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Abstract
How can Qualitative Comparative Analysis contribute to causal knowledge? The article’s answer builds on
the shift from design to models that the Structural Causal Model framework has compelled in the prob-
abilistic analysis of causation. From this viewpoint, models refine the claim that a ‘treatment’ has causal
relevance as they specify the ‘covariates’ that make some units responsive. The article shows how QCA can
establish configurational models of plausible ‘covariates’. It explicates the rationale, operations, and criteria
that confer explanatory import to configurational models, then illustrates how the basic structures of the
SCM can widen the interpretability of configurational solutions and deepen the dialogue among
techniques.
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Introduction
The explanatory standing of Standard Qualitative Comparative Analysis (hereafter, QCA: Ragin,
2014, 2000, 2008; Rihoux and Ragin, 2009) seldom proves plain. Recently, Møller and Skaanig
(2019: 81) maintained that QCA and set-theoretic methods ‘provide little in the way of distin-
guishing between logical and causal relationships’. Munck (2016: 777) clarified that ‘causation
is not a logical relation but, rather, a relation between events or, more precisely, between changes
in the properties of things’ and, as such, ‘must be understood ontologically’ – which he deemed
beyond QCA. Although ‘causal theories should be built with due attention to the rules of logic,
both qualitative and quantitative researchers are better off presenting their causal arguments in
the general form ΔX → ΔY, meaning that a change in property X causes a change in property
Y, and treating the covariation between X and Y as an essential means for checking whether their
causal arguments are true’. In the social and political domains, convincing covariational models
identify mediation effects (e.g. Seawright, 2019: 33) – which, once again, QCA would be unable to
render.

Against this backdrop, the article addresses the question of whether Standard QCA as a tech-
nique is ill-equipped to contribute to causal knowledge. It considers the specificity of its analytic
strategy in three sections. The first summarizes the state of the art in causal analysis, and brings
attention to the move from design to models that the Structural Causal Model framework has
developed to improve the counterfactual approach. In light of that move, the second section
portrays QCA as a technique equipped for specifying models with credible explanatory import,
with special diagnostics for omitted factors, irrelevant additions, and confirmation bias. The
third section illustrates how the causal structures of the Structural Causal Model framework
can illuminate the relationship between explanatory configurational findings. The conclusions
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highlight the special contribution that the explanatory usage of QCA can bring to the methodo-
logical agenda on causation in the social and political sciences.

The issues with causation as the response to a stimulus
The Potential Outcome framework (hereafter, PO: Rubin, 1974, 1978; Rosenbaum and Rubin,
1983; Imbens, 2004; Morgan and Winship, 2015) provides the default choice for analyzing causal
relationships. The framework narrows on a stimulus T with two mutually exclusive states, either
realized (1) or not (0). T is recognized as a causal effect when the claim stands that any i-th unit
under the realized stimulus T(1) returns a response Yi(1) that would not have been yielded under
the unrealized stimulus T(0). The claim that the difference between the actual response Yi(1) and
its counterfactual Yi(0) gauges the causal effect lies on a design that ensures statistically compar-
able samples of units except for the state of T. The design circumvents a reality in which each unit
instead comes as a specific bundle of covariates ui that blur comparability and make the calcu-
lation of the effect inaccurate.

Rubin’s canon conventionally conceives of covariates as features that are exogenous to the
stimulus–response relationship, yet bias the ‘unit’s propensity to receive’ Ti(1) through some
‘mechanism of self-selection’ that the analysis holds as unknown. The experimental setting, the
argument goes, rules out this bias by randomly exposing the units to the realized or the unrealized
stimulus. Together, randomization and forced exposition defuse the self-selection mechanism and
license two key tenets about the average net effect: first, the covariates do not confound it; second,
the assignment mechanism bias is (strongly) ignorable. Beyond randomization, the canon main-
tains that unconfoundedness and strong ignorability can still be ensured by discounting the
units’ heterogeneity through their propensity score. Thus, estimations of the average treatment
effect become valid on units that display a comparable propensity to self-select into the treatment.

Despite the efforts to make propensity scores as little ‘model-dependent’ as possible, the strat-
egy adopted to deal with units’ natural heterogeneity decides the credibility of the causal claim in
observational studies and raises a modeling issue. In their structural rendering of the potential
outcome, Winship and Morgan (1999: 668 ff) define the issue by decomposing the error term
ui of the individual response Yi to the stimulus Ti into ui = uT0i + Ti(uT1i − uT0i ). Their decom-
position emphasizes that the set of covariates uT1i , featuring the group under Ti = T(1), is possibly
different from that of the baseline group uT0i . Moreover, they consider that the value of the assign-
ment mechanism Ti ultimately depends on two sources of self-selection bias: the set Zi of
observed exogenous variables, and the set vi of unobserved or missing variables. When the ‘selec-
tion on the observables’ occurs, the propensity score Pr(Zi) can license the assumptions of uncon-
foundedness and ignorability of the assignment. Under the ‘selection on the unobservables’,
instead, estimates require further assumptions about the shape of the unobservables and, eventu-
ally, lower interpretability.

The key issue, in short, remains how to ensure that the relevant covariates are identified so that the
unobservables only contain irrelevant ‘noise’. To address it, the Structural Causal Model framework
(hereafter, SCM: Pearl and Paz, 1987; Pearl and Verma, 1991; Pearl, 2009; Bareinboim and Pearl,
2016; Pearl and Mackenzie, 2018) invites researchers to shape the setting of counterfactuals along
the lines of Simon (1977).

While working on the definition of political power, Simon noted that conventional represen-
tations via single equations could not render the intuition of a relationship between two agents, A
and B, such that A’s preferences cause B’s choices while the converse does not hold. To him,
power relationships unveiled the intrinsic asymmetry of any causal relationship and called for
a decomposition. ‘To say that X is a cause of Y is to say that there is a certain order in which
the equations must be solved – specifically, that we must first solve for X and insert its value
in another equation which we then solve for Y. Correspondingly, to say that P causes Q is to
say that we have a set of propositions (Boolean equations) such that we first determine the
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truth or falsity of P from some subset of these, and then use the truth value of P to determine the
truth value of Q’ (ivi: 50, notation adapted).

