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The purpose of this paper is to provide further understanding into the structure of the
sequential allocation (“stochastic multi-armed bandit”) problem by establishing probabil-
ity one finite horizon bounds and convergence rates for the sample regret associated with
two simple classes of allocation policies. For any slowly increasing function g, subject to
mild regularity constraints, we construct two policies (the g-Forcing, and the g-Inflated
Sample Mean) that achieve a measure of regret of order O(g(n)) almost surely as n → ∞,
bound from above and below. Additionally, almost sure upper and lower bounds on the
remainder term are established. In the constructions herein, the function g effectively
controls the “exploration” of the classical “exploration/exploitation” tradeoff.
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1. INTRODUCTION AND SUMMARY

The basic problem involves sampling sequentially from a finite number ofK � 2 populations
or “bandits”, where each population i is specified by a sequence of real-valued i.i.d. random
variables, {Xi

k}k�1, with Xi
k representing the reward received the kth time population i is

sampled. The distributions Fi of the Xi
k are taken to be unknown; they belong to some

collection of distributions F . We restrict F in two ways: The first, that each population i
has some finite mean μi = E[Xi

k] =
∫ +∞
−∞ xdFi(x) - unknown to the controller. The purpose

of this assumption is to establish for each population i the Strong Law of Large Numbers
(SLLN),

P(lim
k
X̄i
k = μi) = 1. (1)
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Second, we assert that each population has finite variance σ2
i = Var(Xi

k) <∞. The
purpose of this assumption is to establish for each population i the Law of the Iterated
Logarithm (LIL),

P

(
lim sup

k

X̄i
k − μi√

ln ln k/k
= σi

√
2

)
= 1. (2)

It will emerge that the important distribution properties for the populations are not the
i.i.d. structure, but rather Eqs. (1), (2) alone. This allows for some relaxation of assumptions,
as discussed in Section 5. In fact, the LIL (and therefore the assumption of finite variances)
is only really required for the derivation of the regret remainder term bounds in the results
to follow – the primary asymptotic results depend solely on the SLLN.

Let μ∗ = maxi μi, and define the bandit discrepancies {Δi} as Δi = μ∗ − μi � 0.
We will make the additional assumption that the optimal bandit is unique – that is,

there is a unique i∗ such that μi∗ = μ∗.
For any adaptive policy π, let π(t) = i indicate the event that population i is sampled

at time t, and let T iπ(n) =
∑n
t=1 1π(t)=i denote the number of times i has been sampled

during periods t = 1, 2, . . . , n, under policy π; for convenience we define T iπ(0) = 0 for all
i, π. One is typically interested in maximizing in some well-defined sense the sum of the first
n outcomes Sπ(n) =

∑K
i=1

∑T i
π(n)
k=1 Xi

k, achieved by an adaptive policy π. To this end, we
note that if the controller had complete information (i.e., knew the distributions of the Xi

k,
for each i), she would at every round activate the “optimal” bandit i∗. Natural measures of
the loss due to this ignorance of the distributions are the quantities below:

R̃π(n) = nμ∗ −
K∑
i=1

μiT
i
π(n) =

K∑
i=1

ΔiT
i
π(n), (3)

Rπ(n) = nμ∗ − E [Sπ(n)] =
K∑
i=1

ΔiE
[
T iπ(n)

]
. (4)

The functions R̃π(n), Rπ(n) have been called in the literature pseudo-reget, and
regret; for notational simplicity, their dependance on the unknown distributions is usually
suppressed.

The motivation for considering minimizing alternative regret measures to Rπ(n) is that
while the investigator might be pleased to know that the policy she is utilizing has minimal
expected regret, she might reasonably be more interested in behavior of the policy on the
specific sample-path she is currently exploring rather than aggregate behavior over the entire
probability space. At an extreme end of this would be a result minimizing regret or pseudo-
regret surely (sample-path-wise) or almost surely (with full probability), guaranteeing a
sense of optimality independent of outcome. We offer an asymptotic result of this type here
in Theorem 2.

Note that E[R̃π(n)] = Rπ(n), and “good policies” are those that achieve a small rate of
increase for one of the above regret functions. Further relationships and forms of pseudo-
regret are explored in Bubeck and Cesa-Bianchi [3], e.g., the “sample regret” R′

π(n) = nμ∗ −
Sπ(n) = nμ∗ −∑K

i=1

∑T i
π(n)
k=1 Xi

k. We find the pseudo-reget R̃π(n) = nμ∗ −∑K
i=1 μiT

i
π(n) in

some sense more philosophically satisfying to consider than sample regret, for the reason
that – given her ignorance and the inherent randomness – the controller cannot reasonably
regret the specific reward gained or lost from an activation of a bandit, as in R′

π(n). She
can only reasonably regret the decision to activate that specific bandit, which is captured
by R̃π(n)’s dependance on the T iπ(n)s alone.
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Thus, we are particularly interested in high probability or guaranteed (almost sure)
asymptotic bounds on the growth of the pseudo-regret as n→ ∞. The main result of this
paper is Theorem 2 which establishes, by two examples, that for any arbitrarily (slowly)
increasing function g(n), e.g., g(n) = ln ln . . . lnn, that satisfies mild regularity conditions
there exist “g-good policies” πg . The later policies are such that the following is true

R̃πg
(n) = Cπg

({Fi})g(n) + o(g(n)), as n→ ∞

(i.e., R̃πg
(n) = O(g(n)), (a.s), as n→ ∞) for every set of bandit distributions {Fi} ⊂ F ,

for some positive finite constant Cπg
({Fi}).

The results presented here are intuitive, in the following way: it will be shown that
for both the g-Forcing, and g-inflated sample means (g-ISM) index policies, the function
g essentially sets the investigator’s willingness to explore and experiment with bandits
that based on available data do not currently seem to have the highest mean. Even if the
controller explores very slowly (i.e., she chose a very slow growing g), as long as she explores
long enough she will eventually develop accurate estimates of the means for each bandit, and
incur very little regret (or pseudo-regret) past that point. We note here that, for the most
part, we do not recommend the actual implementation or use of these policies. The cost
of this guaranteed asymptotic behavior is that (depending on g and the bandit specifics),
slow pseudo-regret growth is only achieved on impractically large time-scales. We find it
interesting, however, that such growth can be guaranteed – independent of the specifics of
the bandits! – with as weak assumptions as the SLLN. This makes these results fairly broad.
Additionally, the g-Forcing and g-ISM index policies individually capture elements present
in many other popular policies, and are suggestive of the almost sure asymptotical behavior
of these policies. One takeaway from this is, perhaps, to emphasize that asymptotic behavior
by itself is little basis for thinking of a policy as “good”. As essentially any asymptotic
behavior is possible (through the choice of g), any useful qualification of a policy must
consider not only the asymptotic behavior, but also the timescales over which it is practically
achieved.

In the remainder of the paper, we define what it means for a policy to be g-good
(Definition 1), and establish the existence of g-good policies (Theorem 2) for any g satisfying
mild regularity conditions. The proof is by example, through the construction of g-Forcing
and g-ISM index policies that satisfy its claim. Further, bounds on the corresponding order
constants of pseudo-regret growth are established for each policy (Theorems 3 and 6), as
well as bounds on the asymptotic remainder terms (Theorems 5 and 5 9), bounding the
remainder from both above and below. We view the proofs of the asymptotic lower bounds,
as well as the derivation of the remainder terms via a sort of bootstrapping on the earlier
order results, as particularly interesting.

In the attempt to generalize some of these results for the g-ISM index policy, an
interesting effect and seeming “phase change” in the resulting dynamics was discovered.
Specifically, as discussed in Remark 2, when there are multiple optimal bandits, for g of
order greater than

√
n ln lnn all optimal bandits are sampled roughly equally often, while

for g of order less than
√
n ln lnn, the g-ISM index policy tends to fix on a single optimal

bandit, sampling the other optimal bandits much more rarely in comparison.

