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The flow induced by a disk rotating at the bottom of a cylindrical tank is characterised
using numerical techniques – computation of steady solutions or time-averaged
two-dimensional and three-dimensional direct simulations – as well as laser-Doppler
velocimetry measurements. Axisymmetric steady solutions reveal the structure of
the toroidal flow located at the periphery of the central solid body rotation region.
When viewed in a meridional plane, this flow cell is found to be bordered by four
layers, two at the solid boundaries, one at the free surface and one located at the
edge of the central region, which possesses a sinuous shape. The cell intensity and
geometry are determined for several fluid-layer aspect ratios; the flow is shown to
depend very weakly on Froude number (associated with surface deformation) or on
Reynolds number if sufficiently large. The paper then focuses on the high Reynolds
number regime for which the flow has become unsteady and three-dimensional
while the surface is still almost flat. Direct numerical simulations show that the
averaged flow shares many similarities with the above steady axisymmetric solutions.
Experimental measurements corroborate most of the numerical results and also allow
for the spatio-temporal characterisation of the fluctuations, in particular the azimuthal
structure and frequency spectrum. Mean azimuthal velocity profiles obtained in this
transitional regime are eventually compared to existing theoretical models.

Key words: boundary layers, interfacial flows (free surface), rotating flows

1. Introduction
A disk rotating at the bottom of a fixed cylindrical tank partially filled with a

liquid induces a flow that potentially shows various instability patterns, such as
rotating polygons, switching and sloshing phenomena (see Vatistas 1990; Jansson
et al. 2006; Suzuki, Iima & Hayase 2006; Tasaka & Iima 2009; Iima & Tasaka
2016; Tasaka & Iima 2017). Out of these experimental studies, phase diagrams have
been established using two parameters, namely, the initial liquid height and angular
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Axisymmetric rotating flow with free surface 797

speed of the disk (see Jansson et al. 2006; Bach et al. 2014; Iga et al. 2014). The
high Reynolds numbers prevailing in these experiments preclude a realistic numerical
simulation of such configurations.

An inviscid model for the axisymmetric base state on which these patterns grow
has been proposed by Bergmann et al. (2011) and later on improved by Tophøj et al.
(2013) and Fabre & Mougel (2014). Despite their simplicity, these models were able
to capture the occurrence of patterns in terms of wave resonances (see also Mougel
et al. 2017). In a recent asymptotic analysis of the base flow, Iga (2017) gives an
in-depth characterisation of the internal and boundary layers: velocity profiles, scaling
laws. . . This analysis assumes that the flow is laminar, which is a strong assumption.
In fact, instabilities can appear at Reynolds number values much smaller than that
where the rotating polygons settle in. In most experiments, having a typical length
scale of the order of 10 cm and using water as a working fluid, these instabilities
break the rotational symmetry of the velocity field long before the surface even
starts to deform perceptibly. An azimuthal wave propagates in the same direction as
that of the disk (Young, Sheen & Hwu 1995; Lopez et al. 2004; Poncet & Chauve
2007; Kahouadji, Martin Witkowski & Le Quéré 2010). As the disk-rotation speed
is increased, turbulence develops on these large scale structures. At sufficiently high
disk-rotation speed, the Froude number is no longer small: the free surface is strongly
deformed and may form polygons. There is thus a transitional regime that bridges
both types of instabilities.

The aim of the present work is to gain knowledge of this transitional regime by
studying the mean axisymmetric flow and the fluctuations using direct numerical
simulations and experimental measurements. The flow parameters chosen in the
present work mostly match those of the experiment of Bergmann et al. (2011) for
which velocity measurements are available. The paper is structured as follows: the
experimental set-up and the numerical methods are introduced in § 2. In § 3, the steady
axisymmetric flow solution is presented, and the effects of Froude and Reynolds
numbers are discussed. Section 4 describes how unsteadiness and three-dimensionality
affect the axisymmetric mean flow structure. Experimental measurements are carried
out to assess the relevance of the numerical simulations. Discussions and comparisons
with previous available models are given in § 5.

2. Configuration and methods

The configuration is represented in figure 1(a). The cylindrical tank of inner
radius R is filled with a layer of liquid with density ρl and kinematic viscosity ν. At
rest, the layer has a uniform height H above the bottom disk. When the disk rotates
at angular speed Ω , the surface deforms and may become non-axisymmetric and
time-dependent.

Our experimental set-up (see figure 1b) is a modified version of the one used in
Moisy et al. (2004). The tank is made of Plexiglas and the heavy brass alloy rotating
disk is driven by a DC brushed motor with a tachometer closed-loop speed control.
The inner radius of the cylindrical tank is 140 mm and the gap between disk and
cylinder is 0.7 mm. Laser-Doppler velocimetry (LDV) is carried out using a Dantec
BSA system fastened to a horizontal displacement platform. It consists in a continuous
argon-ion laser with wavelength 660 nm and power 25 mW. Hollow silver-coated
glass spheres with a diameter of 10 µm are seeded in the fluid. The temperature is
monitored during the experiment and its variation did not exceed 2 ◦C.
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FIGURE 1. (Colour online) (a) Flow configuration. (b) Experimental set-up.

