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ABSTRACT. The aim of this study is to investigate the range, the degree of variability, and a possible time or species
dependence of wood and charcoal δ13C values within one small study area. To achieve this, we used δ13C and 14C
determinations of more than 400 archaeological samples from a ca. 300 ha area in Denmark, spanning 5000 years
and covering several different species. The δ13C values of the wood and charcoal range from −32.8‰ to −21.2‰.
We found no time-dependence of wood and charcoal δ13C values, neither in general nor within one species. The
mean δ13C of all wood samples is −28.5‰, while the means of individual species range from −30.6‰ to −26.3‰.
The mean of all charcoal samples is −25.7‰, with the means of individual species ranging from −28.1‰ to
−24.3‰. The wood δ13C values can be used to infer the possible range of plant δ13C values, which otherwise are
not available. They imply that a high degree of variability can be expected at the base of the food chain. This is
relevant for palaeodietary studies that rely on the measurement of baseline isotope values.
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INTRODUCTION

Heaton (1999) provides a useful review of the processes influencing plant C-isotope
composition. It has long been known that there exists considerable variation in the δ13C
values of plants (Wickman 1952; Craig 1953). The δ13C values in plant organic matter
depend on two main factors, the δ13C value of the source CO2 and the fractionation during
the processes related to CO2 uptake and photosynthesis. These two main factors depend on
a series of environmental and location-specific parameters, which are summarized below.

The δ13C values of the CO2 in the global atmosphere vary with time (see Ferrio et al. 2005 for a
smoothed curve) and are modified by local variations, such as decreased δ13C values at the
bottom of dense forests due to respired CO2 (the so-called canopy effect, see Vogel 1978;
Medina and Minchin 1980; van der Merwe and Medina 1991). The canopy effect
contributes to lowered δ13C values in young trees (the so-called juvenile effect), but cannot
explain it fully, as the juvenile effect also occurs in open forests (Francey and Farquhar
1982). Ancillary factors could be shading, nutrient deficiency, a decreasing contribution
from bark photosynthesis as the tree matures, or changes in the hydraulic conductivity
(Francey and Farquhar 1982; McCarroll and Loader 2004).

Fractionation during CO2 uptake and fixation can be linked to environmental and climatic
factors. The two factors that influence fractionation between atmospheric CO2 and wood
are the stomatal conductance of the leaves and the photosynthetic rate, whereby in both
the uptake of CO2 and in its incorporation into the first photosynthetic products, 12C
is favored (Park and Epstein 1960). These processes and thus the fractionation can be
affected by factors such as water availability, temperature and irradiance (Stuiver and
Braziunas 1987; Van de Water et al. 2002; McCarroll and Loader 2004). In the case of
water stress, for example, the stomata are constricted reducing the stomatal conductance
of CO2, which in turn reduces discrimination against 13C and thus causing higher δ13C
values (McCarroll and Loader 2004; Fiorentino et al. 2014). This has been observed in a
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variety of species, but especially frequently in arid environments (McCarroll and Loader 2004;
Fiorentino et al. 2014; Caracuta et al. 2016).

Several studies have identified a correlation of δ13C values with summer temperatures,
however, this is likely an indirect relation because “hot” summers and drought risk are
often correlated (McCarroll and Loader 2004). Another indirect relation could exist
between δ13C values and elevation (Van de Water et al. 2002). In temperate regions, such
as Denmark, where commonly no single climate factor limits plant or tree growth,
interpretations of δ13C values are complex (Loader et al. 2008; Young et al. 2012a). δ13C
mainly reflects intracellular CO2 concentration and hence the rate at which CO2 is
replenished and removed by photosynthesis. Where water stress is low, the photosynthetic
rate should dominate (McCarroll and Loader 2004). Recent studies suggest that δ13C in
trees growing close to their latitudinal or altitudinal limits is likely to correlate with
measured climate variables such as temperature or sunshine (summer hours of bright
sunshine)/cloud cover (Young et al. 2010, 2012b; Gagen et al. 2011; Hafner et al. 2011).
Large δ13C ranges have been measured in modern trees, such as ca. 7‰ in different species
of angiosperms (Poole and Bergen 2006). Conifers (gymnosperms) are usually more
enriched in δ13C but are not considered in this study. This study focuses on the variation
within and between species and on a local level. All samples analyzed here derive from a
site on the south coast of the Danish island of Lolland, from an area of only ca. 300 ha.
Due to sea level rise after the last glaciation and the low elevation (the diked area lies
0.5–1m below sea level today), the site has seen substantial environmental change, as will
be detailed below in the site description. One objective of this study is thus to test whether
the environmental changes are recorded as δ13C changes in the wood samples.

