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Abstract

CiaoPP is an analyzer and optimizer for logic programs, part of the Ciao Prolog system. It
includes PLAI, a fixpoint algorithm for the abstract interpretation of logic programs which we
adapt to use tabled constraint logic programming. In this adaptation, the tabling engine drives
the fixpoint computation, while the constraint solver handles the LUB of the abstract substitu-
tions of different clauses. That simplifies the code and improves performance, since termination,
dependencies, and some crucial operations (e.g., branch switching and resumption) are directly
handled by the tabling engine. Determining whether the fixpoint has been reached uses semantic
equivalence, which can decide that two syntactically different abstract substitutions represent
the same element in the abstract domain. Therefore, the tabling analyzer can reuse answers in
more cases than an analyzer using syntactical equality. This helps achieve better performance,
even taking into account the additional cost associated to these checks. Our implementation is
based on the TCLP framework available in Ciao Prolog and is one-third the size of the initial
fixpoint implementation in CiaoPP. Its performance has been evaluated by analyzing several
programs using different abstract domains.
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1 Introduction

Tabling (Tamaki and Sato 1986; Warren 1992) is an execution strategy for logic programs

that suspends repeated calls which could cause infinite loops. Answers from non-looping

branches are used to resume suspended calls which can, in turn, generate more answers

and resume other suspended calls. Only new answers are saved, and evaluation finishes

when no new answers can be generated. Tabled evaluation always terminates for call-

s/programs with the bounded term depth property (i.e., they can only generate terms

with a fixed finite depth) and can improve efficiency for terminating programs which

repeat computations, as it automatically implements a variant of dynamic program-

ming. Tabling has been successfully applied in a variety of contexts, including deductive

databases, program analysis, semantic Web reasoning, and model checking.

Constraint Logic Programming (CLP) (Jaffar and Maher 1994) extends Logic Pro-

gramming (LP) with variables that can belong to arbitrary constraint domains and the
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ability to incrementally solve equations involving these variables. CLP brings additional

expressive power to LP, since constraints can very concisely capture complex relation-

ships. Also, shifting from “generate-and-test” to “constraint-and-generate” patterns re-

duces the search tree and therefore brings additional performance, even if constraint

solving is in general more expensive than unification.

The integration of tabling and constraint solvers makes it possible to exploit their

synergy in several application fields: abstract interpretation (Swift and Warren 2010),

reasoning on ontologies, and constraint-based verification (Gange et al. 2013). In this

paper we use Mod TCLP (Arias and Carro 2019a) to adapt PLAI, the fixpoint al-

gorithm implemented in the program analysis, optimization, and transformation tool

CiaoPP (Hermenegildo et al. 2012; Hermenegildo et al. 2005). The re-implementation

of PLAI uses tabling to reach the fixpoint (following ideas similar to (Kanamori and

Kawamura 1993, Janssens and Sagonas 1998)), incremental aggregation techniques (Guo

and Gupta 2008; Zhou et al. 2010; Swift and Warren 2010; Arias and Carro 2019b)

to join the answers, by discarding the more particular ones, and call entailment

checks (Chico de Guzmán et al. 2012; Arias and Carro 2019a) to detect repeated calls (in

order to suspend execution to reuse answers from previous calls), thereby speeding up

convergence. The resulting code space is reduced to one third and, consequently, increases

the maintainability of the abstract interpreter.

2 Related Work

Abstract interpretation has always been seen as one of the most clear applications of

tabled logic programming. It requires a fixpoint procedure, often implemented using

memo tables and dependency tracking, which play a role very similar to the internal data

structures that tabling engines need to detect repeated calls, store and reuse answers,

and check for termination.

The relationship between abstract interpretation and tabling was recognized very early.

Extension tables (Dietrich 1987) were proposed to record results from the execution of

predicates and turn intensional definitions into extensional definitions. Their applications

included “improving the termination and completeness characteristics of depth-first eval-

uation strategies in the presence of recursion”. The idea of extension tables were applied

as the embryo of SLG resolution and the XSB system. At the same time, abstract inter-

pretation was then viewed as inefficient, and as part of the efforts to make it a practical

technique to implement analyzers, tables, but also other ideas such as dependency track-

ing, were used (Warren et al. 1988), thus making it clear that a common underlying

technology could be used in both types of systems.

