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Vortical–acoustic resonance in an acoustic
resonator: Strouhal number variation,
destabilization and stabilization

Xiwen Dai†

School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China

(Received 23 November 2020; revised 29 March 2021; accepted 3 May 2021)

The impact of acoustic resonance on vortical–acoustic resonance and flow instability
is studied by a combined travelling–global mode analysis about a low-speed inviscid
parallel shear flow in two-dimensional symmetric duct–cavity configurations. First, in a
shallow-cavity case, we show that the difference between incompressible and compressible
models in describing the compact feedback loop, consisting of the Kelvin–Helmholtz
(KH) instability wave and the Rayleigh–Powell–Rossiter (RPR) feedback, is small and the
global mode frequency follows the Strouhal law. Using the compact case as a baseline for
comparison, the influence of an acoustic resonator (AR) on the KH + RPR feedback loop
is then examined. In this deep-cavity case, phenomena such as frequency deviation from
the Strouhal law, global mode switching, global mode destabilization and stabilization,
caused by a trapped or a heavily damped acoustic resonant mode, are observed. We show
that those phenomena can be explained by the local–global relation of the feedback loop
and the dual-feedback view: the coexistence of RPR and AR feedbacks. The Strouhal
number variation is due to the phase difference of the unstable vortical wave between the
upstream and downstream cavity edges being changed by the additional AR feedback. It
is found that the switching is not a vortical but an acoustic effect. The destabilization and
stabilization, near and far from an acoustic resonance, are respectively understood as the
result of the total feedback at the upstream edge being strengthened and weakened by the
AR feedback.

Key words: aeroacoustics, shear-flow instability

1. Introduction

Flow tones generated by shear layers interacting with solid surfaces have been studied
for decades, however, investigating these problems can still provide a substantial advance
in our understanding of vortical–acoustic interaction. With a shear flow past an open
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cavity, self-sustained oscillations can happen owing to the feedback-loop mechanism
that is usually attributed to Rossiter (1964): the spatially growing Kelvin–Helmholtz
(KH) instability wave scatters into acoustic waves at the downstream edge, and acoustic
waves propagate upstream and excite the new instability wave. Rossiter also obtained
a semi-empirical formula for oscillation frequencies based on the phase relation of the
feedback loop. Essentially the same feedback-loop mechanism was known earlier in jet
edge tones (Powell 1953, 1961). Powell has examined not only the loop phase relation, but
also the loop gain (the loop amplitude relation) which is relevant to whether self-sustained
oscillations happen or not at the frequencies determined by the phase requirement. The
original feedback-loop idea has been credited to Lord Rayleigh (see Powell 1995), who
described the mechanism of a high-pitched whistle called a bird call (Rayleigh 1945). Over
the past decades, such a feedback-loop mechanism has been found to be responsible for
many tonal flows, such as cavity flows and impinging jets (see reviews such as Rockwell
& Naudascher (1978), Blake & Powell (1986), Fabre & Hirschberg (2000), Rowley &
Williams (2006), Gloerfelt (2009), Tonon et al. (2011), Edgington-Mitchell (2019)).

In a cavity flow, the free shear layer spanning the cavity is perturbed by the feedback
acoustic disturbances (Ho & Huerre 1984). At low Mach numbers, the acoustic excitation
is only effective near the separation point where vortical disturbances are generated, owing
to the mismatch between the wavelengths of acoustic and instability waves. The later
vortical motions between the separation point and the downstream solid surface, which
may appear as spatially growing instability waves in some cases or as concentrated vortex
structures in others, largely depend on the initial acoustic excitation (Bauerheim, Boujo &
Noiray 2020).

The upstream feedback is not limited to acoustic waves that are associated with
the compressibility of fluids, it can be truly hydrodynamic. Incompressible cavity flow
oscillations have been observed in experiments, which show similar feedback-loop features
as described in the Rossiter model (Knisely & Rockwell 1982; Gharib & Roshko 1987).
The existence of purely hydrodynamic resonances has been confirmed by incompressible
global mode calculations (Barbagallo, Sipp & Schmid 2009; Yamouni, Sipp & Jacquin
2013). At very low Mach numbers, the whole self-sustained system is in the very near
field, i.e. the configuration is small compared with the acoustic wavelength (acoustically
compact), a hydrodynamic description is also applicable (Powell 1961; Ffowcs-Williams
1969; Crighton 1992; Howe 1997). In this regime, the upstream feedback might be
designated as pseudo-sound (Ffowcs-Williams 1969). Following Goldstein (1978), the
irrotational feedback disturbances are still referred to as acoustic in this article even
though they can be supported by an incompressible model. The designation ‘acoustic’
distinguishes those irrotational disturbances from vortical disturbances that are associated
with flow shear. In incompressible or compact cases, since the phase relation of the
feedback loop is mainly determined by the vortical motions in the shear layers, the
oscillation frequency is roughly proportional to the flow velocity, following the Strouhal
law.

The feedback loop consisting of KH instability waves and the Rayleigh–Powell–Rossiter
(RPR) feedback can be dramatically influenced by an acoustic resonant mode of the
cavity, the Rossiter formula then fails to predict oscillation frequencies (East 1966; Tam
& Block 1978). Experimental results of such an influence were typically obtained at
low flow speeds, and the oscillation frequencies have been shown to deviate from the
expected Strouhal law (Nelson, Halliwell & Doak 1981; Bruggeman et al. 1991; Kook
& Mongeau 2002; Ma, Slaboch & Morris 2009; Dai, Jing & Sun 2015). In some cases,
it appears that the resonator almost completely imposes its resonant frequencies on the
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Vortical–acoustic resonance in an acoustic resonator

whole self-sustained system (Ziada & Shine 1992; Peters 1993; Kriesels et al. 1995; Tonon
et al. 2011), which is often referred to as frequency lock in. The influence of the resonator
also leads to intense self-sustained oscillations and concentrated vortex structures. Similar
phenomena happen in many other configurations, such as a flow duct containing plates
(Parker 1966; Stoneman et al. 1988) and a compressor (Hellmich & Seume 2008), leading
to an extensive study of acoustic resonance without flow in open systems (Hein, Hohage
& Koch 2004; Koch 2009; Hein, Koch & Nannen 2012).

The flow-tone problem sketched in figure 1 is considered in this article. Two types
of approaches can be used in studying the self-sustained flow oscillations, where shear
flows are respectively described as vorticity fields in physical space and hydrodynamic
instability waves in Fourier space (Ho & Huerre 1984). The first approach, such as using
the vortex particle method to model shear layer motions (Peters 1993; Kriesels et al. 1995;
Dai et al. 2015), gives the nonlinear evolution of the shear layers, which can be compared
with flow-visualization studies. In the second approach, the examination of the linear tonal
dynamics of shear flows is achieved by global mode analyses (Sipp et al. 2010; Theofilis
2011; Yamouni et al. 2013; Fosas de Pando, Schmid & Sipp 2014). It is very often that
global modes need to be numerically solved from global eigenvalue problems when solid
surfaces and mean flows are complex. For a complete understanding of vortical–acoustic
coupling and global instabilities here, a combined local–global analysis with a simplified
flow model (Gallaire & Chomaz 2004; Doaré & de Langre 2006; Stewart, Waters & Jensen
2009) is also desirable. Thus, the present global modes are constructed from travelling
vortical and acoustic waves by the feedback-loop closure principle (Landau & Lifshitz
1981) described in § 2, under the assumption of a parallel mean flow. Such a closure
principle reflects the idea of Rayleigh, Powell and Rossiter for global instabilities and the
consequent self-sustained oscillations, and it embraces cases whether or not a resonator is
present (Powell 1990).