In the following, variables R,RΩ and ρl are respectively chosen as reference length,
velocity and density scales to make all quantities dimensionless. The flow inside the
tank is characterised by four dimensionless parameters, namely the aspect ratio G,
the Reynolds number Re, the Froude number Fr, indicative of the deformation of the
surface, and the Weber number We, which quantifies inertia with respect to surface
tension:

G=
H
R
, Re=

R2Ω

ν
, Fr=

RΩ2

g
, We=

ρlΩ
2R3

σ
, (2.1a−d)

where g stands for the gravity acceleration and σ for the surface tension between gas
and liquid. All physical properties of the liquid are assumed constant. In all cases
investigated here We is found large, which indicates that surface tension effects hardly
affect the surface profile and will not be considered in the following.

Besides experiment, two in-house numerical codes are used to study axisymmetric
flow states. The first one, ROSE (ROtating Surface Evolution) computes steady states
of the liquid phase with surface tension. Using cylindrical coordinates (r, θ, z) with
the origin at the centre of the bottom disk, the steady Navier–Stokes equations are
written as
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(2.2)

using Stokes’ streamfunction ψ , azimuthal vorticity ω and angular momentum Γ .
These latter quantities are linked to velocity V = (Vr, Vθ , Vz) via

Vr =
1
r
∂ψ

∂z
, Vz =−

1
r
∂ψ

∂r
, ω=

∂Vr

∂z
−
∂Vz

∂r
, Γ = rVθ . (2.3a−d)

Mainly for numerical reasons, surface tension is introduced in the normal stress
balance at the air–liquid interface (this was found to solve the convergence problem
discussed in Kahouadji & Martin Witkowski (2014)) through n(T air − T )n = σ∇ · n
where T (respectively T air) is the stress tensor on the liquid (respectively air) side,
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n = (−h′, 0, 1)t/(1 + h′2) is the unit outwards normal vector at the surface z = h(r).
The deformed meridional domain (r, z)∈ [0,1]× [0,h(r)] is adapted to the free surface
and mapped to a rectangular one (ξ , η) ∈ [0, 1] × [0, G], allowing for a Cartesian
mesh of Nr (respectively Nz) points in the radial (respectively axial) direction in this
transformed coordinate setting (Kahouadji & Martin Witkowski 2014). The solution
is obtained by iterations over the two following steps: (i) system (2.2) is mapped to
the rectangular domain, discretised and solved using a Newton–Raphson procedure
with a prescribed distribution h(r); (ii) the velocity field obtained at convergence is
inserted into the normal stress balance equation which is solved to yield a corrected
h(r) distribution.

As a second numerical tool, we use the finite-volume DNS (direct numerical
simulation) code Sunfluidh that simulates two-dimensional (2-D) and 3-D unsteady
incompressible flows. The Navier–Stokes equations are discretised on a staggered grid
with second-order accuracy in both time and space and the zero velocity divergence is
ensured by an incremental projection method. Further details can be found in Tuerke
et al. (2017). Sunfluidh also implements a level-set method to tackle interfaces.

3. Steady axisymmetric flow
This section is aimed at describing the structure of the steady axisymmetric

solutions (system (2.2)) and investigating the effects of varying Froude and Reynolds
numbers. The results are obtained by ROSE using Nr×Nz= 501× 101, 401× 201 and
401× 401 equispaced grid points for aspect ratios G= 0.1856, 0.5 and 1 respectively.

In order to evaluate how spatial resolution affects numerical solutions, we consider
the configuration G = 0.1856, Re = 10 000 and first check flat surface computations,
by setting Fr = 0 in ROSE and using the monophasic version of Sunfluidh. ROSE
calculations were conducted on four different grids Nr × Nz = 251 × 51, 501 × 101,
1001 × 201 and 2001 × 401 with equispaced grid points. Maximum and minimum
values of the streamfunction, radial and axial velocity components were shown
to vary less than 1.95 %, 0.44 % and 0.09 % respectively from the first three grid
systems to the finest one, so that the grids selected in the present paper for ROSE
computations ensure sufficient precision. Sunfluidh calculations were conducted on
the three uniform grids Nr × Nz = 128× 32, 256× 64 and 512× 128. The maximum
and minimum velocity components were found to differ by less than 2.6 %, 0.95 %
and 0.16 % respectively from those of the most resolved ROSE computation.

Validations on configurations with a deformed surface at Fr=1 were also performed.
For ROSE, the solution is sought in a monophasic deformed domain (see § 2) on
grid Nr × Nz = 501 × 101 while for Sunfluidh, the steady two-phase flow solution
is determined in the domain (r, z) ∈ [0, 1] × [0, 0.5] on a regular mesh Nr×Nz=
256× 128 from an initially rest state with a liquid–air interface at z=G. The extrema
of Vr and Vz were found to differ only by approximately 1 % between the two codes,
which is fully satisfactory as these two techniques to deal with surface deformation
are completely different.

