32)

and, applying the implicit function theorem,

@ ¬ + ­

@x ¬ @y­
g(ul; 0; 0) = 0 (2.33)

for every ¬ , ­ , with ¬ + ­ 6 4, ( ¬ ; ­ ) 6= (3; 1); moreover,

@4

@x3@y
g(ul; 0; 0) =

¼ 00(ul)

32¼ 0(ul)5=2
(2 ¼ 0(ul) ¼

000(ul) 3 ¼ 00(ul)
2): (2.34)

By assumption (1.5), and by (2.30){(2.32) and proposition A 2,

g is negative 8(ul; x; y) 2 K 0 £ [0; ¯ 0] £ [0; ¯ 0] for a suitable ¯ 0 > 0:

By eventually taking a smaller ¯ 3 in lemma 2.3, the claim is proved.
Lemma 2.3 provides a uniform a priori bound on the total variation of the approx-

imate solutions. Now we prove that the total number of interactions remains ­ nite
in ­ nite time, hence every approximate solution can be de­ ned for all times t > 0.
We need the following lemma.

Lemma 2.5. Let a wavefront tracking pattern be given in the strip [0; T )£R, made
of segments (waves) of two families. Assume that the velocities of the segments of
the ¯rst family lay between two constants a1 < a2. Analogously, the velocities of
the segments of the second family lay between two constants b1 < b2, with a2 < b1.
Assume that the wavefront tracking pattern also has the following properties.

(i) At t = 0 there is a ¯nite number N0 of waves.

(ii) The interactions occur only between two wavefronts at any single time.

(iii) Except for a ¯nite number of interactions, there is at most one outgoing wave
of each family for each interaction.

Then the number of interactions, in the region [0; t) £ R, is ¯nite.

Proof. It is not restrictive to assume a2 < 0 < b1. Suppose by contradiction that
there is an in­ nite number of interactions. We can assume that, in [0; t], t < T ,
there is a ­ nite number of them and that T is an accumulation point. Therefore,
there is a sequence I of interactions which occur at the points (ti; xi), i = 1; 2; : : : .
Without loss of generality we can assume that t1 < t2 < ¢ ¢ ¢ and that (ti; xi) tends
to a point (T; ·x) as i tends to in­ nity.

Denote by F the set of all the segments that can be joined to some point of
I , forward in time, by a continuous path along the wavefronts. For instance, all
the segments interacting at the points (ti; xi), i 2 N, belong to F . Call F1 (respec-
tively F2) the set of all elements of F which belong to the ­ rst (respectively second)
family.

Then we partition all the interaction points in the following sets.
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14 D. Amadori and G. Guerra

(i) I1: the set of all interaction points in which there are exactly two outgoing
segment belonging to F , one for each family.

(ii) I2: the set of all interaction points in which the two in-going waves belong to
F and there is at most one outgoing wave belonging to F .

(iii) I3: the set of all interaction points in which no in-going wave belongs to F .

(iv) I4: the set of all interaction points in which the two in-going waves both
belong to F and there are at least two outgoing waves of the same family
belonging to F .

We remark that, by assumption, I4 is ­ nite, that all the in-going waves of the
interactions of I1, I2, I4 belong to F and that the outgoing waves of the interactions
of I3 do not belong to F . Note also that the points (ti; xi), i 2 N, do not belong
to I3.

We de­ ne the potential V (t) > 0 as the number of all the segments belonging to
F present at the time t. Observe that, except form the points of the ­ nite set I4,
V (t) is non-increasing across interaction points; moreover, it decreases by one or
two across the points of I2. Since V (0) is bounded, then I2 is ­ nite.

As a consequence, all the points (ti; xi), i 2 N, except at most a ­ nite number,
belong to I1.

We start now from (t1; x1), and try to go forward in time with two continuous
lines: the ­ rst one made of segments of F1 (­ rst family) and the second one using
segments of F2 (second family). In doing this, we possibly have to stop when we
reach an interaction point (~t; ~x), with ~t < T , belonging to I2 or I4 (obviously, we
cannot reach points of I3). If this happens, we take a point (tj ; xj), with tj > ~t,
and start again.