The main objective of this article is to examine the influence of an acoustic resonator
(AR) on the KH + RPR feedback loop. It has been shown that a linear global mode
analysis can predict interesting phenomena and provide insight into the influence of an
AR on global instabilities and self-sustained oscillations (Alvarez & Kerschen 2005; Méry
2010; Yamouni et al. 2013). For example, an overshoot in temporal growth rate and a global
mode switching happen near the frequency of some acoustic resonant modes (Yamouni
et al. 2013). For a better understanding of the global mode-related phenomena, a combined
travelling–global mode analysis is performed in the present study, taking full advantage of
the feedback-loop closure principle. The research plan is as follows. First, the compact
case sketched in figure 1(a) is considered in § 3.1, serving as a baseline for comparison. It
is noted that a compact case was analysed in Dai (2020), with a compressible model.
Here, a purely hydrodynamic feedback loop supported by an incompressible model is
demonstrated and compared with the compressible results. Then, two acoustic resonant
modes for the deep-cavity case in figure 1(b) but without flow are calculated in § 3.2. The
antisymmetric one is a trapped mode which is decoupled from the outgoing propagative
travelling modes in the ducts, corresponding to an acoustic resonance with a high
quality factor (Pagneux 2013). The symmetric one is a heavily damped mode owing to
radiation. Finally, the vortical–acoustic resonance sketched in figure 1(b) is discussed
in § 3.3. Different impacts of the trapped and heavily damped acoustic modes on the
global modes are shown. Phenomena such as frequency deviation from the Strouhal law,
global mode switching, global mode destabilization and stabilization are explained by
the local–global relation of the feedback loop and the dual-feedback view (Powell 1990;
Fabre & Hirschberg 2000; Rienstra & Hirschberg 2018): the coexistence of RPR and
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Figure 1. Sketches of vortical–acoustic resonance at low flow speeds in two-dimensional (2-D) symmetric
duct–cavity configurations, where the flow duct is infinitely long. (a) A shallow-cavity case with a compact
KH + RPR feedback loop, (b) a deep-cavity case where the compact KH + RPR feedback loop is affected by
the resonator acoustics. The symmetric and antisymmetric (breathing and flapping) KH modes of the jet profile
(Tam & Norum 1992; Gojon, Bogey & Marsden 2016; Martini, Cavalieri & Jordan 2019) in the cavity segment
are respectively sketched in (a) and (b).

AR feedbacks. Note that antisymmetric and symmetric respectively denote y-antisymmetric
and y-symmetric in this article.

2. Numerical model

Calculations of vortical–acoustic resonant modes (also called global modes) and acoustic
resonant modes are rather simple here. The global mode calculation has been described
in Dai (2020) for a compact case, and it is outlined in this section. The duct–cavity
configuration is divided into three zones, as shown in figure 1(a): the left semi-infinite
duct (zone I), the cavity segment (zone II) and the right semi-infinite duct (zone III). In
each zone, duct modes travelling in the ±x directions are first solved (Kooijman et al.
2008; Kooijman, Hirschberg & Aurégan 2010). The resonant modes are then constructed
from the travelling duct modes by the feedback-loop closure principle between the two
ends of the cavity segment.

2.1. Governing equations and calculations of travelling duct modes
The linear propagation of vortical and acoustic disturbances in each zone about a parallel
mean shear flow is described by the linearized Euler equations (LEEs)

(
∂

∂t
+ M0f

∂

∂x

)
u + M0

df
dy

v = −∂p
∂x

, (2.1)
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Vortical–acoustic resonance in an acoustic resonator(
∂

∂t
+ M0f

∂

∂x

)
v = −∂p

∂y
, (2.2)

(
∂

∂t
+ M0f

∂

∂x

)
p = −

(
∂u
∂x

+ ∂v

∂y

)
, (2.3)

where u and v are the velocity disturbance in respectively the x- and y-directions,
p is the pressure disturbance, M0 is the average Mach number in the duct with the
profile prescribed by the function f ( y) = M( y)/M0 (the assumed velocity profile of the
low-speed mean flow is described at the beginning of § 3.1) and all variables have been
normalized by sound speed c∗

0 and density ρ∗
0 and the duct height H∗. The stars in this

article denote dimensional quantities, whereas quantities without star are dimensionless.
The fluctuations are sought in the form

p = P( y) exp(−ikx) exp(iωt),

v = V( y) exp(−ikx) exp(iωt),

}
(2.4)

where i2 = −1, k is the wavenumber and ω is the angular frequency. Inserting (2.4) into
the LEEs leads to

i(ω − M0 f k)V = −dP
dy

, (2.5)

(
1 − M2

0 f 2
)

k2P + 2ωM0 f kP − ω2P − d2P
dy2 = −2iM0

df
dy

kV. (2.6)

In each zone, vortical and acoustic travelling modes are solved by discretizing (2.5)
and (2.6) in the y-direction, taking N1 equally spaced points in zones I and III, N2
equally spaced points in zone II. The spacing between interior points in all zones is
�h = H/N1 = (2D + H)/N2, and the first and last points are taken �h/2 from the solid
walls. Equations (2.5) and (2.6), together with the wall boundary conditions, determine
the following generalized eigenvalue problem in each zone:

k

⎛
⎝I − M2

0f 2 2iM0f a 0
0 iM0f 0
0 0 I

⎞
⎠

⎛
⎝Q

V
P

⎞
⎠ =

⎛
⎝−2ωM0f 0 ω2I + D2

0 iωI D1
I 0 0

⎞
⎠

⎛
⎝Q

V
P

⎞
⎠ , (2.7)

where Q = kP is assumed, I is the identity matrix, f , f 2 and f a are diagonal matrices with
on the diagonal the values of f , f 2 and df /dy at the discrete points; Q, V and P are the
column vectors giving respectively the value of Q( y), V( y) and P( y) at the discrete points;
D1 and D2 are matrices for the first- and second-order differential operators with respect
to y. The boundary condition dp/dy = 0 on the solid walls is taken into account in the
differential operator matrices by introducing ghost points outside the walls. The eigenvalue
problems for the duct modes are then solved, using the eig function of MATLAB. In
zones I and III, 3N1 modes are obtained, including N1 acoustic modes travelling in the ±x
directions and N1 vortical modes travelling in the +x direction with the mean flow. In zone
II, the mean flow velocity and its derivative are zero at discrete points where |y| > H/2.
The first and last (N2 − N1)/2 rows and columns of the middle parts in the matrices in
(2.7) and the first and last (N2 − N1)/2 elements of V are skipped, corresponding to the
no-flow parts of this zone. Thus, N2 acoustic modes travelling in the ±x directions and N1
vortical modes travelling in the +x direction are solved in zone II.
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For the compact configuration shown in figure 1(a), global modes will also be
calculated with an incompressible model and compared with results from the LEEs. The
incompressible equivalent to (2.6) is

k2P − d2P
dy2 = −2iM0

df
dy

kV. (2.8)

Note that, in the incompressible model, the velocity used in the normalization is still the
sound speed of the compressible problem, which leads to the appearance of M0 in the
normalized equations (Marx & Aurégan 2013). This choice of normalization will allow
a direct comparison between the incompressible and compressible global modes in the
compact case. In each zone, solving the eigenvalue problems by the same discretization
of (2.5) and (2.8) in the y-direction as of (2.5) and (2.6) leads to the same numbers of
vortical and ‘acoustic’ travelling modes as those vortical and acoustic travelling modes
solved from the LEEs. However, these vortical and ‘acoustic’ modes solved from (2.5) and
(2.8) are both purely hydrodynamic.