The next step was to use these components, independently available in tabling systems,

to explore how they could be used to build abstract interpreters. Earlier work (Kanamori

and Kawamura 1993) explored the possibilities offered by OLDT (Tamaki and Sato 1986)

to implement abstract interpretation. Using type inference as the guiding example, it

suggests certain changes to OLDT and concludes that it is feasible to do abstract in-

terpretation with OLDT. The paper neither describes an implementation nor reports

performance, but it states that the abstract interpreter was implemented and was avail-

able. In (Warren 1999) an abstract interpreter written in XSB is presented as one of the

applications of tabled Prolog.
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However, surprisingly few examples of abstract interpreters implemented using tabling

have been presented and evaluated w.r.t. implementations without tabling. One of them

is a framework (Janssens and Sagonas 1998) based on abstract compilation that executes

the abstract version of the program under analysis, together with domain-dependent

abstract operations, which is evaluated using the tabling system XSB and compared

with the AMAI and PLAI systems (Janssens et al. 1995; Muthukumar and Hermenegildo

1992). Both systems use abstract interpreters written in Prolog without tabling, but they

rely on very different underlying technologies, and with different representations for the

abstract domains. From that evaluation, the paper concludes that tabling is a viable

infrastructure for abstract interpretation, but concedes that the PLAI fixpoint algorithm

was the most efficient abstract interpreter for logic programming available at the moment.

The very different underlying infrastructure makes it difficult to use these results to draw

meaningful conclusions.

On the other hand, abstract interpretation has been used as a benchmark to com-

pare different implementations and/or scheduling strategies of tabling (Demoen and

Sagonas 1998, Freire et al. 2001). Advanced tabled systems and techniques have been

proposed to implement more efficient abstract interpreters by using the least up-

per bound operator (Schrijvers et al. 2008) to combine answers, numeric constraint

solvers (Chico de Guzmán et al. 2012) to implement the Octagon domain, and the par-

tial order answer subsumption with abstraction (Swift and Warren 2010) for cases where,

e.g., the program computed does not have a finite model. However, none of them reports

performance evaluation against other frameworks.

In this paper we started with PLAI, the state-of-the-art abstract interpreter used

by CiaoPP, and re-implemented its fixpoint procedure in Tabled CLP preserving the

interface with the rest of the system. Therefore, we can compare some indicators of code

complexity (e.g., comparing lines of code, with the assumption that the tabled version

is essentially a subset of the original version) and performance on a completely equal

footing. This is, to our best knowledge, the first comparison that has these characteristics.

3 Background

In this section we briefly describe Mod TCLP (Arias and Carro 2019a), a generic in-

terface that facilitates the integration of constraint solvers with the tabling engine in

Ciao, Aggregate-TCLP (Arias and Carro 2019b), a framework implemented on top of

Mod TCLP to incrementally compute lattice-based aggregates, and PLAI, the fixpoint

algorithm used by CiaoPP.

3.1 The Mod TCLP framework

Tabled Logic Programming with Constraints (TCLP) (Arias and Carro 2019a,

Schrijvers et al. 2008; Cui and Warren 2000) improves program expressiveness and, in

many cases, efficiency and termination properties. Let us consider a program to compute

distances between nodes in a graph written using tabling (Fig. 1, left). The query ?-

dist(a,Y,D),D < K. would loop under SLD due to the left-recursive rule, while it would

terminate under tabling for acyclic graphs.
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(a) (b) (c)

Fig. 1: Distance traversal in a graph. Note: The symbols #> and #= are (in)equalities in

CLP.

Tabling records the first occurrence of each call to a tabled predicate (the generator)

and its answers. In variant tabling (the most usual form of tabling), when a call is found

to be equal, modulo variable renaming, to a previous generator, the execution of the call

is suspended and it is flagged as a consumer of the generator. For example dist(a,Y,D)

is a variant of dist(a,Z,D) if Y and Z are free variables. Upon suspension, execution

switches to evaluating another untried branch. A branch which does not suspend can

generate answers for the initial goal. When a generator finitely finishes exploring all the

clauses and all answers are collected, the consumers that depend on it are resumed and

fed with the answers of the generator. This may make generators produce new answers

which can in turn resume more consumers. This process finishes when no new answers

can be generated — i.e., a fixpoint has been reached. Tabling is sound and, for programs

with a finite Herbrand model, complete (and, therefore, it always finishes in these cases).

However, in a cyclic graph, dist/3 has an infinite Herbrand model: every cycle can be

traversed repeatedly and create paths of increasing length. Therefore, the previous query

?- dist(a,Y,D),D < K will not terminate under variant tabling, although the query as a

whole has a finite model.

On the other hand, if the integration of tabling and CLP (Fig. 1, center) uses constraint

entailment (Chico de Guzmán et al. 2012), calls to dist/3 will suspend if there are

previous similar calls that are more general, and only the most general answers will be

kept. The query ?- D #<K, dist(a,Y,D) terminates under TCLP because by placing the

constraint D #< K before dist(a,Y,D), the search is pruned when the values in D are larger

than or equal to K.