The samples used in this study were all radiocarbon dated to provide a chronology for the site.
In addition, we measured the δ13C values of those samples by offline mass spectrometry. We
analyzed both uncharred wood and charcoal. As charcoal is the result of the incomplete
combustion of wood, fractionation could occur and lead to differences in δ13C values
between wood and charcoal. According to some studies, there are no significant changes in
the δ13C values of wood or plant parts in general due to charring (Leavitt et al. 1982;
DeNiro and Hastorf 1985; Hastorf and DeNiro 1985; Marino and DeNiro 1987; Turekian
et al. 1998). In other cases, δ13C decreases with higher carbonization temperature (Ascough
et al. 2008), while there is a significant increase in C% (Ferrio et al. 2006). However,
carbonizing grass epidermis samples resulted in a 13C-enrichment of 1.0±1.6‰ (Beuning
and Scott 2002). An overview of different studies with examples of 13C-enrichment
and -depletion is provided by Ascough et al. (2008). It has also been reported that the
climatic signal recorded by δ13C in wood is unaffected by carbonization (Vignola et al.
2018) and that in cases with significant δ13C shifts, a correction using the measured C% can
be applied (Ferrio et al. 2006).

The objective of this study is to analyze the δ13C values of radiocarbon-dated wood and
charcoal samples from the small study area during a period of environmental changes, to
assess the degree of variability of the δ13C values, to study the fractionation during
carbonization, to detect possible temporal trends that could be connected to environmental
changes, and to examine whether the δ13C values depend on the tree species, or on the age
of the tree/branch. The δ13C values measured on wood and charcoal could be a proxy for
the general variability of plant δ13C values. As plants are at the base of the food chain, this
could be relevant for palaeodietary studies.
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STUDY SITE

Prior to the construction of the planned tunnel through the Fehmarn Belt, between the Danish
island of Lolland and the German island of Fehmarn, an area of about 300 hectares, of which
187 ha are former seabed, was examined archaeologically (Sørensen 2016). At the time of
writing, the excavations are still ongoing. The study area lies behind a dike constructed at
the end of the 19th century in a flat coastal landscape. Hidden below up to 3.5-m-thick
layers of sand, the original uneven moraine surface can be found. The former coastal
landscape looked quite different than today’s and comprised fjords, lagoons and islands.
The earliest evidence of human occupation in the study area, fragments of cremated bones
found in connection with flint artifacts, are radiocarbon dated to 10,000 BP (Philippsen
2018). During that time, the relative sea level was much lower than today. The study area
was initially a forested and hilly area with two hollows. However, the study area was
subsequently affected by the rising eustatic sea level after the end of the last glaciation. The
interplay between isostatic land rise and eustatic sea level rise caused a complex history of
relative sea level changes. From ca. 5000 cal BC, the rising relative sea level caused the
groundwater table in the study area to rise, and the hollows became marshy and filled with
reed-beds. As the relative sea level continued to rise, the area was inundated, forming two
small bays surrounded by reed beds. Later, the peninsula between the bays was inundated
as well. The bays were in periods partly cut off from the sea by sand spits, forming
a lagoon-like environment. In about 4000 cal BC, the relative sea level rise stopped. The
lowest relative sea level was recorded in our excavations to ca. 2.5–3m below the modern
Danish sea level reference (Philippsen 2018). At lower relative sea levels, the entire study
area was situated on dry land, making sea level reconstructions for this area impossible.
The thick sand deposits covering these layers were probably deposited in connection with
falling relative sea levels in the late Holocene. A preliminary relative sea level curve can be
found in Philippsen (2018). Both the sea level curve and palaeoenvironmental reconstructions
will be refined as the excavations are proceeding.