3.1. Effect of Froude number
Figure 2 shows the flow structure obtained at large Reynolds number (Re= 10 000),
consisting of a central region with pure solid body rotation at the exact velocity of the
disk (b,d, f ) and an outer region with a meridional circulation (a,c,e). This circulation
is relatively weak, as indicated by the low levels of ψ 6 0.0035. A striking feature
is that the overall flow arrangement is hardly modified when the Froude number is
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FIGURE 2. (Colour online) Effect of the Froude number on the steady axisymmetric
flow structure for G = 0.1856, Re = 10 000, We = 1263.6 and, from top to bottom,
Fr = 0.01, 0.2464, 1. (a,c,e) Streamlines of the meridional circulation consisting of 21
equispaced solid contours of ψ between 0 and ψmax = (0.0034, 0.0035, 0.0035) and
one dashed contour at value (1/2)ψmin with ψmin = (−1.993, −1.975, −1.825) × 10−4.
(b,d, f ) Isocontours of the azimuthal velocity Vθ , with 21 equispaced contours between
0 and 1. The thick black lines denote the free surface.
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FIGURE 3. (Colour online) Deviation (h(r) − G)/Fr of the free surface rescaled by Fr.
Same parameters as figure 2.

varied from Fr= 0.01 (figure 2a,b) where surface deformation is negligible, to Fr= 1
(figure 2e, f ) where the surface is strongly deformed and almost touches the bottom
disk at the centre. For the Newton bucket (i.e. solid body rotation), the deviation
h(r)−G is proportional to the Froude number. Using numerical simulations with an
undeformed free surface, Piva & Meiburg (2005) proposed a first-order approximation
for the surface elevation h(r) based on the normal stress balance, yielding a scaling
proportional to Fr. Kahouadji & Martin Witkowski (2014) observed and interpreted
such a scaling for weaker deformations and moderate Reynolds numbers. Figure 3
shows the rescaled surface deformation (h(r) − G)/Fr for the set of parameters of
figure 2: this scaling remains here a fair approximation, even though at Fr = 1 the
surface deformation is of the same order of magnitude as that of the fluid-layer
thickness. The main effect of free surface deformation is thus to constrain the flow
field: this is quantitatively shown in figure 4 where some velocity components at the
surface, at half-depth or at fixed radius are extracted for different Froude numbers
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FIGURE 4. (Colour online) Effect of the Froude number on the velocity of the steady
axisymmetric flow for G= 0.1856, Re= 10 000 and We= 1263.6, for Fr= 0.01 (red solid),
Fr = 0.2464 (blue dash) and Fr = 1 (brown dash-dot). Radial distributions of (a) Vθ and
(b) Vr at the free surface; radial distributions of (c) Vθ and (d) Vr at half the interface
height z= h(r)/2; axial distribution at r= 0.8 of (e) Vθ and ( f ) rVr, plotted as functions
of z/h(0.8).

and almost superpose when z is rescaled by the local depth h(r). This feature is
found to be robust for Reynolds numbers greater than Re= 1000.

3.2. Effect of Reynolds number
As the Froude number influences the flow structure only marginally, flat surface cases
(h = G) are conveniently chosen to study the effects of Re at lower numerical cost.
Figure 5 illustrates how the flow evolves as Re is increased from low values.

One first observes the gradual formation of boundary layers at the rotating disk and
at the side wall, but also at the free surface (hereafter called the top layer) and at
the edge of the solid-rotation core (core layer). These layers then become thinner as
Reynolds is increased. The selected grids ensure at least 15 grid points in each layer
viewed in the meridional plane even at the highest Reynolds number Re = 19 500.
An overshoot of the azimuthal velocity arises at mid-radius in the top layer, similar
to the one observed by Iwatsu (2004): the fluid locally spins faster than the disk at
the same radius (see the contour of azimuthal velocity in figure 5 at Re> 10 000) as a
consequence of the inward flow convecting angular momentum with weak dissipation.
This overshoot at this location is captured for all of the above grid resolutions.

The existence of two regimes prevailing at low and large Re is best illustrated
in figure 6. The maximum ψmax of Stokes’ streamfunction quantifies the strength of
the meridional recirculation: at G = 0.1856, this quantity (figure 6a) is first found
proportional to Re, and so do the maxima (rVr, Vz)max of rVr, Vz (figure 6b). Indeed,
in the viscous regime up to Re = 300, length scales are of order 1 as well as
the azimuthal velocity; balancing the two last terms of the vorticity equation in
system (2.2) leads to a scaling proportional to Re for the meridional flow.

