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Abstract. Our main result states that, under an exponential map whose Julia set is the
whole complex plane, on each piecewise smooth Jordan curve there is a point whose orbit
is dense. This has consequences for the boundaries of nice sets, used in induction methods
to study ergodic and geometric properties of the dynamics.
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1. Introduction
We consider dynamics of exponential maps, work in the complex plane and show the
following theorem.

THEOREM 1. Let f : z 7→ λez . If the Julia set of f is the whole complex plane, on each
piecewise smooth Jordan curve there is a point whose orbit is dense.

If the Julia set is not the whole plane, no point has a dense orbit.

THEOREM 2. Let f : z 7→ λez . If a Jordan curve surrounds a point of the Julia set, one of
the following statements holds.
(1) The orbit of the Jordan curve is dense.
(2) There is an uncountable set of points on the Jordan curve where the curve is non-

smooth.

Definition 1.1. A nice set is an open set U such that f n(∂U ) ∩U = ∅ for all n ≥ 0.

COROLLARY. No bounded nice set with piecewise smooth boundary can intersect the
Julia set of f : z 7→ λez .

A piecewise smooth Jordan curve will be the image h(S1) of the unit circle by a
homeomorphic map h : S1

→ h(S1)⊂ C which is continuously differentiable, with non-
zero derivative, except possibly at a finite number of points; λ is a complex number.
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A Jordan curve H = h(S1) admits different parametrizations. Given z ∈ H , if there exist
a subarc W ⊂ H containing z and a C1 diffeomorphism g : (0, 1)→W , then we say that
H is smooth at z; otherwise H is not smooth at z.

The stimulus for this note came from several sources. The following conjecture was
conveyed to the author by Lasse Rempe-Gillen.

CONJECTURE 1.2. Every line segment intersects the escaping set of z 7→ ez .

It was perhaps inspired by the following long-standing open problem.

CONJECTURE 1.3. The hairs of f : z 7→ ez are real-analytic curves.

A point z is escaping if limn→∞ | f n(z)| =∞, and fast-escaping if there is some
K for which | f n−K (z)|> |gn(0)| for all n ≥ 0, where g : z 7→ ez . Regarding the latter
conjecture, hairs are connected components of the fast-escaping set. They were shown to
admit C∞ parametrizations by Viana [13]. The Julia set can be represented as the closure
of the set of repelling periodic points. In this context [5], it coincides with the closure of
the set of escaping points.

From [3, 4], the third iterate of an oblique line is dense, under the exponential map. If
a line segment intersects the fast-escaping set transversally, it is conceivable (and true, as
we shall see) that the segment will have a dense orbit.

Nice sets are important objects in complex dynamics (see, for example, [1, 9, 11]) which
generalize, in some sense, Yoccoz puzzle pieces [6, 7, 12]. For every z, ε, there is the
smallest nice set U (z, ε) containing B(z, ε), so we have a canonical map (z, ε) 7→U (z, ε).
If there is some sort of backward contraction, the appending pullbacks method [1, 8, 10]
is powerful and guarantees that the set U (z, ε) will be comparable in size to B(z, ε). This
method can also be used in conjunction with branch selection [1, 2]. It is natural to wonder
how regular is the boundary of a typical nice set U (z, ε).

Unbounded nice sets with smooth boundaries exist. Indeed, for z 7→ ez , the real line is
forward-invariant, so the upper and lower half-planes are nice sets, as are their pullbacks.

For rational maps with real coefficients, the real line is forward-invariant. The upper
and lower half-planes are nice sets, as are their pullbacks, but on the Riemann sphere (the
natural domain for rational maps) all sets are bounded. Hence in this context, bounded
nice sets with piecewise smooth boundary exist. It would be interesting to know whether,
modulo Möbius transformations, any other rational maps with Julia set the whole sphere
can have nice sets with piecewise smooth boundary.

Example 1.4. Even in the exponential setting, part of the boundary of a bounded nice set
may be smooth. Consider f : z 7→ ez . For ε > 0 small enough, [1, Proposition 3] implies
that the nice set U (2, ε) is bounded. Let V =U (2, ε) ∩H be the part of U (2, ε) lying in
the upper half-plane. It is a nice set whose boundary contains a real interval.

2. Proofs
Let λ ∈ C \ {0} and f : z 7→ λez be a map from the exponential family. We denote by
Re(z) and Im(z) the real and imaginary parts of a complex number z.
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LEMMA 2.1. Given ε > 0 and z ∈ C \ {0}, there is y ∈ C \ {0} with |arg(y)− π/4|< ε
and f 2(y)= z.