The SCM trades design for models that render structural assumptions of dependence. Any
structural model consists of three sets – the exogenous variables U , collecting the covariates;
the endogenous variables V:{X, Y , Z, . . . }, selected from U as the causal model of the response;
and the functions F:{fXZ , fXY , fYZ , . . . } that connect them. The model is then ‘augmented’ by a
causal graph GM in which variables are ‘nodes’, functions are (missing) directed arrows or
‘edges’, and any consecutive edges build a ‘path’ between nodes. The outcome becomes the end-
point of at least one path whose structure conveys the mechanism of data-generation – the ‘mech-
anism’ being the type of process to the outcome that the equation captures in some aspect of
interest (Simon, 1977: 115). Then, the SCM framework identifies three ideal graphs to which
any causal structures can be reduced – namely, the linear chain Gl, the fork Gf , and the collider
Gc.

The linear graph Gl entails four key relationships: of dependence of Y from Z; of dependence
of Z from X; of ‘likely’ dependence of Y from X when the connecting functions grant transitivity;
and, more important, of independence of Y on X conditional on Z.

Gl: X �fXZ Z �fZY Y

Gl =
P(y|z) = P(y)
P(z|x) = P(z)
P(y|x) = P(y)

P(y|x, z) = P(y|z)

⎧⎪⎪⎨
⎪⎪⎩

The relationships in Gl convey that two nodes arranged in a linear chain are independent con-
ditional on the mediator in between that captures the whole of the relevant variation. Effective
mediators, then, support the claim of a causal connection between X and Y – by dissolving it.

The second prototypical shape is the fork. Two variables, X and Y, both descend from a third
variable, Z – as in Gf . In it, Z, Y are dependent; Z, X are dependent; Y, X are likely dependent and
again become independent when conditioned on Z.

Gf : X �fZX Z �fZY Y

Gf =
P(y|z) = P(y)
P(x|z) = P(x)
P(y|x) = P(y)

P(y|x, z) = P(y|z)

⎧⎪⎪⎨
⎪⎪⎩

The fork renders the confounder that makes the dependence of Y on X spurious and, again,
explains it away. It shares all the features of the chain except the dependence between X and Z,
which in Gf runs in the opposite direction.

The last fundamental shape is the collider Gc. In it, X and Y together determine the values of Z:
thus, X, Z are dependent; Y, Z are dependent; X, Y are independent but display a dependence
when conditioned on Z.

Gc: X �fXZ Z �fYZ Y
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Gc =
P(z|x) = P(z)
P(z|y) = P(z)
P(x|y) = P(x)

P(x|y, z) = P(x|z)

⎧⎪⎪⎨
⎪⎪⎩

The collider portrays the situation in which the output has two inputs. The shape makes know-
ing the value of the one input irrelevant when we know the value of the other and the output.
Beyond that, a collider does not establish any backward causation – instead, it provides a further
reason to handle the relationship of correlation and causation with caution.

In SCM, the three basic shapes with their sets of conditionalities offer criteria to accept or reject
hypotheses about the relevant covariates beneath an outcome. The acceptable hypothesis may not
be univocal, though, as graphs with the same edges and ‘v-structures’ arise the same testable impli-
cations, hence belong to the same equivalence class. Mostly, they offer ‘inference rules for deducing
which propositions are relevant to each other, given a certain state of knowledge’, and conceptual
tools to develop models where ‘knowing z renders x irrelevant to y’ (Pearl and Paz, 1987). Against
this backdrop, the covariates are relevant that turn dependence into independence and vice versa
(Kuroki and Pearl, 2014).

Modeling complex conditionality
Explanatory QCA, too, is interested in the bundle of relevant factors that, together, make the
‘stimulus’ effective and, hence, account for it. The viewpoint is slightly different, however.

The strategy follows Mackie (1965, 1980) in observing that, although we usually explain the
burning of a house by a short-circuit, this explanation is ‘gappy’ unless we bring specific back-
ground features to the fore. The short-circuit initiated the fire because, for instance, it fired a
spark on an oily rag, and there was enough oxygen in the room, and the sprinklers were broken.
Thus, the causal response only takes place under the right conditions beyond the initiating factor.
Moreover, the conditions and the ‘initiating’ factor stand on an equal footing. ‘Cause’ is just a
conventional label for the anomaly in the field that attracts our attention: had the fire followed
from a gas leak, we would have mentioned it instead of the sparkle. Besides, different particular
conditions can unleash the same type of outcome in equivalent situations: a burning match or
enough pressure would have done the same job as the spark. If we abstract the details away, even-
tually fire can be reduced to the consequence of ‘heating’, and ‘combustible’, and ‘oxygen’ being
in the same place at the same time under ‘no impediments’. The abridged formula pinpoints the
types of elements that, together, sort the same type of effect irrespective of further features of the
context. Hence, such a formula is complete enough to travel and, once that the labels are properly
assigned to actual things and events, specific enough to allow us to expect and explain the
outcome at any timepoint and place.

The hallmark of this perspective lies in the relationship that the elements entertain with each
other and their consequent. That any of them is in the right state is insufficient to the outcome:
the causal power lies in their compound. Each of them, however, is non-dispensable: a component
in the wrong state makes the compound fail. In turn, the compound is sufficient for the outcome,
but its occurrence is an unnecessary event that only happens when all the components are prop-
erly arranged. In Mackie’s terms, then, each component is a partial, inus cause – an insufficient
yet necessary part of an unnecessary yet sufficient compound.