Similar stratigraphic sequences are observed in large parts of the study area: at the bottom the
blue moraine clay, covered with the remains of soil formation in the forested landscape, and
overlain by reed peat and finally marine gyttja. These time-transgressive sequences cannot be
used for absolute or even relative dating of the artifacts and constructions unearthed in
the excavations. Therefore, radiometric dating is crucial for understanding the prehistory of
the study area. Waterlogged peat and gyttja deposits provide excellent preservation
conditions for organic matter, so there is no lack of datable organic material.

METHODS

The wood and charcoal samples derive from 21 excavation fields within the 300-ha study area
on the south coast of the island of Lolland (Figure 1). The wood samples are from stationary
fishing devices (fish weirs) and artifacts such as ax handles, spears, bows, arrows, leisters,
paddles, and boats, all of which had been lost or were ritually deposited in the shallow
water of the former lagoons. The charcoal samples are from fireplaces (especially the oldest
samples) or from cooking pits (especially the youngest samples). The samples were chosen
for radiocarbon dating based on their archaeological significance, and not targeted at a
pure δ13C study.

Wood and charcoal samples were species-identified by specialists from Moesgård Museum,
Højbjerg, Denmark and the National Museum, Copenhagen, Denmark, by microscopic
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examination of fresh cuts through the samples. The samples were pretreated with a standard
ABA treatment: 1M HCl for 1 hr, 1M NaOH for 3 hr (with renewed NaOH if necessary
to remove all humics), both at 80°C, and finally 1M HCl overnight at room temperature to
remove any CO2 absorbed during the NaOH treatment. Samples were oven-dried at 80°C,
ca. 2 mg weighed out into pre-cleaned quartz tubes containing approximately 200 mg of
CuO, evacuated and flame-sealed. Samples were combusted by heating those tubes to 900°C
for 3 hr. The resulting CO2 was isolated cryogenically and reduced to pure carbon (graphite) with
the H2 graphitization method, using Fe as catalyst andMgClO4 to absorb the water forming in the
reaction (Vogel et al. 1984; Santos et al. 2007). The samples were radiocarbon dated using theHVE
1MV tandetron accelerator AMS system at the Aarhus AMS Centre (Olsen et al. 2016).
Radiocarbon dates are reported as uncalibrated radiocarbon ages BP normalized to −25‰
according to international convention using online 13C/12C ratios (Stuiver and Polach 1977).
For the figures, we chose to use uncalibrated dates for practical reasons. Our conclusions
would not be different if we had used calibrated dates. However, plotting the dates is much
easier for radiocarbon dates with a mean and a standard deviation, instead of calibrated dates,
where e.g. a probability distribution with two peaks would be represented misleadingly by only
the main or median value and standard deviation.

δ13C was measured on sub-samples weighing ca. 0.25 mg using a continuous-flow IsoPrime
IRMS coupled to an Elementar PyroCube elemental analyzer at the Aarhus AMS Centre.
An in-house gelatine standard “Gel-A” was used as primary standard yielding ±0.2‰ for
carbon analysis. Secondary in-house and international standards were used to check the
normalization to the VPDB scale.

All statistical analysis was performed using MatLab, version R2018b. The errors on the linear fit
in Figure 4C and D are estimated using a Bootstrap method with 5000 iterations. Figure 3 and
Supplementary Figure 2 are computed using the BoxPlot function. The average values in Figure 2
are calculated using a moving window with a size of 100 or 250 14C years, which is stepped by
25 14C years in the interval from 2000 to 7000 14C years. A minimum of 5 data points is required
for an average value to be computed. The error on the running mean value is estimated using the
standard deviation divided by the square root of the number of data points.
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Figure 1 Map of the study area (left side, from www.krak.dk) and sample locations and radiocarbon dates of
wooden artifacts plotted on an aerial photo of the site (right side), made with OxCal 4.3 and the calibration
curve IntCal13 (Bronk Ramsey 2009; Reimer et al. 2013).
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RESULTS

The whole range of δ13C values and radiocarbon ages is displayed in Figure 2. In Table 1,
Figure 3 and Figure 4, the results are shown by species and material. Further information
is displayed in two online supplementary figures—the δ13C values in relation to 14C age
and carbon fraction for individual species in Supplementary Figure 1, and a comparison of
carbon fraction and δ13C value of samples from artifacts (i.e., tools such as ax handles,
spears, leister prongs, bows and arrows and boats that could have been brought to the site
from farther away) versus samples such as firewood or branches for fish weirs, that would
have been collected and used locally. As the measured 14C ages did not disagree with the
ages expected on the background of the archaeological and stratigraphic information
available, we consider the risk of post-depositional contamination affecting the 14C/12C and
13C/12C ratios to be minimal.