2. RELATED LITERATURE

Robbins [17] first analyzed the problem of maximizing asymptotically the expected value
of the sum Sπ(n), for the case of Bernoulli bandit and K = 2 using only the assumption
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of the SLLN for F . He constructed a policy, πR, which aside from forced choices (when
“time” coincided with two predetermined sparse sequences of integers) it always chose the
arm having the current best winning percentage, and showed that with probability one, as
n→ ∞, SπR

(n)/n→ μ∗. From this he was able to claim, using the uniformly integrability
property for the case of Bernoulli bandits that

RπR
(n) = o(n), as n→ ∞. (5)

Lai and Robbins [13] considered the case in which the collection of distributions
F to consist of univariate density functions f(x; θi) with respect to some measure νi,
where f(.; .) is known and the unknown scalar parameter θi is in some known set Θ. Let
μi = μ(θi) = E[Xi

1], μ
∗ = maxi{μ(θi)} = μ(θ∗), Δi(θi) = μ(θ∗) − μ(θi), and let I(θ||θ′) =∫∞

−∞ln((f(x; θ))/(f(x; θ′)))f(x; θ) dv(x) denote the Kullback–Leibler divergence between
f(x; θ) and f(x; θ′). They established, under mild regularity conditions ((1.6), (1.7) and
(1.9) therein), that if one requires a policy to have a regret that increases at slower than
linear rate:

Rπ(n) = o(nα), ∀α > 0, as n→ ∞, ∀{θi} ⊂ Θ, (6)

then π must sample among populations in such a way that its regret satisfies

lim inf
n

Rπ(n)
lnn

� MLR(θ1, . . . , θK), ∀{θi} ⊂ Θ, (7)

where
MLR(θ1, . . . , θK) =

∑
i:μ(θi) �=μ∗

Δi(θi)/I(θi||θ∗).

Burnetas and Katehakis [4] extended and simplified the above work for the case in which
the collection of distribution F is specified by a known function f(x; θ i) that may depend
on an unknown vector parameter θ i ∈ Θ i, as follows. Let θ := (θ 1, . . . , θK) ∈ Θ = Θ 1 ×
· · · × ΘK , μ∗ = μ(θ∗) = maxi{μ(θ i)}, Δi(θ i) = μ∗ − μ(θ i). They showed, under certain
regularity conditions (part 1 of Theorem 1, therein) that if a policy satisfied Eq. 6, ∀θ ∈ Θ,
then it must sample among populations in such a way that its regret satisfies:

lim inf
n

Rπ(n)
lnn

� MBK(θ), ∀θ ∈ Θ, (8)

where
MBK(θ) =

∑
i∈B(θ)

Δi(θ i)/ inf
θ ′

i

{I(θ i, θ ′
i) : μ(θ ′

i) > μ(θ∗)}. (9)

Further, under certain regularity conditions (cf. conditions “A1–A3” therein) regarding
the estimates θ̂ i = θ̂

n

i (X
i
1, . . . , X

i
Tπ(n)) of the parameters θ i, f(.; .) and Θi, they showed that

policies which, after taking some small number of samples from each population, always
choose the population π0(n) with the largest value of the population-dependent index:

ui(θ̂
n

i ) = sup
θ ′

i∈Θi

{
μ(θ ′

i) : I(θ̂
n

i , θ
′
i) <

lnn+ o(lnn)
T iπ0(n)

}
. (10)

are asymptotically efficient (or optimal), i.e.,

lim sup
n

Rπ0(n)
lnn

� MBK(θ1, . . . , θK), ∀θ ∈ Θ. (11)

The index policy π0 above was a simplification of a UCB type policy first introduced in
Lai and Robbins [13] that utilized forced actions. Policies that satisfy the requirements of
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Eq. 5, Eq. 6, and Eq. 11 were respectively called uniformly consistent (UC), uniformly
fast convergent (UF), and uniformly maximal convergence rate (UM) or simply
asymptotically optimal (or asymptotically efficient). The lower bound of Eq. 9 provides
a baseline for comparison of the quality of policies and together with Eq. 11 and Eq. 8
provide an alternative way to state the asymptotic optimality of a policy π0 as:

Rπ0(n) = MBK(θ) lnn+ o(lnn), ∀θ ∈ Θ. (12)

Policies that achieve this minimal asymptotic growth rate have been derived for specific
parametric models in Lai and Robbins [13], Burnetas and Katehakis [4], Honda and Take-
mura [10–12], Cowan et al. [8], and references therein. In general, it is not always easy
to obtain such optimal polices; thus, policies that satisfy the less strict requirement of
Eq. 6, ∀θ ∈ Θ, have been constructed, cf. Auer et al. [2], Audibert et al. [1], Bubeck and
Cesa-Bianchi [3], and references therein. Such policies usually bound the regret as follows:

Rπ(n) � M0(θ) lnn+M1(θ), for all n and all θ, (13)

where M0(θ) is, often much, bigger than MBK(θ), for all θ.
The results presented herein can seem surprising, and it may appear to contradict (at

least for g(n) = lnn) the classical lower bound MBK(θ) of Rπ(n)/ lnn for UF policies π. For
example, if we take Fi to be the normal distribution with unknown mean μi and unknown
variance σ2

i , we have for any UF policy π:

lim
n

E[R̃π(n)]
lnn

� MBK(μ, σ2) =
∑

i:μi �=μ∗

2Δi

ln(1 + ((Δ2
i )/(σ

2
i )))

.

On the other hand, we establish in the sequel that:

lim
n

R̃πF
g
(n)

g(n)
= CπF

g
({Fi}) =

∑
i:μi �=μ∗

Δi (a.s.),

lim
n

R̃πO
g

(n)

g(n)
= CπO

g
({Fi}) = K − 1 (a.s.).

(14)

However, no such contradiction exists: MBK(θ) limits the limn E[R̃π(n)]/ lnn of a UF pol-
icy from below. In such contexts that πFg or πOg are UF, if such contexts exist, the above
constants will be bounded from below by MBK(θ). In such contexts that πFg or πOg are not
UF, the bound does not apply. In such instances, we may in fact conclude from the results
presented herein, and standard results relating modes of convergence, that for the poli-
cies constructed here, for g(n) = O(lnn), the sequences of random variables R̃πF

g
(n)/g(n),

R̃πO
g

(n)/g(n) are not uniformly integrable. An example as to how this can occur is given
via the proof of Theorem 2 of Cowan et al. [8], where with a non-trivial probability,
non-representative initial sampling of each bandit biases expected future activations of sub-
optimal bandits super-logarithmically. This effect does not influence the long-term almost
sure behavior of these policies. For other significant related recent work, we refer to Garivier
et al. [9], Lattimore [14], Ortner [16], Orabona and Pál [15], Cowan and Katehakis [5–7].

3. MAIN THEOREMS

We characterize a policy by the rate of growth of its pseudo-regret function R̃π(n) with n
in the following way.
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Definition 1: For a function g(n), a policy π is g-good if for every set of bandit
distributions {Fi} ⊂ F , there exists a constant Cπ({Fi}) <∞ such that

lim sup
n

R̃π(n)
g(n)

� Cπ({Fi}) (a.s) as n→ ∞. (15)

Remark 1: Essentially, a policy is g-good if R̃π(n) � O(g(n)) (a.s), n→ ∞. Trivially, poli-
cies exist that are n-good (i.e., R̃π(n) � O(n) (a.s.)), for example, any policy that samples
all populations at constant rate 1/K.

We next state the following theorem:

Theorem 2: For g, an unbounded, positive, increasing, concave, differentiable, sub-linear
function, there exist g-good policies.

The proof of this theorem is given by example with Theorems 3 and 6, which
demonstrate two g-good policies: the g-Forcing and the g-ISM index policies.

We note that in the sequel it will be assumed that any g considered is an unbounded,
positive, increasing, concave, differentiable, sub-linear function.

3.1. The Class of g-Forcing Policies

Let g be as hypothesized in Theorem 2. We define a g-Forcing policy πFg in the following
way:
g-Forcing policy:

A policy πFg that first samples each bandit once, then for t � K,

πFg (t+ 1) =

⎧⎨
⎩

arg maxi X̄i
T i

πF
g

(t)
if mini T iπF

g
(t) � g(t),

arg mini T iπF
g
(t) else.