Acoustic resonant modes without flow, of the configuration shown in figure 1(b), will
be calculated. Without flow, the governing equation of acoustic disturbances is a wave
equation

∂2p
∂t2

−
(

∂2p
∂x2 + ∂2p

∂y2

)
= 0. (2.9)

Inserting (2.4) into (2.9) leads to

k2P − ω2P − d2P
dy2 = 0. (2.10)

In each zone, after introducing Q = kP, solving the eigenvalue problems with the same
grid points in the y direction as used in solving the eigenvalue problems above leads to the
same number of acoustic travelling modes as those solved from the LEEs.

2.2. Calculations of acoustic and vortical–acoustic resonant modes
Acoustic and vortical–acoustic resonant modes can be numerically solved from global
eigenvalue problems in a large enough domain with boundary conditions that only allow
outgoing waves (Hein et al. 2004; Sipp et al. 2010; Theofilis 2011). This approach applies
to complex solid boundaries and mean flows.

Under the assumption of a segmented homogeneous system, resonant modes can also
be easily constructed from the travelling modes in the segments by the feedback-loop
closure principle. Each resonant mode is assembled by the ±x travelling modes that,
around a feedback loop including wave propagation and wave reflection, have the same
amplitude while the phase change is an integral multiple of 2π at a complex or real-valued
resonance frequency (Landau & Lifshitz 1981). The closure principle has been widely
used in investigating global instabilities and resonances (Doaré 2001; Gallaire & Chomaz
2004; Alvarez, Kerschen & Tumin 2004; Doaré & de Langre 2006; Stewart et al. 2009;
de Lasson et al. 2014; Tuerke et al. 2015; Jordan et al. 2018).

A most simple example for the loop closure principle is that each normal mode in
an infinite 2-D waveguide means a resonance in the transverse direction (Jensen et al.
2011), and the closure principle is satisfied in that direction. Vortical and acoustic duct
modes solved in § 2.1 satisfy the resonant condition in the transverse direction. To
construct a system resonant mode in the 2-D duct–cavity configurations, one then needs
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to determine the particular complex frequency and the particular combination of those
duct modes so that the resonant condition in the longitudinal direction is satisfied. To
this end, a multimodal feedback-loop matrix can be defined, Mfl = RuPuRdPd. Using
the compressible model associated with the LEEs for example, Ru ((N2 + N1) × N2) and
Rd (N2 × (N2 + N1)) are respectively the upstream and downstream reflection matrices
for the ∓x travelling modes in the cavity segment, describing wave reflection at the
segment ends; Ru (respectively Rd) is extracted from the interface scattering matrix at
the upstream (respectively downstream) end of the cavity segment which is calculated
by matching the travelling modes in the cavity segment and the travelling modes in the
upstream (respectively downstream) duct; Pu (N2 × N2) and Pd ((N2 + N1) × (N2 + N1))
are respectively the upstream and downstream propagation matrices, describing wave
travelling inside the cavity segment; Pu and Pd are diagonal matrices with the elements
on the diagonal being exp(±ik∓

n L), where k∓
n are respectively the wavenumbers of the

nth upstream- and downstream-travelling modes. The upstream-travelling waves are only
acoustic waves, while the downstream-travelling waves include acoustic and vortical
waves. Note that Pu,d and Ru,d are also called propagation and reflection links of the
feedback loop. In § 3, we focus on analysing Pu,d, although Ru,d can also be significant to
the global instabilities of a system (Gallaire & Chomaz 2004; Doaré & de Langre 2006).
In the incompressible model, the dimensions of the matrices are the same as those in
the compressible model. In the calculations of acoustic resonant modes without flow, the
travelling modes are only acoustic modes and the dimensions of the matrices accordingly
change. The loop closure principle means that one of the eigenvalues of Mfl is unity at
the complex frequency of a resonant mode: MflCfl = kflCfl with kfl = 1. In the resonant
mode calculations, the complex frequency ω is optimized (using the fminsearch function
of MATLAB), so that one of the eigenvalues of Mfl is equal to unity. The corresponding
eigenvector, Cfl, contains the coefficients of the travelling modes that lead to the spatial
distribution of a resonant mode, which is also an eigenfunction of the global eigenvalue
problem (Hein et al. 2004; Sipp et al. 2010; Theofilis 2011). The iteration stops when
the error between the target kfl and unity is less than Eo = 10−10. Here, N1 = 400 and
N2 = N1(2D + H)/H is used in the calculations and a convergence assessment is given in
Appendix A.

As noted in Dai (2020), the terms global mode and global instability are used in the
sense that ‘since this instability is due to the properties of the system as a whole, it is called
global instability’ (Landau & Lifshitz 1981). It is also very often that ‘the term global is
used to distinguish the analysis from the classic local linear stability theory, where the base
flow is independent of two coordinate directions’ (Taira et al. 2017).

3. Results

3.1. Hydrodynamic resonance in an acoustically compact configuration
Vortical–acoustic resonance in the compact configuration sketched in figure 1(a), that
is, the cavities are small compared with the acoustic wavelength (Nakiboglu et al. 2011;
Nakiboglu, Manders & Hirschberg 2012; Dai 2020), is calculated with the compressible
and incompressible models in this subsection. The geometrical parameters are H∗ =
50 mm, D∗ = 25 mm and L∗ = 25 mm. The Mach number averaged over the cross-section
of the flow duct varies over the range 0.03 to 0.15, and the velocity profile is prescribed
by f = (1 − (2y)m)(m + 1)/m, where the parameter m = 8 is used. The mean flow is
assumed unchanged along the entire duct–cavity configuration, which means that a jet
velocity profile is formed and the mean velocity is zero at |y| > H/2 in the cavity segment.
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Figure 2. Spatial distribution of the antisymmetric global mode for M0 = 0.09 calculated from the
compressible ((a,c), where ωG = 0.4054 + 0.0036i) and incompressible ((b,d), where ωG = 0.4055 +
0.0046i) models. Amplitude (e) and phase ( f ) of v along the opening of the low cavity (at the point just
below y = −H/2). Solid lines, compressible model; dashed lines, incompressible model.