Figure 3 shows carbon fraction and δ13C value by material and species. Figure 4 is composed of
several plots: Panels A and B are histograms of carbon fraction and δ13C values of all samples.
Panels C and D show δ13C values of the individual samples grouped by the age of the branch/
tree when it was cut, where “young” refers to small twigs with 2–7 year rings, “medium” to all
bigger branches or artifacts made thereof, and “old” to tree stumps or trunks or artifacts made
from those. Panel E shows the difference between wood and charcoal by species.
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Figure 2 14C ages (BP) and δ13C values (‰ VPDB) of wood and charcoal samples from the study area with running
means of the charcoal and wood data. Panel A shows all data, panel B differentiates between charcoal and wood,
panels C and D show the wood δ13C values of the two most numerous species with their running means (red) on
the background of the running mean of all wood samples (brown). An insert within panel D displays the ash
wood δ13C values of artifacts (such as spears) versus non-artifacts (such as branches used in fish-weirs).
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Figure 2 shows that the δ13C values span a range of more than 11‰, when one outlier of −17.9‰
is excluded. Not all periods are equally represented, for example, there is a relative lack of data
from the period 4000–3000 BP. The bulk of data between 5500 and 4500 BP derives from
excavations of waterlogged sites, many of them from fish weirs and settlement refuse that was
deposited in shallow water. Therefore, many wood samples are preserved from this period.
Another cluster of data from 3000 to 2500 BP originates from dryland excavations where only
charcoal, and not wood, was well preserved. This period is therefore dominated by charcoal
samples. This could explain the slightly higher δ13C values of the younger period. The running
mean of all wood samples shows a decrease of ca. 2‰ just after 6000 BP and only small
fluctuations thereafter (Figure 2). The running mean of the hazel δ13C values increases slightly
between 5500 and 4500 BP, while the ash δ13C values peak around 5000 BP.

Table 1, Figure 3, and Figure 4E show that our charcoal samples tend to be more enriched in
δ13C than wood. This could be caused by the preferential loss of the lighter carbon isotope (12C)
during combustion of the volatile components of wood. The differences between wood and
charcoal for the different species are summarized in Supplementary Table 1.
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Figure 3 Box plots of the carbon fraction and δ13C values of the wood and charcoal samples of this
study, also per species.
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Table 1 Carbon fraction and δ13C values (range, average, median and standard deviation) for 440 wood and charcoal samples of this study.
δ13C-14C scatter plots and δ13C-histograms of the most abundant species and of unidentified samples are displayed in Supplementary
Figure 1, the δ13C averages and standard deviations (box plots) of all species are shown in Figure 3.

Material/species A n

Carbon fraction in (%)

n

δ13C (‰ VPDB)

μ ± σ (median)
25th–75th
percentile Min–max μ ± σ (median)