For Re ≈ 1500, this trend has stopped: (rVr, Vz)max saturate at a constant value
close to 0.1. When the Reynolds number is further increased, the above structure
no longer holds: an Ekman-like layer with typical thickness δ ∝ Re−1/2 forms on the
rotating disk at the same time as other layers, as will be described in § 3.3. In the
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FIGURE 5. (Colour online) Effect of the Reynolds number on the steady
axisymmetric flow structure for G = 0.1856, Fr = 0 and, from top to bottom,
Re = 300, 1200, 10 000, 19 500. Same representation as in figure 2 with here
ψmax = (0.0035, 0.0074, 0.0034, 0.0024) and ψmin = (0, 0,−1.993,−1.447)× 10−4.
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Fr= 0 and two values of aspect ratio G= 0.1856 (black/lower curves) and 0.5 (blue/upper
curves).

Ekman layer, Vr scales as r (von Kármán 1921) and thus (rVr)max is of order 1,
independent of Re – same for (Vz)max in the side layer by flow conservation arguments.
As δ∝Re−1/2, the meridional recirculation strength ψmax∝ δ× (rVr)max is thus expected
to decrease as Re−1/2 as well, due to the thinning of the layers inside which most
of the circulation takes place. This is observed in figure 6(a): for G = 0.1856, the
interpolation gives an exponent of −0.49. This scaling is fully consistent with the in-
depth asymptotic analysis of the bottom and side wall layers performed by Iga (2017).
Figure 6 also shows the results for another aspect ratio, G = 0.5: the same scalings
are observed. Quantities (rVr,Vz)max saturate around the same value 0.1, which is not
surprising as the scalings for the Ekman boundary layer do not involve G. However
the recirculation in the low-Re regime is far more intense at G= 0.5, which is due to
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FIGURE 7. (Colour online) Structure of the steady axisymmetric flow at Re = 10 000
for G = 0.5 (a,b) and G = 1 (c,d). (a,c) Streamlines of the meridional circulation
with 25 equispaced contours between ψmin = (−1.8181, −2.87) × 10−4 (dashed line for
negative streamfunction) and ψmax = (0.0038, 0.0043), respectively for G = (0.5, 1.0).
(b,d) Isocontours of Vθ , with 25 equispaced contours between 0 and 1.

a larger recirculation zone. This mechanically leads to a shift of the critical Reynolds
number for the change of regime towards smaller values, around 400 for G= 0.5.

3.3. Flow structure at large Reynolds number
Figure 7 gives a more general picture of the steady flow obtained in the axisymmetric
framework at large Reynolds number Re = 10 000 (i.e. above the critical Reynolds
number introduced previously), obtained for aspect ratio G = 0.5 and G = 1.0. The
main features already observed at G = 0.1856 are also present here: a solid body
rotation (hereafter denoted as SBR) in the central part and a meridional recirculation
(hereafter denoted as MR) at the periphery, with four layers. However the core layer
has an intricate sinuous shape and feeds a lower region stretching down to the disk.
Further increasing the aspect ratio to G = 1 (see figure 7c) shows that the size of
the upper sub-cell changes only slightly: its axial extent increases from 0.2 to 0.25.
Most of the increase in fluid depth is passed to the extension of the lower mostly
z-independent region, while the bottom layer with an Ekman-like structure is hardly
modified (Iga 2017). For G= 0.1856, this lower region is only slightly visible at the
highest Reynolds number (see figure 5).

The key point to close existing theoretical models (see discussion in § 5) is to
determine the radius rs of the boundary between SBR and MR regions (Tophøj et al.
2013; Fabre & Mougel 2014; Iga 2017). This parameter can be tentatively determined
from simulation results. To do so, we define rs as the location of the first maximum
of Vθ(r, z=G/4), as depicted in figure 4(c): we chose z=G/4 in order to get rid of
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FIGURE 8. Location rs of the boundary between SBR and MR regions determined at
z = G/4 as a function of Reynolds number Re for 4 different aspect ratios G, deduced
from ROSE computations.
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FIGURE 9. (Colour online) Axial velocity component Vz(rs, G − z) at Re = 10 000 for
G= 0.1856, 0.5 and 1.

the influence of the upper cell and the bottom layer. Figure 8 shows the decrease of
rs as G is increased, which confirms previous studies (Tophøj et al. 2013; Iga 2017).
This trend is a consequence of the balance between side wall dissipation and energy
injection at the rotating disk below the MR region.

The axial velocity component Vz at r= rs has been plotted as a function of G− z
in figure 9. Coordinate G − z has been used so that the free surfaces at G − z = 0
coincide for the three aspect ratios. It is observed that the size of the upper cell
indeed weakly varies with G, as stated above. Moreover, the graph reveals a flow
reversal (Vz < 0) similar to that observed in vortex-breakdown bubbles for rotating-lid
experiments (Escudier 1984). This analogy has already been pointed out by Iwatsu
(2004), Piva & Meiburg (2005) and Herrada, Shtern & Lopez-Herrera (2013) and is
sometimes referred to as ‘off-axis vortex breakdown’.