This illustrates the main idea underlying the use of entailment (�) in TCLP: more

particular calls (consumers) can suspend and later reuse the answers collected by

more general calls (generators). In order to make this entailment relationship explicit,

we will represent a TCLP goal as 〈g, cg〉 where g is the call (a literal) and cg is

the projection of the current constraint store onto the variables of the call. For ex-

ample, 〈dist(a, Y, D), D > 0 ∧ D < 75〉 entails the goal 〈dist(a, Y, D), D < 150〉 because

(D > 0 ∧ D < 75) � D < 150. The latter is therefore more general (i.e., it is a genera-

tor) than the former (a consumer). All the solutions of a consumer are solutions for its

generator, since the space of solutions of the consumer is a subset of that of the genera-

tor. However, not all answers from a generator are valid for its consumers. For example

Y = b ∧ D > 125 ∧ D < 135 is a solution for our generator, but not for our consumer, since

the consumer call was made under a constraint store more restrictive than the generator.
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Therefore, the tabling engine has to filter, via the constraint solver, the answers from the

generator that are consistent w.r.t. the constraint store of the consumer.

Additionally, the Mod TCLP framework (Arias and Carro 2019a) has been used to

implement in Ciao a framework, called Aggregate-TCLP (Arias and Carro 2019b), that

incrementally computes aggregates for elements in a lattice. The Aggregate-TCLP frame-

work uses the entailment and join relations in a lattice to define and compute aggregates,

and to decide whether some atom is compatible with (i.e., entails) the aggregate. For ex-

ample, the directive :- table dist(_,_,min) (Fig. 1, right), specifies the (aggregate)

mode min for the third argument. The query ?- dist(a,Y,D) will in this case terminate

because only the shortest distance between two nodes found at every moment is kept,

and it will be returned in D as a result of the evaluation of the initial call. Other tabling

engines implement answer subsumption (Swift and Warren 2010) or a restricted form of

it via mode-directed tabling (Guo and Gupta 2008; Zhou et al. 2010; Wielemaker et al.

2012; Santos Costa et al. 2012), that can be used to compute aggregates. However, an-

swer subsumption, as implemented in XSB, assumes answers to be safe (i.e., ground) and

works on non-ground answers only in some cases, so it would in principle not be applica-

ble when answers are constraints. Answer subsumption also performs subsumption only

on answers, while Aggregate-TCLP can in addition check entailment for calls. In the case

of the TCLP implementation of the abstract interpreter, this makes it possible to reuse

answers obtained from calls semantically equivalent (i.e., calls whose associated abstract

substitutions differ, but that still represent the same object in the lattice) and/or more

general (i.e., that represent an element higher in the lattice hierarchy). Note that in our

benchmarks we are using semantic equivalence, since using entailment to detect more gen-

eral calls would cause a loss of precision as the domains we are using are non-relational.

Last, answer subsumption does not provide the freedom to be used with aggregates that

cannot be expressed in terms of a lattice, such as sum/3, which (Arias and Carro 2019b)

can work around.

3.2 The PLAI algorithm

We assume that the reader is familiar with the basic principles of abstract interpre-

tation (Cousot and Cousot 1977; Bruynooghe 1991; Nielson et al. 2005). The PLAI

algorithm used by the abstract interpreter of CiaoPP for static analysis extends the

fixpoint algorithms proposed by (Bruynooghe 1991) with the optimizations described

in (Muthukumar and Hermenegildo 1990). In logic programming, all possible concrete

substitutions in the program (i.e., terms to which the variables in that program will be

bound at run-time for a given query) can be infinite, which gives rise to an infinite execu-

tion tree. The core idea of PLAI is to represent this infinite execution tree by an abstract

and-or tree using abstract substitutions to finitely represent the possibly infinite sets of

substitutions in the concrete domain. The set of all possible abstract substitutions that

a variable can be bound to is the abstract domain which is usually a complete lattice (or

a complete partial order of finite height).

Domains in PLAI PLAI is domain-independent: new abstract domains can be easily

implemented and integrated by using a common interface. The operations required by

the domain interface are:
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• λ′ � λ′′, which gives the LUB of the abstract substitutions λ′ and λ′′. The LUB

operation is defined in terms of the � relation of the abstract domain.

• call_to_entry(p(�u),C,λ), where C is a clause and p(�u) is a call. It gives an ab-

stract substitution describing the effects on vars(C) of unifying p(�u) with head(C)

given an abstract substitution λ for the variables in �u.

• exit_to_success(λ, p(�u), C, β) which returns an abstract substitution describ-

ing the effect of execution p(�u) against clause C. For this, the variables of the

abstract substitution β are renamed taking into account the unification with the

terms in head(C) and the variables in p(�u), and a new abstract substitution is

returned updating λ with the new information.

• extend(λ,λ′) which extends abstract substitution λ to incorporate the information

in λ’ in a way that it is still consistent.

• project_in(�u,λ) which extends the abstract substitution λ so that it refers to all

the variables in �u.

• project_out(�u,λ) which restricts the abstract substitution λ to refer only to the

variables in �u.

For additional examples of abstract domains integrated in CiaoPP, we refer the reader

to (Bueno et al. 2004; Muthukumar and Hermenegildo 1989; Vaucheret and Bueno 2002;

Hermenegildo et al. 2012).