25th–75th
percentile min–max

Wood 79.3% 345 55.8 ± 3.9 (56.4) 57.8–57.8 19.1–62.6 349 −28.5 ± 1.7 (−28.5) −27.6–−27.6 −32.8–−17.9
Unknown 3.2% 14 56.9 ± 2.9 (57.5) 58.3–58.3 50.6–61.9 14 −28.8 ± 1.5 (−28.4) −28.0–−28.0 −31.9–−26.4
Ash 12.4% 55 56.2 ± 2.8 (56.8) 57.9–57.9 44.5–61.1 55 −27.4 ± 1.4 (−27.1) −26.4–−26.4 −32.5–−24.4
Hazel 52.5% 227 55.7 ± 4.2 (56.4) 57.8–57.8 19.1–62.6 231 −28.9 ± 1.6 (−28.9) −28.2–−28.2 −32.8–−17.9
Maple 2.9% 12 55.0 ± 2.6 (55.5) 56.5–56.5 48.8–58.2 12 −27.5 ± 2.1 (−27.3) −25.9–−25.9 −31.5–−25.0
Alder 3.2% 14 56.7 ± 2.8 (56.1) 57.4–57.4 53.0–62.1 14 −28.5 ± 1.9 (−28.0) −27.6–−27.6 −31.4–−24.8
Lime 0.9% 4 57.7 ± 6.8 (60.7) 61.3–61.3 47.6–61.9 4 −26.3 ± 1.7 (−26.3) −25.3–−25.3 −28.4–−24.3
Birch 0.5% 2 55.0 ± 5.4 (55.0) 58.9–58.9 51.2–58.9 2 −30.6 ± 2.7 (−30.6) −28.8–−28.8 −32.5–−28.8
Oak 2.9% 13 52.9 ± 2.9 (54.5) 54.7–54.7 47.1–56.4 13 −27.2 ± 1.5 (−27.6) −25.9–−25.9 −29.8–−24.9
Elm 0.2% 1 60.2 ± 0.0 (60.2) 60.2–60.2 60.2–60.2 1 −29.8 ± 0.0 (−29.8) −29.8–−29.8 −29.8–−29.8
Common dogwood 0.5% 2 56.4 ± 2.0 (56.4) 57.8–57.8 55.0–57.8 2 −27.5 ± 1.2 (−27.5) −26.7–−26.7 −28.3–−26.7
Poplar 0.2% 1 53.4 ± 0.0 (53.4) 53.4–53.4 53.4–53.4 1 −29.6 ± 0.0 (−29.6) −29.6−29.6 −29.6–−29.6

Charcoal 19.1% 84 54.9 ± 12.7 (57.5) 62.8–62.8 15.8–87.1 84 −25.7 ± 1.8 (−25.6) −24.5–−24.5 −30.6–−20.5
Unknown 4.3% 19 50.9 ± 12.9 (54.8) 62.2–62.2 19.4–64.6 19 −25.5 ± 1.4 (−25.5) −24.7–−24.7 −28.2–−22.8
Ash 2.0% 9 54.1 ± 5.9 (55.4) 57.7–57.7 41.5–60.8 9 −25.0 ± 2.2 (−24.1) −24.0–−24.0 −30.6–−23.2
Hazel 2.0% 9 54.9 ± 14.3 (59.0) 62.9–62.9 26.5–72.9 9 −25.9 ± 0.8 (−25.9) −25.4–−25.4 −26.9–−24.5
Maple 2.7% 12 55.8 ± 8.8 (54.5) 62.6–62.6 36.7–69.2 12 −25.8 ± 2.6 (−25.4) −23.9–−23.9 −29.9–−21.2
Alder 2.3% 10 60.7 ± 9.6 (59.8) 65.3–65.3 48.4–80.4 10 −25.5 ± 0.8 (−25.6) −25.0–−25.0 −26.6–−24.1
Lime 1.6% 7 64.7 ± 15.1 (66.7) 67.8–67.8 35.7–87.1 7 −27.6 ± 1.9 (−28.3) −25.7–−25.7 −30.1–−25.0
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Birch 0.2% 1 48.3 ± 0.0 (48.3) 48.3–48.3 48.3–48.3 1 −24.3 ± 0.0 (−24.3) −24.3–−24.3 −24.3–−24.3
Oak 3.4% 14 50.2 ± 16.8 (54.0) 61.6–61.6 15.8–73.4 14 −25.3 ± 2.1 (−25.7) −24.2–−24.2 −27.8–−20.5
Beech 0.2% 1 57.3 ± 0.0 (57.3) 57.3–57.3 57.3–57.3 1 −28.1 ± 0.0 (−28.1) −28.1–−28.1 −28.1–−28.1
Willow 0.2% 1 63.5 ± 0.0 (63.5) 63.5–63.5 63.5–63.5 1 −26.5 ± 0.0 (−26.5) −26.5–−26.5 −26.5–−26.5
Plum 0.2% 1 58.8 ± 0.0 (58.8) 58.8–58.8 58.8–58.8 1 −26.5 ± 0.0 (−26.5) −26.5–−26.5 −26.5–−26.5