(16)

Briefly, at any time t, if any population has been sampled fewer than g(t) times, sample
it. Otherwise, sample from the population with the current highest sample mean. Ties are
broken either uniformly at random, or at the discretion of the investigator. In this way, g
can be seen as determining the rate of exploration of currently sub-optimal bandits. This
can be viewed as a variant on the policy πR considered in Robbins [17].

It is convenient to define the following constant,

SΔ =
∑

i:μi �=μ∗
Δi. (17)

The value SΔ in some sense represents the pseudo-regret incurred each time the sub-optimal
bandits are all activated once. The next result states that g-Forcing policies satisfy the
conditions of Theorem 2.

Theorem 3: For a policy πFg as in (16), πFg is g-good, and

P

(
lim
n

R̃πF
g
(n)

g(n)
= SΔ

)
= 1. (18)
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The above theorem can be strengthened in the following way, bounding the asymptotic
remainder terms almost surely:

Theorem 4: For a policy πFg as in (16), the following are true:

P

(
lim sup

n
(R̃πF

g
(n) − SΔg(n)) � SΔ

)
= 1, (19)

and
P

(
lim inf

n
(R̃πF

g
(n) − SΔg(n)) � 0

)
= 1. (20)

Proof of Theorems 3 and 4: Theorems 3, 4 follow immediately from the following
proposition, the proof of which is given in Appendix 5:

Proposition 5: For policy πFg as in (16), the following is true: For every ε > 0, almost
surely there exists a Nε <∞ such that, for all n � Nε,

g(n)SΔ − ε � R̃πF
g
(n) � �g(n)	SΔ. (21)

Using the above relation to bound first the limits as n→ ∞ of R̃πF
g
(n)/g(n), then

R̃πF
g
(n) − SΔg(n) (observing that �g(n)	 − g(n) � 1), give the desired results. �

Proposition 5 is considerably stronger than Theorems 3, 4. However, it somewhat
obscures the true nature of what is going on: for sufficiently large n, almost surely, sub-
optimal bandits (i : μi 
= μ∗) are only activated during the “forcing” phase of the policy,
when some activations are below g. As a result, since g increases slowly (e.g. is sub-linearly),
for large n, T iπF

g
(n) = �g(n)	 – except for a discrepancy that occurs, for a brief stretch (< K)

of activations, whenever g surpasses the next integer threshold. At this point, the policy
raises the activations of each sub-optimal bandit, restoring the previous equality. Hence,
in fact, equality holds in Proposition 5 (R̃πF

g
(n) = �g(n)	SΔ) for most large n. Discrep-

ancy occurs increasingly rarely with n, based on the hypotheses on g. If, additionally, the
controller specifies a deterministic scheme for tie-breaking, pseudo-regret may be deter-
mined explicitly for all sufficiently large n. Leaving ties to the discretion of the controller,
Proposition 5 is as strong as a statement can be made.

3.2. The Class of g-ISM-Index Policies

In this section, we consider an index policy related to the classical “UCB” index policies.
Let g be as hypothesized. For each i, define an index on (j, k) ∈ Z

2
+,

ui(j, k) = X̄i
k +

g(j)
k
. (22)

g-ISM index policy:
A policy πOg that first samples each bandit once, then for t � K,

πOg (t+ 1) = arg max
i
ui(t, T iπO

g
(t)) = arg max

i

(
X̄i
T i

πO
g

(t) +
g(t)
T i
πO

g
(t)

)
. (23)
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Briefly, at any time, the sample means of each bandit are “inflated” by the g(t)/T iπO
g

(t)
term, and the policy always activates the bandit with the largest inflated sample mean.
When unsampled, a bandit’s inflated sample mean increases essentially at rate g, hence g
drives the rate of exploration of current sub-optimal bandits. While this policy is inspired by
more traditional “Upper Confidence Bound” policies, we refer to this as an Inflated Sample
Mean policy, as it has no deliberate connection to confidence bounds.

More general index policies of this type could also be considered, for instance based on
an index X̄i

k +Hi(g(j)/k) where Hi is some positive, increasing function of its argument.
This is more in line with the common UCB policies, which frequently have inflation terms
of the form O(

√
lnn/T iπ(n)) (though this is hardly necessary, c.f. Cowan et al. [8]) with

lnn serving the “exploration-driving” role of g. However, introducing this extra Hi function
does not influence the order of the growth of pseudo-regret, it simply changes the relevant
order constants, at the cost of complicating the analysis.

Theorem 6 below shows that a g-ISM index policy satisfies the conditions of Theorem 2,
and gives the minimal order constant CπO

g
for this policy.

Theorem 6: For a policy πOg as in (23), if the optimal bandit is unique,

P

(
lim
n

R̃πO
g

(n)

g(n)
= K − 1

)
= 1. (24)

The proof of this theorem depends on the following propositions, the proofs of which
are given in Appendix 5. Interestingly, these results (and therefore Theorem 6) depend only
on the assumption of the SLLN, not the LIL.

Proposition 7: For each sub-optimal i, ∀ε ∈ (0,Δi/2), ∃ (a.s.) a finite constant Ciε such
that for n � K,

T iπO
g

(n) � g(n)
Δi − 2ε

+ Ciε. (25)

Proposition 8: For each sub-optimal i 
= i∗, ∀ε ∈ (0,minj �=i∗ Δj/2), ∃ (a.s.) some finite
N ′ such that for n � N ′,

g(n)
(1 + ε)(Δi + 2ε) + 2ε

� T iπO
g

(n). (26)

Proof of Theorem 6: For each sub-optimal bandit i, as an application of Proposi-
tions 7 and 8, taking the limit of T iπO

g
(n)/g(n) first as n→ ∞, then as ε→ 0, gives

limn T
i
πO

g
(n)/g(n) = 1/Δi, almost surely. The theorem then follows similarly, from the

definition of pseudo-regret, Eq. (3). �

Remark 2: In the case that the optimal bandit is not unique, it happens that Proposition 7
still holds. It can be shown then that πOg remains g-good in this case, and it has a limiting
order constant of at most K −K∗ (K∗ as the number of optimal bandits). We leave as
an open question, however, that of producing a Proposition 8 type lower bound and the
verification of K −K∗ as the minimal order constant. The proof of Proposition 8 for K∗ = 1
depends on establishing a lower bound on the activations of the unique optimal bandit: in
short, at time n, since the sub-optimal bandits are activated at most O(g(n)) times (which
holds independent of K∗), it follows from its uniqueness that the optimal bandit is activated
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at least n−O(g(n)) times. If, however, K∗ > 1 and the optimal bandit is not unique, while
the optimal bandits must have been activated at least n−O(g(n)) in total at time n, the
distribution of these activations among the optimal bandits is hard to pin down. Simple
simulations seem to indicate a sort of “phase change”, in that for g of order greater than√
n ln lnn, all optimal bandits are sampled roughly equally often, while for g of order less

than
√
n ln lnn, the policy tends to fix on a single optimal bandit, sampling the other

optimal bandits much more rarely in comparison.
We offer the following as a potential explanation of this observed effect (and justification

of the difficult to observe ln lnn term): Let us hypothesize, for the moment, that under any
circumstances, the optimal bandits are activated linearly with time, that is for any optimal
i∗, T i

∗
πO

g
(n) = O(n), with the order coefficient depending on the specifics of that bandit.

Under policy πOg , activations are governed by a comparison of indices. We consider then
the fluctuations in value of the two terms of the index, the sample mean X̄i∗

T i∗
πO

g
(n)

and

the inflation term g(n)/T i
∗
πO

g
(n). Under the assumption, the optimal bandits are activated

linearly, and reasonable assumptions on the bandit distributions (to grant the LIL), the
fluctuations in the sample mean over time will be of order O(

√
ln lnn/n). The fluctuations

in the inflation term will be of order O(g(n)/n). It would seem to follow then that for g of
order less than O(

√
n ln lnn), when comparing indices of optimal bandits, the sample mean

is the dominant contribution to the index, while for g of order greater than O(
√
n ln lnn),

the inflation term is the dominant contribution to the index. When the inflation term
dominates, among the optimal bandits an “activate according to the largest index” policy
essentially reduces to a “activate according to the smallest number of activations” policy,
which leads to equalization and all optimal bandits being activated roughly equally often.
When the sample mean dominates, among the optimal bandits an “activate according to
the largest index” policy essentially reduces to an “activate according to the highest sample
mean” or “play the winner” policy, which leads to the policy fixing on certain bandits for
long periods.

