
Robotica (2022), 40, pp. 3290–3305
doi:10.1017/S0263574722000194

RESEARCH ARTICLE

Coverage control of mobile agents using multi-step
broadcast control
Shalini Darmaraju1 , Md Abdus Samad Kamal2, Madhavan Shanmugavel3 and Chee Pin Tan1,∗

1School of Engineering, Monash University Malaysia, Selangor, Malaysia, 2Graduate School of Science and Technology,
Gunma University, Gunma, Japan, and 3Department of Mechatronics Engineering, SRM Institute of Science and Technology,
Tamil Nadu, India
∗Corresponding author. E-mail: tan.chee.pin@monash.edu

Received: 24 February 2021; Revised: 18 October 2021; Accepted: 21 January 2022;
First published online: 28 February 2022

Keywords: broadcast control, multi-agent system, area coverage control, wireless coverage

Abstract
This paper proposes a novel multi-step broadcast control (MBC) scheme to deploy a group of autonomous mobile
agents for accomplishing coverage tasks in a bounded region. Traditional broadcast control (BC) schemes use
a one-to-all communication framework to transmit a uniform signal to all agents, making it cost-effective com-
pared with any all-to-all communication-based scheme for a multi-agent system. However, as BC schemes are
based on a single-step view of the environment for decision-making, the environment’s varying distribution den-
sity is not known immediately to the agents, resulting in suboptimal performance. To overcome this drawback,
this paper proposes an MBC scheme, where agents use a predictive multi-step view and are able to detect the
varying densities in the environment ahead of time. The local controller output is estimated using a weighted aver-
aging technique which assigns a higher weight to immediate steps; this feature compensates for any decrease in
prediction accuracy as the number of steps increases. We demonstrate the effectiveness of the proposed MBC
scheme using a coverage task over a region with uneven population density. Compared to existing BC schemes,
the proposed MBC scheme shows superior convergence characteristics in task accomplishment and deployment
efficiency.

1. Introduction
Nature shows one of the best displays of group coordination through flocks of birds, schools of fish and
herds of animals. The collective motion of a group of animals is not a planned script but instantaneous
decisions and responses by individual members [1]. In artificial man-made settings, these members
can be represented as intelligent mobile agents. The research interest in mobile agents [2, 3, 4, 5, 6] is
growing rapidly, as collective groups of agents are able to perform tasks that individual agents cannot.
Recent research in this area focused on the motion and control planning of cooperative mobile ground
robots and also aerial systems such as quadrotors [7, 8, 9, 10], which may provide services such as
coverage, search and rescue, delivery, tracking, and inspection [11, 12, 13, 14, 15].

Coverage control [16, 17, 18] is a benchmark problem and is the topic of interest in this paper.
In general, the coverage control task aims to optimally deploy a group of mobile agents over an
area of interest or environment. Control laws distribute agents to different parts of the coverage
environment, usually partitioned into Voronoi cells. A well-known method for coverage problems
is the gradient descent method [16], which proposes continuous and discrete-time algorithms that
converge to the centroids of the Voronoi partition of the search domain. Similar approaches using
Voronoi partitions for coverage control have been applied successfully [19, 20, 21]. Other methods
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such as feedback control [22], receding horizon control [18] and game theory method [23] have also
been used.

In all the above-mentioned methods, the global task is visible and known to all agents, and individual
agents are aware of all other agents’ locations either partially or fully. However, the drawback of these
methods is that collecting and storing all these information requires high communication data volume.
Besides, with the global task and progress made known to individual agents, attacks on any one agent
can compromise the mission’s security. The methods mentioned above modelled the mobile agents’
cooperative behaviour using either deterministic control techniques [24, 25] or stochastic techniques
[26, 27, 28]. In deterministic techniques, the output is predictable and is fully determined by the
system input and initial conditions. However, in stochastic techniques, the outputs vary with inher-
ent randomness in the system. The randomness in stochastic models could stem from its system
dynamics, switching in network topology, issues in network communication such as time delays.
Stochastic techniques are better representation of the natural world but are considerably more
complicated.

