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ABSTRACT

In this article we propose a bootstrap test for the probability of ruin in the 
compound Poisson risk process. We adopt the P-value approach, which leads 
to a more complete assessment of the underlying risk than the probability of 
ruin alone. We provide second-order accurate P-values for this testing problem 
and consider both parametric and nonparametric estimators of the individual 
claim amount distribution. Simulation studies show that the suggested boot-
strap P-values are very accurate and outperform their analogues based on the 
asymptotic normal approximation.
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1. INTRODUCTION

The risk process is a stochastic model for the variations of an insurer’s surplus 
over time. More precisely, if  we denote by r0  ≥  0 the initial reserve, by c > 0 the 
constant premium rate and by {Zt}t  ≥  0 the compound Poisson process of the 
aggregate claim amounts, then the classical risk process {Yt}t  ≥  0 is given by 

 r ct Zt t0= + -Y , (1)

for all t  ≥  0. Precisely, Zt = t
0i= iXN/  for all t  ≥  0, where X0 

def
=  0, for convenience, 

X1, X2, … > 0 are independent individual claim amounts with common distri-
bution function F and independent of  the Poisson process {Nt}t  ≥  0 as well.
Let us denote by l  >  0 the intensity of the Poisson process and assume that
m  def
=   E[X1]  !  ( 0, 3 ). We defi ne the relative security loading b through c  =  

( 1  +  b )lm. The quantity of  interest in this article is the probability of  ruin 
within the infi nite time horizon, namely the probability that {Yt}t  ≥  0 ever falls 
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below the zero level. It is a well-known risk measure for an insurance company. 
By defi ning the time of ruin as

  if  this infi mum exists,
 =

:inf
T

t 0 0<t

3

$ ,
,

Y#
*

-

  otherwise,

the probability of ruin is usually expressed as c( r0 )  =  P( T  <  3). We will later 
use a functional notation for it, see (3) below. We assume c  >  lm, i.e. b  >  0, 
otherwise ruin occurs with probability one. Two general references are Gerber 
(1979) or Bowers et al. (1997, Chapter 13).

Let us denote by r the adjustment coeffi cient, i.e. the positive solution in v 
of   cv+e

3
( ) / ,x 1d l=vx

0
F#  and assume it exists. An analytical formula for the 

probability of ruin is given by 

 
Y
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r

r

-

-
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e <

e
0

0

3
c =

E
)

T
,

8 B

 (2)

see Bowers et al. (1997, p. 413). Formula (2) can be obtained in various ways: 
by martingale theoretic arguments, see Asmussen (2000, p. 24-25), by Lund-
berg conjugation, see Asmussen (2000, p. 69-71), or by ad hoc argumentations, 
see Bowers et al. (1997, p. 426-427). With the exception of exponentially dis-
tributed claim amounts, this formula is however not suitable for numerical 
evaluations. Various numerical methods for evaluating the probability of ruin 
have been proposed. Dufresne and Gerber (1989) propose a recursive algo-
rithm based on a discretization and we will use this method in Section 3, see 
also the Appendix for a summary of it. Asmussen (1985) suggests the use of 
stochastic simulation based on importance sampling for computing the prob-
ability of ruin with a bounded relative error. The saddlepoint approximation 
is a method of asymptotic analysis that allows to approximate certain complex 
integrals with a bounded relative error. It provides another effi cient way of 
computing the probability of ruin, see Barndorff-Nielsen and Schmidli (1995) 
and Gatto (2008). Another approach proposed by Asmussen and Rolski (1991) 
is to consider phase-type individual claim amount distributions. Phase-type 
distributions include fi nite mixtures of exponential and Gamma distributions, 
but do not include heavy-tailed distributions, like the log-normal. Nevertheless, 
any distribution on �+  can be approximated with arbitrary accuracy by a 
phase-type distribution. A phase-type individual claim amount distribution 
leads to a computable formula for the probability of ruin. However, it should 
be mentioned that phase-type distributions can easily involve a large number 
of parameters. Estimating these parameters from observed individual claim 
amounts can be diffi cult.