Since I2 and I4 are ­ nite sets, we have to ­ nd a point (t ¤ ; x ¤ ) 2 I from which
we can draw two lines ® 1(t), ® 2(t) until the time T : the ­ rst one made of segments
of F1 and the second using segments of F2. The bounds on the velocities imply

® 1(t) 6 x ¤ + a2(t t ¤ ); ® 2(t) > x ¤ + b1(t t ¤ ): (2.35)

De­ ne » = 1
5(T t ¤ )(b1 a2) > 0 and ­ x tn with (tn; xn) 2 I satisfying

ja1j(T tn) 6 » ; jb2j(T tn) 6 » : (2.36)

Since ® 1 is composed of segments of F , the point (tn; ® 1(tn)) can be joined to some
point of I . Therefore, the bounds on the velocities imply that there must be a point
(th; xh) 2 I satisfying

xh 6 ® 1(tn) + b2(th tn); h > n: (2.37)

Analogously, there must be a point (tk; xk) 2 I satisfying

xk > ® 2(tn) + a1(tk tn); k > n: (2.38)

https://doi.org/10.1017/S0308210500000767 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500000767


Global BV solutions and relaxation limit 15

From (2.37), (2.38) and (2.35), we get

xk xh > ® 2(tn) ja1j(T tn) ® 1(tn) jb2j(T tn)

> (b1 a2)(tn t ¤ ) 2 »

= (b1 a2)(T t ¤ ) + (b1 a2)(tn T ) 2 »

> » : (2.39)

Since n can be chosen arbitrarily large, equation (2.39) contradicts the fact that xi

tends to ·x.

To apply the lemma we need to prove that, between two time-steps, the number
of interactions in which there are more than one outgoing wave of the same family
is ­ nite. In each strip, the interactions in which there are more than one outgoing
wave of the same family can occur only in the case of two shocks of the same family
interacting (of size "1 and "2), because a rarefaction (of size ") of the other family
appears and we have possibly to split it. If this happens, then

² 6 " 6 C"1"2 (2.40)

for a suitable C > 0. Recalling the usual de­ nition of the interaction potential
Q, we use the fact that, eventually taking ¯ 3 smaller in lemma 2.3, Q decreases
at each interaction of waves between times k¢t and (k + 1)¢t. Due to (2.40), the
previous situation can occur only a ­ nite number of times. Therefore, by lemma 2.3,
if V (0) 6 ¯ 3, we can construct the approximate solution (u; v)(t; ¢) for all t > 0.

Recalling remark 2.1, we de­ ne ¯
:
= ¯ 3=C ¤ . Hence, if TotVar(u0; v0) 6 ¯ , then

the approximate solutions have equibounded total variation and

TotVar(u ¸ ; v ¸ )(t; ¢) 6 C ¤ C(K 0) TotVar(u0; v0): (2.41)

Observe that the last inequality, together with (2.12), ensures that the approximate
solutions remain equibounded in the L 1 -norm.

To apply Helly’s theorem, we need estimates on the dependence on t of the
approximating functions. These estimates are given by the following lemma.

Lemma 2.6. Let (u; v)(t; x) be an approximate solution de¯ned by the previous algo-
rithm, such that TotVar(u; v)(t; ¢) 6 K, kuk 1 ; kvk 1 6 K y 8t > 0, for some posi-
tive K, K y . Then there exists a constant L ¤ , independent on ", such that, 8a < b,
0 6 s < t,

Z b

a

ju(t; x) u(s; x)j dx 6 L ¤ K(t s); (2.42)

Z b

a

jv(t; x) v(s; x)j dx 6 (t s + ¢t)(L ¤ K + L"); (2.43)

where L" depends on " and on the interval [a; b].