The broadcast control (BC) scheme [29] and its variant pseudo-perturbation-based broadcast control
(PBC) [30] are recently proposed stochastic optimisation methods that have been applied to multi-agent
coordination tasks. The BC scheme aims to solve the problem of multi-agent systems using one-to-
all communication protocols that replace standard agent-to-agent-based communication protocols. The
goal is to complete the mission by observing group performance and sending the same signal to all
agents indiscriminately. The agents do not require specific hardware nor do they need to expend energy
for information transmission. Although the BC/PBC system utilises minimal hardware and reduced
communication volume, the broadcast scheme is susceptible to broadcast-based challenges. An example
is when the broadcasted signal reaches an agent, it can affect other agents and result in undesirable
configurations. The PBC converges twice as fast and displays improved control performance compared
to the BC scheme. These schemes are able to overcome the drawbacks of the earlier mentioned methods
as they do not involve communication among agents. Furthermore, the global mission is unknown to
individual agents in the BC schemes.

In this paper, we introduce a novel variant of the BC scheme termed multi-step broadcast control
(MBC) for coverage control of mobile agents with non-uniform density distribution in the study envi-
ronment. Unlike the previous BC schemes studied for uniform coverage control, this paper considers
non-uniformity in the coverage area and compares the performance of our proposed scheme against the
previous BC schemes.

The proposed MBC scheme is inspired from model predictive control (MPC) theory, where the con-
trol strategy is based on a prediction horizon in the future. To the best of our knowledge, this is the
first work that employs a MBC of multi-agent systems in a detailed non-uniform coverage task study.
The proposed MBC scheme takes multiple predictive steps in a horizon to predict future variables sev-
eral steps ahead in an environment. An immediate step is given a higher weight, and as the number
of steps increases, the respective weightage is decreased. More agents are deployed to dense sections
(higher density) than sparsely populated sections (lower density) to provide equitable services to an
environment with uneven density distribution. Using multi-step forward views, dense sections are made
known to MBC agents earlier than existing BC schemes, which are limited to a one-step forward view
(PBC uses multiple one-step views from different directions). Thus, the proposed MBC increases the
stochastic gradient accuracy much faster and outperforms the existing BC schemes in both coverage task
achievement and deployment efficiency.

This paper is organised as follows. In Section 2, the Voronoi-based coverage control problem is
described and formulated. We review the existing BC schemes and our proposed MBC scheme in
Section 3. Section 4 presents the numerical example to demonstrate the effectiveness of the MBC scheme
in coverage tasks with an uneven density distribution. Lastly, we present our conclusions and directions
for future research in Section 5.
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Figure 1. Mobile agents provide coverage service over a bounded area (field). The bounded area
consists of densely and sparsely populated sections.

2. Coverage problem formulation
Consider an area with sections of varying density, with some being densely populated and some
sparsely populated. To fairly and equitably serve the population within the bounded area, multi-
ple mobile agents need to be deployed optimally depending on the number of available agents
and population density pattern over the area (Fig. 1). By allocating a portion of the area to each
agent, the entire area should be covered fully by all the agents. Such a deployment of multiple
agents is known as the coverage task. Traditionally, coverage problems involve deploying a set of
agents to provide equal coverage distribution over the bounded area, where agents are distributed
at an equal distance from each other. However, in this paper, the final distribution of agents varies
according to population density, that is, not all agents are placed at an equal distance from each
other. For example, more agents need to be deployed to dense sections than to sparsely populated
sections.

The objective function for the coverage task is [16]

Jobj(x) =
∫

Q

min
i∈1,2,..N

f ( ||q − xi|| )φ(q)(dq) (1)

where f is the coverage performance function. The term q represents the uniformly distributed points
in the environment, Q and φ represents a weighting function that determines the relative importance of
points in Q. Also, xi is the position of the i-th agent in the domain where xi = [x1, x2, . . . xn]T ∈R

n. The
total number of agents is N . The objective function, J(x(t)) aims to reduce J, which is indicative of the
global coverage performance of the multi-agent system, given as:

J(x(t)) = min
x∈RnN

J(x) (2)