The discontinuity in df /dy at y = ±H/2 in the cavity segment causes a convergence
problem in solving the travelling modes, and inflexion points are not defined at y = ±H/2.
By empirically introducing a resistive sheet with a small resistance R = 0.2M0 at y =
±H/2 (Dai & Aurégan 2018; Dai 2020), the convergence problem is mitigated and the
instability characteristics of the shear flow are similar to those of a hyperbolic–tangent
velocity profile (Michalke 1965; Schmid & Henningson 2001). The resistive sheets result
in a pressure jump �p = Rv at y = ±H/2 in the cavity segment. It is noted that this choice
of the mean flow model leads to a piecewise homogeneous problem, so that the travelling
mode analysis is rather simple, and to the continuity of the mean velocity between the
cavity and duct segments, so that the disturbances are continuous at the interfaces between
segments when mass and momentum conservation are enforced.

The spatial distributions of the antisymmetric and symmetric global modes for M0 =
0.09 are presented in figures 2(a–d) and 3(a–d), where the fields have been normalized
by v at x = L/4 and y = −H/2. As expected, for an acoustically compact problem,
the spatial distributions calculated from the compressible and incompressible models
are almost exactly the same. A compact global mode here is mainly formed by a
downstream-travelling unstable vortical mode (the antisymmetric or symmetric KH mode)
and multiple upstream-travelling acoustic modes. The primary analysis approach is to first
separate the travelling modes into three groups, namely vortical and ±x acoustic, then
seeing the spatial variation of disturbances of each group. An analysis of the multiple
feedback-loop channels is given in Appendix B. The modal shape of the global modes
indicates that strong oscillations are concentrated in the opening area of the cavities, thus
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Figure 3. Spatial distribution of the symmetric global mode for M0 = 0.09 calculated from the compressible
((a,c), where ωG = 0.4126 + 0.0051i) and incompressible ((b,d), where ωG = 0.4114 + 0.0089i) models. For
the descriptions of (e, f ), see figure 2.

an approximate way to examine the propagation link (Pu and Pd) of the feedback loop is to
see the variation of v along the line between the two edges of the upper or lower cavity, as
shown in figures 2(e, f ) and 3(e, f ). Around the feedback loop, the phase change associated
with the RPR upstream feedback is small and the phase change of the KH modes is close to
2π, which agree with the previous understanding of the Rossiter modes in compact cases.

The global mode frequency ωG as a function of M0 is presented in figure 4. It is shown
that Re(ωG) follows the Strouhal law (Sr = Re(ω)L/2πM0), which is in line with the
previous experiments of incompressible or acoustically compact cavity flow oscillations
(Knisely & Rockwell 1982; Gharib & Roshko 1987; Nakiboglu et al. 2011, 2012). Note
that the spatial distributions at the other Mach numbers in figure 4 are all similar to
those shown in figures 2 and 3 for M0 = 0.09. The phase difference of the KH modes
between the upstream and downstream edges is almost constant and close to 2π for all
these Mach numbers, which explains the Strouhal law and also the coincidence between
the compressible and incompressible results of Sr.

The temporal growth rate of the global modes, −Im(ωG) according to the exp(iωt)
convention, in figure 4(b) shows the increasing discrepancy between the compressible
and incompressible models as M0 is increased. The value of Im(ωG) calculated from the
incompressible model shows a linear increase with M0. This is because the incompressible
global modes calculated with different M0 actually describe the same hydrodynamic
feedback loop, which is indicated by the constant Sr in figure 4(a) and the wavenumbers
shown in figure 5(b). The wavenumbers calculated from the incompressible model overlap
for the seven M0 and the corresponding Re(ωG). For the seven M0 and the corresponding
ωG, the wavenumbers shift from those calculated with real-valued frequencies, but they
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Figure 4. Global mode frequency as a function of M0 in the compact case, calculated from the compressible
and incompressible models. The legend in (b) also applies to (a).

still overlap. The latter overlap requires Im(ωG) being proportional to Re(ωG), and being
proportional to M0. On the other hand, figure 5(a) shows that the wavenumbers from the
compressible model vary with M0 and the KH modes show the stabilization effect of the
Mach number on the KH convective instability (Miles 1958). Although the wavenumbers
only represent the propagation link (Pu and Pd) of the feedback loop, the deviations
of the compressible results of the wavenumbers and Im(ωG) from their incompressible
counterparts show the same trend with increasing M0. It is noted that the compressible
and incompressible wavenumbers in a lined flow duct have also been shown to be close to
each other at a low Mach number but are not exactly the same (Marx & Aurégan 2013).
It is also noted that, for the present parameters, figure 4(b) shows a stable KH + RPR
feedback loop, which can be destabilized by reducing the shear layer thickness (Yamouni
et al. 2013) or reducing R (Dai 2020), as discussed below.

The feedback-loop closure principle (kfl = 1) implies two conditions of a system
resonant mode: the phase condition (arg(kfl) = 2jπ, where j is an integer) and the gain
or amplitude condition (|kfl| = 1). The real part of the global mode frequency Re(ωG)

is mainly decided by the phase condition, whereas the temporal growth rate Im(ωG) is
associated with the amplitude condition. For each global mode, no matter whether the
mode is globally stable, neutral or unstable, both arg(kfl) = 2jπ and |kfl| = 1 should be
satisfied at the global mode frequency ωG. For stable, neutral and unstable global modes,
the loop gain at Re(ωG) is respectively |kfl| < 1, |kfl| = 1 and |kfl| > 1. Therefore, a
loop-gain criterion of global instability can be obtained: |kfl| being larger or smaller than
unity at Re(ωG) determines whether the global mode is unstable or stable (Alvarez &
Kerschen 2005; Rowley et al. 2006; Dai 2020). Note that the above loop-gain criterion
of global instability is slightly different from Powell’s gain condition, i.e. a unit gain at a
real frequency, which was used to describe the saturated and stable state of self-sustained
oscillations (Powell 1961). To better understand the above discussions, the eigenvalues
of Mfl and the wavenumbers of the travelling modes in the cavity segment are plotted in
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Figure 5. (a) Wavenumbers in the cavity segment calculated from the compressible (crosses) and
incompressible (squares) models with M0 and ωG of the antisymmetric modes in figure 4; (b) wavenumbers in
the cavity segment calculated from the incompressible model with M0, ωG (squares) and Re(ωG) (diamonds)
of the antisymmetric modes in figure 4.

figure 6, as the complex frequency is perturbed from ωG. It is shown that, at ωG for the
antisymmetric global mode, one eigenvalue of Mfl is unity. Another eigenvalue of Mfl,
close to unity, is associated with the symmetric global mode, whose feedback loop is not
closed yet. Note that the global modes with multiple KH wavelengths in the cavity opening
region (Nakiboglu et al. 2011, 2012; Yamouni et al. 2013) are damped here, because the
shear layers are rather thick. First, the variation of Re(ω) leads to kfl rotating around zero
in the complex plane (the trajectory of a kfl is not exactly a circle, however) as shown in
figure 6(a), since the wavelengths of the travelling modes change with Re(ω) as shown
in figure 6(b). This demonstrates how the multiple Rossiter frequencies are selected by
the loop phase condition: arg(kfl) = 2jπ, where j is an integer. Second, the variation of
Im(ω) leads to the change of |kfl|, since the spatial growth rate (±Im(k) respectively for
the waves travelling in the ±x directions) of the travelling vortical and acoustic modes,
being positive or negative, varies with Im(ω). It has been revealed that, in general, a
thinner shear layer potentially results in stronger self-sustained oscillations in cavity flows
(Knisely & Rockwell 1982; Gharib & Roshko 1987; Nakiboglu et al. 2012). The stronger
self-sustained oscillations of a fully nonlinear flow system are understood to be associated
with the stronger global instabilities, i.e. larger −Im(ωG) (Yamouni et al. 2013). It was
also known that reducing the shear layer thickness leads to a larger spatial growth rate of
the KH instability waves (Schmid & Henningson 2001). Figure 6 casts light on the link
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Figure 6. Variations of (a) the eigenvalues of Mfl and (b) the wavenumbers in the cavity segment as the
frequency is perturbed from ωG = 0.4054 + 0.0036i (the antisymmetric global mode frequency for M0 = 0.09
calculated with the compressible model). Red, Re(ω) varying from Re(ωG) − 0.01 (circles) to Re(ωG) + 0.01
(triangles); blue, Im(ω) varying from Im(ωG) − 0.01 (circles) to Im(ωG) + 0.01 (triangles).