Proof. Fix a constant L ¤ > 1 satisfying
p

¼ 0(u) 6 L ¤ 8u 2 K 0, and take two
numbers 0 6 s < t. If there are no time-steps between s and t, equations (2.42)
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and (2.43) obviously hold with any L" > 0. Suppose now that there are steps
between s and t,

s 6 k0¢t < (k0 + 1)¢t < ¢ ¢ ¢ < ~k¢t 6 t; 1 6 k0 6 ~k; (2.44)

so that (~k k0)¢t 6 t s. Since u does not change through the steps, we have

Z b

a

ju(t; x) u(s; x)j dx 6 L ¤ K

µ
t ~k¢t +

~kX

i = k0 + 1

¢t + k0¢t s

¶

6 L ¤ K(t s); (2.45)

and (2.42) is proved. On the other hand, for the estimate (2.43), we have to consider
a supplementary term due to the fact that v is discontinuous through the steps,

~kX

i = k0

Z b

a

jv(i¢t+; x) v(i¢t ; x)j dx =

~kX

i = k0

¢t

"

Z b

a

jr(u; v)(i¢t ; x)j dx

6 ¢t(~k k0 + 1)L"

6 L"(t s + ¢t); (2.46)

where L" = (b a)" 1 supjuj;jvj6Ky jr(u; v)j. This proves the lemma.

By Helly’s theorem, there exists a subsequence that converges in L1
loc to a limit

(u; v). By remark 2.1, the maximum size of the rarefactions tends to zero as the
order of approximation increases; moreover, the approximated solutions do not have
non-physical waves. Then, by standard procedure [5,8], one can show that (u; v) is
a weak solution to (1.1){(1.3). Furthermore, lemma 2.6 ensures that the solution
(u; v) satis­ es (1.14) and (1.15) with L = L ¤ K.

Finally, let ² be a convex entropy, with ®ux q. Following the same arguments as
in [8], one can prove that the entropy inequality

Z 1

0

Z 1

1
² (u; v) ¿ t + q(u; v) ¿ x + " 1 ² v(u; v)r(u; v) ¿ dxdt

+

Z 1

1
² (u0; v0)(x) ¿ (0; x) dx > 0 (2.47)

holds for any test function ¿ > 0.

3. Proof of theorem 1.2

This proof is similar to the previous one. We only have to change the points in
which we used hypothesis (1.5) or the smallness of the total variation. We remark
that with ¼ (u) = 1=u, one has 2¼ 0(u) ¼ 000(u) 3 ¼ 00(u) ² 0; moreover, the waves
measure, de­ ned in (2.5), here reads as follows

"(Ul; Um ) =

­­­­log
ul

ur

­­­­

(see also [17] for an independent approach, using the Glimm scheme, to the case
® = 1).
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First of all we observe that we can always solve the Riemann problem, even if
the data are arbitrarily large [6], and that remark 2.1 holds without requiring the
smallness of the total variation of (u; v)(0; ¢). The ­ rst thing that does not work
here is lemma 2.2. We substitute it with lemma 3.1. In the following, as before,
we will denote by Ul = (ul; vl), Um = (um ; vm ), Ur = (ur; vr), respectively, the left,
middle and right state before an interaction of two waves, and by U ¤ = (u ¤ ; v ¤ ),
the middle state after the interaction (see ­ gure 2).

Lemma 3.1. Waves of di® erent families cross each other without changing their
strength.

Proof. It is easy to see that, in the interactions of waves of di¬erent families, one
has

u¤ =
ulur

um
: (3.1)

For example, let us check the case of a 2-shock and a 1-rarefaction interacting,
(2s : 1r). The equation de­ ning u ¤ is given by

p
(um ul)[¼ (um ) ¼ (ul)] +

Z ur

um

p
¼ 0(s) ds

=
p

(u¤ ur)[ ¼ (u ¤ ) ¼ (ur)] +

Z u¤

ul

p
¼ 0(s) ds: (3.2)

With ¼ (u) = 1=u, we get

s

(u ¤ ur)

³
1

ur

1

u ¤

´ s

(um ul)

³
1

ul

1

um

´
= ln

u ¤ um

ulur
: (3.3)

It is easy to verify that (3.1) represents the unique solution of (3.3).
Using (3.1), it is easy to check that

"(Ul; Um ) = "(U ¤ ; Ur); "(Um ; Ur) = "(Ul; U ¤ ): (3.4)

This completes the proof.