The minimum of J is achieved when N agents are placed optimally in the space. The Voronoi tes-
sellation method [31], which partitions the entire area into sub-areas, is used to compute and visualise
the coverage achievement. Created by points (p1, . . . pn), the optimal partition of Q follows the Voronoi
partition V(P) = {V1, . . . Vn} that is given by:

Vi = {q ∈ Q| ‖ q − xi ‖≤‖ q − xj ‖, ∀j �= i} (3)
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Figure 2. Framework of BC/PBC/MBC of a multi-agent system. The broadcast system consists of N
agents Ai, local controllers Li, and a global controller GC. In the BC scheme, no local controller Li has
to send its state ζi to the global controller, GC.

3. Proposed scheme : Multi-step Broadcast Control (MBC)
3.1. Review of existing BC schemes
In this section, the BC [29] and PBC [30] schemes are reviewed. The BC multi-agent scheme consists
of a global controller, GC, with N agents, each denoted as Ai, i = 1, 2, . . . N, and the respective local
controllers, Li. The connectivity between the agents and the controllers is shown in Fig. 2.

In this paper, step is defined as the physical move at time, t; the next physical move is at t + 1 and
so forth. In BC, at each consecutive step, agents alternate between taking a randomly generated move
and a deterministic move (Fig. 3(a)). The global controller GC computes the collective performance of
the whole system at each step by evaluating the objective function, J(x). Using the difference between
the objective function of random and deterministic moves, GC calculates and broadcasts this value as
a scalar control signal, σB to all agents. Using σB, the local controller Li calculates and determines the
control action ui(t). The state equation of an agent is represented as follows:

Ai : xi(t + 1) = xi(t) + ui(t), i = 1, 2, . . . , N (4)

where xi(t) ∈R
n is the position in the n-dimensional space and ui(t) ∈R

n is the control input.
The local controller Li of agent Ai produces the control signal based on the information received from

GC, as follows:

Li :

⎧⎨
⎩

ζi(t + 1) = α(ζi(t), σB(t), t)

ui(t) = β(ζi(t), σB(t), t)
(5)

where ζi(t) ∈R
nζ and ui(t) ∈R

n are the state and output of the local controller, Li, respectively. The initial
state of Li is set to ζi(0) = 0. σB(t) ∈R is the broadcast signal provided by GC.

The controller functions α : Rnζ ×R
nσB ×N→R

nζ and β : Rnζ ×R
nσB ×N→R

n are defined as
follows:

α(ζi(t), σB(t), t) := [�i(t)
T , σB(t)]T (6)

β(ζi(t), σB(t), t) :=

⎧⎪⎨
⎪⎩

c(t)�i(t), if t ∈ {0, 2, 4, . . .},

−c(t)ζi1(t) − a(t)

(
σB(t) − ζi2(t)

c(t)

)
ζ

[−1]
i1 (t) if t ∈ {1, 3, 5, . . .}

(7)
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Figure 3. (a) Two-step agent movements in the BC framework. Depending on the feedback on the ran-
dom move (�J), an agent continues to move in the same or opposite direction in the next step. The
process repeats until the convergence. (b) Single-step agent movement in the PBC framework.

where ζi(t) := [ζi1(t)T , ζi2(t)]T , ζi1 ∈ {−1, 1}n with ζi2 ∈R. ζ
[−1]
i1 denoting the element-wise inverse of

ζi1, namely ζ
[−1]
i1 := [1/ζi1,1, . . . , 1/ζi1,n]T . Also, ζi1(t) = �i(t − 1) and ζi2(t) = σB(t − 1). The symbol

�i(t) = [�i,1(t), . . . , �i,n(t)]T ∈ {−1, 1}n denotes the vector of random variable where each �i,j(t)(i ∈
{1, . . . , N}, j ∈ {1, . . . , N}, t ∈ {0, 1, . . .}) is represented as a Bernoulli distribution with outcome ±1
with equal probabilities. Additionally, a(t) ∈R+ and c(t) ∈R+ are the time-varying gains of controller Li.