The axisymmetric flow solutions obtained here are physically relevant up to a
critical value of the Reynolds number for which the flow becomes unsteady. Using
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Newton’s method implemented in ROSE allows us to go beyond this critical value
by the continuation technique. However, exploring further these steady axisymmetric
unstable branches of solutions at higher Reynolds number values is eventually limited
by a non-trivial dynamical behaviour. This is the reason why the curves in figure 8
could not be pursued beyond Re= 19 000–23 000. An alternative way is then to use
unsteady computations of the three-dimensional flow.

4. Three-dimensional flow

For a given aspect ratio, there is a large range of Reynolds numbers for which the
velocity field is yet three-dimensional and unsteady while the free surface deforms but
remains almost axisymmetric. We focus here on this transitional regime that extends
up to the occurrence of rotating polygons. The critical Reynolds number value that
determines the lower bound of the transitional regime and the associated critical
azimuthal wavenumber strongly depends on the fluid aspect ratio. These critical
parameters were determined for G varying from 0.036 to 0.107 experimentally by
Poncet & Chauve (2007) and numerically by Kahouadji et al. (2010) using linear
stability analysis. For G = 0.25 and G = 2, Lopez et al. (2004) performed a study
using nonlinear numerical simulations and experiments. Cogan, Ryan & Sheard (2011)
extended the computations to the range G = 1.5 to G = 3.5 and Serre & Bontoux
(2007) studied G = 4. All the numerical simulations have assumed a flat horizontal
interface.

In this section, we focus on the specific value G= 0.1856. Assuming a monotonic
variation with aspect ratio, we can expect a critical Reynolds number between Re∼
1450 given by Lopez et al. (2004) for G= 0.25 and Re∼ 10 000 given by Poncet &
Chauve (2007) for G=0.107. Therefore, we choose the values Re=30 000 and 81 400
in the following as they lie far beyond the threshold and are typical of the transitional
regime. Furthermore, the value Re = 30 000 allows for comparisons between fully
resolved simulations and experiments in which the velocities are large enough for
accurate LDV measurements.

At such Reynolds number values, the flow is turbulent with coherent structures (see
movies 1–3 in the supplementary material, available at
https://doi.org/10.1017/jfm.2018.929). The present section characterises the
axisymmetric mean flow and fluctuations in the transitional regime, and gives a
description of the unsteadiness (§ 4.3).

4.1. Simulations: mean flow and fluctuations
A 3-D simulation is performed at Re= 30 000 using Sunfluidh. The chosen numerical
domain (r, θ, z)∈ [0.4, 1]× [0, (2/3)π]× [0, 0.1856] covers only a part of the physical
one: a solid body rotation is assumed for r < 0.4 which is not simulated, and only
a third of the full azimuthal extent is considered using periodic boundary conditions
along θ , a choice motivated by the prevalence of the m= 3 mode in our experiment
(see § 4.2). The 3-D mesh consists of 192× 448× 128 cells and is refined along the
side wall, above the disk and below the free surface. The radial grid spacing decreases
from δr = 4.17 × 10−3 for r ∈ [0.4, 0.8] continuously to δr = 1.4 × 10−3 at r = 1.
Along the axial direction, the grid spacing varies from δz = 3.1 × 10−3 in the bulk
to δz = 2 × 10−4 at the disk and at the surface. The grid spacing in the azimuthal
direction is uniform. We impose a Courant–Friedrichs–Lewy (CFL) constraint of 0.2,
so that the time step is δt≈ 7.7× 10−4.
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FIGURE 10. (Colour online) Streamlines of the meridional circulation for G = 0.1856,
Re = 30 000, computed from (a) V2D (respectively (b) V3D). The graph consists of 21
equispaced solid contours of ψ between 0 and ψmax = 2.1 × 10−3 (respectively 1.98 ×
10−3) and one dashed contour at value (1/2)ψmin with ψmin =−1.12× 10−4 (respectively
−0.924 × 10−4). The locations of the points with maximum and minimum ψ are
respectively indicated by the red and the blue cross.

Sunfluidh also allows for unsteady 2-D simulations. A first simulation is undertaken
in two dimensions in the domain (r, z) ∈ [0.4, 1] × [0, 0.1856] at Re = 30 000 using
the same grid spacing as above along r and z. Even in the 2-D framework, the flow
is found to be unsteady, but it evolves to a statistically permanent regime with mean
velocity V2D, defined by averaging V over a large time interval 1t= 200.