Next, we need to prove that V does not increase when a shock and a rarefaction
of the same family interact, since in the previous proof we used the smallness of
the interacting waves. Therefore, we state the following more general lemma that
will be useful later and whose proof is given in the appendix. We denote by V s and
Vr the splitting of V into shocks and rarefactions, respectively, so that

V s (t) =
X

i : "i is a s h ock

"i; (3.5)

Vr(t) =
X

i : "i is a rarefaction

"i: (3.6)

Lemma 3.2. Let K 0 » (0; +1) be a compact set. If, in an interaction between a
shock and a rarefaction of the same family, we have ul; um ; ur; u¤ 2 K 0, then there
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exists ¹ 0 > 1, depending only on the compact set K 0, such that the potentials

V ¹ (t) = ¹ V s (t) + Vr(t); ¹ 2 [1; ¹ 0]; (3.7)

are not increasing.

We remark that in lemma 3.2, taking ¹ = 1, one has that, independently of ul,
um , ur, u ¤ , the potential V (t) is not increasing across the interaction of a shock and
a rarefaction of the same family.

Hence we can state the corresponding of lemma 2.3.

Lemma 3.3. Until the approximate solution (u; v)(t; ¢) is de¯ned, ¢V (t) 6 0, and
consequently V (t) 6 V (0).

Suppose now that we have initial data (u0; v0) satisfying (1.17). Take then an
approximating sequence (u ¸ ; v ¸ ) satisfying (2.8), (2.9). For ¸ su¯ ciently large,
(u ¸ ; v ¸ ) is contained in a compact set Q = K 00 £ [ N; N ]. Therefore, remark 2.1
implies

V (0) 6 C ¤ TotVar(u0; v0); (3.8)

where C ¤ depends only on Q.
Lemma 3.3 ensures that until (u ¸ (t; ¢); v ¸ (t; ¢)) is de­ ned, then V ¸ (t) 6 C ¤ M .

But, if

u 1 = lim
x ! + 1

u0(x) = lim
x! + 1

u ¸
0(x);

then we must have

u ¸ (t; x) 2 [u 1 ¢ exp( C ¤ M ); u 1 ¢ exp(C ¤ M )] K 0: (3.9)

In other words, until the approximate solution exists, u ¸ (t; x) belongs to a com-
pact set K 0 » (0; +1) that depends only on K and M . Therefore, since V ¸ (t) is
equibounded, the total variation is also equibounded.

Finally, to prove that the approximate solutions can be de­ ned for all times
t > 0, we apply lemma 2.5. To apply this lemma, we have to show that, except for
a ­ nite number of interactions, there is at most one outgoing wave of each fam-
ily for each interaction. We consider the potential de­ ned in lemma 3.2, V ¹ 0 (t),
where ¹ 0 depends on the compact set K 0. We know that this potential is not
increasing across interactions of shocks and rarefactions of the same family. More-
over, due to lemma 3.1, it does not change across interactions of waves of di¬er-
ent families. The only case in which we have more than one outgoing wave for
each family is the interaction of two shocks of the same family. In this case, we
have to split the rarefaction if its strength is greater than ² > 0. Since in these
interactions we have ¢V = ¢V s + ¢Vr = 0, we have ¢V s 6 ² and therefore
¢V ¹ 0 = ( ¹ 0 1)¢V s + ¢V 6 ( ¹ 0 1)² . But this can happen only a ­ nite number
of times, since V ¹ 0 is non-increasing and it is ­ nite after any time-steps.

Lemma 2.6 and the subsequent considerations hold for the present case without
any changes.
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4. Zero relaxation limit

In this section we study the convergence to zero of the relaxation parameter ",
proving theorem 1.3. Let K be a compact subset of U and denote with L, ¯ , C the
constants in theorem 1.1 (respectively L, M , C in theorem 1.2).