The broadcast signal from GC is described as:

GC : σB(t) = J(x(t)) ∈R (8)

where

x(t) := [xT
1 , · · · , xT

N]T ∈R
nN (9)

is the collective state of all agents in the system. As time t tends to infinity, the multi-agent system
approaches the optimal J as follows:

lim
t→∞

J(x(t)) = min
x∈RnN

J(x) (10)

where J : RnN →R. The optimisation process is based on the gradient of the objective function with
respect to each individual action. However, the objective function is not known to individual agents;
this is an advantageous feature of the BC scheme where it accomplishes a task without providing the
task details or objective to the individual agents. Therefore, in the BC system, agents take random and
deterministic control actions alternately. At even time steps t ∈ 0, 2, 4, . . ., agents take random moves,
and at odd time steps t ∈ 1, 3, 5, . . ., they take deterministic moves. This is shown in Fig. 3(a).

In BC, the random movement of agents incurs movement cost and considerable time for convergence.
Ito et al. [30] introduced the PBC. In the PBC scheme, each agent takes multiple virtual random moves
(Fig. 3(b)) within a single physical step. K is the total number of multiple virtual random moves taken
by an agent within a step. Through this, an agent omits the costly single physical random move as taken
by the agent in the BC scheme. This causes PBC agents to accomplish a similar outcome in a single step
compared to two steps taken by agents using BC.
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The state-space equation of agent i in PBC is given as:
x̂(k)

i (t + 1) := xi(t) + û(k)
i (t) for k = 1, 2, . . . , K (11)

û(k)
i (t) := c(t)�(k)

i (t) for k = 1, 2, . . . , K (12)

where x̂(k)
i (t + 1) and û(k)

i (t) are the virtual input and the virtual predictive state of agents Ai

at each step. The global controller, GC, calculates û(k)
i (t) and x̂(k)

i (t + 1) using (xi(t), �
(k)
i (t)) sent

from the agent Ai. Additionally, x̂(k) and �(k)(t) are given as x̂(k) := [x̂(k)T
1 , . . . , x̂(k)T

N ]T ∈R
nN and

�(k)(t) := [�(k)
1 (t)T , . . . , �(k)

N (t)T]T .
The GC in PBC calculates the objective function, J for all virtual steps taken as follows:

σP(t)F :=

⎡
⎢⎢⎢⎢⎣

J(x̂(1)(t + 1)) − J(x(t))

J(x̂(2)(t + 1)) − J(x(t))
...

J(x̂(K)(t + 1)) − J(x(t))

⎤
⎥⎥⎥⎥⎦ ∈R

K (13)

where σP
(k)(t) := J(x̂(k)(t + 1)) − J(x(t)) and σP(t) = [σP

(1)(t), ..., σP
(K)(t)]T . In PBC, the local controller,

Li determines its state, ζi(t) and the control output, ui(t) as:
ζi(t) := [�i

(1)(t)T , . . . , �i
(K)(t)T]T ∈ {−1, 1}nK (14)

ui(t) := − a(t)
1

K

K∑
k=1

σP
(k)(t)

c(t)
�(k)[−1]

i (t) (15)

where �
(k)[−1]
i denotes the element-wise inverse of vector �

(k)
i . Compared to (7), we can notice that the

term c(t)�i(t) (which represents the physical random action) is removed in PBC.
In PBC, the global controller, GC, also receives the predicted random state ζi from the local controller,

Li, whereas in BC, Li does not share its state with GC. Even with this extra cost of communication, PBC
converges to the optimal point twice as fast as BC. To date, the PBC framework has been effectively
applied for real-time coordination of vehicles at a merging road [32].

In the PBC framework, each agent’s virtual random action is limited to a single step ahead of its
current location. This does not allow for efficient prediction of unpredictable events that might exist in
the task environment beyond a single step ahead, such as varying density distribution. To overcome this
limitation, we propose a new scheme in the next section.

3.2. Main result: MBC scheme
This section presents the novel scheme proposed in this paper, the MBC scheme, which incorporates a
predictive multi-step move in a horizon within a single physical step. The multiple steps taken is useful
to predict uncertainties several steps ahead, which could be a dense section to move towards to. Figure 4
depicts the concept of the action taken under the proposed scheme. The inspiration behind this concept
comes from the theory of MPC. Like MPC, the proposed multi-steps are driven along a horizon to
anticipate and consider future events to optimise the current iteration/time.