And-Or trees and substitutions In PLAI, the abstract and-or tree is constructed

using a top-down driven strategy (instead of a bottom-up computation) so that the

computation is restricted to what is required for the given query. In the resulting and-or

tree, an and-node is a clause head h whose children are the literals in its body, p1,. . .,pn,

and an or-node is a literal, pi, whose children are the heads h1,. . .,hm of the clauses that

unify with pi. Its construction starts with the abstract call substitution for the query.

Then, abstract substitutions at all points of the abstract and-or tree are computed and

finally, the success substitution for the query is computed.

Inside a clause, abstract substitutions at every point are denoted depending on their

position among its literals. Given a clause h:- p1,. . .,pn, let λi and λi+1 be the ab-

stract substitutions to the left and right of the subgoal pi, 1 ≤ i ≤ n. Then, λi and

λi+1 are, respectively, the abstract call substitution and the abstract success substitution

for the subgoal pi. The projection of λ1 on vars(h) is the abstract entry substitution,

βentry, of the given clause, and, similarly, the projection of λn+1 on vars(h) is its ab-

stract exit substitution, βexit. The abstract substitutions for a clause are computed as

follows:

• Exit substitution from the entry substitution (Algorithm 1): Given a clause

h:- p1,. . .,pn and an entry substitution βentry for the clause head h, the call sub-

stitution λ1 for p1 is computed by simply adding to βentry an abstraction for the

variables in the clause that do not appear in the head. The success substitution for

p1 is λ2, and it is computed as explained below (essentially, by repeating this same

process for the clauses which unify with p1). λ3, . . . , λn+1 are computed similarly.

The exit substitution βexit for this clause is the projection of λn+1 onto �u, the

variables in h.
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Algorithm 1: entry_to_exit: Compute exit substitution from entry substitution.

Data: A clause C of the form h(�u):- p1(�u1),. . .,pm(�um); an entry substitution βentry
Result: An exit substitution βexit
λ1 := project_in(vars(C),βentry);
for i := 1 to m do

λi+1 := call_to_success(pi(�ui),λi);

return project_out(�u, λm+1);

• Success substitution from the call substitution (Algorithm 2): Given a call substi-

tution λcall for a subgoal p, let h1, . . . , hm be the heads of clauses that unify with p.

Compute the entry substitutions β1entry, . . . , βmentry for these clauses. Compute

their exit substitutions β1exit, . . . , βmexit as explained above. Compute the success

substitutions λ1success, . . . , λmsuccess from the exit substitutions corresponding to

these clauses. At this point, all different success substitutions can be considered

for the rest of the analysis, or a single success substitution λsuccess for subgoal p

computed by means of an aggregation operation for λ1success, . . . , λmsuccess. This

aggregate is the least upper bound (LUB), denoted by �, of the abstract domain.

Note that these two procedures are mutually recursive and would not finish in case

of mutually recursive calls. They merely describe how abstract substitutions are gen-

erated for the case of literals in a body (by carrying success abstract substitutions to

call abstract substitutions) and how entry and exit substitutions of several clauses are

composed together. For the general case of recursive predicates, where repeated calls and

termination have to be detected, PLAI implements a fixpoint algorithm that we sketch

below.

PLAI’s fix point algorithm The core idea of PLAI’s fixpoint algorithm (Muthukumar

and Hermenegildo 1990) is that the subtree corresponding to the abstract interpretation

of a node with a recursive predicate p should be finite. If the abstract domain is finite, a

predicate p can only have a finite number of distinct call substitutions and therefore the

subtree can only have a finite number of occurrences of nodes that have a variant of p and

which themselves have subtrees. In addition to that, all other nodes in the subtree with

the same predicate name p and with the same call substitutions (modulo variable renam-

ing) use the approximate value of the success substitution computed previously for the

root node of the subtree labeled with p, and hence they do not have any descendent nodes.

Based on this idea, the fixpoint algorithm iteratively refines the approximate values of

the success substitution of the recursive predicate p as follows:

• First, it computes an approximate value of the projected success substitution using

the LUB of the projected success substitutions corresponding to the non-recursive

clauses of p. This provides an initial, hopefully non-empty, abstract substitution

that is fast to compute (it does not need to check for repeated calls or termination)

and accelerates the convergence of the fixpoint algorithm. In practice, it can be

delegated to a specialized version of Algorithms 1 and 2 restricted to non-recursive

calls / clauses. These can be determined beforehand by a reachability analysis based

on strongly connected components.
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Algorithm 2: call_to_success: Compute success substitution from call substitution.