In order to save some computation time, the 3-D simulation is started from an
instantaneous 2-D field in the permanent regime. After a time period Te, the 3-D
flow reaches another statistically permanent regime. A mean velocity V3D is defined
by averaging over the same time interval 1t and over the entire azimuth of the
computational domain 1θ = (2/3)π:

V3D(r, z)=
1

1t1θ

∫ 1θ

0

∫ Te+1t

Te

V(r, θ, z, t) dt dθ. (4.1)

Due to Reynolds stresses, the mean flow may differ significantly from that arising
from system (2.2). Figure 10 shows the meridional circulations obtained when
considering either V2D or V3D at Re = 30 000. Some subtle changes are observed in
the sub-cell shapes. Concerning the value of ψmax however, an extrapolation of the
axisymmetric steady solution (curve in figure 6) would lead to prediction of a value
1.93 × 10−3 at Re = 30 000, in good agreement with the values obtained by 2-D or
3-D DNS both close to 2 × 10−3. The mean meridional circulation is thus weakly
affected by 3-D effects, as also shown by the velocity profiles in figure 11(b,d, f ).
Concerning the mean azimuthal velocity component (figure 11a,c,e), the most striking
modification brought by three-dimensionality is the smoothing of the overshoot at the
surface in the vicinity of r= 0.6 (figure 11a).

4.2. Experiments: mean flow and fluctuations
Velocity measurements have been conducted with a water layer of initial height
H = 26 mm so that G ≈ 0.1856 as in Bergmann et al. (2011) (see their figure 12).
Two angular speeds of the bottom disk have been chosen in order to match either
the Reynolds number used in the numerical simulation of the previous section or
the Froude number of Bergmann’s experiment. In the meridional plane, mean and
root-mean-square (r.m.s.) values of the azimuthal and axial velocity components were
measured along one or several lines of constant z.

The first case investigated has an angular speed Ω = 1.53 rad s−1, leading to
Re = 30 000 and Fr = 0.0335 with no noticeable surface deformation. Figure 12
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FIGURE 11. (Colour online) Profiles of mean velocities V2D (black dash-dotted lines) and
V3D (red continuous lines) obtained by DNS for G= 0.1856,Re= 30 000. Velocity profiles
as in figure 4.

displays the mean and r.m.s. azimuthal velocity component just below the surface as
well as the azimuthal and axial components at several heights. The corresponding
quantities obtained via the 3-D DNS have also been plotted. Concerning the azimuthal
component, the agreement is good except in specific regions: near the side boundary
at mid-height (figure 12b), and near the maximum at the surface, where experimental
results do not show any overshoot (figure 12a). As for the axial velocity component
at mid-height (figure 12c), negative values are found experimentally around r = 0.83
and numerically around r= 0.6, indicating that the shape of the meridional circulation
significantly differs from the experiment to the numerics. We also measured the mean
axial velocity profile at other heights (see figure 12d). The range for which axial
velocity measurements can be performed is limited as both incident beams in the
tank must remain within the fluid-layer axial extension. For 0.38 6 z/G 6 0.69, the
profile was found to be independent of z as were the r.m.s. values (not shown). The
mismatch between numerics and experiments remains unexplained at this stage. A
possible reason could be the fact that surface pollution, especially when water is used
as a working fluid, may affect the flow dynamics; its mathematical modelling is still
an open issue (Peaudecerf et al. 2017; Moisy, Bouvard & Herreman 2018). However,
the orders of magnitude for both maximum mean values are in agreement, which is
satisfactory since experimental measurements of such a small velocity component are
extremely delicate and numerical simulations are demanding.

For the second case shown here, the rotation speed is higher, Ω = 4.15 rad s−1,
which corresponds to Re = 81 400 and the same Froude number Fr = 0.2464 as in
Bergmann et al. (2011) (their figure 12). Results are displayed in figure 13. At such
a high Reynolds number, azimuthal velocity profiles are found independent of z in
the range 0.192 6 z/G 6 0.75 investigated (the upper limitation is due to the strong
surface deformation). Moreover, the axial velocity profile at mid-height seems to be
robust as it is found to be very close to the one measured at Re= 30 000.

4.3. Analysis of the unsteady flow
Sections 4.1 and 4.2 describe the mean axisymmetric flow in the transitional regime
and quantify the fluctuation amplitude via r.m.s. values. Hereafter we briefly describe
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FIGURE 12. (Colour online) Experimental and numerical mean and r.m.s. velocity
distributions for the case G = 0.1856, Re = 30 000 and Fr = 0.0335 (0 for numerical
simulations). Mean values obtained by LDV (blue circles) and 3-D DNS (black solid line)
of (a) Vθ at z/G= 0.96, (b) Vθ at z/G= 0.5 and (c) Vz at z/G= 0.5. In each case the
r.m.s. amplitude is indicated by two curves above and below the mean value (thin dashed
and dot-dashed lines). Thick dashed line: disk azimuthal velocity. (d) Measurements of Vz
as function of r at different heights.

the structure and the frequency spectrum of these fluctuations for the case G= 0.1856,
Re= 30 000, for which both experiments and simulations are available.