Consider a family of initial data (u"
0; v"

0), either satisfying limx ! 1 u"
0(x) 2 K

and

TotVar(u"
0; v"

0) 6 ¯ ; (4.1)

or, respectively, u"
0(x) 2 K for all x and

TotVar(u"
0; v"

0) 6 M; (4.2)

for any " > 0. Moreover, assume that u"
0 ! u0 in L1

loc and that fv"
0g">0 is uniformly

bounded in the L 1 -norm. We remark that it is not required that A(u"
0) = v"

0 , and
that v"

0 does not need to have limit as " ! 0.
By theorem 1.1 (respectively theorem 1.2), there exists a family of corresponding

solutions (u"; v") to (1.1){(1.3) (corresponding to (1.6){(1.3)) in a weak sense. The
following equalities are satis­ ed,

Z 1

1

Z 1

0

u" ¿ t v" ¿ x dxdt = 0; (4.3)

Z 1

1

Z 1

0

"v" ¿ t "¼ (u") ¿ x + ¿ r(u"; v") dxdt = 0; (4.4)

for all ¿ 2 C 1
0 ((0; 1) £ R). Moreover, for any a < b, t > s > 0, we have

Z b

a

ju"(t; x) u"(s; x)j dx 6 Ljt sj;
Z b

a

jv"(t; x) v"(s; x)j dx 6 (L + L")jt sj:

9
>>>=

>>>;
(4.5)

To pass to the limit as " ! 0, we need a better estimate on the Lipschitz constant
L" at (1.15), hence the proof of lemma 2.6 must be re­ ned.

Lemma 4.1. In the same assumptions of lemma 2.6 and assuming (1.19), the con-
stant L" takes the form

L"
:
=

2c

"
exp

³
sc

"

´
¢
Z b

a

jr(u"
0; v"

0)(x)j dx: (4.6)

Proof. For any k > 1, de­ ne

g§
k =

Z b

a

jr(u; v)(k¢t§; x)j dx: (4.7)

From (2.11) and (1.19), it follows that

g +
k 6

³
1

c¢t

"

´
gk 8k > 1; (4.8)

https://doi.org/10.1017/S0308210500000767 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500000767


20 D. Amadori and G. Guerra

where c is the constant at (1.19); moreover,

gk g +
k 1 6

Z b

a

jr(u; v)(k¢t ; x) r(u; v)((k 1)¢t+; x)j dx

6 sup
juj;jvj6Ky

jrvj
³

L ¤
Z b

a

ju(k¢t ; x) u((k 1)¢t; x)j dx

+

Z b

a

jv(k¢t ; x) v((k 1)¢t+; x)j dx

´

6 K1¢t (4.9)

for a suitable constant K1 = 2(L ¤ )2K ¢ sup jrv j, with L ¤ , K y as in the proof of
lemma 2.6. Together, equations (4.8) and (4.9) give

gk 6 K1¢t ¢
k 1X

i = 0

³
1

c¢t

"

í

+

³
1

c¢t

"

ḱ 1

g +
0

6 K1
"

c
+

³
1

c¢t

"

ḱ 1

g +
0 : (4.10)

As in (2.46), using (4.10), we get

~kX

i = k0

Z b

a

jv(i¢t+; x) v(i¢t ; x)j dx

=
¢t

"

~kX

i = k0

gi

6 ¢t

~kX

i = k0

K1

c
+

¢t

"

~kX

i = k0

³
1

c¢t

"

í 1

g +
0

6 K1

c
(t s + ¢t) + g +

0

³
1

c¢t

"

ḱ0 1µ
1

³
1

c¢t

"

~́k k0 + 1¶

6 K1

c
(t s + ¢t) + 2g +

0

³
1

c¢t

"

ḱ0 ¢ t= ¢ t

(~k k0 + 1)
c¢t

"

6 (t s + ¢t)

µ
K1

c
+ 2

c

"
g +

0 exp

³
sc

"

´¶
: (4.11)

Hence the lemma is proved and (2.42), (2.43) hold with a larger constant L ¤ .

We recall that the constant L in (4.5) does not depend on ". By the assumptions
on the initial data, the constant L", at (4.5), can be bounded uniformly, as " ! 0,
on any set of the type [1=n; 1) £ [ n; n], for any ­ xed n 2 N. If t; s > 1=n, one has

L" 6 2C1 ¢ (b a)" 1 exp

³
1

n"

´
; (4.12)

where C1 > 0 depends only on the (uniform) bounds on the initial data. For n
­ xed, the second term of the right-hand side in (4.12) goes to zero with ".
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By Helly’s theorem, there exists a subsequence "k ! 0, as k ! 1, such that
u"k converges to some ~u in L1

loc([0; 1) £ ( 1; 1)). Moreover, ~u(0; ¢) = u0 and the
Lipschitz inequality for u" in (4.5) also holds for the limit.