Proof. For every r large enough, the sector with argument (π/4− ε, π/4+ ε) contains a
vertical line segment of length 2π and real part r . A closed vertical line segment of length
2π and real part r gets mapped by f to a circle centred on the origin of radius |λ|er . The
map f is 2π i-periodic, so any non-zero point has preimages arbitrarily far away from the
origin. Combining these ideas, the lemma follows. �

LEMMA 2.2. Given ε > 0 and y ∈ C \ {0} with |arg(y)− π/4|< 1
2 , there are four closed

arcs, C1, . . . , C4 say, of circles centred at the origin such that:
• C1 ∩ C2 = C3 ∩ C4 = ∅;
• the length of any arc is at most ε1;
• the union of the arcs C1, C2 and the 2π i -translate of the arcs C3, C4 is a Jordan curve

surrounding the point y.

Proof. Evident. �

Combining the two preceding lemmas and knowing that f is a local diffeomorphism,
we obtain the following result.

LEMMA 2.3. Given ε > 0 and z ∈ C \ {0}, there are four closed arcs C1, . . . , C4 of circles
centred at the origin such that f 2(C1 ∪ · · · ∪ C4) is a Jordan curve surrounding z with
diameter bounded by ε, and if f 2(Ci ) ∩ f 2(C j ) 6= ∅ and i 6= j , then f 2(Ci )meets f 2(C j )

transversally.

Hence if we can approximate circles, we can create piecewise smooth Jordan curves
surrounding any non-zero point. This will allow us to recursively find points with dense
orbits.

Denote by I the imaginary axis; the set f −1(I ) partitions the plane into horizontal
strips of height π . Every second strip gets mapped by f to the right half-plane. Two such
strips, Ŝ0 and Ŝ1 say, are contained in {s : |Im(z)| ≤ 5π/2} (there is a third if λ ∈ R, but its
existence is not important to us). We choose K > 10 large enough that |λ|eK > 200K . If
Re(z)≥ K , then | f (z)|> 200Re(z) > 2000. Let

S0 := {z ∈ Ŝ0 : Re(z)≥ K } and S1 := {z ∈ Ŝ1 : Re(z)≥ K }.

Denote the union S0 ∪ S1 by S.

LEMMA 2.4. For n ≥ 1, if z, f (z), . . . , f n(z) ∈ S then Re( f n(z)) > 100nRe(z) and

|arg( f n(z))|<
10

100nRe(z)
,

while

|arg(D f n(z))| ≤
n∑

j=1

|arg( f j (z))|<
10

Re(z)
1
99
<

1
50
. (2.1)

Proof. Elementary. �
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Each connected component S0 and S1 of S gets mapped by f univalently onto the
closure of the intersection of the right half-plane with the exterior of the disc of radius
|λ|eK . Given a sequence a = (an)n≥0 ∈ {0, 1}N, let

Ta := {z ∈ S : f n(z) ∈ San for all n ≥ 0}.

Then Ta is a simple curve in S which tends to∞, admits a C∞ parametrization [13] and
has an endpoint with real part K . By (2.1), the tangent vectors to Ta always have argument
with modulus bounded by 1/50 and are asymptotically horizontal.

We denote by T the subset of the Julia set defined by

T :=
⋃

a∈{0,1}N
Ta = {z : f n(z) ∈ S for all n ≥ 0} =

⋂
n≥0

f −n(S).

The connected components of T are the pairwise disjoint curves Ta, a ∈ {0, 1}N, of which
there are uncountably many.

LEMMA 2.5. Consider a continuous curve γ : [0, 1] → S such that {0} is a connected
component of γ−1(T ). There are arbitrarily small ε > 0 such that, for some k ≥ 1,
f n(γ ([0, ε])) ∈ S for n = 1, . . . , k and f k(γ (ε)) ∈ ∂S.

Proof. For a ∈ {0, 1}N, we can denote by W+0,a the upper horizontal boundary of Sa0 and
W−0,a the lower horizontal boundary. Then let W±k,a be the set of points z satisfying f n(z) ∈
San for n = 0, 1, . . . , k and f k(z) ∈W±0,σ k (a), where σ : {0, 1}N→ {0, 1}N denotes the

left-shift. Each W±k,a is a curve in S joining the left boundary of S to∞. The curves W+k,a
accumulate on Ta from above and W−k,a accumulate on Ta from below. The result follows,
choosing a so that γ (0) ∈ Ta . �

We say that a C1 curve γ : [0, 1] → C intersects T transversally at γ (t) if γ (t) ∈ Ta for
some a and γ (restricted to any neighbourhood of t) intersects the curve Ta transversally.
Given a C1 curve γ : [0, 1] → C, we denote by An(γ ) the set of angles (in [0, π)) at
which f n

◦ γ intersects T (transversally provided the angle is non-zero). As T is forward
invariant and smooth, An(γ )⊂ An+1(γ ).