Even though the free surface remains almost flat in this configuration, a flow
structure is evidenced when Kalliroscope flakes are added to the water. Figure 14
reveals a mode with azimuthal wavenumber m = 3, with a large amplitude at the
periphery of the solid body rotation zone. This robust structure rotates in the
same direction as the disk, however at a lower angular speed (see movie 1 in
supplementary material). A quantitative characterisation is performed by extracting
the grey levels from successive video images along the circle of radius r = 0.8.
A spatio-temporal picture is obtained and plotted in figure 15(a). The diagram
contains inclined stripes from which we can deduce an angular phase velocity of
$ = 1/0.98 rad s−1

= 1.02 rad s−1. This corresponds to a pattern rotating at an
angular velocity close to 2/3 of that of the disk Ω = 1.53 rad s−1, or equivalently
to a frequency f = m$/(2π) close to twice the disk frequency fd = Ω/(2π). This
is best seen in the spectral domain when applying a 2-D Fourier transform to the
spatio-temporal signal: in figure 15(b), the maximum of the spectrum is located at
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FIGURE 13. (Colour online) Experiments at G = 0.1856, Re = 81 400 and Fr = 0.2464.
Mean distribution of (a) Vθ at different heights and (b) Vz at z/G = 0.5 (blue circles)
with indication of the r.m.s. level.

(a) (b)

FIGURE 14. (Colour online) (a) Experiment at G= 0.1856, Re= 30 000 and Fr= 0.0335:
top view of the water layer seeded with Kalliroscope flakes. The red circle at r = 0.8
indicates the position of the line captured for the spatio-temporal diagram of figure 15(a).
(b) Numerical simulation at G = 0.1856, Re = 30 000 and Fr = 0: snapshot of the axial
velocity at z = 0.84G. The periodic numerical domain (r, θ) ∈ [0.4, 1] × [0, (2/3)π] has
been replicated along the azimuth; for r<0.4 (inside the black circle) a zero axial velocity
has been plotted.

m= 3 and f /fd= 1.98. Note that a peak at (m, f /fd)= (1, 1) is also visible, presumably
associated with the disk rotation.

Numerical simulations bring some useful information on the minimum ingredient
to capture this instability. Figure 16(a) shows the evolution of the azimuthal velocity
at some probe location for the chained 2-D and 3-D simulations with Sunfluidh. As
mentioned earlier, the temporal mean is barely shifted in going from two to three
dimensions. However, the r.m.s. value is strongly enhanced in the 3-D simulation. The
spectrum associated with the 3-D established state shows a peak at f /fd = 2.07 in full
agreement with the above experimental determination.
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FIGURE 15. (Colour online) (a) Spatio-temporal diagram of (coloured) grey levels
extracted from the experiment displayed in figure 14 along the circle r = 0.8 and (b)
corresponding spectrum in the mode–frequency domain.
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FIGURE 16. (Colour online) Comparison at G = 0.1856, Re = 30 000 and Fr = 0.0335
(Fr= 0 for the simulation). (a) Simulated evolution of Vθ at the probe location (r, z)=
(0.8, 0.0928) in chained 2-D (dashed) and 3-D (solid) runs; (c) power spectral density
(PSD) in the established regime for t > 2140. (b) Measured azimuthal velocity in the
established regime at the same probe location, determined by LDV; (d) corresponding
spectrum.

The above findings on the frequency spectrum were eventually corroborated by
experimentally measuring the azimuthal velocity using an LDV probe located at the
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very same location. Signal and spectrum are displayed in figure 16(b,d). A marked
frequency peak is found at the same frequency – this peak was also found at all
other locations investigated for both axial and azimuthal velocity components. The
fluctuation amplitude differs between experiments and numerics depending on the
probe location. For the case of figure 16, the discrepancy is relatively strong, but, as
illustrated in figure 12(a,b), better agreement can be found at other locations. On the
whole, the 3-D simulation restricted to the sector r ∈ [0.4, 1] and θ ∈ [0, (2/3)π] is
able to catch most of the instability features of the flow in the transitional regime.

This azimuthal modal structure at such relatively large Reynolds number is likely
to be related to the primary instability at threshold. Indeed, the angular speed of
the observed pattern normalised by that of the disk is close to 2/3, a ratio that we
found to be robust with respect to changes in Re; at threshold, this same ratio (within
approximately 10 %) has been reported from linear stability analyses, whatever the
critical azimuthal wavenumber Kahouadji (2011).

5. Discussion and concluding remarks

Which base flow should be used for linear stability analysis is a major question as
it is usually a necessary requisite for accurate predictions of bifurcation thresholds.
This study gives a better understanding of the base flow structure. Increasing the
rotation speed leads, for Reynolds numbers exceeding a value of typically several
hundreds, to a regime where most of the meridional circulation takes place within
boundary layers. Increasing the rotation speed also enhances surface deformation,
with a deviation h(r) − G almost proportional to the Froude number. Numerical
simulations reveal that this deformation however preserves the overall flow structure.
Unsteady 3-D DNS results show little and localised influence on the mean fields.
Along with r.m.s. data, these characterisations provide a clear picture of the flow at
high Reynolds numbers, far beyond the primary instability threshold.