Nutshell 1.1% 5 58.7 ± 8.5 (59.2) 64.7–64.7 47.6–69.8 5 −25.6 ± 0.7 (−25.6) −25.1–−25.1 −26.4–−24.7
Unknown 0.2% 1 63.0 ± 0.0 (63.0) 63.0–63.0 63.0–63.0 1 −26.1 ± 0.0 (−26.1) −26.1–−26.1 −26.1–−26.1
Hazel 0.7% 3 57.1 ± 11.4 (53.9) 65.8–65.8 47.6–69.8 3 −25.6 ± 0.9 (−25.6) −24.9–−24.9 −26.4–−24.7
Oak 0.2% 1 59.2 ± 0.0 (59.2) 59.2–59.2 59.2–59.2 1 −25.3 ± 0.0 (−25.3) −25.3–−25.3 −25.3–−25.3

Grain 0.2% 1 65.9 ± 0.0 (65.9) 65.9–65.9 65.9–65.9 1 −24.7 ± 0.0 (−24.7) −24.7–−24.7 −24.7–−24.7
Barley 0.2% 1 65.9 ± 0.0 (65.9) 65.9–65.9 65.9–65.9 1 −24.7 ± 0.0 (−24.7) −24.7–−24.7 −24.7–−24.7

Plant charred 0.2% 1 59.2 ± 0.0 (59.2) 59.2–59.2 59.2–59.2 1 −21.9 ± 0.0 (−21.9) −21.9–−21.9 −21.9–−21.9
Common grape
wine

0.2% 1 59.2 ± 0.0 (59.2) 59.2–59.2 59.2–59.2 1 −21.9 ± 0.0 (−21.9) −21.9–−21.9 −21.9–−21.9
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Wide ranges of δ13C values can also be observed within one species (Table 1, Figure 3,
Supplementary Figure 1). Calculating the averages of the wood and charcoal samples
of the different species shows that there can be up to 2–3‰ differences between species
(Table 1). For example, the species with the highest average δ13C value is lime, with
−26.3 ± 1.7‰ (n= 4), and the lowest is birch with −30.6 ± 2.7‰ (n= 2). Furthermore,
Table 1, Figure 4E and Supplementary Figure 1 demonstrate again that in most cases, the
charcoal is enriched in 13C.

DISCUSSION

Wood consists of a variety of different chemical compounds, produced by different
biochemical pathways. One could therefore hypothesize that part of the variability of the
measured δ13C values on wood are caused by the differential preservation of the different
compounds, and that focusing on cellulose would reduce the variability. However, plant
remains are reported to retain the original δ13C signal after millennia (Metcalfe and Mead
2019). Furthermore, there is very little evidence that the variability in cellulose would be
smaller, not even for individual trees of the same species growing under very similar
conditions (McCarroll and Loader 2004). δ13C variations have also been found within the
cellulose of one single tree ring, e.g. seasonal variation of 1–2‰ between earlywood and
latewood, or variation of 1–4‰ around the circumference of a tree ring (Francey and
Farquhar 1982). Both charred and uncharred plant parts are reported to retain the original
δ13C signal, especially when an acid-base-acid pretreatment precedes the measurements
(DeNiro and Hastorf 1985). Further, we observe no correlations between the δ13C values
and carbon content (%C) for any of the identified species (Supplementary Figure 1).
Therefore, we are confident that the variability in our wood samples reflects the variability
of the δ13C values of the original wood.

In most species, the charcoal has less negative δ13C values than the wood. This implies
that either the most labile components of the wood are depleted in 13C, or that generally
the 13C-depleted molecules are most easily lost during charring. As we find this
δ13C-enrichment due to charring fairly consistently for different species and throughout
time, this could indicate a general mechanism—in contrast to the literature, where both
enrichment, depletion and unchanged δ13C values are reported (see the Introduction and
e.g. Ascough et al. 2008 for an overview). The nutshells of both species, hazel and oak,
have intermediate δ13C values between wood and charcoal (see Supplementary Figure 1).