Data: A goal p(�u); an abstract call substitution λcall
Result: A success substitution λsuccess
λproj := project_out(�u,λcall);

λ′ := ⊥;
for each clause C which unifies with p(�u) do

βexit := entry_to_exit(C,call_to_entry(p(�u),C,λproj));

λ′ := λ′ � exit_to_success(λproj,p(�u),C,βexit);

return extend(λcall, λ′);

• Then, it traverses the (finite) subtree corresponding to p in a depth-first fashion.

When an entry-exit combination is needed for a call to p having the same call

substitution (modulo variable renaming), the existing approximation is used. For a

call to p with a different call substitution, a new (nested) fixpoint computation is

started. When the analysis returns to the root of the subtree, the success substitu-

tion for p is updated as the LUB of the previous value and the value just computed

from the recursive clauses of p.

• If there is a change in the success substitution for p, the depth-first traversal is

restarted using the new success substitution, which is used for the subtree nodes cor-

responding to p that have a compatible call substitution. These depth-first traversal

iterations can take place only a bounded number of times, since the LUB opera-

tion is monotonic and the abstract substitutions form a lattice of finite height.1

Therefore, a fixpoint will be reached in a finite number of steps.

• If there is no change in the success substitution for the root node of the subtree

of p for a given call substitution, then the analysis of that subtree is complete (for

that call substitution) and the fixpoint computation of the predicate p terminates.

For recursive predicates called from within recursive predicates, the dependencies be-

tween nested calls have to be recorded to restart the traversal of the subtrees containing

predicate calls whose success substitution has been updated.

4 Implementations of the PLAI Algorithm: Prolog vs. Tabling

We will now describe more in depth how the PLAI algorithm is implemented in CiaoPP2

and highlight the differences w.r.t. the version that uses Tabled CLP.

4.1 PLAI in CiaoPP

The implementation of call_to_success is the entry point, as it relates the entry and

exit substitutions of a call (in particular, of the top-level call). During the analysis of a

goal p(�u), and for each clause that unifies with p(�u), the predicate call_to_success

1 While it is true that abstract domains can be infinite, if convergence is not reached after some time, a
widening operation changes the representation of the abstract substitutions to a coarser domain that
has more chances to converge (or is sure to converge, if it is finite).

2 The code is available at www.ciao-lang.org. For the reader convenience, we sketch it in Appendix B
of the supplementary material accompanying the paper at the TPLP archive.
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invokes entry_to_exit which, for each subgoal in the body of the clause, invokes again

call_to_success. The abstract interpreter is able to stop the evaluation of a part of the

program and move to another part to evaluate calls to other predicates. The implemen-

tation of PLAI is optimized to accelerate the convergence of the fixpoint and reduce the

computation by reusing previous results, among other techniques.

The PLAI algorithm is based on the construction of an and-or tree, described in

Section 3.2, with the nodes representing the predicate calls visited during the analy-

sis. To construct this tree, call_to_success identifies each goal with its corresponding

and/or node and with the specialized version of its father (i.e., the version of the lit-

eral that originated the call) and carries around a list with the nodes on which the

current goal depends. The analysis starts with a query (a goal) and a call substitution.

With this information, call_to_success creates the root node of the tree and the list

of clauses that unify with the goal. If the goal corresponds to a non-recursive predi-

cate, it computes the success substitution which is asserted in a memo-table to reuse

the result later on. Otherwise, the goal corresponds to a recursive predicate and it is

dealt with by the fixpoint algorithm: first, it evaluates the non-recursive clauses obtain-

ing an approximation of the success substitution and, after this, it starts the fixpoint

computation.

During the fixpoint computation, for a goal with a given call substitution:

• If complete information has been already inferred and saved, call_to_success

reuses it, to avoid re-computations.

• If it is already inside a fixpoint computation (some parent started a fixpoint with

the same call), call_to_success reuses the approximation stored for this call, to

avoid entering loops.

• If an analyzed call depends on other nodes whose fixpoint are not completed yet,

two cases are treated:

— If the information on which the predicate depends is updated, a local fixpoint

computation is started.

— Otherwise, nothing is done.

To decide whether updated information for a node is available, the information

inferred for it has a version number:

— When the information on a node is updated, its version number is increased

by one.

— When a node uses information from another node, it stores the version of

that information in the list of nodes on which it depends.

Version numbers are used to detect updates of the information on which a node

analysis depend. If the version number of the last information used from a node

does not match its current version number, there has been an update that needs

to be propagated.

When the fixpoint computation finishes and the list of dependent nodes is empty,

the current information for this call is asserted. Otherwise, if this list is not empty, the

information remains flagged as an approximation and the fixpoint restarts. As it can easily

be seen, while the algorithm can be conceptually not too complex, its implementation is
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cumbersome and at points costly, since many interactions are done through the database

using identifiers for program points.

4.2 The PLAI Algorithm in TCLP

The PLAI code using tabling is a simplification of the corresponding Prolog implemen-

tation. The main points that were changed are:

• The handling of dependencies among nodes and the detection of termination in the

fixpoint computation, that were explicit in the Prolog version, are now transferred

to the underlying fixpoint of the tabling engine.