Cartwright (2017) enhances the understanding with a functional account that makes further
sense of the compound. She assumes the entities in the world ground capacities to do some job,
such as, operate a change or preserve stability. Capacity, then, is a concept close to those of ‘poten-
tial’, ‘disposition’, ‘tendency’ in other accounts, and related to that of ‘causal power’. It entails a
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productivity that relationships of sheer association do not display: it is only at the intersection of
the right capacities that something happens. The compound of these right capacities arises a
‘nomological machine’ – that is, a ‘sufficiently stable arrangement’ (Cartwright, 2017) that
makes a realization certain until all the relevant elements remain in the right state. Working nomo-
logical machines make sure that anything else is irrelevant before the same type of outcome across
time and space. Neurons, engines, scientific labs are illustrations of these arrangements. Their rele-
vant components can be understood as inus factors that, in the right team, perform basic tasks
such as triggering (T={T1,T2,…}), enabling (E={E1,E2,…}), and shielding (S={S1,S2,…}) the special process
to a state of an outcome.

Thus, a basic inus model can read T>E>S�Y (> reading ‘and’, → ‘is sufficient to’). With binary
variables, the probabilistic illustration of this model would portray head (1) and tail (0) flips from
three coins (T, E, S), and an unmodeled endogenous data-generation process ensuring a bell (Y )
always rings (1) when all the three coins land on head, else leaving it silent (0). This model arises
a finite sample space with eight possible realizations, VTES = {TES, TE�S, T�ES, T�E�S, �TES, �TE�S, �T�ES, �T�E�S}. Of
them, the first only, ω1 := TES, yields Y given the mechanism in place. QCA dubs the sample space
‘truth table’ and the realizations ‘primitive configurations’, but still understands them as possible
states of the world and sets or partitions of the universe of reference U = {u1, . . . , un}.

The peculiarity of QCA lies in its eliminative nature. Its solutions arise from the dismissal of
logically irrelevant conditions from sufficient primitives (Ragin 2014: 125 ff; cfr. Thiem, 2019). In
itself, hence, pruning cannot determine causality. However, its protocol can be geared to probing
the claim that a selection of conditions is a credible inusmachine (Mackie, 1980: Appendix) when

(a) the same bundle of conditions accounts for both states of the outcome without
contradictions;

(b) the solutions of each outcome are properly specified to their respective subpopulation.

Requirement (a): establishing sufficiency for explanatory purposes

As a technique, QCA relies on an algebra of set that preserves the equivalence to a first-order logic
(Stone, 1936). Thus, the technique addresses Simon’s knowledge problem – the determination of
the truth or falsity of P – as the problem of gauging a unit’s membership in the set of things that
are or have P (e.g. Sartori, 1984; Ragin, 2008; Goertz and Mahoney, 2012; Ragin and Fiss, 2017).
QCA affords two such gauges: crisp and fuzzy. The crisp gauge assigns binary truth values in line
with the Boolean canon: the 0-membership in P means 1-membership in the negated set �P. The
fuzzy gauge refines the assignment with that which, from an explanatory perspective, can be
understood as an ambiguity penalty. Fuzzy scores incorporate such a classification error in the
value assigned to each unit. They span from 0.00 to 1.00 and have their point of highest ambi-
guity at 0.50: thus, units scoring 0.50 are instances of neither P nor �P; units with extreme values,
instead, are sure instances of either a set or its negation.

The difference in gauging slightly changes the operationalization of the three logical axioms on
which QCA can build valid causal claim. As summarized in Table 1, the three rules establish,
respectively, the negation of a state as its arithmetic complement in the universe of reference;
the rule of non-contradiction as the impossibility for the same unit to be in a state and its neg-
ation at the same time; the rule of the excluded middle as the necessity of a unit to display either
one or the other of the two possible states. These gauges allow enforcing the conventional under-
standing of sets as ‘conceptually uniform’ partitions of the universe with respect to a condition’s
state.

The construction of sets as uniform partitions provides the ground of the set-theoretical gauge
of sufficiency. The relationship is, quite conventionally, a conditional. The parameter that cap-
tures it in any QCA application is the ‘consistency of sufficiency’ (S.cons for short: Ragin, 2000,
2008; Duşa, 2018). The parameter is defined as the ratio of the size of the intersection of the
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outcome and a primitive, and the size of the primitive itself: S.consvj,Y := |vj>Y|/|vj|. It closely
recalls Kolmogorov’s measurement of conditional probability as the ratio of success to trials of a
certain kind (e.g. Hájek, 2011). Indeed, without any loss, the S.consvj,Y can be rewritten as π(Y|
ωji), being π the size of the sets; in the special case of crisp QCA, the size of the set is the number
of its instances and Kolmogorov’s conditional probability coincides with the consistency of suf-
ficiency. In both cases, moreover, the parameter renders the long-honored regularity criterion
that ‘if ωj causes Y, then any instance of ωj is an instance of Y’; at the same time, it accounts
for the challenge that contradictory evidence rises to the modal understanding of causal regularity
as ‘if ωj causes Y, it cannot be the case that an instance of ωj is an instance of �Y’.

The regularity claim of the S.cons stands when the parameter takes either its highest value of
1.00 or its lower value of 0.00, indicating that the primitive draws a uniform partition of the posi-
tive or the negative outcome set. For explanatory purposes, violations of this subset relationship
make the primitive ‘contradictory’. Contradictions weaken the claim that the team of conditions
renders an inusmachine, and suggest that the team is ill specified – possibly, due to some omitted
components. From a logical perspective, a contradiction makes the inus hypothesis ‘false’, as its
realizations cannot establish the subpopulation of Y-instances as a separate set from that of
�Y-instances.