This explanation would additionally suggest that on one side of the phase change, when
the inflation term dominates, the only properties of the optimal bandits that matter for the
dynamics of the problem are their means, that they all have the optimal mean μ∗. But on
the other side of the phase change, when the sample mean dominates, other properties such
as the variances {σ2

i } influence the dynamics, through the LIL. However, at this point in
time, this remains, while interesting, speculative.

Based on the above results, we have the following result: For each i 
= i∗, ∀ε > 0, ∃
(a.s.) some finite Nε such that for n � Nε,

1 − ε

Δi
g(n) � T iπO

g
(n) � 1 + ε

Δi
g(n). (27)

Similarly, for the optimal bandit i∗,

n− (1 + ε)
∑
i �=i∗

1
Δi
g(n) � T i

∗
πO

g
(n) � n− (1 − ε)

∑
i�=i∗

1
Δi
g(n). (28)

It follows trivially from these that each bandit is activated infinitely often, i.e., almost surely
{T iπO

g
(n)}n�1 is equivalent to the sequence {0, 1, . . .}, through with some (finite) stretches
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of term repetition. It follows then, applying the LIL that

P

⎛
⎜⎝lim sup

n
±

X̄i
T i

πO
g

(n)
− μi√

ln lnT i
πO

g
(n)/T i

πO
g

(n)
= σi

√
2

⎞
⎟⎠ = 1. (29)

This provides greater control over the sample mean of each bandit than what the SLLN
alone allows, and allows the results of the previous asymptotic results to be strengthened,
as in the following theorem.

Theorem 9: For a policy πOg as in (23), then the following are true:
a) if g(n) = o(n/ ln lnn),

P

⎛
⎝lim sup

n

R̃πO
g

(n) − (K − 1)g(n)√
g(n) ln ln g(n)

� 2
√

2
∑
i�=i∗

σi√
Δi

⎞
⎠ = 1, (30)

b) if g(n) = o(n2/3),

P

⎛
⎝lim inf

n

R̃πO
g

(n) − (K − 1)g(n)√
g(n) ln ln g(n)

� −3
√

2
∑
i�=i∗

σi√
Δi

⎞
⎠ = 1. (31)

In short, we have that for a g-ISM index policy πOg ,

R̃πO
g

(n) = (K − 1)g(n) +O(
√
g(n) ln ln g(n)).

It should be observed that, unlike previous results, this theorem is somewhat restrictive in its
allowed g. However, since the focus is traditionally on logarithmic regret, i.e., g(n) = O(lnn),
it is clear that the above restrictions are nothing serious.

This theorem follows trivially from the following refinements of Propositions 7, 8, and
the definition of pseudo-regret, Eq. (3). Their proofs are given in Appendix C.

Proposition 10: If g(n) = o(n/ ln lnn), for each sub-optimal i 
= i∗, the following holds
almost surely:

lim sup
n

ΔiT
i
πO

g
(n) − g(n)√

g(n) ln ln g(n)
� 2σi

√
2√

Δi

. (32)

Proposition 11: If g(n) = o(n2/3), for each sub-optimal i 
= i∗, the following holds almost
surely:

lim inf
n

ΔiT
i
πO

g
(n) − g(n)√

g(n) ln ln g(n)
� −3σi

√
2√

Δi

. (33)

Again, we leave as an open problem that of extending these results to the case of
non-unique optimal bandits.
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4. COMPARISON BETWEEN POLICIES

We have established two policies, g-Forcing and g-ISM index, that each achieve O(g(n))
pseudo-regret, almost surely. The question of which policy is “better” is not necessarily
well posed. For one thing, the asymptotic pseudo-regret growth of either policy can be
improved by picking a slower g. In this sense, there is certainly no “optimal” policy as
there will always be a slower g. For a fixed g, however, the question of which policy is
better becomes context specific: for some bandit distributions, the order constant of the
g-Forcing policy, SΔ =

∑
i:μi �=μ∗ Δi, will be smaller than the order constant of the g-ISM

index policy, K − 1; for some bandit distributions, the comparison will go the other way.
In terms of the results presented here, the pseudo-regret of the g-Forcing policy is much

more tightly controlled, Proposition 5 bounding the fluctuations in pseudo-regret around
SΔg(n) by at most a constant – indeed, at most SΔ. The bounds on the g-ISM index policy
however are O(

√
g(n) ln ln g(n)). But, this additional control of the g-Forcing policy comes

at a cost. It follows from the proof of Proposition 5 that for sub-optimal i, for all large n,

T iπF
g
(n) ≈ g(n). (34)

However, for the g-ISM index policy, following the proof of 6, for all sub-optimal i, and
large n,

T iπO
g

(n) ≈ g(n)
Δi

. (35)

It is clear from this that the g-Forcing policy is in some sense the more democratic of the
two, sampling all sub-optimal bandits equally, regardless of quality. The g-ISM index policy
is the more meritocratic, sampling sub-optimal bandits more rarely the farther they are from
the optimum. This has the effect of boosting the sampling of bandits near the optimum,
but this effect is somewhat counterbalanced as they contribute less to the pseudo-regret.

5. RELAXING ASSUMPTIONS: NON-I.I.D. BANDITS

The assumption that the results from each bandit are i.i.d. is fairly standard – the problem is
generally phrased as a matter of knowledge discovery about a set of unknown distributions,
through the use of repeated measurements. However, it is interesting to observe that this
assumption actually plays no part in the results and proofs present in this paper. The
sole distributional property that mattered for establishing the policies as g-good was the
assumption that for each bandit there existed some finite μi such that X̄i

k → μi almost surely
with k (though the LIL was utilized to great effect in bounding the remainder terms). In fact,
the expected values of the individual Xi

j need not be μi, nor must the Xi
k be independent

of each other for a given i. Further, it is never necessary that the bandits themselves be
independent of each other! In that regard, the results herein are actually quite general
statements about minimizing pseudo-regret under arbitrary multidimensional stochastic
processes that satisfy that strong large number law-type requirement.

However, a word of caution is due: removing the restrictions on {Xi
k}k�1 in this way,

while not influencing the proofs of the results presented here, does somewhat call into
question the definition of “pseudo-regret” as given in Eq. (3). The individual sample means
freed, it is not necessarily reasonable to define a finite horizon pseudo-regret, R̃π(n), in
terms of the infinite horizon means, {μi}. For instance, it is no longer necessarily true that
the optimal, complete knowledge policy on any finite horizon is simply to activate a bandit
with infinite horizon mean μ∗ at every point. A more applicable definition of pseudo-regret
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would have to take into account what is reasonable to know or measure about the state of
each bandit in finite time.
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APPENDIX A. PROOF OF PROPOSITION 5

Proof: To prove Proposition 5, it will suffice to show the following: For all i : μi �= μ∗ and all
δ > 0, ∃ (a.s.) a finite time Tδ < ∞ such that,

g(t) − 2δ � T iπF
g

(t) � �g(t)� ∀t � Tδ. (A.1)

Theorem 5 follows from this result and Eq. (3), with the appropriate choice of δ.
Without loss of generality, we may restrict ourselves to δ < 1/2.
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As a preliminary step: Based on the properties of g, if K is the total number of bandits, there
exists a finite, not random, time tδ such that , the following is true:

g(t + K) < g(t) + δ, ∀ t � tδ. (A.2)