• The calculation of the LUB of the abstract substitutions generated by different

clauses unifying with a call is done via lattice-based constraint aggregation (which

is in turn built upon tabling).

4.2.1 Internal Database and Dependencies

In the Prolog implementation, the information related to the abstract substitutions is

kept in a dynamic database relating code, program points, entry/exit substitutions, and

dependencies. This makes it globally accessible and allows it to survive across backtrack-

ing and calls, so that it does not need to be carried around the program and be rebuilt

every time there is a change in the substitution at a program point.

However, making the abstract interpreter update that information, switch among calls,

and re-analyze calls needs accessing and updating this database, which is costly and

mixes declarative and imperative styles. On top of that, the CiaoPP implementation has

been fine-tuned during many years to avoid unnecessary (re-)analyses and minimize the

overhead of accessing the database. All of these optimizations cause the code to have

to deal with specific cases for the sake of performance, hence adding to its complexity.

But despite the involved implementation, this machinery mimics, at Prolog level, an

infrastructure similar to a tabling engine, but specialized for a given program —the

abstract interpreter— and with optimizations specific for the task at hand.

This bookkeeping becomes unnecessary when using a tabling-based implementation.

An abstract interpreter written using tabling and equipped with the capability to detect

when two syntactically different substitutions represent the same object, can automat-

ically take care of termination, suspend analysis when repeated calls are detected, and

resume them when new information is available — all of it as part of the normal execution

of a tabled program, without having to explicitly update and check dependencies.

That makes the code much simpler (no dependencies, lists of pending goals, resuming,

etc. need to be explicitly coded) and shorter (we have obtained a threefold reduction

in code size). On the other hand, the tabling engine is generic and cannot decide which

suspension and/or resumption policy is better for a particular application. We on purpose

chose to (a) keep the TCLP code simple and not include any specific heuristic in the code,

(b) not to reimplement an analyzer from scratch, but simplify existing code, and (c) keep

exactly the same interfaces (both those offered to the rest of CiaoPP and those required

by the fixpoint code) so that the TCLP-based abstract interpreter can interoperate with

the rest of the CiaoPP machinery as a drop–in replacement with close to zero effort. For
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Fig. 2: Implementation of call_to_success/7 under the TCLP framework.

these and other reasons, our performance figures (Section 5) are a lower bound of what

could be achieved.

As an example, the implementation of call_to_success/13 in Prolog checks several

cases: if the call being analyzed is complete, under evaluation in a fixpoint, a call to a

recursive predicate, a call to a non-recursive predicate, etc. to update information accord-

ingly. It eventually invokes proj_to_prime_nr/9, which starts the fixpoint computation

itself, and which recursively calls call_to_success/13. call_to_success/13 has eight

clauses and proj_to_prime_nr/9 has six clauses (see Appendix B of the supplemen-

tary material accompanying the paper at the TPLP archive or the corresponding file at

http://www.cliplab.org/papers/tclp-plai-iclp2019).

In the tabling implementation, the underlying engine and the calls to the ab-

stract domain operations through the constraint solver interface take care of these

cases and dependencies. This makes the implementation of call_to_success have

just one clause (Fig. 2). The counterpart to proj_to_prime_nr/9 (which we renamed

call_to_success_fixpoint/3 for clarity) has just two clauses: one for user predicates

and another one for library and builtin predicates.

Additionally, the use of tabling makes it unnecessary to save explicitly all the inter-

mediate substitutions, database identifiers for calls and program points, dependencies

among goals, etc. This reduces the number of arguments, and call_to_success went

from thirteen used in Prolog:

call_to_success(RFlag,SgKey,Call,Proj,Sg,Sv,AbsInt,ClId,Succ,List,F,N,Id)

to seven in the tabling-based implementation:

call_to_success(SgKey,Call,Proj,Sg,Sv,AbsInt,Succ)

4.2.2 Deciding Termination and Computing the LUB

In the PLAI algorithm, the different exit substitutions obtained from the clauses that

unify with a given call are combined using the LUB operator of the abstract domain

(Algorithm 2): exit substitutions βi exit, for every clause Ci are joined to return the

success substitution λsuccess.

The CiaoPP implementation uses bagof/3 to collect all the clauses in a list and then

traverses it and analyzes every clause to create another list of abstract substitutions that

are joined with the LUB. This processing is conceptually simple, but its implementation
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Fig. 3: Code of the operator abst_lub under the TCLP framework.

obscures the code with low-level operations, does not match the idea of having an inter-

preter executing on an abstract domain, and requires database accesses to retrieve the

substitution applicable at that point.