The diagnosis of the contradiction through the S.cons is straightforward with crisp scores (Rihoux
and De Meur, 2009) but can prove harder with fuzzy scores. The violation can be downgraded to an
acceptable inconsistency when it arises from units for which Yi≥ ωji + 0.1 (Ragin, 2000); truly contra-
dictory instances instead remain those crisp consistency outliers for which ωji > 0.5 while Yi < 0.5
(Rohlfing and Schneider, 2013; Rubinson, 2013; Rohlfing, 2020). The misalignment of the crisp
and the fuzzy consistencies depends on the fuzzy scores leaving arithmetic residuals in intersections:
to witness, cfs

P = 0.8 yields cfs
(Pi<�Pi)

= 0.2, which indicates an empty intersection by the rules in
Table 1, yet inflates the diagnostic of the S.cons. To overcome the problem, a corrected version of
the parameter has been devised. The Proportional Reduction of Inconsistency (PRI), calculated as
PRIvj,Y := |vj>Y| − |vj>Y > �Y|/|vj| − |vj>Y > �Y|, explicitly borrows the rationale of the
Proportional Reduction of Error. The gauge of inconsistency is |vj>Y > �Y|, which assigns higher
penalties to fuzzy values of the outcome closer to 0.5. The PRI, hence, displays a steep fall in the values
of the parameter, often for primitives with S.cons equal to 0.85 or lower. The convention maintains
that a configuration is usually sufficient to an outcomewhen its S.cons is 0.85 or higher and supported
by a similar PRI – although model specifications may suggest otherwise (Schneider and Wagemann,
2012).

Table 1. Axioms, set renderings, and gauges

Axiom Set rendering Crisp gauge Fuzzy gauge

Negation �P := U\P ccs
�Pi
= 1− ccs

Pi cfs
�Pi
= 1− cfs

Pi

Non-contradiction �P> P := ∅ ccs
(Pi>�Pi )

= min(ccs
Pi , c

cs
�Pi
) = 0 cfs

(Pi>�Pi )
:= min(cfs

Pi ,c
fs
�Pi
) , 0.5

Excluded middle �P< P := U ccs
(Pi<�Pi )

= max(ccs
Pi ,c

cs
�Pi
) = 1 cfs

(Pi<�Pi )
= max(cfs

Pi , c
fs
�Pi
) . 0.5

Notes: ψcs is for the crisp-set membership score, ψfs is for the fuzzy-set membership score.
cPi refers to membership score that the i-th unit from a universe U of size N takes in the set of instances sharing the condition P in a state; c�Pi
is the membership score of the same unit in the set of the condition in the negated state.
The overbar here reads ‘not’. The alternative notation in QCA is the curl ∼, or the lowercase set name.
The backlash \ indicates the set difference.
< reads ‘union’ and corresponds to the logical inclusive (weak) ‘or’. The alternative logical notation is the vee ∨; in QCA’s applications, it is
common to use the plus sign +.
> reads ‘intersection’ and corresponds to the logical ‘and’. The alternative logical notation is the wedge ^; in QCA’s applications, the
operator is a dot (⋅) and often omitted.
∅ indicates the empty set; the corresponding logical notation is the empty curly braces. QCA conventionally renders it with a 0, although 0 is
also assigned to the ‘fully out’ observed instance.
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Requirement (b): handling the overspecification of inus machines

The additional relevant information in Standard QCA comes from the coverage of sufficiency, or
S.cov for short, defined as S.covvj,Y := |vj>Y|/|Y|. The parameter indicates the empirical rele-
vance of the realization ωj to the instances of the outcome Y (Ragin, 2006, 2008). It takes its high-
est value of 1.00 when the j-th realization is shared by all the instances of Y and tends toward 0.00
the more there are instances of the outcome set (ψY > 0.50) outside the configuration set
(cvj

, 0.50).
The raising of uncovered instances may follow from omitted alternative paths to the outcome

(e.g. Rohlfing and Schneider, 2013; Oana and Schneider, 2018). Usually, their presence is deemed
of little or no threat to the standing of a consistent hypothesis. If we are only interested in the
machine triggered by our model, any uncovered instances of Y can be a red herring. However,
coverage outliers can have another and more concerning source. They are also diagnosed on
the overspecification of the model that occurs when unrelated conditions are added. In explana-
tory QCA, the minimization algorithm offers a strategy to handle this threat while providing an
argument in favor of the often-deplored practice of selecting on the dependent (e.g. King et al.,
1994: 130). Indeed, a renowned ‘paradox of confirmation’ illustrates the absurd conclusions that
standard analyses can reach when blindly applied to instances selected on a ‘wrong’ independent
(Salmon, 1989: 50).

The paradox portrays the case of the table salt that is believed to dissolve (Y ) once put in hexed
(H ) water (W ). The underlying inus model, then, reads H >W � Y . The paradox arises as nat-
ural diversity presents us with the primitives as in Table 2.

An analysis narrowing on π(Y|ω1) would consider the relationship sound, even by contrast
with π(Y|ω4). The proof of the irrelevance of H emerges from the evidence that π(Y|ω1) = π(Y|
ω3) and π(Y|ω2) = π(Y|ω4), once the distinction is made between hexed and non-hexed water.
Under the improved model specification, the comparison of configurations to the same outcome
pinpoints the irrelevant component as the one whose variation does not affect the state of the
outcome. Its removal follows from a logical operation that the original pruning algorithm of
QCA, the Quine-McCluskey, performs systematically. To witness: in Table 2, the non-
contradictory antecedent of Y is ω1, ω3; hence, we can rewrite the solution of Y as (H< �H)W. By
the axioms in Table 1, H< �H= U; hence, H can be dismissed as ‘noisy’ background variation.
Run on the instances of Y, then on those of �Y, the operation licenses the conclusion that the non-
irrelevant implicant of Y is W and that the inus model is truer to the cases at hand when specified
as W→ Y.