In the case of MBC, K denotes the maximum number of predictive virtual steps taken along the
horizon. At each iteration, an agent provides its current state xi(t) and �

(k)
i , k = 0, 1, 2, . . . , K − 1, and

using that the global controller, GC, calculates the future virtual states x̂(k)
i with x̂(0)

i = xi(t) as:

x̂(k+1)
i (t) := x̂(k)

i (t) + û(k)
i (t) for k = 0, 1, 2, . . . , K − 1 (16)

û(k)
i (t) := c(t)�(k)

i (t) for k = 0, 1, 2, . . . , K − 1 (17)
where û(k)

i is the corresponding virtual input. We define the collective states of all agents
at k as x̂(k) := [x̂(k)T

1 , . . . , x̂(k)T
N ]T ∈R

nN , resulting from corresponding collective random variables
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Figure 4. Agent movement taking multi-steps along a horizon in the MBC scheme.

�(k)(t) := [�(k)
1 (t)T , . . . , �(k)

N (t)T]T . The global controller computes the broadcast signal, σM, through a
compounding method as follows:

σM(t) :=

⎡
⎢⎢⎢⎢⎢⎣

J(x̂(1)(t)) − J(x̂(0)(t))

J(x̂(2)(t)) − J(x̂(1)(t))

...

J(x̂(K)(t)) − J(x̂(K−1)(t))

⎤
⎥⎥⎥⎥⎥⎦ ∈R

K (18)

where σM
(k)(t) := J(x̂(k+1)(t)) − J(x̂(k)(t)) and σM(t) = [σM

(0)(t), . . . , σM
(K−1)(t)]T . The state, ζi(t), and the

control output, ui(t), of the local controller, Li, are given as:

ζi(t) := [�(0)
i (t)T , . . . , �(K−1)

i (t)T]T ∈ {−1, 1}nK (19)

ui(t) := − a(t)
1∑K−1

k=0 λ(k)

K − 1∑
k=0

σM
(k)(t)λ(k)

c(t)
�(k)[−1]

i (t), (20)

where �
(k)[−1]
i denotes the element-wise inverse of vector �

(k)
i and λ ∈ (0, 1) is a discount factor of a

weighted average technique. Through the use of λ, immediate action is given a higher weight, and as the
number of steps increases, the respective weightage is decreased gradually. The reduction in weights is
designed as such because the probability of accurate prediction in an uncertain environment decreases
with an increase in steps in forward prediction. While the use of the arithmetic average technique is a
quick general representation of a data set (as used in PBC), the use of the weighted average technique
in (18)–(20) is more descriptive of a specific problem and is capable of yielding better accuracy.

The computing complexity of BC schemes can be expressed in terms of communication volume. The
MBC scheme will have similar communication data with that of PBC if the number of steps, K , is the
same. It is shown in Ito et al. [33] that the communication volume of the PBC scheme is about half of that
of centralised unicast protocols. On the other hand, BC will have slightly lower communication volume
than both MBC and PBC as it does not transmit random variable (K virtual steps). Nevertheless, both
MBC and PBC have better control performance than BC scheme as random physical action is eliminated,
and agents’ state converges quicker.

3.3. Convergence analysis of proposed MBC
In this subsection, we present an analysis on the convergence of the proposed MBC scheme. The con-
vergence proof presented herein is similar in nature to that of BC [29] and PBC [30] and is summarised
with appropriate modifications.
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Theorem 1. (Convergence of the MBC Scheme) Consider the multi-agent system shown in Fig. 2,
an objective function J(x), and the MBC scheme in (18), (19) and (20) with K > 1. If the following
conditions (c1)–(c3) hold, then x(t) in (9) converges to a (possibly sample-path-dependent) solution set
to ∂xJ(x) = 0 with probability 1.