This follows from the observation that g(t + K) � g(t) + g′(t)K, and that g′(t) → 0.
When implementing a g-Forcing policy πFg (hereafter referenced simply as π), there are essen-

tially two alternating phases (or modes) of the policy: “catch up” and “play the winner”. During
“catch up”, some number of bandits have fewer than g activations (the sub-g bandits), and they
are activated until all bandits have at least g activations. During “play the winner”, each bandit
has at least g activations, and the bandit with the current greatest sample mean is activated. These
phases can be seen as governed by the function Δ(t) = g(t) − mini T

i
π(t) so that when Δ(t) > 0,

the policy is in “catch up” mode, when Δ(t) � 0, the policy is in “play the winner” mode.
Having activated bandits according to policy π up to time tδ, suppose that Δ(tδ) > 0, hence the

policy enters or is in a period of “catch up”. Let d(= d(tδ)) be the number of sub-g bandits at time
tδ. Because g is increasing, and there are d sub-g bandits at time tδ, it will take at least d “catch
up” activations before the policy enters a period of “play the winner” (Δ � 0). Consider activating
bandits according to policy π for d activations. Note, d � K, so from Ineq. A.2 and increasing
property of g we have: g(tδ + d) < g(tδ) + δ. Additionally, mini T

i
π(tδ + d) � mini T

i
π(tδ) + 1, as

every bandit realizing the minimum activations will have been activated at least once. It follows
that

Δ(tδ + d) = g(tδ + d) − min
i

T iπ(tδ + d)

< g(tδ) + δ − min
i

T iπ(tδ) − 1

= Δ(tδ) − (1 − δ).

(A.3)

Hence, after a period of d activations from time tδ, the spread Δ has decreased by at least
1 − δ. Repeating this argument, based on the number of sub-g bandits (if any) at time tδ + d, it
is clear that eventually – in finite time – a time TΔ < ∞ is reached such that Δ(TΔ) � 0. At this
point, all bandits have been activated at least g times, and the policy enters a period of “play the
winner”. We observe the loose, but sample-path-wise, bound that,

TΔ � tδ + K
(Δ(tδ))

+

1 − δ
� tδ + K

g(tδ)

1 − δ
< ∞, (A.4)

since Δ(t) � g(t) always, and at every step the number of sub-g bandits is at most K. Observe
that if in fact Δ(tδ) � 0, then we may take TΔ = tδ.

Having entered a period of Δ � 0 or “play the winner” at time TΔ, let t � TΔ such that
Δ(t) � 0 but Δ(t + 1) > 0. That is, in the transition from time t to t + 1, g surpasses the number
of activations of some bandits and the policy enters a period of “catch up”. At such a point, we
have the following relations:

min
i

T iπ(t + 1) < g(t + 1) < g(t) + δ � min
i

T iπ(t) + δ. (A.5)

The first inequality is simply that Δ(t + 1) > 0, the second following since t � tδ, and the last since
Δ(t) � 0. However, since the T iπ are integer valued and non-decreasing, the above yields

min
i

T iπ(t + 1) = min
i

T iπ(t). (A.6)

Combining Eqs. (A.5), (A.6) yields the important relation that Δ(t + 1) < δ. Note additionally,

g(t + 1) < g(t) + δ � min
i

T iπ(t) + δ < min
i

T iπ(t + 1) + 1. (A.7)

Again noting the T iπ are integer valued, this implies that while there are sub-g bandits at
time t + 1, the only sub-g bandits are those that realize the minimum number of activations
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mini T
i
π(t + 1). All other bandits have activations strictly greater than g. Let the number of

sub-g bandits at time t + 1 again be denoted d = d(t + 1). For d′ < d (� K) additional activa-
tions under π, in the “catch up” phase, we have that mini T

i
π(t + 1 + d′) = mini T

i
π(t + 1) and

g(t + 1 + d′) < g(t + 1) + δ. Hence, Δ(t + 1 + d′) < Δ(t + 1) + δ < 2δ. For d additional activations
after time t + 1, each sub-g bandit has been activated once, raising the minimum number of activa-
tions by 1: mini T

i
π(t + 1 + d) = mini T

i
π(t + 1) + 1. Additionally, g(t + 1 + d) < g(t + 1) + δ, hence

Δ(t + 1 + d) < Δ(t + 1) − δ < 0.
We see therefore that after TΔ, at any point at which Δ becomes positive after being at most

zero, it is at most 2δ for a finite time – the “catch up” phase – before becoming negative. Hence it
follows, that for t � TΔ, Δ(t) � 2δ, or for each i

g(t) − 2δ � T iπ(t). (A.8)

Note, this is true for all i. This acts as justification for the description of g as the “forcing
function”, as the policy forces all activations to grow at least at g asymptotically.

Since g is unbounded and increasing, all populations are sampled infinitely often over time.
Taking the strong law of large numbers to hold, for every ε > 0 and each i, there exists almost
surely some finite N i

ε such that X̄i
k ∈ [μi − ε, μi + ε] for all k � N i

ε . It is worth noting here that

while such a N i
ε exists, it is random and unknowable to the investigator. Because of the properties

of g, we may define a finite T iε > TΔ such that N i
ε � g(T iε ) − 2δ. By Eq. (A.8), we have that for all

t � T iε ,

X̄i
T i

π(t) ∈ [μi − ε, μi + ε]. (A.9)

Hence we have for each population, for every ε > 0, there exists almost surely a finite random
time Tε = maxi T

i
ε < ∞ past which the sample mean is trapped within the μi ± ε interval.

Fix ε sufficiently small, so as to distinguish μ∗ from the other means (i.e., [μ∗ − ε, μ∗ + ε] ∩
[μi − ε, μi + ε] = ∅ for all i : μi �= μ∗). By the previous observations, we have therefore that for all
t � Tε, for all sub-optimal i and any optimal i∗,

X̄i∗
T i∗

π (t) > X̄i
T i

π(t). (A.10)

In short, almost surely there exists a finite time Tε past which the sample means of sub-optimal
bandits are always inferior to the sample mean of any optimal bandit.

By the structure of the policy π, for all t � Tε, sub-optimal populations are only activated
during the g-forced “catch up” periods. If at time Tε, the number of times a sub-optimal bandit
i has been activated is greater than g – for instance due to it, at some point, having the largest
sample mean during a “play the winner” period – that population will not be sampled again until
g has increased to overcome this temporary excess. As g is increasing and unbounded, this must
occur in finite time. Once this occurs, as observed previously, g can only exceed T iπ by at most 2δ
before bandit i is again activated, raising T iπ above g once more. As this “catch up” is the only time
bandit i is activated, and δ < 1/2, it follows that there exists some finite time T̃ iε > Tε such that
for t � T̃ iε , T iπ(t) � �g(t)�. Taking Tδ = maxi:μi �=μ∗ T̃ iε , and noting that tδ � TΔ � Tε � Tδ < ∞,
we have that for t � Tδ, for all sub-optimal i,

g(t) − 2δ � T iπ(t) � �g(t)�. (A.11)

�

APPENDIX B. PROOFS OF PROPOSITIONS 7 AND 8

In this section, π refers to a g-ISM index policy as in Eq. 23. The results to follow depend on the
following lemma.
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Lemma 12: Under the assumption of Eq. (1), for each i, and for any ε > 0, the inequality:

ui(j, k) < μi − ε

holds for only finitely many (j, k)-pairs, almost surely.

Proof: As an application of the strong law, almost surely there is some finite N i
ε such that X̄i

k >

μ − ε/2, for all k � N i
ε . For such k, as g is positive, ui(j, k) = X̄i

k + g(j)/k � μi − ε, for all j. For

any k < N i
ε , the relation ui(j, k) = X̄i

k + g(j)/k < μi − ε may be true only for finitely many j since
g is increasing. �

Proof of Proposition 7: For i �= i∗, we define the following quantities. Taking ε > 0, and 2ε < μ∗ −
μi, and n � K,

ni1(n, ε) =

n∑
t=N

1{π(t + 1) = i, ui(t, T
i
π(t)) � μ∗ − ε, X̄i

T i
π(t) � μi + ε}

ni2(n, ε) =

n∑
t=N

1{π(t + 1) = i, ui(t, T
i
π(t)) � μ∗ − ε, X̄i

T i
π(t) > μi + ε}

ni3(n, ε) =

n∑
t=N

1{π(t + 1) = i, ui(t, T
i
π(t)) < μ∗ − ε}.