By eventually extracting a subsequence "1
k from "k, the sequence v"1

k converges
to a limit ~v in L1

loc((1; 1) £ ( 1; 1)). Passing to the limit in (4.3) and (4.4) with
"1

k, one has

~v(t; ¢) = A(~u(t; ¢)); ~ut A(~u)x = 0 (4.13)

on the set (1; 1) £ ( 1; 1).
For any n 2 N, one can extract a subsequence of "n 1

k , "n
k such that v"n

k converges
to ~v in L1

loc((1=n; 1) £ ( n; n)). Due to (4.12), (4.5), for any t; s > 1=n, we have
Z n

n

j~v(t; x) ~v(s; x)j dx 6 Ljt sj: (4.14)

With a diagonalization argument, the sequences u"n
n , v"n

n converge, as n ! 1,
to ~u, ~v, respectively, on (0; 1) £ R, then (4.13) holds on the region (0; 1) £ R.
Since the sequence v"n

n is equibounded, the convergence takes place in [0; 1) £ R.
Inequality (4.14) is satis­ ed for any t; s > 0 and for all n 2 N. Hence there exists,
in L1

loc, the limit

lim
t! 0

~v(t; ¢) = lim
t ! 0

A(~u(t; ¢)) = A(u0):

We can therefore de­ ne ~v(0; ¢) :
= limt ! 0 ~v(t; ¢). The function ~u is a weak solution of

the scalar equation

ut A(u)x = 0; u(0; ¢) = u0; (4.15)

with Lipschitz dependence on time.
Concerning entropy conditions, following [7], let ² = ² (u; v) be a C2 convex

entropy, with ®ux q, for the relaxing system (1.1). We require the entropy to be
dissipative in the sense that

² v(u; v) ¢ r(u; v) 6 0 (4.16)

for all (u; v) in an open neighbourhood of the equilibrium curve (u; A(u)). This
clearly implies ² v = 0 along the equilibrium curve. Moreover, let us set

² 0(u)
:
= ² (u; A(u)); q0(u)

:
= q(u; A(u)): (4.17)

With these assumptions, if A 2 C2, the function ² 0(u) is found to be a convex
entropy for the limit equation (4.15), with corresponding ®ux q0(u). Using (2.47)
and (4.16), one obtains that the limit function ~u satis­ es the entropy inequality for
the scalar equation

Z 1

0

Z 1

1
² 0(~u) ¿ t + q0(~u) ¿ x dxdt +

Z 1

1
² 0(u0)(x) ¿ (0; x) dx > 0: (4.18)

However, one would like to ­ nd out if ~u is the unique entropy solution of (4.15) or
not; this is still not clear at the moment and requires further investigation. A partial
answer can be given following the lines of [7,14].
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Appendix A.

Proposition A.1. Let K » Rn be a compact set and g : K £ [0; ¯ 1] £ [0; ¯ 2] ! R
be a C4 function satisfying, for any u 2 K : g(u; x; 0) = g(u; 0; y) = 0,

@ ¬ + ­

@x¬ @y­
g(u; 0; 0) = 0 (A 1)

for every ¬ , ­ satisfying ¬ + ­ 6 4, ( ¬ ; ­ ) 6= (1; 3); (3; 1), and

@4

@x3@y
g(u; 0; 0) =

@4

@x@y3
g(u; 0; 0) = a(u) > 0: (A 2)

Then there exists ¯ > 0 such that g(u; x; y) > 0 for any (u; x; y) 2 K £ [0; ¯ ) £ [0; ¯ ).