In our implementation, the use of lattice-based aggregates with the tabling en-

gine (Arias and Carro 2019b) simplifies the code. The abst_lub identifier in line 6 of

Fig. 2 is the name of an interface that has several missions: determine suspension of calls,

detect termination of the fixpoint, and perform aggregation of abstract substitutions. In

the same line, the underscores state that the corresponding arguments are to be checked

for equality (necessary to decide whether a fixpoint has been reached) using the variant

policy, i.e., syntactical equality modulo variable renaming.

The implementation of the interface named abst_lub in Fig. 3 tells the tabling

engine how to treat the argument selected previously with this identifier. In partic-

ular, the tabling engine checks the corresponding arguments for equality by calling

call_entail/3. In our case, two abstract substitutions are termed equal if the abstract

domain implementation (identical_abstract/3) decides so. This makes it possible to

detect that two different representations correspond to the same object in the lattice

and, if so, suspend a call or retrieve saved answers for it.

The code in Fig. 3 also aggregates the results returned in the third argument (the ab-

stract substitutions) by joining them with the LUB of the lattice. The tabling engine calls

answer_entail/3 to decide whether a new answer (a substitution) is or not more gen-

eral than an existing answer (less_or_equal/3). If its not comparable, answer_join/4

(which in turn invokes compute_lub/3) is called to compute the LUB of a previous an-

swer and the new one. With these definitions, lines 7 to 12 in Fig. 2 contain all the

code necessary to return the exit substitution of a call w.r.t. all its matching clauses.

The implementation of the LUB operation (abs_lub, Fig. 3) is based on the operations

provided by the abstract domain implementation.

This code also performs an incremental computation of the LUB as follows: upon suc-

cess, the first answer, corresponding to the exit substitution β1exit, is stored in the answer

table of the tabled predicate. Let us call this stored answer βexit. For the subsequent exit

substitutions β iexit, i > 1, there are two possible cases: if the saved substitution is more

general (β iexit � βexit), then β iexit is discarded; otherwise we make βexit = βexit � β

iexit.

4.2.3 Connecting Abstract Substitutions with Lattice-Based Aggregates

The TCLP system handles entailment, aggregation, etc. by delegating operations to an

underlying constraint solver using a fixed interface (Arias and Carro 2019a). Since we

purposely did not change the representation of the CiaoPP abstract domains (they are
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used in other parts of the system), we constructed a bridge between these domains and

the interface that TCLP expects.

The original entry point of the fixpoint, proj_to_prime_nr/9 (renamed as

call_to_success_fixpoint/3 in the TCLP implementation), now tabled, is automati-

cally rewritten (by the package tclp_aggregate) to call an auxiliary predicate that, at

run time, substitutes the arguments carrying abstract substitutions by attributed vari-

ables (Holzbaur 1992) that simulate having a constrained variable. Their attributes are

tuples that contain (a) the identifier (abst_lub, in our example) that determines the in-

terface to be used and (b) the abstract substitution and ancillary information necessary

by the abstract interpreter.

When one operation of the tabling engine involves a call with attributed variables,

the engine checks if it has an attribute with contents it recognizes. If so, it calls the

corresponding predicate from the interface that, in our case, operates on the substitution

stored in the attributes.

5 Evaluation

Besides simplifying code, the implementation of PLAI using TCLP gives performance

advantages in many cases. These come mainly because part of the bookkeeping related

to dependencies, saving the analysis state when restarting the analysis of a dependent

call, checking for termination, etc. are handled at a lower level. On the other hand,

the implementation currently in CiaoPP, as commented before, has been fine-tuned and

specialized during many years to minimize the overhead of the fixpoint implementation,

so that a large proportion of the analysis time is spent in domain-related operations. On

top of that, the CiaoPP domain representation and domain operations are designed to

work well with its current architecture and coding decisions (e.g. saving and retrieving

from the dynamic databases) and are suboptimal for a tabling-based implementation: for

example, redundant data is manipulated and/or stored. As commented earlier, we did

not change any of these so the TCLP fixpoint can seamlessly interact with the rest of

the CiaoPP tool, exposing and using exactly the same interfaces.

Even with these constraints, we observed speedups when analyzing most programs

from a benchmark set. We used the Groundness and Sharing+Freeness (Muthukumar

and Hermenegildo 1991) domains due to their relevance (e.g., for program optimization

and correctness of parallelization). Groundness (see Table 1 for performance results)

determines if some program variable will be bound to a ground term. This is useful to

derive modes, optimize unification, and improve the precision of the Sharing+Freeness

analysis, among others.

Sharing+Freeness (see Table 2) determines if two (or more) program variables may

be bound to terms sharing a common variable. It is useful to determine, for example,

whether running two goals in parallel may try to bind the same variable, thus causing

races and compromising correctness. The benchmarks used are standard programs that

have been previously used to evaluate CiaoPP.