(B.1)

Hence we have the following relationship,

T iπ(n + 1) = 1 +
n∑

t=N

1{π(t + 1) = i} = 1 + ni1(n, ε) + ni2(n, ε) + ni3(n, ε). (B.2)

The proof proceeds via a pointwise bound on each of the three terms. For the first term,

ni1(n, ε) �
n∑

t=N

1{π(t + 1) = i, μi + ε + g(t)/T iπ(t) � μ∗ − ε}

=
n∑

t=N

1{π(t + 1) = i, g(t)/((μ∗ − μi) − 2ε) � T iπ(t)}

�
n∑

t=N

1{π(t + 1) = i, g(n)/((μ∗ − μi) − 2ε) � T iπ(t)}

� g(n)

(μ∗ − μi) − 2ε
+ 1.

(B.3)

The last inequality comes from viewing T iπ(t) as a sum of 1{π(t + 1) = i} indicators, and seeing
that the condition on it bounds the number of non-zero terms in this sum.

For the second term,

ni2(n, ε) �
n∑

t=N

1{π(t + 1) = i, X̄i
T i

π(t) > μi + ε}

=

n∑
t=N

t∑
k=1

1{π(t + 1) = i, X̄i
k > μi + ε, T iπ(t) = k}
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=
n∑

t=N

t∑
k=1

1{π(t + 1) = i, T iπ(t) = k}1{X̄i
k > μi + ε}

�
n∑
k=1

1{X̄i
k > μi + ε}

n∑
t=k

1{π(t + 1) = i, T iπ(t) = k}

�
n∑
k=1

1{X̄i
k > μi + ε}. (B.4)

The last inequality holds as, for a given k, {π(t + 1) = i, T iπ(t) = k} may be true for only one t.
Taking it one step further, we have

ni2(n, ε) �
∞∑
k=1

1{X̄i
k > μi + ε}, (B.5)

and since the strong law of large numbers is taken to hold, we have therefore that ni2(n) is almost
surely bound by a finite constant, for all n � K.

For the third term, note that from the structure of the policy, a population is only sampled
if it has the maximal current index. Hence, if π(t + 1) = i, it must be true that ui∗(t, T i

∗
π (t)) �

ui(t, T
i
π(t)). Hence we have the bound,

ni3(n, ε) �
n∑

t=N

1{π(t + 1) = i, ui∗(t, T i
∗
π (t)) < μ∗ − ε}

�
n∑

t=N

1{ui∗(t, T i
∗
π (t)) < μ∗ − ε}

�
∞∑
t=N

1{ui∗(t, T i
∗
π (t)) < μ∗ − ε}.

(B.6)

From the prior observation about the form of the index, Lemma 12, we have that ui∗(t, T i
∗
π (t)) <

μ∗ − ε is true for only finitely many t, almost surely. Hence, from the above bound, ni3(n) is almost
surely bound by a finite constant, for all n � K.

Combining the above results bounding ni1, ni2, ni3 with Eq. (B.2), and observing too that
T iπ(n) � T iπ(n + 1), we have that almost surely there exists some finite Ciε such that for all n � K,

T iπ(n) � g(n)

(μ∗ − μi) − 2ε
+ Ciε. (B.7)

�

Proof of Proposition 8: Define a constant PΔ =
∑
i�=i∗ 1/(μ∗ − μi). Taking ε < minj �=i∗(μ∗ −

μj)/2, we may apply Proposition 7 to yield for each i �= i∗, ∃ (a.s.) a finite N i
ε such that T iπ(n) �

(1 + ε)g(n)/(μ∗ − μi) for all n � N i
ε . Taking Nε = maxi�=i∗ N i

ε , summing over these relations and
taking n � Nε, ∑

i�=i∗
T iπ(n) � (1 + ε)g(n)PΔ. (B.8)

The sum above equals the number of activations of sub-optimal bandits up to and including
time n. As the total number of bandit activations up to time n is n, we have from the above that
T i

∗
π (n) � n − O(g(n)).

Trivially from this, the optimal bandit i∗ is activated infinitely often, approaching full density
of activations as n increases.

Given this linear lower bound on T i
∗
π , it follows that ui∗(n, T i

∗
π (n)) converges to μ∗, almost

surely. Hence, almost surely there exists a finite Ñε such that for n � Ñε, ui∗(n, T i
∗
π (n)) � μ∗ + ε.
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As under this policy a bandit is only activated when it has the maximal index, it follows that
infinitely often (on the activations of i∗), the indices of all sub-optimal bandits are at most μ∗ + ε.
Given the structure of the indices, it follows that these sub-optimal bandits must be activated
infinitely often as well. Hence, almost surely, T iπ(n) increases without bound, for all i. Applying the
strong law here, since there are finitely many bandits being considered, ∃ (a.s.) a finite “ε-trapping

time”, Ñ trap
ε , such that

X̄i
T i

π(n) ∈ [μi − ε, μi + ε] , ∀n � Ñ trap
ε and ∀i.

Let {nk}k�0 be the infinite sequence of times at which bandit i∗ has the current optimal
index (and hence is activated next). For a given i �= i∗, we have that for all sufficiently large k

(nk � Ñ trap
ε ),

max
nk�n�nk+1

ui(n, T iπ(n)) � (μi + ε) +
g(nk+1)

T iπ(nk)

= (μi + ε) +
g(nk+1)

g(nk)

g(nk)

T iπ(nk)

= (μi + ε) +
g(nk+1)

g(nk)
(ui(nk, T

i
π(nk)) − X̄i

T i
π(nk))

� (μi + ε) +
g(nk+1)

g(nk)
(ui(nk, T

i
π(nk)) − (μi − ε)).

(B.9)

Additionally, however, at time nk bandit i∗ has the largest index. For sufficiently large k
(nk � Ñε), this index must be at most μ∗ + ε. Hence for nk > max(Ñε, Ñ

trap
ε ), for i �= i∗ we have

that ui(nk, T
i
π(nk)) � ui∗(nk, T

i∗
π (nk)) � μ∗ + ε, and

max
nk�n�nk+1

ui(n, T iπ(n)) � (μi + ε) +
g(nk+1)

g(nk)
((μ∗ + ε) − (μi − ε))

= (μi + ε) +
g(nk+1)

g(nk)
(μ∗ − μi + 2ε).

(B.10)

Since we took g to be concave, g(nk+1) � g(nk) + (nk+1 − nk)g
′(nk). The difference nk+1 −

nk − 1 is the number of sub-optimal bandit activations between the k and k + 1-th activations of
bandit i∗. This is bound from above by the total number of sub-optimal activations prior to time
nk+1, which by Eq. (B.8) is at most (1 + ε)g(nk+1)PΔ for all nk+1 � Nε. Hence,

g(nk+1) � g(nk) + ((1 + ε)g(nk+1)PΔ + 1)g′(nk). (B.11)

As g′ → 0, for all sufficiently large k, we have that (1 + ε)PΔg′(nk) < 1 and

g(nk+1)

g(nk)
� 1 + ((g′(nk))/g(nk)))

1 − (1 + ε)PΔg′(nk)
. (B.12)

As g is taken to be increasing, and g′ is taken to limit to 0, we have from the above that there
is some finite Ñg

ε such that for all sufficiently large k (nk � Ng
ε ), g(nk+1)/g(nk) � 1 + ε. Hence,

for nk � max(Nε, Ñε, Ñ
trap
ε , Ñg

ε ),

max
nk�n�nk+1

ui(n, T iπ(n)) � (μi + ε) + (1 + ε)(μ∗ − μi + 2ε). (B.13)

Let NK
ε = min{nk : nk > max(Nε, Ñε, Ñ

trap
ε , Ñg

ε )} < ∞. As the upper bound above no longer
depends on k, we have that for n � NK

ε ,
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ui(n, T iπ(n)) � (μi + ε) + (1 + ε)(μ∗ − μi + 2ε). (B.14)