PROPOSITION 2.6. Let γ : [0, 1] → S be a C1 curve such that {0} is a connected
component of γ−1(T ). Then ⋃

n≥0

An(γ )= [0, π ].

Proof. Let C > 1. By replacing by an iterate and a subinterval if necessary, we may
assume that γ ([0, 1])⊂ {z : Re(z) > C}. Obtain k and ε > 0 from Lemma 2.5, where ε
is small enough that the argument of γ ′ on [0, ε] varies by at most 1/C . Now applying
Lemma 2.4, the argument of ( f k

◦ γ )′ differs from γ ′(0) by at most 2/C . By choice of k
and ε, f n(γ ([0, ε]))⊂ S for n ≤ k and f k

◦ γ (ε) ∈ ∂S.
Let ρ = f k+1

◦ γ . By the chain rule, the argument of ρ′(t) is, modulo 2π , within 2/C
of

γ ′(0)+ arg(ρ(t)).
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The latter summand varies between arg(ρ(0))≈ 0 and arg(ρ(ε))=±π/2. Let 0= t0 <
t1 < · · ·< tm < ε be such that the length of ρ([tl , tl+1]) is 100C for each l ≤ m, and m is
maximal with Re(ρ(tm))≥ C . The curve is far from the origin:

|ρ(t)|> |λ|eC

for t ∈ [0, ε]. Therefore, for large C , arg(ρ(t)) varies by at most 1/C on each [tl , tl+1]

and
π/2− |arg(ρ(tm))|< 1/C.

Consequently, the argument of ρ′(t) varies by at most 6/C on each [tl , tl+2], 0≤ l ≤ m −
2. Recalling that ρ([tl , tl+1]) is 100C long, if the modulus of the argument of ρ′(t) is at
least 1/C everywhere on [tl , tl+1], then ρ([tl , tl+1]) crosses some 2 jπ i-translate of T . The
slope of any curve Ta ∩ {z : Re(z) > C} is bounded by 1/2C . It follows that, mod π , the
angles of intersection are 8/C-dense in [arg(γ ′(0)), arg(γ ′(0))+ απ/2], where α =+1
or α =−1.

We can now obtain a subcurve γ̂ : [−1, 1] → f k+2
◦ γ ([0, ε]) which intersects T

transversally at γ̂ (0) and repeat the process but with α taking both values ±1. As C
was arbitrary, the result follows. �

We shall use little-o notation, where any o(1) term tends to 0 as n→∞.

LEMMA 2.7. Let r > 0 and ρr : ξ 7→ reiξ , defined on [0, 4π ]. Let γ : [0, 1] → S be a C1

curve such that {0} is a connected component of γ−1(T ).
There are n > 0 and a closed subinterval of (0, 1] on which f n

◦ γ is affinely conjugate
to a map which is arbitrarily C1-close to ρr .

Proof. Fix ε ∈ (0, 1/K ) such that ε < r < ε−1. By Proposition 2.6, we may assume that
γ intersects T transversally at γ (0) at an angle in (2ε − ε3, 2ε + ε3). Let Jn = [0, δn)⊂

[0, 1] be such that the length of f n
◦ γ (Jn) is 1/n. One can check, using Lemma 2.4, that,

for large n,
arg(( f n

◦ γ )′(Jn))⊂ (2ε − 2ε3, 2ε + 2ε3)

and that
|arg( f n+1

◦ γ (Jn))|<
1
n
< ε3.

Hence
arg(( f n+1

◦ γ )′(Jn))⊂ (2ε − 3ε3, 2ε + 3ε3).

The length of f n+1
◦ γ (Jn) is at least 100n/n > ε−2 for large n. Hence its imaginary part

covers an interval of length 3π , which guarantees the existence of a subarc A ⊂ f n+1
◦

γ (Jn) containing a point p with dist(p, ∂A)= 1/n and with the length of A bounded by
3/n, for which f (p) lies on the positive imaginary axis. The length bound controls the
distortion of f on A and of f n+1 on Jn ∩ f −n−1(A).