All the experiments in this paper were performed on a Linux 5.0.0-13-generic machine

with an Intel Core i7 at 1.80GHz with 16Gb of memory and using gcc 8.3.0 to compile

the abstract machine of Ciao Prolog. In all cases, every program was analyzed 40 times

and the 10 worst times were discarded, both when using the tabling and the Prolog
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Table 1: Performance comparison: CiaoPP fixpoint in Prolog and TCLP (Groundness

domain).

Speedup TCLP (ms) CiaoPP (ms)

fibf alt 1.60 0.29 0.46
aiakl 1.56 2.45 3.82
boyer 1.50 7.31 10.97
pv queen 1.46 0.74 1.07
subst 1.41 0.25 0.35
pv gabriel 1.37 3.65 4.99
rdtok 1.32 7.03 9.25
mmatf 1.24 0.31 0.39
hanoi 1.22 0.53 0.65
revf lin 1.20 0.27 0.32
append 1.20 0.17 0.20
rev lin 1.19 0.26 0.31
prefix 1.16 0.27 0.31
revf 1.15 0.32 0.37
pv plan 1.15 1.94 2.23
sublist app 1.14 0.24 0.27
reverse 1.14 0.38 0.43
flatten 1.13 0.55 0.62
palindro 1.12 0.34 0.38
fact 1.08 0.25 0.27
rotate 1.06 0.46 0.49
maxtree 0.98 0.63 0.61
zebra 0.92 1.38 1.26
browse 0.89 1.76 1.57

AVG 1.31 31.78 41.59

implementation, to try to minimize the effect of spurious interruptions, O.S. scheduling,

etc. that can introduce noise in the execution. The remaining times were averaged. All

the code and the system under evaluation is available at http://www.cliplab.org/

papers/tclp-plai-iclp2019.

The average speedups in each table were calculated by adding up the (averaged) execu-

tion times for all the benchmarks and dividing the CiaoPP time by the TCLP time. This

shows that, on average, the analysis with the Groundness domain speeds up a bit more

than 30%, while the analysis with the Sharing+Freeness has experienced, on average, a

slight slowdown (about 3%).

By looking at every benchmark in isolation, we can observe that the speedups differ

greatly among them. We have sorted the benchmarks according to the speedup to appre-

ciate better the differences. In both cases, only a small part of the benchmarks (three)

experienced a slowdown, and even in these cases, the maximum slowdown was about

10%. In the case of Sharing+Freeness, the slowest analysis corresponded as well to the

largest execution time (larger than the rest of the benchmarks combined). We want to

note that this benchmark (zebra) is probably not a representative of a typical program,

as it is a combinatorial problem with many free variables in a single clause, some of which

are aliased with each other.
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Table 2: Performance comparison: CiaoPP fixpoint in Prolog and TCLP (Sh+Fr

domain).

Speedup TCLP (ms) CiaoPP (ms)

fact 1.30 0.26 0.33
pv queen 1.23 1.21 1.49
mmatf 1.17 0.51 0.60
mmatrix 1.15 0.53 0.61
prefix 1.14 0.46 0.52
revf 1.12 0.47 0.53
revf lin 1.10 0.39 0.43
reverse 1.10 0.39 0.43
rev lin 1.10 0.38 0.42
rotate 1.06 0.72 0.76
pv pg 1.01 2.67 2.70
append 0.98 1.11 1.09
sublist app 0.96 0.87 0.84
zebra 0.91 16.34 14.80

AVG 0.97 26.31 25.55

The source of the speed difference is not easy to determine. A profile of the number

of fixpoint calls in CiaoPP vs. fixpoint calls, entailment checks, joins, etc. in the TCLP

version does not seem to show a correlation with the observed speedups. We therefore

conjecture that the shape and size of the abstract substitution, and the relative cost of

checking entailment, has to be explored to have a better explanation of the differences

observed.

6 Conclusions and Future Work

We have presented a re-implementation of PLAI, a fixpoint computation algorithm for

abstract interpretation, using tabled constraint logic programming. The resulting code is

considerably shorter than the current Prolog implementation of PLAI in CiaoPP (one-

third of its size) and much simpler: all the bookkeeping necessary to keep track of de-

pendencies between predicates, analysis restarting, etc. is in charge of the tabling engine,

which increases the maintainability of the implementation of PLAI.

We have evaluated its performance using several benchmarks and abstract domains,

and compared it with the original implementation in CiaoPP. In most cases, the TCLP

implementation showed improved performance, sometimes with a speedup of 60%. In a

few cases there was a small slowdown, which we think is a reasonable price to pay for the

added code clarity, especially taking into account that there is room for improvement in

the current implementation.

Among the immediate future plans, we want to experiment re-implementing the ab-

stract domains with an optimized representation of the abstract substitutions, and also

use constraint logic programming techniques to propagate the effects of updates. We also

expect that, using constraints, we will be able to define widening heuristics indepen-

dently of the fixpoint algorithm thereby increasing the resulting flexibility, precision and

performance w.r.t. the state of the art.
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