between the increase in the spatial growth rate of travelling waves and flow destabilization.
The former would cause an increase of |kfl| if Im(ω) remains unchanged. To maintain
the kfl = 1 condition for a resonant mode, Im(ω) should decrease, that is, a global mode
destabilization. It is noted that, in the above local–global analysis of the feedback loop,
both frequency and wavenumber can be complex and a real-valued frequency is not more
special than a complex frequency (Gallaire & Chomaz 2004; Doaré & de Langre 2006;
Stewart et al. 2009; Jordan et al. 2018), thus Im(ωG) decreasing or increasing, rather than
ωG crossing the real axis, is referred to as global mode destabilization or stabilization in
this article. Such a local–global relation of the feedback loop applies to both acoustic and
vortical–acoustic resonances.

3.2. Acoustic resonator
To study the influence of an AR on the KH + RPR feedback loop, the depth of the cavities
will be increased, D∗ = 200 mm (D/L = 8), whereas all the other geometrical and flow
parameters remain the same as those in § 3.1. Before discussing the vortical–acoustic
resonance in an AR in § 3.3, we first examine the resonator acoustics without flow.
Acoustic resonant modes in cavities have been studied by Tam (1976), Koch (2005),
Hein et al. (2012) and others, here, only the modes needed for the later discussions
are calculated. The first antisymmetric and symmetric acoustic resonant modes are
respectively presented in figures 7 and 8, where the modes are normalized so that |p| = 1
at the cavity bottoms.

The antisymmetric acoustic resonant mode displayed in figure 7(a–c) is a trapped mode.
The coefficients of the +x travelling modes in the cavity segment (at x = 0) and in the
right duct (at x = L) are shown in figure 7(e), where the travelling modes have been
normalized so that |Pn( y)|max = 1. Note that the coefficient of the nth −x travelling mode
in the cavity segment (at x = L) or in the left duct (at x = 0), which is not shown, is
exactly the same as that of the nth +x travelling mode. The split between symmetric
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Figure 7. Spatial distribution of (a) Re( p) and (b) Re(v) of the antisymmetric acoustic resonant mode at a
real-valued frequency ωA = 0.3673 (a trapped mode). (c) Variation of p (red) and v (blue) along y at x = L/2.
Dashed lines, Re( p) and Re(v); solid lines, |p| and |v|. (d) Wavenumbers of the travelling waves. (e) Mode
coefficients of the travelling waves in the +x direction, where the modes are sorted according to their orders.
The legend in (d) also applies to (e).
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and antisymmetric travelling modes in such a symmetric system can be seen: compared
with the antisymmetric counterparts, the symmetric travelling modes have vanishingly
small amplitudes. The zero amplitude of the outgoing propagative (cut-on) mode in each
duct, as indicated numerically in figure 7(e) by the vanishingly small mode coefficient
of the n = 1 mode in the duct, means that acoustic energy of the trapped mode cannot
escape, and consequently the trapped mode occurs at a real-valued frequency. Such a
wave trapping mechanism in a symmetric system, i.e. because of symmetric mismatch,
the antisymmetric trapped mode is decoupled from the outgoing plane waves in the two
semi-infinite ducts which are the only cut-on modes in the ducts at the trapped mode
frequency, has been extensively studied (Evans & Linton 1991; Evans, Levitin & Vassiliev
1994; Evans & Porter 1997; Pagneux 2013). The symmetric acoustic resonant mode,
shown in figure 8(a–c), is assembled by symmetric travelling modes. The non-vanishing
amplitude of the outgoing propagative mode in each duct, as shown in figure 8(e), means
radiation of acoustic energy to infinity, thus the resonant mode is damped. Owing to
the outgoing propagative modes in the ducts, |kfl| < 1 if the frequency remains real
valued. To satisfy the feedback-loop closure principle for a resonant mode (kfl = 1), Im(ω)

increases. As shown in figure 8(d), for the two +x propagative modes in the cavity segment
Im(k) > 0, since Im(ωA) > 0.

The acoustic resonance frequency of the configuration can be approximately estimated
with a one-dimensional model, assuming a resonance happens when λ/2 = H + 2D or
λ/4 = D, where λ is the wavelength. However, the two resonant modes shown in figures 7
and 8 are close to but not exactly the same as the λ/2-resonance between the two cavity
bottoms (see figure 7c) or the λ/4-resonance in each cavity (see figures 7c and 8c). The
λ/2- and λ/4-resonance frequencies are ωλ/2 = 0.3491 and ωλ/4 = 0.3927. In the present
case, ωλ/2 < ωA,anti < Re(ωA,sym) < ωλ/4. The discrepancies in frequency depend on the
geometrical parameters, and in general they reduce as the cavity depth is increased (Koch
2005; Hein et al. 2012). It is noted here that for D/L = 1 in § 3.1, the lowest acoustic
resonance frequency is ωA,anti = 1.9387 when R = 0, which is much higher than the
frequency range considered there.

For a comparison later in § 3.3, the acoustic resonant modes for the configuration
D/L = 8 without flow but with a resistive sheet R = 0.018 added at the entrance of each
cavity are also calculated here. The complex frequencies of the first antisymmetric and
symmetric resonant modes are respectively ωA = 0.3761 + 0.0044i and ωA = 0.3881 +
0.1415i, which indicate that the influence of the small R on Re(ωA) is extremely small
and Im(ωA) is only slightly increased owing to the damping effect of R. Note that since
the symmetry holds after the resistive sheets are introduced, the antisymmetric resonant
mode, a lightly damped mode, however, is still a trapped mode (the outgoing propagative
mode in each duct still has a zero amplitude).