Since the horizontal line passing through p maps to the positive imaginary axis, f (A)
is almost vertical, with direction lying in (π/2+ ε, π/2+ 3ε). Each component of
f (A \ {p}) has length at least 100n/n and so, for large n, the real part of f (A) covers
(−n,−n). Hence some subarc W ′ of f (A) has a 2kπ i-translate which is 6πε-close (in
the Hausdorff metric) to the line segment joining log r and 4π i + log r . As ε > 0 was
arbitrary, we can choose W ′ so that f (W ′) is arbitrarily close to the circle of radius r .
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Let W be the subinterval of Jn mapped by f n+2
◦ γ into A and thence by f bijectively

onto W ′. Noting that

sup
w,z∈γ (W )

D f n+3(w)

D f n+3(z)
= 1+ o(1),

f n+4
◦ γ restricted to W , affinely reparametrized, is C1-close to ρr . �

PROPOSITION 2.8. Let γ : [0, 1] → S be a C1 curve such that {0} is a connected
component of γ−1(T ). Given z ∈ C \ {0} and ε > 0, there are four closed intervals
W j ⊂ [0, 1] and numbers n j ≥ 1, j = 1, . . . , 4, for which

4⋃
j=1

f n j ◦ γ (W j )

is a (piecewise smooth) Jordan curve with diameter bounded by ε and containing z in its
interior region.

Proof. This follows from Lemmas 2.7 and 2.3. �

LEMMA 2.9. Let H be a Jordan curve. Suppose that the interior region bounded by H
contains points in the Julia set. There exists N ≥ 1 such that f N (H) intersects each
connected component of T at a point with real part strictly greater than K + 1.

Furthermore, given ε > 0, H contains an arc A for which

f N (A)⊂ S ∩ {z : Re(z) > K + 1},

where f N (A) has diameter bounded by ε and f N (A) intersects uncountably many
connected components of T .

Proof. Take K to be a closed, vertical, line segment joining K + 1− 3π i with K + 1+
3π i . By construction, it crosses both connected components of S and, hence, all connected
components of T . Each connected component of T is a curve which crosses K and joins
K with∞.

As periodic points are dense in the Julia set, there is a repelling periodic point of period
k, say, in the interior region bounded by H . The periodic point has an open neighbourhood
V for which V ⊂ f k(V ) and V ∩ H = ∅. By Montel’s theorem, there exists N ≥ 1 for
which K ⊂ f N (V ). The first statement follows.

Without loss of generality, we suppose that ε ∈ (0, 1). As f N is locally diffeomorphic,
we can partition H into a finite number of arcs on each of which f N is homeomorphic
onto its image, and whose image has length bounded by ε. Verifying that

dist(T ∩ {z : Re(z) > K + 1}, ∂S)= 1

is straightforward; then apply the pigeonhole principle to conclude. �

Remark 2.10. This falls just short of implying that H contains a Cantor set of points
mapped by f N into T .

COROLLARY 2.11. Either H contains an uncountable set of points where it is not smooth
or there is a C1 curve ρ : [0, 1] → H for which f N

◦ ρ([0, 1])⊂ S and {0} is a connected
component of ( f N

◦ ρ)−1(T ).
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Proof. With A given by Lemma 2.9, there is an uncountable set

B := {a ∈ {0, 1}N : f N (A \ ∂A) ∩ Ta 6= ∅}.

We can orient A by embedding it in R; then for a ∈ B, there is a rightmost point sa in A
for which f N (sa) ∈ Ta . It follows that either H is not smooth at sa for any a ∈ B, or there
is a differentiable curve ρ as required. �

The following two corollaries are immediate consequences of Corollary 2.11 and
Proposition 2.8.

COROLLARY 2.12. Theorem 2 holds.

COROLLARY 2.13. Given z ∈ C \ {0}, ε > 0 and a piecewise smooth Jordan curve H with
a point of the Julia set in its interior region, there are four closed subarcs W1, . . . , W4 of
H and numbers n1, . . . , n4 ≥ 1 such that the union of f n j (W j ) is a piecewise smooth
Jordan curve with diameter bounded by ε and containing z in its interior region.

When the Julia set is the whole complex plane, and noting that the intersection of a
decreasing sequence of closed sets is non-empty, we can repeatedly apply Corollary 2.13
for a dense sequence (zn)n of (non-zero) points and a sequence (εn)n tending to 0+ to
obtain our final result.

COROLLARY 2.14. Theorem 1 holds.
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