In this article we consider a testing problem instead of the single evaluation 
of the probability of ruin. This allows to take into account the uncertainty of 
the data used to estimate the unknown model parameters. Furthermore, we 
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 A BOOTSTRAP TEST FOR THE PROBABILITY OF RUIN 243

suggest the P-value approach to this testing problem, which tells us how dis-
tant the probability of ruin is from a specifi ed threshold c0, and we propose 
computing the P-value by the bootstrap. The bootstrap test relies on the 
asymptotic normality shown by Pitts (1994) and on the jackknife estimator of 
the variance of the bootstrap probability of ruin. From a practical point of 
view, the insurer can fi x a threshold value c0  !  ( 0,1 ) for the probability of 
ruin, above which the business is considered too risky. Because typical prob-
abilities of ruin in both life and non-life sectors are below 1%, the values of 
the threshold c0 should also be taken around 1%. Alternatively, this threshold 
value could also be imposed by law. We can note, however, that there are pre-
sumably insurance companies working under substantially higher probabilities 
of ruin than 1%. This is often a consequence of insuffi cient legal constraints, 
which give important freedom to the companies in building their reserves 
and thus in offering attractive premiums. The fact that some Swiss health 
insurance companies have gone to ruin in these recent years seems to confi rm 
this presumption.

More precisely, we propose a bootstrap P-value for the testing problem 
given by (5) below as a measure of risk. There are obviously alternative meas-
ures of risk that are used by insurance companies. Though, the scope of this 
paper is not to review or to compare various measures of risk, but to propose 
a new testing problem approach together with an accurate computational 
method as an improvement to the simple evaluation of the probability of ruin, 
which is a classical and established risk measure in the actuarial literature.

The rest of this article is organized as follows. At the beginning of Section 2, 
we give a short review of  applications and developments of  the bootstrap 
within the actuarial risk theory. In Subsection 2.1 we provide a precise descrip-
tion of the testing problem proposed, in Subsection 2.2 we give a bootstrap 
P-value and we justify its asymptotic second-order accuracy. Some concluding 
remarks are given in Subsection 2.3. In Section 3 we show the numerical 
 accuracy of the proposed P-value by an involved two-level simulation study, 
in which we consider the exponential and the log-normal claim amount distri-
butions. We also compare our bootstrap P-value with the one obtained from 
the asymptotic normal approximation and show that the bootstrap P-value is 
substantially more accurate than the asymptotic normal one.

2. THE BOOTSTRAP TEST

The bootstrap goes back to Efron (1979) and some general references are 
Efron (1982), Hall (1992) and Davison and Hinkley (2003). Some important 
applications and theoretical developments of the bootstrap in the context of 
actuarial risk theory are the following. Embrechts and Mikosch (1991) pro-
pose a bootstrap procedure for estimating the adjustment coeffi cient of a risk 
process under the assumption that the distribution of the number of summands 
is known, but the common distribution function F of the summands is unknown 
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and estimated by a sample. The adjustment coeffi cient is a central quantity that 
allows to compute the probability of ruin or the Cramér-Lundberg approxima-
tion to it and it is also a measure of risk itself. Their emphasis is on a theo-
retical justifi cation of the strong consistency of the bootstrap estimator of the 
adjustment coeffi cient. Pitts et al. (1996) consider again the case where F is 
unknown. They propose bootstrap and jackknife confi dence bounds for the 
adjustment coeffi cient, which is re-expressed as a functional of F. Hipp (1989a) 
considers asymptotic normal and bootstrap confi dence intervals for the infi -
nite horizon probability of ruin when F is unknown and a sample from it is 
available. Pitts (1994) proposes a bootstrap estimator of  the distribution 
 function of a random sum, under the assumption that the distribution of the 
number of  summands is known, but the common distribution of the inde-
pendent summands is unknown and estimated by a sample. The distribution 
function of  the random sum is expressed as a functional of  the unknown 
distribution function of the summands and it is shown that the bootstrap ver-
sion of this functional is strongly consistent and asymptotically normal, under 
some continuity and differentiability assumptions on the functional. Bootstrap 
confi dence bands for the whole distribution function are also developed. These 
results are then applied to the infi nite horizon probability of ruin of the clas-
sical risk process by using its well-known geometric sum representation, see 
Pitts (1994, Section 5.4). Politis (2003) considers the classical risk process in 
the case where both the individual claim amount distribution function F and 
the Poisson intensity l are unknown. He proves the strong consistency and the 
asymptotic normality of the bootstrap estimator of the infi nite horizon prob-
ability of ruin, under general conditions on F and using the functional approach. 
Loisel et al. (2008) suggest to re-express the fi nite horizon probability of ruin 
as a functional of the individual claim amount distribution function F and to 
use the quantiles of the bootstrap estimator of the fi nite horizon probability 
of ruin as a measure of risk. They also provide some formulae for the infl uence 
function ( which is a directional derivative at F ) of the fi nite horizon probability 
of ruin. From this infl uence function, they obtain the asymptotic variance of 
the bootstrap estimator of the fi nite horizon probability of ruin and they also 
show its asymptotic normality when the initial reserve is zero.