A comparison between the numerical simulations and existing models is of interest.
Iga (2017) suggested that the rotating polygons grow on a laminar base flow at least
in the bottom and side wall boundary layers, while the model presented by Tophøj
et al. (2013) assumes fully developed turbulence. This may deeply impact the angular
momentum exchanges between the flow and the walls. As a matter of fact, to close
the models, the balance between the angular momentum fed by the bottom disk and
dissipated by the side wall is used to find the position of the solid body rotation
radius rs. In our experiment and simulation, the flow is clearly turbulent.

Nevertheless, in the transitional regime, the bottom and side wall layers studied
by Iga (2017) are confirmed and do not differ significantly from those obtained by
the mean flow as the r.m.s. is quite small in those layers. In particular the side wall
layer could be both accurately measured and simulated with an excellent agreement
(figure 12a,b). Overall, our study shows that the boundary layers are mildly modified
by turbulence and most of its structure is captured in the laminar regime. In addition
to the boundary layers described by Iga (2017), simulations reveal a top layer along
the free surface, an overshoot of the azimuthal velocity at the intersection of the top
and the core layers and a sinuous deformation of the core layer. These features of
the steady two-dimensional solutions are also present in the mean unsteady 2-D and
3-D flow simulations. The 3-D unsteadiness is found to weaken the sharp overshoot
present in two dimensions (figure 11a) without smoothing it out completely. The
presence of the top layer in the simulations implies that the azimuthal and radial
velocity profiles at the surface are not representative of the profiles in the bulk. This
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FIGURE 17. (Colour online) Comparison between azimuthal velocity profiles along the
radius for aspect ratios (a) G = 0.1856, (b) G = 0.5 and (c) G = 1. Magenta solid:
ROSE calculation at Re= 10 000 and z=G/4. Red dotted: distribution from Iga’s (2017)
model (the thin black dashed line shows the position of rI

s as determined in this model
respectively at 0.57, 0.43 and 0.34). Black dashed: ideal Rankine vortex model with
core size rI

s. Blue dash-dot: the TMBF model in Mougel (2014) with correction of the
dissipation, leading to values rTMBF

s = 0.57, 0.49 and 0.43. Without corrections, this latter
model would predict values 0.65, 0.58 and 0.52 respectively for the three aspect ratios.

could be of importance as most simplified models assume a z-independent azimuthal
velocity profile obtained through surface measurements.

We now compare our computations with two existing models namely those
presented by Fabre & Mougel (2014) (hereafter the Tophøj–Mougel–Bohr–Fabre
(TMBF) model) and Iga (2017) for three aspect ratios. In these existing models,
as stated above, rs is a key parameter. Once rs is known, the azimuthal velocity
field can be derived. An additional matching between the solid body rotation region
and the peripheral region, assumed potential, was derived by Iga (2017) in order
to remove the unphysical slope discontinuity at rs. (It is worth noting that there is

a typo in formula (3.64) of Iga (2017) where the term 2Ωδs/

√
2
√

2/π+ 1 should

be 2Ωδs/(

√
2
√

2/π + 1).) Azimuthal velocity profiles are compared in figure 17.
For G = 0.1856, there is a fair match between the 2-D steady simulation and both
theories. The radius rs is predicted within a few per cent when compared to the value
rs= 0.58 given in figure 12 of Bergmann et al. (2011) and our experiment where rs is
slightly below 0.6. As the aspect ratio increases, the results issued from theory deviate
significantly from the numerical results: Iga’s model underestimates both the SBR
radius and the azimuthal velocity amplitude while the TMBF model overestimates
them. Note that in order to improve the theoretical models, the authors suggested
tuning the respective dissipations at the side wall and at the disk. In his thesis (see
details in chap. 6 of Mougel (2014)), Mougel introduced a friction coefficient ratio,
thus increasing the dissipation by a factor 3 along the side wall. Similarly, in order
to match experimental results, Iga et al. (2017) reduced the friction along the disk.
In figure 17, we only applied such correction to the TMBF model.

The numerical simulations and experiments presented in this study are a step toward
a more complete understanding of the base flow prevailing in the high Reynolds
number regime that leads to the growth of rotating polygons in water. Specifically,
the azimuthal velocity profiles and the structure of the flow in the meridional plane
are given in detail. Visualisations and LDV measurements reveal a robust rotating
azimuthal modal structure rotating at angular speed 2Ω/3 while the free surface
deformation barely deviates from axisymmetry. This contrasts with rotating polygons
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where the angular speed is close to Ω/3 (Bach et al. 2014) and the deviation of the
free surface along the azimuth is significant. Evaluating the role of the meridional
flow, usually ignored in instability analyses, as well as the potential influence of
azimuthal modal structures on the emergence of rotating polygons is left for future
studies.
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