The resonant modes presented in figures 7 and 8 are eigensolutions without forcing. As
an acoustic forcing is introduced from the left duct, the wave scattering of the resonator
is shown in figure 9, which is used to further discuss the purely acoustic resonances in
figures 7 and 8 where R = 0, and to provide the forced acoustic fields inside the deep
cavities at and far from the acoustic resonance frequencies that will be compared with
the global modes in § 3.3 where R /= 0. The calculation of wave scattering based on the
scattering matrix method has been described in Dai & Aurégan (2018) and Dai (2020).
The plane-wave transmission and reflection coefficients of the resonator are plotted in
figure 9(a), which shows a zero transmission caused by the symmetric resonant mode.
As the difference between the incident frequency and the resonant mode frequency is
increased, the amplitude of the excited oscillations in the resonator decreases, as shown
in figure 9(d– f ). The antisymmetric resonant mode cannot be excited by an incoming
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Figure 9. (a) Transmission and reflection coefficients for a plane-wave excitation (thin lines: R = 0, thick
lines: R = 0.018). (b,c) Value of |p| excited by the first +x cross-mode in the left duct of amplitude |p|max =
1 at x = 0, at frequencies denoted by red vertical lines in (a): ω = Re(ωA) where ωA = 0.3761 + 0.0044i
(antisymmetric acoustic resonance) and ω = 0.3949 (frequency in figure 12e). (d– f ) Value of |p| excited by
the +x plane wave in the left duct of amplitude |p| = 1, at frequencies denoted by blue vertical lines in (a): ω =
Re(ωA) where ωA = 0.3881 + 0.1415i (symmetric acoustic resonance), ω = 0.5476 (frequency in figure 14d)
and ω = 0.7708 (acoustic anti-resonance). In (b– f ), R = 0.018.

plane wave owing to symmetric mismatch, thus its effect is not seen in figure 9(a). In
figure 9(b,c), the resonator is excited by the first +x cross-mode in the left duct. At the
frequency of the antisymmetric resonant mode, the forcing excites a stronger oscillation
in the resonator compared with figure 9(d– f ), since the antisymmetric resonance has a
larger quality factor. Note that, when R = 0, the quality factor of such a perfect resonance
is infinity and the amplitude of response is also infinity. The present numerics indicate the
pressure amplitude at the cavity bottoms shown in figure 9(b) to be |p| = 1.15 × 108 if
R = 0. In figure 9 and § 3.3, the pressure is shown in |p| rather than Re( p) for
a better visual comparison (see the acoustic pressure nodes inside the deep cavities
in figures 9(e, f ) and 14(d,e)). At y = 0, |p| = 0 and |p| /= 0 respectively indicate
antisymmetric and symmetric resonant modes.

3.3. Vortical–acoustic resonance in an AR
The problem sketched in figure 1(b) is discussed in this subsection. At low Mach numbers,
the KH + RPR feedback loop occurring at the junction between the flow duct and the deep
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Figure 10. Global mode frequency ωG as a function of M0: comparison between the deep-cavity case
(D/L = 8) and the shallow-cavity case (D/L = 1). In (a), ωA of acoustic resonant modes (0.3671 + 0.0044i
and 0.3881 + 0.1415i) are calculated with R = 0.018 without flow. The legend in (a) also applies to (b).

cavities is still acoustically compact, but this compact region is influenced by the acoustics
of the resonator (Peters 1993; Kriesels et al. 1995).

The global mode frequency as a function of the Mach number is plotted in figure 10.
At M0 = 0.03, the global mode frequency for D/L = 8, being very close to those for
D/L = 1, approximately agrees with the Strouhal law. As M0 increases, Re(ωG) of the
antisymmetric mode progressively deviates from the Strouhal law, and the deviation
becomes more noticeable as Re(ωG) gets close to the frequency of the antisymmetric
acoustic resonant mode, Re(ωA). The temporal growth rate, −Im(ωG), shows a global
mode destabilization when Re(ωG) is around Re(ωA), and a maximum temporal growth
rate occurs when Re(ωG) = Re(ωA) (Yamouni et al. 2013), which in this case happens at
M0 ≈ 0.09. Note that the acoustic resonance frequency might be slightly shifted owing to
the convection of the acoustic waves by the flow. This shift, however, should be extremely
small since the flow speed is low, thus the maximum temporal growth rate happens when
Re(ωG) equals to the Re(ωA) calculated without flow. For the symmetric modes, the
influence of the heavily damped acoustic resonant mode on the global modes is rather
weak near the frequency crossing point. The deviation of Re(ωG) from the Strouhal law is
small. However, Im(ωG) shows a stabilization phenomenon over a M0 range where Re(ωG)

is much larger than Re(ωA). It is noted that, in the grey region in figure 10(b) (also in
figure 15), Im(ωG) is high. For example, ωG = 0.5213 + 0.0843i when M0 = 0.11. We do
not try to find the M0 at which a peak Im(ωG) occurs, but mark that region in grey.

The different Im(ωG) trajectories of the antisymmetric and symmetric global modes
explain the previous experiments, from a linear point of view, that vortex structures are
not shed simultaneously from the upper and lower cavity leading edges but with a shift of
half a period (Peters 1993; Kriesels et al. 1995; Oshkai & Yan 2008; Wang, Deng & Liu
2018). Note that both antisymmetric and symmetric global modes could be unstable near
the crossing point of Re(ωG) and Re(ωA) if the shear layer thickness is reduced, but the
antisymmetric one should win in the competition owing to its larger temporal growth rate.
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Figure 11. Vortical–acoustic resonance in an AR: KH instability and dual feedbacks. Adapted from Rienstra
& Hirschberg (2018).

To explain the different ωG trajectories of the antisymmetric and symmetric global
modes in figure 10, we adopt the view sketched in figure 11 that the vortical–acoustic
resonance in an acoustic resonator and the associated system instability are governed by
the KH instability waves and dual feedbacks: the RPR and AR feedbacks (Powell 1990;
Fabre & Hirschberg 2000; Rienstra & Hirschberg 2018).

The spatial distributions of the antisymmetric (figures 12 and 13) and symmetric
(figure 14) global modes are plotted for different M0, where the fields have been
normalized by v at x = L/4 and y = −H/2. Figures 12(a, f ) and 14(a, f ) show that, when
Re(ωG) is much lower than Re(ωA), at a very low Mach number M0 = 0.03, the acoustic
effect of the resonator barely shows in the spatial distributions, i.e. the whole resonator is
compact. As Re(ωG) increases with the increasing M0, the acoustic effect of the resonator
on the |p| distribution progressively appears. Note in figure 10(a) that, for global and
acoustic resonant modes of the same symmetry, Re(ωG) only coincides with Re(ωA) at one
particular value of M0 as Re(ωG) varies continuously with M0, since the antisymmetric or
symmetric acoustic resonant mode only occurs at one discrete frequency in the frequency
range considered. However, the influence of the resonator on the global modes appears
over continuous Mach number and frequency ranges. It is also interesting to compare the
|p| distribution here with those shown in figure 9. The excitation frequencies in figures 9(c)
and 9(e) respectively equal to Re(ωG) in figures 12(e) and 14(d). The resemblance in the
|p| distribution inside the cavities can be observed when the frequencies coincide, even
though one is an externally excited field whereas the other is an eigenfunction describing
the two-way excitation between vortical and acoustic motions in an AR.

Note that the different variation in |p| at the cavity bottoms with frequency shown
in figures 12–14 from those in figure 9 might be due to the compressibility effect
changing with M0 and also the variation in global mode distribution (the global modes
are normalized by v at a constant position).