Proof. We can write

g(u; x; y) = g(u; x; y) g(u; x; 0)

=

Z y

0

@

@y0 g(u; x; y0) dy0

=

Z y

0

µ
@

@y0 g(u; x; y0)
@

@y0 g(u; 0; y0)

¶
dy0

=

Z y

0

Z x

0

@2

@x0@y0 g(u; x0; y0) dx0dy0: (A 3)

Since (@2=@x@y)g(u; x; y) is C2, from the Taylor expansion in Lagrange form one
has

@2

@x@y
g(u; x; y) =

1

2

µ
x2 @4

@x3@y
g(u; ³ x; ³ y)

+ 2xy
@4

@x2@y2
g(u; ³ x; ³ y) + y2 @4

@x@y3
g(u; ³ x; ³ y)

¶
; (A 4)

where ³ 2 (0; 1). a is a continuous function on the compact set K , hence it has
a minimum a0. Since the derivatives in the right-hand side of (A 4) are uniformly
continuous on the compact set K £ [0; ¯ 1] £ [0; ¯ 2], there exists ¯ > 0 such that
8(u; x; y) 2 K £ [0; ¯ ) £ [0; ¯ ) one has

@4

@x3@y
g(u; ³ x; ³ y) > 1

2
a0;

@4

@x2@y2
g(u; ³ x; ³ y) > 1

2a0;

@4

@x@y3
g(u; ³ x; ³ y) > 1

2a0:

9
>>>>>>>=

>>>>>>>;

(A 5)
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Therefore (A 4) becomes

@2

@x@y
g(u; x; y) > 1

2
[ 1

2
a0x2 1

2
a0xy + 1

2
a0y2]

= 1
4
a(u)(x y)2

> 0 (A 6)

for any (u; x; y) 2 K £[0; ¯ )£[0; ¯ ). Equations (A 6) and (A 3) imply the proposition.

Proposition A.2. Let K » Rn be a compact set and g : K £ [0; ¯ 1] £ [0; ¯ 2] ! R
be a C4 function satisfying, for any u 2 K : g(u; x; 0) = g(u; 0; y) = gx(u; 0; y) =
gxx(u; 0; y) = 0,

@ ¬ + ­

@x¬ @y­
g(u; 0; 0) = 0 (A 7)

for every ¬ , ­ satisfying ¬ + ­ 6 4 and ( ¬ ; ­ ) 6= (3; 1). Moreover, assume that, for
any u 2 K , we have

@4

@x3@y
g(u; 0; 0) = a(u) > 0: (A 8)

Then there exists ¯ > 0 such that g(u; x; y) > 0 for any (u; x; y) 2 K £ [0; ¯ ) £ [0; ¯ ).

Proof. The proposition is proved if one shows that (@2=@x@y)g(u; x; y) is non-
negative in K £ [0; ¯ ) £ [0; ¯ ) for some ¯ > 0 (see the proof of proposition A.1).
Therefore, we write

@2

@x@y
g(u; x; y) =

@2

@x@y
g(u; x; y)

@2

@x@y
g(u; 0; y)

=

Z x

0

@3

@x02@y
g(u; x0; y) dx0

=

Z x

0

µ
@3

@x02@y
g(u; x0; y)

@3

@x02@y
g(u; 0; y)

¶
dx0

=

Z x

0

Z x 0

0

@4

@x03@y
g(u; x00; y) dx00dx0: (A 9)

Observing that the function (@4=@x3@y)(u; x; y) is uniformly continuous in K £
[0; ¯ 1] £ [0; ¯ 2] and positive at (u; 0; 0) for any u 2 K , the theorem is proved.

Proof of lemma 3.2. To simplify the notation, we set

ª (u1; u2) =

s

(u1 u2)

³
1

u2

1

u1

´
; (A 10)

ª (u1; u2) = ln
u2

u1
: (A 11)
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Consider a wave-interaction pattern as in ­ gure 2. If the outgoing waves are both
shocks, one for each family, the equations de­ ning u¤ are

W (ul; ur; um ; u¤ ) = 0 for 1s : 1r, 2s : 2r; (A 12)

fW (ul; ur; um ; u¤ ) = 0 for 1r : 1s, 2r : 2s; (A 13)

where

W (ul; ur; um ; u ¤ ) = ª (ul; u ¤ ) + ª (ur; u ¤ ) ª (ul; um ) + j© (um ; ur)j; (A 14)

fW (ul; ur; um ; u ¤ ) = W (ur; ul; um ; u ¤ ): (A 15)