One could expect that with such a large dataset, effects such as a climatic influence on the δ13C
values could be observed. Commonly δ13C analysis of the cellulose fraction of tree rings is used
for climate reconstruction (e.g. McCarroll and Loader 2004). However, significant correlations
between the bulk wood and cellulose δ13C values indicate the bulk wood values would be a
good proxy for cellulose values, and they have both been found to correlate significantly
with summer temperature and growing season precipitation (Hemming et al. 1998;
Verheyden et al. 2005; Taylor et al. 2008; Mischel et al. 2015). Thus, one could speculate
whether data like those presented in this study could be used for climate reconstruction as
well. However, this would certainly require better temporal resolution, as we were not able
to find any trends with time in our dataset (Figure 2). Furthermore, any long-term climatic
trends could be hidden in the large δ13C variation of the data. Charcoal δ13C values were
also proposed as a climate proxy (Ferrio et al. 2006). However, even though they are
correlated to wood δ13C values and were a useful proxy for aridity in the cited study, we
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do not expect that trees in Denmark have been water-limited at any time in prehistory, and we
have not found a long-term δ13C trend in our charcoal or wood samples. However, climate
reconstruction could be possible with tree-ring measurements of Danish trees, because
correlations of δ13C with ring width, temperature and precipitation have been found in
Dutch trees, in a climate similar to the Danish climate (Francey and Farquhar 1982).

The time trends mentioned above in the Results section (see also Figure 2) cannot be explained
by environmental or climatic factors alone, as we observe different trends for the two most
dominant species, hazel and ash (Figure 2, panels C and D). The running mean of the
hazel δ13C values increases slightly between 5500 BP and 4500 BP, but no similar trend can
be found in the other species, and we do not yet have an explanation for it. The δ13C value
of the ash sample peaks around 5000 BP, in contrast to the δ13C values of other species
(Figure 2 and Supplementary Figure 1). An explanation for this phenomenon might be
found in the δ13C differences between artifacts (spears and paddles) and non-artifacts
(branches used in fish weirs)—the δ13C values for artifacts are higher than those for non-
artifacts (Supplementary Figure 2 and insert in Figure 2, panel D). In the time around
5000 BP, there was a peak in the ritual deposition of artifacts in shallow coastal water,
including spears and paddles made of ash. Those were made of stems or older branches of
ash, while the ash wood used for fish weirs was much younger, thus carrying a possible
juvenile effect that could lower the δ13C values. Furthermore, spears and paddles could
have been produced elsewhere and been transported to the study region, carrying another
region’s isotope signature, while branches for fish weirs were most probably collected
locally. Lev-Yadun et al. (2010) found, for a different environment, that imported wood
could cause apparent δ13C variations. The overall running mean of the wood δ13C values
decreases by about 2‰ after 6000 BP. This is probably caused by the different species
analyzed here: the dataset before 6000 BP is dominated by oak and lime, which have
comparatively high δ13C values (Figure 3). After 6000 BP, hazel dominates the dataset and
lowers the average wood δ13C values as its δ13C values are lower than those of oak and
lime (Figure 3). This could indicate a changing environment due to the rising sea level,
where an oak-dominated inland forest was replaced by a more open, hazel-dominated
coastal woodland. However, the most probable explanation is the changing resource use by
the prehistoric people: as the area turned into a coastal landscape, they started to build
stationary fishing devices, primarily from hazel branches. Finally, the 2‰ drop after
6000 BP could also be a result of the small number of samples from this period. Ideally,
more wood samples from around 6000 BP should be analyzed, also including hazel samples.

Although all samples come from an area that is ca. 2.5 km across at its maximum, the range of
measured δ13C values is as broad as that of other studies analysing samples from all over the
world (e.g. Poole and Bergen 2006). Also, within one species, the range of δ13C values was
almost as large as that of our entire dataset. The same effect was observed by Van de
Water et al. (2002), who found that individuals growing at the same site had the same
degree of variability as plants along the entire altitudinal gradient. This could be due to the
micro-environment in which the trunks and branches grew. For example, wood δ13C values
were observed to vary with sampling height within one individual tree, and whether the
tree was shaded or exposed to sunlight (Wickman 1952; Li and Zhu 2011; McDowell et al.
2011). In dense forests, the CO2 is 13C-depleted compared to atmospheric CO2. This
mechanism is known as the canopy effect and has been observed both in trees and in
herbivores, where tree samples from lower heights in dense forests and herbivore
populations from dense forests have more depleted δ13C values than those from open sites
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(Vogel 1978; Medina and Minchin 1980; van der Merwe and Medina 1991; Noe-Nygård and
Hede 2006; Drucker et al. 2008). Also, a juvenile effect, as explained in the introduction, could
influence our δ13C values. Therefore, we divided our samples into age groups and found that
the youngest branches tend to have lower δ13C values (Figure 3C). However, we were not able
to distinguish young trees from young branches on old trees, which might explain the broad
range of δ13C values for the youngest group.