We now analyse the phase relation and the Strouhal number. The variations of v along
the line between the upstream and downstream edges of the lower cavity are plotted in the
third and fourth columns in figures 12–14. By observing those variations, one can analyse
the effect of the AR on the KH + RPR loop that mainly happens at the cavity openings.
For the antisymmetric modes, figure 12( p,q,r,s,t) shows that the phase difference of the
vortical disturbances between the edges reduces as M0 is increased. Nevertheless, the
phase difference of the −x acoustic disturbances between the edges also changes with M0,
and the total phase variation around the feedback loop, which is approximately represented
by the phase variation of the vortical disturbances from the upstream to the downstream
edge plus the phase variation of the −x acoustic disturbances from the downstream
to the upstream edge, remains close to an integral multiple of 2π. For the symmetric
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Figure 12. Spatial distributions of the antisymmetric global modes for M0 = 0.03, 0.06, 0.09, 0.12 and 0.15
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modes, figure 14( p,q,r,s,t) shows that the variation of the phase difference of the vortical
disturbances between the edges with the increasing M0 is small. The phase variations are
further displayed in figure 15(a,b), which shows that the variation of the phase difference
of the KH waves between cavity edges is directly linked to the −x acoustic disturbances,
required by loop closure.

An interpretation of the variation of the KH phase difference between the upstream
and downstream edges in the antisymmetric and symmetric global modes, from the
dual-feedback view, is as follows. In the antisymmetric global modes in figure 12, the
acoustic resonant mode is a nearly perfect resonant mode with a high quality factor, as
discussed in § 3.2. At frequencies near Re(ωA), the AR feedback, having an amplitude
much higher than that of the RPR feedback at the cavity leading edges, dominates in the
total feedback. Thus, the quick variation of the KH phase difference near Re(ωA) is due
to the quick phase change with frequency in the response function of the AR (Tonon et al.
2011). On the other hand, the heavily damped symmetric acoustic resonant mode has a
minor influence on the loop phase relation in figure 14, since the corresponding response
function has a low magnitude and a slowly varying phase.

The Strouhal number defined as Sr = Re(ωG)L/2πM0 is reformed,

Sr = Re(ωG)L
2πMc

Mc

M0
, (3.1)

where Mc is the convection velocity of the KH waves. The first term on the right-hand
side of (3.1) equals the ratio between the cavity length and the KH wavelength, and
equals the phase difference of the KH waves between cavity edges, i.e. �φKH/2π =
L/λKH = Re(ωG)L/2πMc. Thus, the essential mechanism of the frequency deviation
from the Strouhal law shown in figure 10(a), which reflects the deviation of �φKH from
2π, is the upstream feedback being affected by the AR, or the coexistence of RPR and
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Figure 14. Spatial distributions of the symmetric global modes for M0 = 0.03, 0.06, 0.09, 0.12 and 0.15
(rows 1 to 5). See figure 12 for the descriptions of the columns.
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AR feedbacks. Note that for a parallel velocity profile, Mc/M0 also depends on Sr
(Michalke 1965; Schmid & Henningson 2001), and this relation also influences the finally
selected frequency of a global mode.

It is shown in figure 10(a) that the reduction of the Strouhal number of the antisymmetric
global modes continues even though M0 is no longer close to M0 = 0.09. This might be
linked to the global mode switching, that is, the total phase change around the feedback
loop jumping from 2jπ to 2( j − 1)π, where j is an integer. The mode switching is shown
in figures 12(r,s) and 15(a). Here, the switching happens slightly later than the maximum
temporal growth rate as M0 is increased, which is in line with the result of Yamouni et al.
(2013). The switching is found to occur suddenly during the increase of M0. Figure 13
elaborates the mode switching and shows that the switching is linked to the −x acoustic
disturbances. The ±π phase jump and the zero amplitude suggest that v of the −x
acoustic disturbances changes sign between the downstream and upstream edges. Such
a phenomenon, not happening in the compact case, indicates the interaction between the
RPR and AR feedbacks here. Note that the phase jump can only be observed near the
entrance of the cavities (y = ±H/2) where both the KH + RPR loop and the additional
AR feedback are at play. At positions inside the deep cavities, the disturbance field, almost
completely governed by the AR, is uniform in the x direction. The phase jump happening
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in the −x acoustic disturbances rather than in the KH wave also suggests that the mode
switching is not a vortical but an acoustic effect.

The present linear global mode analysis for the compact and deep-cavity cases might
also provide some insight into the frequency lock-in phenomenon in experiments. In the
compact case, since the phase difference of the KH waves between the edges is almost
constant and approximately equals to 2π, owing to the fact that the solo RPR feedback is
nearly hydrodynamic, the oscillation frequency roughly follows the Strouhal law. When
an AR is involved, the total feedback is affected by the additional AR feedback, thus
�φKH/2π accordingly changes to satisfy the loop phase relation. Moreover, �φKH/2π
varies quickly with frequency when Re(ωG) is near the Re(ωA) of an acoustic resonant
mode which has a small Im(ωA). Such a linear mechanism of frequency deviation from the
Strouhal law is described in this work. It is noted that a linear mode-coupling mechanism
has also been discussed for the frequency lock-in in vortex-induced vibrations (de Langre
2006). The measured frequency of self-sustained cavity flow oscillations also depends on
the oscillation amplitude which affects the convection velocity of the vortical motions
(Mc/M0). At high amplitudes, the shear layer, strongly perturbed by the intense feedback
acoustic waves at the separation point, rolls up into concentrated vortex structures (Ho &
Huerre 1984). A minimum value of Mc/M0 happens at the Mach number of maximum
oscillation amplitude (Ma et al. 2009). In some cases, clear vortex structures may not be
observed, but the shear layer can be thickened by medium amplitude oscillations, which
also leads to a decrease of the convection velocity (Boujo, Bauerheim & Noiray 2018).

The coexistence of the RPR and AR feedbacks also explains the stabilization and
destabilization shown in figure 10(b). As shown in the compact case in § 3.1, the amplitude
of the RPR feedback disturbances is very small at the upstream separation points. For
the antisymmetric modes in the deep-cavity case, the AR feedback is strong near the
frequency of the acoustic resonant mode. Thus, compared with the solo RPR feedback, the
amplitude of −x acoustic disturbances at the leading edges is increased in the deep-cavity
case, which decreases the ratio between the amplitudes of the −x feedback disturbances
at x = L and at x = 0. For the symmetric modes, the weak AR feedback at the upstream
edge may have a comparable amplitude as the RPR feedback but an opposite phase. Those
two feedbacks then cancel each other at the upstream edge, which leads to an extremely
large ratio between the amplitudes of the −x feedback disturbances at x = L and at x = 0.
To satisfy the amplitude relation of the feedback loop for a global mode, the imaginary
part of the frequency should be adjusted (see discussion in figure 6). The above analysis
is clearly confirmed in figure 15(d) for the symmetric global modes, even though the plot
only approximately represents Pu and Pd of the feedback loop. It demonstrates the large
ratio between |v| at the downstream edge and |v| at the upstream edge, for the −x feedback
disturbances owing to the mutual cancellation between RPR and AR feedbacks at the
upstream edge and also for the symmetric KH mode owing to the amplitude requirement
for loop closure. The large Im(kKH) indicated in figure 15(d) is linked to the increase of
Im(ωG) (stabilization), as shown in figure 15( f ). For the antisymmetric global modes, |v|
ratios for the −x feedback disturbances and for the KH wave do not show the same trend,
as shown in figure 15(c), which seems due to the global mode switching. A simple and
intuitive demonstration of the feedback-loop destabilization is not obtained at this moment,
although figure 15(e) shows the reduction of Im(kKH) over the M0 range of destabilization.