(c1) The objective function J(x):RnN →R is defined as:

J(x(t)) := ρ(‖x‖)Jobj(x) + (1 − ρ(‖x‖))xTx, (21)

ρ(‖x‖) :=
⎧⎨
⎩

1(‖x‖ ≤ l1)

0(‖x‖ ≥ l2)
(22)

where J(x) and Jobj(x) in (1) is non-negative C2 continuous on R
nN , and there exists a solution to

∂xJ(x) = 0. xTx is a non-decreasing function with respect to the distance from the origin, and ρ

is the switching function where l1 and l2 specifies the environment.
(c2) The compact connected internally chain transitive invariant sets of a gradient system ż(τ ) =

−∂zJ(z(τ )) are included in the solution set to the equation ∂zJz = 0 (i.e., to ∂xJ(x) = 0), and there
exists an asymptotically stable equilibrium for the gradient system, where z(τ ) ∈R

nN and the
stability are in the Lyapunov sense [29].

(c3) limt→∞ a(t) = 0,
∑∞

t=0 a(t) = ∞, limt→∞ c(t) = 0,
∑∞

t=0 (a(t)/c(t))2 < ∞ and
∑∞

t=0 (a(t)
c(t))2 < ∞.

Remark 2 Convergence of the proposed MBC scheme is proven by showing that the transition of the
MBC scheme converges to ∂xJ(x) = 0, which implies that the system of x(t) in (9) has and reaches a
local minimum value for the coverage problem.

Remark 3 Condition (c1) holds as Jobj in (1) is twice differentiable and xTx is a quadratic potential
function, resulting in J(x(t)) which is sufficiently smooth. Condition (c2) holds as the Hessian matrix
of J(x) is nonsingular at each x satisfying ∂xJ(x) = 0 [34]. Condition (c3) is applied to prevent gains
a(t) and c(t) from reaching a very low value; in Section 4 (Numerical Simulations), the gains will be
designed as in (33) to satisfy condition (c3).

Proof. The local controller output, ui(t) of BC as in (7) performs a two-stage state transition as follows:

x(t + 2) = x(t) − a(t)
σB(t + 1) − σB(t)

c(t)
�[−1](t) (23)

where

σB(t) = J(x(t)) (24)

σB(t + 1) = J(x(t) + c(t)�(t)) (25)

hold for t ∈ {0, 2, 4, . . .}. Then the system (23) becomes

x(t + 2) = x(t) − a(t)g(t, �(t)), t ∈ {0, 2, 4, . . .} (26)

where the stochastic function g(t, �) is defined as:

g(t, �) :=
(

J(x(t) + c(t)�) − J(x(t))

c(t)

)
�[−1](t) (27)

If J(x) is a C2 continuous function with c(t) → 0 (as implied by conditions (c1) and (c3)), then the
expected value of g(t, �(t)) (which is E in (28)) reduces to a stochastic approximate gradient of J(x)
based on simultaneous perturbation stochastic approximation (SPSA) [35] as follows:

E[g(t, �(t))|x(t)] = ∂xJ(x(t)) + O(c(t)) (28)
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Similarly, following (26), the state transition of multi-steps in the MBC scheme is given by:

x(t + 1) = x(t) − a(t)
1∑K − 1

k=0 λ(k)

K − 1∑
k=0

g(t, �(k)(t))λ(k), ∀t (29)

Next, we define the following function e(t) for brief notation:

e(t) := 1∑K − 1
k=0 λ(k)

K − 1∑
k=0

g(t, �(k)(t))λ(k) − E

[
1∑K − 1

k=0 λ(k)

K − 1∑
k=0

g(t, �(k)(t))λ(k)|x(t)

]
(30)

Substituting (28) and (30) into (29), then as c(t) → 0, the transition of x(t) under the MBC scheme is
given by:

x(t + 1) = x(t) − a(t){∂Jx(x(t)) + e(t) + O(c(t))} (31)

The system (31) is identical to the stochastic approximation algorithm in equation (A.1) (in
Appendix A.1) of Azuma et al. [29]. Then, Lemma 2 of Azuma et al. [29] shows that (A.1) converges
to a (possibly sample path-dependent) compact connected internally chain transitive invariant set of the
gradient system, ż(τ ) = −∂zJ(z(τ )). Conditions (c1) and c(3) imply the conditions for the almost-sure
convergence of Lemma 2 [29] for (30), and thus if (c1) and (c3) hold, then it follows that (31) converges
to a compact connected internally chain transitive invariant set ż(τ ) = −∂zJ(z(τ )); then, if (c2) holds,
(31) converges to ∂xJ(x) = 0 and the proof is complete.