Addendum to requirement (b): handling unobserved realizations

The previous example has assumed a saturated truth table in which all the possible realizations
were observed. Technically, observed realizations are those in which at least one unit has a crisp
membership score of 1. In actual explanatory QCA, however, an inus model easily allows for a
wider array of realizations than the units may afford from a certain universe. The problem is
understood as ‘limited diversity’ and provides a further version of the curse of dimensionality.
It is independent of the mere ratio of the number of cases and variables, and may not be properly

Table 2. Truth table from the model H> W � Y

Id H W Y

ω1 1 1 1
ω2 1 0 0
ω3 0 1 1
ω4 0 0 0
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addressed by adding cases: infinite instances of the same primitive in an analytic space of four still
make three primitives unobserved and provide no analytic leverage.

The strategies to handle unobserved realizations are many, each addressing a possible source of
the problem. Observed diversity may increase if we widen the space-time region of the analysis –
the ‘scope condition’ for case selection (Marx and Dusa, 2011). The dimensionality of the analytic
space can decrease if some gelling interactions are hardened into measures of coarser factors
(Berg-Schlosser and De Meur, 2009; Schneider, 2019). If inadvertently added, empirical constants
may be dropped before the analysis of irrelevance as they double the analytic space but leave half
of the primitives unobserved (Goertz, 2006).

The latter consideration has evolved into a whole step of the standard protocol. The ‘analysis of
individual necessity’ calculates the same parameters as the analysis of sufficiency, but of conditions
and with a reverse meaning. Constants are degenerate necessary conditions, that is, limiting cases
of supersets of an outcome-set. They arise when |Y|≤ |P| and entail a lower-triangular fit. The
membership in the condition given that in the outcome renders the individual consistency of
necessity (kN.consY,A := |A> Y|/|Y|), whereas the membership in the outcome given that in
the condition provides the individual coverage of necessity (kN.covY,A := |A> Y|/|A| )–
where ‘individual’ is referred to the k-th inus condition. The Relevance of Necessity
(RoNY,A := |�A|/|�A< �Y |: Schneider and Wagemann, 2012) is a later addition aimed to verify
the meaningful variation of each inus components. It is calculated as the reciprocal of the mem-
bership in the unrealized outcome conditional on that in the unrealized factor. The standard rec-
ommendation is to consider dropping as trivial the factors with kN.cons close to 1.00 and low RoN.
However, the crucial test and consistent with the inus rationale remains whether the model
requires any seemingly trivial condition to prevent the rising of contradictions in the truth table
(Damonte, 2018; Rohlfing, 2020).

However, the protocol of reference to handle limited diversity is that of the standard minimi-
zations that treat unobserved primitives as counterfactuals (Ragin, 2008; Schneider and
Wagemann, 2012) and, ultimately, a problem of missing outcomes. The related counterfactual
question asks whether any instance of these configurations, known yet unobserved, would
have displayed Y instead of �Y (Ramsey, 1929). The standard protocol provides three answers –
‘conservative’, ‘parsimonious’, and ‘intermediate’ – and draws its conclusions under as many
alternative assumptions.

The conservative stipulates that no unobserved realization would have obtained; so, its mini-
mizations only operate on observed diversity. The parsimonious maintains that any unobserved
realization would have obtained that finds a perfect observed match but for a single minimizand –
the component to be declared irrelevant. The intermediate corrects the parsimonious assumption
with plausibility concerns. It requires the unobserved minimizand to be in the state that the inus
theory considers ‘right’ to the outcome. The minimization under such ‘directional expectations’
provides the intermediate or ‘plausible’ solution. Given all non-contradictory primitives, the
conservative and the parsimonious solutions provide the tighter and looser boundaries of a ‘con-
fidence solution space’ in which the intermediate solution usually offers the plausible estimate to
the best of knowledge – with a caveat.

Concerns have been raised that directional expectations might introduce confirmation bias in
solutions. Minimizations are geared to disconfirming the relevance of a component of the model,
not to establish it; so, relying on directional expectations to drop a term rather uses the theory
against itself. Instead, the blind application of the plausibility rules may arise a different version
of the ‘paradox of confirmation’ in which the belief in a wrong theory prevents the dropping of
irrelevant conditions from the solution.

To witness, let us take the hexed salt example of Table 2, but now with an unobserved real-
ization, v∗

3:�HW in Table 3. Let also assume that our directional expectations about H reduce to
the belief that, teamed with the right inus factors F, hexing is an inus component of the machine
to Y when present: HF,Y.
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Given Table 3,

– ω1 is the only realization to Y, and the conservative solution reads HW: the salt dissolved
because it was hexed and in water.

– the parsimonious minimization matches ω1 and v∗
3 and yields W as the prime implicant: the

salt dissolved just because in water.
– the intermediate minimization considers that v∗

3 is an implausible or ‘hard’ counterfactual
instead, as it carries theminimizand in the wrong state according to the directional expecta-
tions. Thus, v∗

3 is barred from the minimization with ω1; the resulting plausible solution
overlaps the conservative, and the irrelevant factor is not dropped.

To some, the proven inability of the intermediate solutions to get always rid of known irrele-
vant components disqualifies it as valid, and leaves the parsimonious solutions as the finding to
be discussed (e.g. Thiem, 2019). To others, parsimonious solutions are too dependent on
observed realizations, and their sufficiency far less ‘robust’ when tested on shrinking diversity
for providing a reliable result (e.g. Duşa, 2019). Besides, plausible assumptions are required to
make complete structures emerge (e.g. Fiss, 2011; Damonte, 2018; Schneider, 2019).

The debate disregards the possibility that data contain handy information to establish the
plausibility of the inus theory. The values of the analysis of individual sufficiency provide indica-
tions on the tenability of our directional expectations in U . When calculated on the conditions of
the hexed salt as in Table 4, the kPRI and the kS.cons values show H being equally insufficient to Y

and �Y, while the RoN values warn that expectations of necessity are untenable, too.
In short, the analysis of individual necessity may suggest whether directional expectations

stand evidence and can be forced onto solutions.