We claim that there exists µ0 < 1, depending only on the compact set K 0, such
that, for the ­ rst case (A 14), we have

u ¤ > ul

³
ur

um

µ́

8µ 2 [µ0; 1]; (A 16)

and for the second case (A 15)

u¤ > ur

³
ul

um

µ́

8µ 2 [µ0; 1]: (A 17)

We will prove only (A 16) (note that (A 17) is symmetric with respect to ul and ur).
From the Lagrange formula we get

W

³
ul; ur; um ; ul

³
ur

um

µ́ ´

= W

³
ul; ur; um ; ul

ur

um

´

+ ul(µ 1)

³
ur

um

~́µ

ln
ur

um
¢ @

@u ¤ W

³
ul; ur; um ; ul

³
ur

um

~́µ ´

>
­­­­ln

um

ur

­­­­[1 + (1 µ)h(ul; ur; um ; ~µ)]; (A 18)

where µ 6 ~µ 6 1 and h is a suitable function bounded by a constant C ¤ , which can
be chosen greater than two, depending only on the compact set K 0. Hence, if we
take µ0 = 1 1=C ¤ , we obtain

W

³
ul; ur; um ; ul

³
ur

um

µ́ ´
> 0 8µ 2 [k0; 1]: (A 19)

The claim is proved by observing that the function u ¤ 7! W (ul; ur; um ; ul; u ¤ ) is
decreasing. Now we ­ x ¹ 0 = 1=(2µ0 1). Using (A 16), consider the following two
cases (with ¹ 2 [1; ¹ 0]).
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(i) 2s : 2r:

¢[¹ V s + Vr] = ¹

µ
ln

ul

u ¤ + ln
ur

u ¤ ln
um

ul

¶
¹ ln

³
um

ur

1́=¹

= 2 ¹ ln

µ
ul

u¤

³
ur

um

(́1+ ¹ )=2 ¹ ¶

6 2 ¹ ln 1

= 0: (A 20)

(ii) 1s : 1r:

¢[¹ V s + Vr] = ¹

µ
ln

ul

u ¤ + ln
ur

u ¤ ln
ul

um

¶
¹ ln

³
ur

um

1́=¹

= ¹ ln

µ
um ur

u ¤ 2

³
um

ur

1́=¹ ¶

6 ¹ ln

µ
u2

m

u2
l

³
um

ur

2́=¹ ¶

6 0; (A 21)

where the last inequality in (A 21) is obtained by observing that ul; ur > um .

The proof for the 1r : 1s and 2r : 2s cases is similar.
On the other hand, if the outgoing waves are a shock and a rarefaction, then u ¤

is no longer de­ ned by (A 12) and (A 13). We consider only the 2r : 2s example,
with a 1s and a 2r outgoing from the interaction, the other cases being similar. The
equation de­ ning u¤ is given by

© (um ; ul) ª (um ; ur) = ª (u ¤ ; ul) + © (ur; u ¤ ); (A 22)

which, recalling (A 11), an be written as

© (u ¤ ; ul) + ª (u ¤ ; ul) = ª (um ; ur) © (um ; ur): (A 23)

From de­ nitions (A 10) and (A 11), one can see that there are constants ·c and ·C,
depending only on the compact set K 0, which satisfy

© (um ; ur) > ·c(ur um ); ª (um ; ur) 6 ·C(ur um ): (A 24)

Hence, if we choose ¹ 0 = 1 + ·c= ·C, recalling (A 23) and the inequality (2.3), for any
¹ 2 [1; ¹ 0] we can write

¢[¹ V s + Vr] = ¹ © (u¤ ; ul) + © (ur; u ¤ ) © (um ; ul) ¹ © (um ; ur)

6 ( ¹ 1) © (u ¤ ; ul) © (um ; ur)

6 1
2
( ¹ 1)[ © (u ¤ ; ul) + ª (u ¤ ; ul)] © (um ; ur)

= 1
2( ¹ 1)[ ª (um ; ur) © (um ; ur)] © (um ; ur)

6 1
2(ur um )[(¹ 1) ·C ·c]

6 0: (A 25)

The proof is complete.
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