Remark 4 Convergence to a solution set to ∂xJ(x) = 0 shows that the proposed MBC scheme (18)–(20)
is our solution to the coverage problem in (10).

Remark 5 MBC is similar to PBC in that it excludes random physical motion. However, the difference
lies in that now the virtual random motion is designed to be multi-step. Furthermore, these predictive
multi-steps are designed to be along the horizon and compounds from each other. The accuracy of
gradient estimation can be increased using the MBC scheme in coverage task with non-uniform density
distribution, for example, differing population density. The state transition of PBC is given by:

x(t + 1) = x(t) − a(t)
1

K

K∑
k=1

g(t, �(k)(t)), ∀t (32)

Comparing (29) and (32), it is clear that the MBC scheme utilises a weighted average technique, where
else the PBC uses the arithmetic mean based on the central tendency.

4. Numerical simulations
The number of agents is set to N = 25 in the two-dimensional state space, that is n = 2. The size of the
coverage workspace is set to 200 by 200 square units. Initially, all agents are uniformly distributed within
x-coordinate (80:120) and y-coordinate (0:40). The terminal simulation time is set as 5000 iterations and
the number of multi-steps used is K = 10. The controller gains a and c are set as following:

a(t)|MBC = a0( t

2
+ 1 + av

)ap ,

c(t)|MBC = c0( t

2
+ 1

)cp , (33)

for t ∈ {0, 1, 2, . . .} where a0 > 0 and c0 > 0 hold to satisfy a(t) > 0 and c(t) > 0.
The performance study to evaluate the effectiveness of MBC against BC and PBC is conducted

through three different scenarios. The first scenario is for a single-dense section, secondly for two dense
sections, and thirdly for increased number of agents, from 15 to 25 agents.
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Figure 5. The coverage task’s achievement with a single-dense section is shown by agents’ positions
in the Voronoi diagram at various iterations. Comparison of three different schemes: BC (left), PBC
(middle), and proposed MBC (right).

4.1. Coverage with a single-dense section
The performance of MBC for a single-dense section is first discussed. For this scenario, the value of
ao and co are 1.2 and 14.5, respectively. av, ap and cp are set as 15.5, 0.7 and 0.16, respectively, for all
scenarios. Figure 5 shows the corresponding agent distributions during specific intervals of iteration of
500, 1500, 2500 and 5000 all three schemes. BC is represented by the left column, followed by PBC
in the middle and proposed MBC in the right column. As the number of iterations increase, it can be
observed that the agents begin to disperse from their initial positions and distribute themselves equally
in the environment. The number of agents in the dense section increases as the iteration progresses. The
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Figure 6. Evolution of objective function for BC, PBC and MBC for coverage task with a dense section.

dense shaded section holds two agents by iteration 5000 for all the three schemes. However, it is clear
that MBC achieves this first by iteration 1500, followed by PBC by 2500 and lastly by BC by iteration
5000. These show that the schemes can achieve the same allocated number of agents in the dense section,
making them comparable for convergence study.

Figure 6 shows the evolution of the objective function for BC, PBC and MBC. From the chart, it
can be observed that both PBC and MBC have similar initial steeper gradient descent compared to BC.
However, after the initial drop, MBC shows the quickest convergence to the final value, followed by
PBC and finally by BC. This confirms that the proposed MBC shows better convergence performance
than the PBC scheme based on the execution difference (23) and (24). The performance of BC is very
different compared to both PBC and MBC as it takes two physical steps to accomplish what PBC and
MBC achieve through a single physical step with multiple virtual steps. Therefore, for the subsequent
scenarios, a comparison study will be conducted only for PBC and MBC. (Note: BC is able to reach the
same performance albeit much more slowly).