4. Conclusion

Vortical–acoustic resonance in 2-D symmetric duct–cavity configurations is studied by a
linear global mode analysis about a low-speed inviscid parallel shear flow. In practice, even
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in the linear regime, the shear layer over a cavity develops, thus both convection velocity
and spatial growth rate of vortical disturbances vary across the cavity. Because of the
longitudinal-homogeneity and inviscid-flow assumptions and the added resistance in the
calculations, the present results are of qualitative interest only. Nevertheless, such a mean
flow model renders a neat separation of vortical and acoustic disturbances and a combined
travelling–global mode analysis, which offer insight into some essential mechanisms
involved.

First, in a shallow-cavity case, results are in line with the previous understanding of the
Rossiter modes in compact cases. Vortical–acoustic resonance and the associated global
instability, owing to the KH instability and the RPR feedback, can be supported by an
incompressible model, where the feedback disturbances are purely hydrodynamic. The
difference between incompressible and compressible models in describing the compact
KH + RPR feedback loop at low flow speeds is small. The phase difference of the unstable
vortical waves between the upstream and downstream cavity edges is close to 2π, i.e.
�φKH/2π ≈ 1, and the global mode frequency agrees with the Strouhal law.

The influence of an AR on the KH + RPR feedback loop is then examined. Note
that, for symmetric configurations, the split between antisymmetric and symmetric
travelling modes occurs in both acoustic and vortical–acoustic resonant modes. In this
deep-cavity case, two acoustic resonant modes occur in the frequency range considered:
the antisymmetric one is a trapped mode (lightly damped by the resistive sheets introduced
in the calculations) whereas the symmetric one is a heavily damped mode due to
radiation. As the Mach number is increased, different trajectories of the antisymmetric
and symmetric global modes are observed. The frequency of the antisymmetric global
modes deviates from the Strouhal law and the global modes are destabilized when the
global mode frequency is close to the frequency of the antisymmetric acoustic resonant
mode. A global mode switching is also observed. On the other hand, the influence of the
symmetric acoustic resonant mode on the global modes is much smaller. Nevertheless,
a stabilization of the symmetric global modes is observed. We have shown that the
global mode-related phenomena can be explained by the local–global relation of the
feedback loop and the dual-feedback view: the coexistence of the RPR and AR feedbacks.
The frequency deviation from the Strouhal law is due to �φKH/2π being changed by
the additional AR feedback, and �φKH/2π changes quickly with frequency when the
global mode frequency is near the frequency of an acoustic resonant mode with a high
quality factor, such as a trapped mode. Such a linear result provides some insight into the
frequency lock-in phenomenon in experiments, although the frequency of self-sustained
cavity flow oscillations also depends on the oscillation amplitude. It is found that the
global mode switching is not a vortical but an acoustic effect. The switching results from
the interaction between the RPR and AR feedbacks, whereas the vortical motions do not
show signs of the sudden switching. The global mode destabilization and stabilization
are respectively understood as the result of the total feedback at the upstream edge being
strengthened and weakened by the additional AR feedback.
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Case N1 ωG

GM1 400 3.6678 × 10−1 − 2.1521 × 10−2i
GM1 600 3.6658 × 10−1 − 2.1651 × 10−2i
GM1 800 3.6651 × 10−1 − 2.1693 × 10−2i
GM1 1000 3.6647 × 10−1 − 2.1710 × 10−2i
GM2 400 5.4759 × 10−1 + 4.3785 × 10−2i
GM2 600 5.4616 × 10−1 + 4.3132 × 10−2i
GM2 800 5.4567 × 10−1 + 4.2907 × 10−2i
GM2 1000 5.4544 × 10−1 + 4.2802 × 10−2i

Table 1. Convergence assessment of the numerical calculations.

Appendix A. Convergence of calculations

The convergence of the present numerical calculations is assessed on table 1, using two
global modes for D/L = 8 for example: GM1, the antisymmetric mode at M0 = 0.09;
GM2, the symmetric mode at M0 = 0.12.

Appendix B. Multiple feedback-loop channels

Since in each system resonant mode there are multiple downstream- and upstream-
travelling modes in the cavity segment, the feedback loop can be seen as the sum
of multiple channels, each of which is associated with one downstream-travelling
mode, one upstream-travelling mode and their mutual reflection at the segment ends.
A preliminary analysis of the multiple feedback-loop channels is performed in figure 16
for the antisymmetric global modes of the compact and deep-cavity configurations. The
wavenumbers in figure 16(a,b) show that the decay rates of several −x acoustic modes are
less than or comparable to the growth rates of the KH modes, thus all those −x acoustic
modes are possible candidates for closing the loop, from the loop-gain consideration.

In the antisymmetric Rossiter mode of the compact case, the ±x acoustic plane waves
are not involved in the feedback loop owing to symmetric mismatch, as indicated by their
vanishingly small coefficients in figure 16(c), thus the −x acoustic modes closing the
loop are all evanescent modes, among which the least attenuated mode has the highest
amplitude at the upstream end. To examine the error of using a KH mode plus some
less attenuated −x acoustic modes to represent the Rossiter mode, the channel gain is
calculated. Assuming that the mth element in Cfl is the coefficient of the antisymmetric
KH mode, the loop gain of the channel consisting of the KH mode and the nth −x
acoustic mode is GKH,n = |Mu(m, n) × Md(n, m)|, where Mu = RuPu, Md = RdPd, m and
n denotes the positions of the elements in the matrices. The result of GKH,n is plotted in
16(e), which shows that the first antisymmetric channel has the largest gain 0.817. The sum
of the gains of N2 channels is GKH = |∑n Mu(m, n) × Md(n, m)| = |Mfl(m, m)| = 0.915,
which is close to but less than unity, denoting an amplitude variation of the KH mode
after the loop through the N2 acoustic channels. This indicates the effect of the other
+x travelling modes on the replication of the KH mode around a feedback loop. For the
global mode in the deep-cavity case, GKH = 0.292. The global mode is now governed
by the KH + RPR loop, which may still be approximately described by a KH mode
plus some less attenuated −x acoustic modes, and the additional AR effect. In the
travelling-mode representation of the latter, some +x acoustic modes are as significant
as their −x counterparts, as indicated by the pressure distributions inside the deep cavities
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Figure 16. Multiple feedback-loop channel analysis of two antisymmetric global modes (row 1, figure 2(a,c),
D/L = 1 and M0 = 0.9; row 2, figure 12(c,h), D/L = 8 and M0 = 0.9). (a,b) Wavenumbers in the cavity
segment, (c,d) mode coefficients of the KH and ±x acoustic modes in the cavity segment (triangles, KH;
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the segment ends where the wave travelling starts and terminates), (e, f ) Loop gain of each channel consisting
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in §§ 3.2 and 3.3. Nevertheless, at the cavity openings (y = ±H/2), |v| associated with
the group of the +x acoustic modes is negligibly small compared with those of the
vortical and the −x acoustic groups (see column 3 in figures 12–14), which simplifies
the downstream–upstream analysis of the feedback loop done in § 3.3.
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