QCA and local causal structures
The previous section showed that explanatory QCA is equipped to identify inus compounds with
established tools, although adapted to its special gauges, and to diagnose the challenges from ill-
selected conditions and untenable theoretical expectations. Once the sufficiency requirements are
satisfied and the irrelevant conditions dismissed, the solutions provide a regularity answer to why
the outcome occurred in some of the cases at hand and not in others. The answer is, the complete
realizations of the inus machine were at work in the positive instances, and in its incomplete or
obstructed realizations prevented the generative process in the negative instances. That the two
answers make two halves of the same causal story, hence, depends on both being based on a sin-
gle bundle of inus conditions (Verba, 1967; cfr. Schneider and Wagemann, 2012).

Still, the further question remains open whether QCA solutions can be granted a causal inter-
pretation beyond the theory that drove the original definition of the inus machine. The shapes
that the SCM assumes as causal – namely, the chain Gl, the fork Gf , and collider Gc – all capture
conditionality as Kolmogorov’s probability; hence, they can be applied to illuminate the relation-
ship between intermediate and parsimonious solution, as in the example below.

Table 3. Truth table of H> W � Y with unobserved ω3

Id H W Y

ω1 1 1 1
ω2 1 0 0
v∗
3 0 1 ?

ω4 0 0 0
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Drawing an inus model

The illustrative model accounts for differences in the national perception of corruption – the out-
come – with the differences in how effective the accountability constraints are perceived to be to
the discretion of the policy-makers in the public sector – the explanatory factors.

The underlying theory connects corruption to Elinor Ostrom’s second-order social trap in
which perceptions play the role of triggers. The basic mechanism considers that high perceived
corruption fuels distrust in the fair working of institutions; distrust, in turn, makes people con-
vinced that resorting to corruption remains the safest way of accessing public services and ben-
efits even when they hold the right to it. These tragedies, in Ostrom’s framework, can be fixed if
communities restore fairness and delegate the task of detecting and sanctioning violations to an
independent ‘monitor’. The fixing can nevertheless fail, too, when the monitor is perceived as
ineffective or complacent. Unsanctioned violations and forbearance trigger a ‘second-order’ social
trap: the choice of free-riding control becomes individually rational, and corruption institutiona-
lizes. In short, the mechanism suggests that the trigger fires when accountability designs are per-
ceived as poor or incomplete; vice versa, a credible accountability design should provide the inus
machine that preserves trust and keeps the perception of corruption low (e.g. Ostrom, 1998).

The next question asks which components constitute such an inus machine. The theories of
public accountability distinguish between internal and external systems, and assign higher effect-
iveness to the latter. While internal managerial or somehow hierarchical lines of oversight may
invite forbearance to avoid blame, external systems are expected to deter corrupt practices by
making oversight public, and be more effective when the institutional design maintains the
chances low that a single concern can capture the whole attention of the decision-maker. The
mechanism also suggests that a special place in the inus machine should be granted to the per-
ceived effectiveness of the judicial system as the warrant against complacency and forbearance
(e.g. Weingast, 1984; Mungiu-Pippidi, 2013; Damonte, 2017).

The operationalization borrows the raw explanatory conditions from the sub-indices of the
Rule of Law Index maintained by the World Justice Project. The gauges are composite, but
their contents are consistent with the underlying concept, and all point in the same direction
(Lazarsfeld and Henry, 1968). From the dataset related to 2017, the following gauges are used:

– subindex 1.3. ‘Government powers are effectively limited by independent auditing and
review’, for the condition ‹ATEC›. The raw variable gauges the perception that comptrollers
or auditors, as well as national human rights ombudsman agencies, have sufficient inde-
pendence and the ability to exercise adequate checks on and oversight of the government.

– subindex 1.5 ‘Government powers are subject to non-governmental checks’, to calibrate
the condition ‹ASOC›. The raw variable gauges the perception that independent media,
civil society organizations, political parties, and individuals are free to report and comment
on government policies without fear of retaliation.

– subindex 3.1 ‘Publicized laws and government data’ to calibrate the condition ‹APUB›. The
raw measure gauges the perception that basic laws and information on legal rights are pub-
licly available, presented in everyday language, and accessible. It also captures the quality

Table 4. Analysis of individual necessity of the conditions in Table 3

Outcome: Y Outcome: �Y

kPRI kS.cons kN.cov kN.cons kS.cov RoN kPRI kS.cons kN.cov kN.cons kS.cov RoN

W 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.667
�W 0.000 0.000 0.000 0.333 1.000 1.000 1.000 1.000
H 0.500 0.500 1.000 0.500 0.500 0.500 0.500 0.500
�H 0.000 0.000 0.000 0.667 1.000 1.000 0.500 1.000
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and accessibility of information published by the government in print or online, and
whether administrative regulations, drafts of legislation, and high court decisions are
promptly accessible to the public.

– subindex 3.2 ‘Right to information’ to calibrate the condition ‹RTA›. The underlying raw
measure gauges the perception that requests for relevant information from a government
agency are timely granted, that responses are pertinent and complete, and that the cost
of access is reasonable and free from bribes.

– subindex 7.6 ‘Civil justice is effectively enforced’ as the condition ‹ENFOR›. The raw variable
gauges the perception of effectiveness and timeliness of the enforcing practices of civil
justice decisions and judgments in practice.

The operationalization of the outcome ‹CLEAN›, instead, relies on the Corruption Perception
Index maintained by Transparency International. This again provides a suitable gauge of the per-
ceived level of corruption of the administrative bodies, collected from surveys, and, since 2012,
validated through a transparent methodology.

As the measures of the outcome and the inus factors come from surveys and discount the
variations in the year of reference, no need for lagging the effect is envisaged. The perception
of the accountability of the administration and the perception of corruption in the public sector
count as aggregate responses to the same state of the policymaking system.

The data of the Corruption Perception Index and the World Justice Project are all collected
from a variety of world regions, although not from the same countries. When combined, the
more comprehensive coverage is of the countries in the European Union, the European Free
Trade Area, and the core Anglophone countries. Together, their administrative and institutional
systems provide enough diversity to make patterns emerge. At the same time, they all are uninter-
rupted democratic systems, although at different degrees of maturity, which ensures the gauges of
the conditions in the model can be given unambiguous interpretations.