Observing that X̄i
T i

π(n) � μi − ε, the above yields μi − ε + g(n)/T iπ(n) � (μi + ε) + (1 + ε)

(μ∗ − μi + 2ε), or

g(n)

(1 + ε)(μ∗ − μi + 2ε) + 2ε
� T iπ(n). (B.15)

�

APPENDIX C. PROOFS OF PROPOSITIONS 10 AND 11

We present the following preliminary bounds to aid in the proofs of Propositions 10, 11. In this
section, π is taken to be an g-ISM index policy as in Eq. 23. Additionally, it is convenient to define

PΔ =
∑
i�=i∗

1

μ∗ − μi
. (C.1)

It follows from Propositions 7, 8 that for any ε > 0, ∃ (a.s.) some finite Nε such that for
n � Nε, the following holds: for i �= i∗,

1 − ε

μ∗ − μi
g(n) � T iπ(n) � 1 + ε

μ∗ − μi
g(n). (C.2)

And similarly, for the optimal bandit,

n − (1 + ε)PΔg(n) � T i
∗
π (n) � n − (1 − ε)PΔg(n). (C.3)

To simplify the case for the optimal bandit, slightly, it also holds that for all sufficiently large n,
T i

∗
π (n) � n/2. We will also observe here, as an aside, that for some finite Ñε,

(1 − ε)/(μ∗ − μi)g(n) > 6, for all n � Ñε, and i �= i∗.

As each bandit is activated infinitely often, T iπ increases without bound with n, and hence we
may apply the Law of the Iterated Logarithm in the following way: There exists a finite time N ′

ε

such that for n � N ′
ε, for each bandit i,

|X̄i
T i

π(n) − μi| � σi
√

2(1 + ε)

√
ln ln T iπ(n)

T iπ(n)
. (C.4)

However, since
√

ln ln x/x is decreasing for all x � 6, we may apply the above bounds to have

that, for n � max(Nε, N
′
ε, Ñε, 12), for i �= i∗,

|X̄i
T i

π(n) − μi| � σi
√

2(1 + ε)

√
ln ln(((1 − ε)/(μ∗ − μi))g(n))

((1 − ε)/(μ∗ − μi))g(n)
, (C.5)

and for the optimal bandit,

|X̄i∗
T i∗

π (n) − μ∗| � σi∗
√

2(1 + ε)

√
ln ln(n/2)

n/2
. (C.6)
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Proof of Proposition 10: Let 1 > ε > 0. For i �= i∗, let

hi(t) = σi
√

2(μ∗ − μi)
(1 + ε)2√

1 − ε

√
ln ln g(t)

g(t)
. (C.7)

Observe that hi → 0 from above as t → ∞. Note that there exists a Tε < ∞ such that for
t � Tε, g(t)/(μ∗ − μi − 2hi(t)) is increasing. The proof proceeds analogously to the proof of
Proposition 7, utilizing the improved iterated logarithm bounds above.

For n � Tε, define the following functions:

ñi1(n) =

n∑
t=Tε

1{π(t + 1) = i, ui(t, T
i
π(t)) � μ∗ − hi(t), X̄

i
T i

π(t) � μi + hi(t)}

ñi2(n) =
n∑

t=Tε

1{π(t + 1) = i, ui(t, T
i
π(t)) � μ∗ − hi(t), X̄

i
T i

π(t) > μi + hi(t)}

ñi3(n) =
n∑

t=Tε

1{π(t + 1) = i, ui(t, T
i
π(t)) < μ∗ − hi(t)}.

(C.8)

Hence, we have the following relationship, that for n � Tε,

T iπ(n) � Tε + 1 + ñi1(n) + ñi2(n) + ñi3(n). (C.9)

The proof proceeds as in the proof of Proposition 7, bounding each of the three terms. For the
first,

ñi1(n) �
n∑

t=Tε

1{π(t + 1) = i, μi + hi(t) + g(t)/T iπ(t) � μ∗ − hi(t)}

=
n∑

t=Tε

1{π(t + 1) = i, g(t)/((μ∗ − μi) − 2hi(t)) � T iπ(t)}

�
n∑

t=Tε

1{π(t + 1) = i, g(n)/((μ∗ − μi) − 2hi(n)) � T iπ(t)}

� g(n)

(μ∗ − μi) − 2hi(n)
+ 1.

(C.10)

As before, the last inequality comes from viewing T iπ(t) as a sum of 1{π(t + 1) = i} indicators,
and seeing that the condition on it bounds the number of non-zero terms in this sum. It is also
important to observe here that we are explicitly in a regime in which g(t)/((μ∗ − μi) − 2hi(t)) is
an increasing function with t.

For the second term,

ñi2(n) �
n∑

t=Tε

1{π(t + 1) = i, X̄i
T i

π(t) > μi + hi(t)}

�
n∑

t=Tε

1{X̄i
T i

π(t) − μi > hi(t)}

�
n∑

t=Tε

1

{
σi
√

2(1 + ε)

√
ln ln(((1 − ε)/(μ∗ − μi))g(t))

((1 − ε)/(μ∗ − μi))g(t)
> hi(t)

}
.

(C.11)
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The last inequality holds, by the iterated logarithm bound in Eq. (C.5). Taking it one step further,
we have

ñi2(n) �
∞∑
t=Tε

1

{
σi
√

2(1 + ε)

hi(t)

√
ln ln(((1 − ε)/(μ∗ − μi))g(t))

((1 − ε)/(μ∗ − μi))g(t)
> 1

}
. (C.12)

Note that as

lim
t

σi
√

2(1 + ε)

hi(t)

√
ln ln(((1 − ε)/(μ∗ − μi))g(t))

((1 − ε)/(μ∗ − μi))g(t)
=

1

1 + ε
< 1, (C.13)

the event indicated in the above sum bounding ñi2(n) may occur only finitely many times, almost
surely. Hence, ñi2(n) is almost surely bound by a finite constant, for all n � Tε.

For the third term, as before, by the structure of the policy, a population is only sampled if it has
the maximal current index. Hence, if π(t + 1) = i, it must be true that ui∗(t, T i

∗
π (t)) � ui(t, T

i
π(t)).

It follows that

ñi3(n) �
n∑

t=Tε

1{π(t + 1) = i, ui∗(t, T i
∗
π (t)) < μ∗ − hi(t)}

�
n∑

t=Tε

1{ui∗(t, T i
∗
π (t)) < μ∗ − hi(t)}

=
n∑

t=Tε

1

{
X̄i∗
T i∗

π (t) +
g(t)

T i
∗
π (t)

< μ∗ − hi(t)

}

�
n∑

t=Tε

1

{
−σi∗

√
2(1 + ε)

√
ln ln(t/2)

t/2
+

g(t)

T i
∗
π (t)

< −hi(t)

}
,

(C.14)

the last equation coming from the iterated logarithm bound for the optimal bandit, Eq. (C.6). As
a final simplification,

ñi3(n) �
∞∑
t=Tε

1

{
−σi∗

√
2(1 + ε)

√
ln ln(t/2)

t/2
< −hi(t)

}
. (C.15)

If g(n) = o(n/ ln ln n), it is easy to verify that the indicated event in the above sum can only
occur for finitely many t. Hence, by the above, there is a finite constant bounding ñi3(n) for all
n � Tε.