Our study site would have been ideal to show whether environmental changes have an effect on
the δ13C values of wood, because the rising sea level caused large changes in the gently sloping
terrain. In spite of the substantial environmental changes at the study site, however, there are
almost no temporal trends in our δ13C data. The exception is a 2‰ increase in the average δ13C
values of wood samples from 6000 to 4200 BP. This corresponds to the period of strong relative
sea level rise, as shown in Philippsen (2018: Fig. 4). One hypothesis to explain the increasing
δ13C could be the transition from a dense inland forest to a more open coastal forest, possible
further opened up by human activity. Ongoing archaeological and palaeo-ecological research
could answer this question in the future. Short-term fluctuations might be present in long series
of individual tree rings, but we did not have the possibility to analyze them. This study could be
improved further if samples from the same species had been available for the entire time range,
or if all species had been represented by the same number as the dominating hazel.

Although there are differences in the average δ13C values of the different species, their δ13C
ranges overlap to a large degree (Figures 3 and 4, Supplementary Figure 1). Therefore, the
results of this study cannot be used to examine details in photosynthesis and plant
physiology between different species. This would only be possible if there were significant
differences between the species. Similar results have been observed in different cereal
species, usually between 1‰ and 5‰ for one site (Hammers in prep., Fiorentino et al.
2012; Lightfoot and Stevens 2012; Bogaard et al. 2013; Kanstrup et al. 2014; Styring et al.
2016, 2017; Gron et al. 2017; Brinkkemper et al. 2018), although the ranges of those plants
were not as broad as those in this study. This difference between our study and those cited
above is remarkable, as one would expect a greater variability in a plant that is subjected
to different cultivation and management practices, in addition to the natural variation that
might be found in unmanaged plants.

The δ13C values of plants are relevant for palaeodietary studies. On the one hand, plants were
directly consumed by humans—not wood of course, but leaves, fruits, roots and tubers from
plants. The broad δ13C ranges of trees that were encountered in this study thus serve as a
cautionary tale for establishing useful plant baseline isotopic values for palaeodietary
reconstruction. The δ13C values of edible plant parts could vary as much as those of our
wood and charcoal samples. Furthermore, the foliage of the trees analyzed here could have
served as fodder both for hunted animals as well as for domesticated animals. Although
most of the variation found in the trees would have been averaged out in the
transformation from plant to animal tissue (the average δ13C value of a herbivore’s total
diet reflects the average of the plant δ13C values of all plants consumed), it should be kept
in mind that some of the variability might be transferred up the food chain. However, we
cannot make direct comparisons between wood and foliage δ13C values, as there can be
considerable fractionation between wood and leaves. For example, Li and Zhu (2011)
found that the leaves were enriched in δ13C in comparison to the trunk and branches. In
any case, isotope values of modern and archaeological tree samples are not directly
comparable due to the δ13C Suess effect (Suess 1955; Revelle and Suess 1957), but the
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general fractionation trends will still be approximately the same. Therefore, although there
might be deviations in the absolute values, we suggest that baseline data are collected for a
broad range of plants for future palaeodietary studies.

CONCLUSION

In this study, we measured 14C ages and δ13C values on a total of 440 archaeological wood,
charcoal and nutshell samples. We found that their δ13C values span a range of more than
11‰. Also, within one single species, ranges of ca. 10‰ were observed. There is some
variation in δ13C values between different species, but the ranges overlap considerably (e.g.,
Table 1 and Figure 3). A general time-dependence of the δ13C values was not observed for
the study period (Figure 2). The results presented here show that large variations can be
expected at the base of the food chain, which can add uncertainty to palaeodietary
reconstructions. In the future, we will try to link the δ13C values to the small-scale
environment of where the tree grew—e.g., in a dense forest, one would expect lower δ13C
values than in an open woodland.
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