After dropping the cases with missing values, the population suitable for the analysis includes
26 cases, whereas the specification of the model includes five explanatory conditions and reads
ATEC·ASOC·APUB·RTA· ENFOR�CLEAN.

The raw values are reported in the online Appendix.

Analysis and findings

Following theory and gauging, directional expectations are that each condition contributes to low
perceived corruption (CLEAN) when present, and high perceived corruption (clean) when absent.
The k-parameters of the calibrated measures, reported in Table 5, support all of them.

The conditions’ states are consistent with one outcome’s state as expected and symmetric in
their set-relationships with the outcome and its negation. Moreover, their kN.cons is never trivial.
Together, they yield the truth table as in Table 6.

Of 32 possible realizations, seven only are observed and neatly associated with either one out-
come or the other with one exception (ω25), which does not affect the analysis when run with
crisp scores. Units concentrate in the two polar realizations: nine of 11 instances of the negative
outcome are the best instances of ω1 while 10 out of 15 positive instances are best instances of ω32.
Were already the model a well-specified inus machine, the concentration should be higher.
Dispersion suggests alternative specifications and/or redundancies, which justifies minimizations.

The minimizations retrieve the solutions in Table 7.
The parsimonious solutions identify a single factor (the effectiveness of civil justice enforce-

ment) that captures the whole difference between the instances of the positive and the negative
outcome. The intermediate solution instead overlaps the conservative; their prime implicants
use all the conditions in the model, but differently specified to special subpopulations. The set-
tings suggest that alternative inus machines are at work in groups of instances of the realized
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outcome. The instances of the unrealized outcome contain one overdetermined case, in which the
failure can be ascribed to one or the other of two compounds.

Letting the theoretical interpretation aside, the last open question asks which causal standing
can be recognized to the information in the parsimonious and intermediate solutions.

Exploring the relationship between solution types

Fiss (2011, Soda and Furnari 2012) dubs the conditions in the parsimonious term the ‘core’ elem-
ent of the solution, while the conditions added under directional expectations are ‘peripheral’
contributors. The S.cons and PRI reported in Table 6 prove that the core provides a worse

Table 5. k-parameters of fit

Condition tested

Outcome: CLEAN Outcome: clean

kN.cons RoN kS.cons kN.cons RoN kN.cov

atec 0.106 0.685 0.170 0.760 0.956 0.916
ATEC 0.948 0.776 0.840 0.311 0.411 0.207
asoc 0.147 0.639 0.202 0.884 0.942 0.914
ASOC 0.937 0.893 0.915 0.228 0.460 0.167
apub 0.233 0.589 0.272 0.923 0.845 0.808
APUB 0.836 0.937 0.935 0.168 0.528 0.142
rta 0.361 0.571 0.377 0.932 0.756 0.732
RTA 0.744 0.950 0.936 0.207 0.599 0.196
enfor 0.203 0.610 0.252 0.924 0.894 0.861
ENFOR 0.888 0.934 0.940 0.197 0.503 0.157

Table 6. Truth table: observed realizations and consistency to the outcomes

ω ATEC ASOC APUB RTA ENFOR n CLEAN S.cons CLEAN PRI clean S.cons clean PRI

26 1 1 0 0 1 2 1.000 1.000 0.348 0.000
30 1 1 1 0 1 2 1.000 1.000 0.291 0.000
24 1 0 1 1 1 1 1.000 1.000 0.706 0.000
32 1 1 1 1 1 10 0.999 0.999 0.135 0.000
25 1 1 0 0 0 1 0.662 0.204 0.858 0.665
17 1 0 0 0 0 1 0.333 0.009 0.994 0.991
01 0 0 0 0 0 9 0.137 0.002 0.996 0.996

Table 7. Prime implicants

Outcome Solution Id Implicant S.cons PRI

CLEAN Cons Int 1 ATEC⋅ASOC⋅rta⋅ENFOR 1.000 1.000
2 ATEC⋅APUB⋅RTA⋅ENFOR 0.999 0.999

Pars 3 ENFOR 0.940 0.932
clean Cons Int 4 ATEC⋅apub⋅rta⋅enfor 0.923 0.886

5 asoc⋅apub⋅rta⋅enfor 0.997 0.996
Pars 6 enfor 0.861 0.832

Note: Prime Implicant 1 covers 4 of the 15 instances of aut, bel; aus, can.
PI 2 covers 11 of the 15 instances of clean: fra; nzl, deu, dnk, est, fin, gbr, nld, nor, swe, usa.
No instances of CLEAN are overdetermined.
PI 3 covers all the 15 positive instances.
PI 4 covers 2 of the 11 instances of clean: ITA; PRT.
PI 5 covers 10 of the 11 instances of clean: bgr, cze, esp, grc, hrv, hun, pol, rou, svn; ita.
One instance of clean is overdetermined – namely, ita.
PI 6 covers all the 11 negative instances.
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explanation when alone than in conjunction with the peripheral terms. Hence, the peripherals are
relevant to the outcome, although maybe not causally so. The SCM provides the diagnostic device
that clarifies the causal nature of their relationship.

Tables 8 and 9 report the conditionalities that identify the structures of a chain, a confounder,
and a collider, computed between the core condition (z), the peripheral conditions in each solution
term (x1, x2), and the outcome ( y) for each outcome state after turning the fuzzy scores into crisp.
A fundamental causal structure is assigned to the solution term when all the identifying condition-
alities are satisfied. The conditionalities are inevitably deterministic given the gauges and the single
observation point. Nevertheless, in such a thin slice of the world, structures do emerge.