4.2. Coverage with two dense sections
The earlier section’s coverage study can be expanded to multiple dense sections, and here two dense
sections are studied. For this specific study, the value of ao is 0.55 and co is 12.5.

Figure 7 shows the comparison between PBC agent distribution on the left column and MBC on the
right column for iteration 1000, 2000 and 4000. At iteration 1000, both PBC and MBC have equally
acquired a single agent in the right dense section. By iteration 2000, MBC has managed to allocate
two agents in both the dense sections, while PBC only manages two agents in the left dense section.
However, by iteration 4000, PBC has managed to catch up and converge similarly to MBC.

The objective function in Fig. 8 shows these results clearly where MBC has converged faster by
iteration 1500 and PBC at about iteration 3000. This shows the MBC outperforms PBC in a coverage
task with double-dense sections.

4.3. Coverage for an increased number of agents
The two scenarios discussed above for single- and double-dense sections utilises 15 agents. This section
studies the performance of the proposed MBC scheme with an increased number of agents. Here, 25
agents are used, and the initial positions of the agents are now 5 rows. Two extra rows of agents are
included in the existing three rows of agents. The values of initial gain utilised are ao = 0.3 and co = 7.5.

With an increased number of agents for coverage with a single-dense section, the comparison of agent
distribution for PBC and MBC is shown in Fig. 9. The distribution is captured at iteration 1500, 2500
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Figure 7. The coverage task’s achievement with double-dense sections is shown by agents’ positions
in the Voronoi diagram at various iterations. Comparison of two different schemes: PBC (left) and
proposed MBC (right).
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Figure 8. Evolution of objective function for PBC and MBC for coverage task with double-dense
sections.
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Figure 9. The achievement of 25 agents in a coverage task with a single-dense section is shown by
agents’ positions in the Voronoi diagram at various iterations. Comparison of two different schemes:
PBC (left) and proposed MBC (right).

and 4000. Intuitively, we can expect that by using dense sections of the same size and increasing the
number of agents, more agents will be allocated in the sections. Figure 9 shows that this is true, as now
at convergence, there are three agents in the dense section. Referring to the same figure, by iteration
1500, MBC has two agents allocated in the dense section compared with PBC, which has 1. At iteration
2500, the number of agents for MBC within the dense section has increased to 3, where else for PBC, it
has increased to 2. Finally, by iteration 4000, both methods show similar distribution. This is presented
in Fig. 10 where the MBC scheme displays quicker convergence performance than PBC.

In addition, the initial BC scheme proposed by Azuma et al. [29] was tested experimentally for
uniform coverage task using mobile ground robots, and the results showed that the numerical scheme
is transferable to physical execution. On the same note, the MBC scheme is expected to perform
experimentally with similar success as it follows a similar physical execution protocol. The only
difference here is the additional virtual computation load and decrease in physical steps taken by each
robot. This, alongside the numerical simulations conducted in this paper, validates the proposed scheme
for successful implementation in a coverage control task.
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Figure 10. Evolution of objective function for PBC and MBC for coverage task with a single-dense
section using 25 agents.

5. Conclusions and future work
In this paper, the MBC scheme has been proposed to overcome the limited one-step forward view of the
BC schemes by introducing multiple predictive random steps along the horizon. The proposed scheme
has been evaluated against the existing BC schemes in a coverage task over a region with uneven popu-
lation density with mobile agents. Numerical simulations prove that the MBC scheme outperforms the
BC and PBC scheme in task accomplishment and deployment efficiency. MBC converges the quickest
as the gradient is computed from multiple steps along the horizon where the dense sections emerge to
the agents earlier compared to both BC and PBC, which only uses a one-step forward view. As the MBC
scheme utilises broadcast-based communication and takes a different outlook from the recent algorithms
utilising agent-to-agent communication protocol [36, 37, 38, 39, 40], the comparison study is deemed
appropriate only with the previous BC schemes as proven. In the future, we intend to extend the MBC
scheme to some practical applications of multi-agent systems.
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