Combining the above results, there is a finite constant Dε
i such that for all n � Tε,

T iπ(n) � g(n)

(μ∗ − μi) − 2hi(n)
+ Dε

i . (C.16)

We have from this that

(μ∗ − μi)T
i
π(n) − g(n) � g(n)

2hi(n)

(μ∗ − μi) − 2hi(n)
+ (μ∗ − μi)D

ε
i . (C.17)

For a fixed ε > 0, the above yields (taking the limit, given the choice of hi(n)),

lim sup
n

(μ∗ − μi)T
i
π(n) − g(n)√

g(n) ln ln g(n)
� 2σi

√
2(1 + ε)2√

μ∗ − μi
√

1 − ε
. (C.18)

As the above holds for all ε > 0, this yields, almost surely,

lim sup
n

(μ∗ − μi)T
i
π(n) − g(n)√

g(n) ln ln g(n)
� 2σi

√
2√

μ∗ − μi
. (C.19)

�
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Proof of Proposition 11: Let ε ∈ (0, 1). Recall from the proof of Proposition 8 the infinite sequence
{nk}k�0 of times at which the index of the optimal bandit i∗ is maximal. For notational

convenience, we will write ui(n) = ui(n, T iπ(n)), and for i �= i∗, we define

U ik = max
nk�n�nk+1

ui(n), (C.20)

and

M i
k = max

nk�n�nk+1
X̄i
T i

π(n). (C.21)

We have the following relations,

U ik �
(

max
nk�n′�nk+1

X̄i
T i

π(n′)

)
+

g(nk+1)

T iπ(nk)

= M i
k +

g(nk+1)

g(nk)

g(nk)

T iπ(nk)

= M i
k +

g(nk+1)

g(nk)
(ui(nk) − X̄i

T i
π(nk))

� M i
k +

g(nk+1)

g(nk)
(ui∗(nk) − X̄i

T i
π(nk)).

(C.22)

For n such that nk � n � nk+1, trivially ui(n) � U ik. It follows that

g(n)

T iπ(n)
� (M i

k − X̄i
T i

π(n)) +
g(nk+1)

g(nk)
(ui∗(nk) − X̄i

T i
π(nk)). (C.23)

Defining the following terms for space,

An,k = (M i
k − X̄i

T i
π(n)),

Bk =
g(nk+1)

g(nk)
ui∗(nk) − μ∗,

Ck =
g(nk+1)

g(nk)
X̄i
T i

π(nk) − μi,

Δ(n) = g(n) − (μ∗ − μi)T
i
π(n).

(C.24)

The above relation may be rearranged to yield

Δ(n)/T iπ(n) � An,k + Bk − Ck. (C.25)

We may apply the iterated logarithm bounds of Eq. (C.5), to yield a finite KA such
that for k � KA,

An,k � 2σi
√

2(1 + ε)

√
ln ln(((1 − ε)/(μ∗ − μi))g(nk))

((1 − ε)/(μ∗ − μi))g(nk)
. (C.26)

Similarly, there is a finite KB such that for k � KB , observing that for sufficiently
large k, T i

∗
π (nk) � nk/2,

Bk � g(nk+1)

g(nk)

(
μ∗ + σi∗

√
2(1 + ε)

√
ln ln(nk/2)

nk/2
+

g(nk)

nk/2

)
− μ∗. (C.27)

And finally, there is a finite KC such that for k � KC ,

Ck � g(nk+1)

g(nk)

(
μi − σi

√
2(1 + ε)

√
ln ln(((1 − ε)/(μ∗ − μi))g(nk))

((1 − ε)/(μ∗ − μi))g(nk)

)
− μi. (C.28)
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Rearranging terms for space again, for k � max(KA, KB , KC) we have

Δ(n)/T iπ(n) � An,k + Bk − Ck � Ãk + B̃k + C̃k + D̃k, (C.29)

where

Ãk = (μ∗ − μi)

(
g(nk+1)

g(nk)
− 1

)

B̃k = σi
√

2(1 + ε)

(
2 +

g(nk+1)

g(nk)

)√
ln ln(((1 − ε)/(μ∗ − μi))g(nk))

((1 − ε)/(μ∗ − μi))g(nk)

C̃k = σi∗
√

2(1 + ε)
g(nk+1)

g(nk)

√
ln ln(nk/2)

nk/2

D̃k =
g(nk+1)

g(nk)

g(nk)

nk/2
.

(C.30)

Noting that each of the above are positive, we have from Eq. (C.29),

Δ(n)√
g(n) ln ln g(n)

� (Ãk + B̃k + C̃k + D̃k)T
i
π(n)√

g(n) ln ln g(n)
. (C.31)

Note that, applying Eq. (C.2) in this case, we have some finite Kε such that for k � Kε,

T iπ(n) � T iπ(nk+1) � 1 + ε

μ∗ − μi
g(nk+1). (C.32)

Recall from the proof of Proposition 8 that there is a finite K′
ε such that for k � K′

ε, g(nk+1) �
(1 + ε)g(nk). Noting too that g(nk) � g(n), we have that for k � max(Kε, K

′
ε),

Δ(n)√
g(n) ln ln g(n)

� (Ãk + B̃k + C̃k + D̃k)√
g(nk) ln ln g(nk)

(1 + ε)2

(μ∗ − μi)
g(nk). (C.33)

We have

D̃kg(nk)√
g(nk) ln ln g(nk)

=
g(nk+1)

g(nk)

g(nk)

nk/2

g(nk)√
g(nk) ln ln g(nk)

� 2(1 + ε)
g(nk)

3/2

nk
√

ln ln g(nk)

= o(1).

(C.34)

The last relationship follows, taking g(n) = o(n2/3).
We have

C̃kg(nk)√
g(nk) ln ln g(nk)

= 2σi∗(1 + ε)
g(nk+1)

g(nk)

√
ln ln(nk/2)

nk

g(nk)

ln ln g(nk)

� 2σi∗(1 + ε)2

√
ln ln(nk/2)

nk

g(nk)

ln ln g(nk)

= o(1).

(C.35)

The last relationship follows, taking g(n) = o(n/ ln ln n).
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We have

B̃kg(nk)√
g(nk) ln ln g(nk)

= σi
√

2(1 + ε)

(
2 +

g(nk+1)

g(nk)

)√
ln ln(((1 − ε)/(μ∗ − μi))g(nk))

((1 − ε)/(μ∗ − μi))g(nk)

√
g(nk)

ln ln g(nk)

� σi
√

2(1 + ε)(3 + ε)√
((1 − ε)/(μ∗ − μi))

√
ln ln(((1 − ε)/(μ∗ − μi))g(nk))

ln ln g(nk)

=
σi
√

2(1 + ε)(3 + ε)√
((1 − ε)/(μ∗ − μi))

(1 + o(1)).

(C.36)

The last relationship follows, taking the {nk}k�0 as infinite and unbounded, and g as increasing
and unbounded.

We have

Ãkg(nk)√
g(nk) ln ln g(nk)

= (μ∗ − μi)

(
g(nk+1)

g(nk)
− 1

)√
g(nk)

ln ln g(nk)
. (C.37)

Let δ > 1 by fixed. We use the bound here that for all positive x � 1 − 1/δ, 1/(1 − x) � 1 + δx.
Applying Eq. (B.12), we have for sufficiently large k,

g(nk+1)

g(nk)
− 1 � 1 + ((g′(nk))/(g(nk)))

1 − (1 + ε)PΔg′(nk)
− 1

�
(

1 +
g′(nk)
g(nk)

)
(1 + δ(1 + ε)PΔg′(nk)) − 1

= g′(nk)(δ(1 + ε)PΔ + o(1)).

(C.38)

The last relationship follows, as g′ → 0 and g → ∞ with nk. Applying this to the above bound,

Ãkg(nk)√
g(nk) ln ln g(nk)

� (μ∗ − μi)(δ(1 + ε)PΔ + o(1))g′(nk)

√
g(nk)

ln ln g(nk)

= o(1).

(C.39)

The last relationship follows, taking g(n) = o(n2/3).
Applying all of the above to the bound in Eq. (C.33), this yields

Δ(n)√
g(n) ln ln g(n)

�
(

σi
√

2(1 + ε)(3 + ε)√
((1 − ε)/(μ∗ − μi))

(1 − o(1)) + o(1)

)
(1 + ε)2

(μ∗ − μi)
, (C.40)

or

lim sup
n

Δ(n)√
g(n) ln ln g(n)

�
(

σi
√

2(1 + ε)(3 + ε)√
((1 − ε)/(μ∗ − μi))

)
(1 + ε)2

(μ∗ − μi)
. (C.41)

Taking the limit as ε → 0 completes the proof,

lim sup
n

g(n) − (μ∗ − μi)T
i
π(n)√

g(n) ln ln g(n)
� 3σi

√
2√

μ∗ − μi
. (C.42)

�
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