The conditionalities of the ‘chain’ structures indicate that the core provides the mediating node
between the peripheral conditions and the outcome in both the positive and the negative solu-
tions. The conditionalities, moreover, support the claim that the core term provides neither
the ‘confounding’ background common factor nor the ‘collider’ in any subpopulations – regard-
less of whether the peripheral terms display full set-independence [P(x2|x1) = 0.00 and P(x1|x2) =
0.00 in Table 8] or a slight dependence [P(x2|x1) = 0.091 and P(x1|x2) = 0.091 in Table 9].

Table 9. Structural dependencies of the intermediate solution terms to clean

Chain Confounder Collider
w→ z→ y w = x1 w = x2 x1← z→ x2 x1→ z← x2

P( y|z) 1.000 1.000 P(x2|z) 0.909 P(z|x1) 0.182
P( y) 0.423 0.423 P(x2) 0.423 P(z) 0.423
! = TRUE TRUE ! = TRUE ! = TRUE

P(z|w) 0.182 0.909 P(x1|z) 0.182 P(z|x2) 0.909
P(z) 0.423 0.423 P(x1) 0.423 P(z) 0.423
! = TRUE TRUE ! = TRUE ! = TRUE

P( y|w) 0.182 0.909 P(x2|x1) 0.091 P(x1|x2) 0.091
P( y) 0.423 0.423 P(x2) 0.423 P(x1) 0.423
! = TRUE TRUE ! = TRUE = FALSE

P( y|w, z) 1.000 1.000 P(x2|x1, z) 0.500 P(x1|x2, z) 0.100
P( y|z) 1.000 1.000 P(x2|z) 0.909 P(x1|z) 0.182
= TRUE TRUE = FALSE ! = TRUE

TRUE FALSE FALSE

Keys: the nodes in the graphs are given the following values: y = clean; z = enfor; x1 = TEC> pub> rta; x2 = soc> pub> rta.
N = 26 for each node.

Table 8. Structures of the intermediate solution terms to CLEAN

Chain Confounder Collider
w→ z→ y w = x1 w = x2 x1← z→ x2 x1→ z← x2

P( y|z) 1.000 1.000 P(x2|z) 0.267 P(z|x1) 1.000
P( y) 0.577 0.577 P(x2) 0.192 P(z) 0.577
! = TRUE TRUE ! = TRUE ! = TRUE

P(z|w) 1.000 0.800 P(x1|z) 0.733 P(z|x2) 0.800
P(z) 0.577 0.577 P(x1) 0.423 P(z) 0.577
! = TRUE TRUE ! = TRUE ! = TRUE

P( y|w) 1.000 0.800 P(x2|x1) 0.000 P(x1|x2) 0.000
P( y) 0.577 0.577 P(x2) 0.192 P(x1) 0.423
! = TRUE TRUE ! = TRUE = FALSE

P( y|w, z) 1.000 1.000 P(x2|x1, z) 0.000 P(x1|x2, z) 0.000
P( y|z) 1.000 1.000 P(x2|z) 0.267 P(x1|z) 0.733
= TRUE TRUE = FALSE ! = TRUE

TRUE FALSE FALSE

Keys: the nodes in the graphs are given the following values: y = CLEAN; z = ENFOR; x1 = TEC> PUB> RTA; x2 = TEC> SOC> rta.
N = 26 for each node.
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These findings suggest that each of the solutions identified by the plausible minimizations ren-
ders the settings of a mechanism, and the core elements provide the ‘mediator’. Moreover, the
shape suggests that the peripheral conditions do not offer alternative starting points, but equiva-
lent backgrounds.

Concluding remarks
The article offers arguments and evidence that important reasons for discontent with QCA may
apply to the inductive usage of the technique, yet are unjustified when addressed to its explana-
tory, theory-driven application (cfr. Schneider and Wagemann 2012, Thomann and Maggetti
2020).

When carefully implemented, explanatory QCA inevitably displays some commonalities with
the probabilistic family. Both identify causality with the capacity to affect a key state of special
units and consider causation as an asymmetric phenomenon. The quasi-experimental scholarship
recognizes the issue as the difference in ‘propensities’ or ‘covariates’ presiding over the self-
selection mechanisms to receive the stimulus. Explanatory QCA models the covariates and the
stimulus as the team of inus conditions entailing the capacity to arise or maintain a state of
the outcome. Thus, explanatory QCA offers a set-theoretic answer to the question asking
which combination of conditions ensures the units’ response to a key factor and which ones
make them unresponsive instead. The PO may work it out as the unwelcome heterogeneity
that biases the estimation of the effect. Just the opposite, explanatory QCA joins the SCM in con-
sidering settings as the special background that accounts for the firing of a trigger. Along this line,
the solutions from explanatory QCA can provide credible information on which relevant features
identify the features that make some units responsive and others ‘inert’.

Moreover, the article shows that QCA solutions from an inus model can be tested for SCM
causal structures, and meaningfully so. In the example, the parsimonious solution term – the
’difference-making’ components of the model – is proven to take the position of a mediator to
the outcome. In turn, the peripheral conditions provide the ‘covariates’ that complete the inus
machine and account for its effectiveness.

These considerations speak to the QCA scholarship interested in the debate on the standing
of the intermediate solution. The findings suggest that the parsimonious term remains a key
component but seldom makes the whole of an explanation. In terms of the example in section
3, a civil justice perceived as effective supports the perception of low public sector corruption
as it backs the belief that other accountability devices and holders are trustworthy, first.
Reducing the explanation to the sole perceived effectiveness of civil justice makes it gappy, as
it does not clarify the ground on which it stands.

The considerations possibly speak to the wider causal scholarship, too. They suggest the
equivalence of SCM mediators and core QCA conditions, and of PO-SCM ‘covariates’ and
peripheral conditions. The equivalences establish the relevance of configurational results to prob-
abilistic models, as they offer a logical specification of the components of a graph. Moreover, the
equivalence suggests the possibility of cumulating and refining causal knowledge by nesting
and triangulating techniques. Hopefully, these considerations will contribute to widen the dia-
logue across causal strategies.
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