In Subsections 2.1 and 2.2 we suggest a testing problem for the probability 
of ruin in the infi nite time horizon when F is unknown, but a sample from it 
is available. We then provide a bootstrap P-value to this testing problem, which 
is asymptotically more accurate than the asymptotic normal P-value.

2.1. The testing problem

Let us assume that the probability of ruin can be expressed as the functional 

 3( ) : [ ( )r F <F0 " 7c ; ,$ 0,1F P T],  (3)

where F denotes the infi nite dimensional space of distribution functions on 
�+  with fi nite expectation, which are the individual claim amount distribution 
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functions, and where PF denotes the probability measure of the underlying fi l-
tered probability space that assigns distribution function F to the individual 
claim amounts. For notational convenience, the initial reserve will serve as a 
parameter to this functional so that, for any fi xed F  !  F, c( F;  r0 ) becomes a 
function of r0  ≥  0. The functional (3) can be defi ned explicitly as 

 Lp; ;r rk( ) 1 ( ),F F
k

0
0

0c = -
3

=

F k*/

where pk  =  b ( 1  +  b )– ( k + 1 ), FL
* k denotes the k-th convolution power of FL, for 

k  !  {0, 1, …}, m( F )  =  xd
3

( )x
0

F#  and 

 ( )F y1 -L
x

( ) ( )F F x 1
0

= m F yd; 7 A#  (4)

for all x  ≥  0. The functional representation (3) to the probability of ruin is the 
one adapted by Pitts (1994, p. 551). We consider F unknown and distinguish 
the following two situations. In the fi rst one, F belongs to a parametric class, 
which is a fi nite dimensional subset of F, with one or more unknown param-
eters that need to be estimated by the observed claim amounts that occurred 
within the time interval [0, t], for some t  !  ( 0, 3). In the second situation, 
F  !  F is fully unknown and estimated by the empirical distribution function 
of the observed claim amounts incurred during [0, t]. Note that the fi nite time 
interval [0, t] is only considered for the estimation of F and that we are still 
considering probabilities of ruin over the infi nite time horizon.

Our parameter of interest is c( F; r0 ), where r0 is a fi xed initial reserve, for 
which we suggest the testing problem specifi ed by the null and the alternative 
hypotheses 

 
;

;

r

r

: ( )

: ( ) .

F

F

H

H <

0 0 0

0 01

c c

c c

= ,
 (5)

Undervaluing the probability of ruin in an insurance company could lead to 
inappropriate managerial decisions, for example to an excessive reduction of the 
capital, which can be dangerous for the company. With the null and alternative 
hypotheses formulated in (5), the risk of undervaluation of the probability of ruin 
is controlled by the error of the fi rst kind or the size of the test, which is chosen 
very small ( typically between 1% and 5% ). A P-value for this testing problem 
is given in Subsection 2.2 and approximated with the bootstrap principle.

2.2. The bootstrap P-value

As already mentioned, it is often preferable to consider the testing problem (5) 
instead of a single evaluation of the probability of ruin. In this testing problem, 
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it is also more informative to quantify the closeness of the null model to the 
observed data instead of simply deciding between rejecting the null model or 
not. The P-value approach leads to this quantifi cation, as a large P-value 
refl ects high coherence of the null model with the data.
Suppose that exactly n claim amounts occur during the time interval [0, t], 
hence that Nt  =  n for some t  !  ( 0, 3) and n  ! {1, 2, …}. Denote by Fn(x )  =

{ xX1
i 1= 1n i #

- },n/  for all x  >  0, the empirical distribution function of the 
claim amounts occurring during [0, t]. Consider the functionals 

 n; (r rn( ) ; )FF var0 0s c= F
2 ,_ i

the variance being taken under PF and based on the Nt  =  n random claim 
amounts that occur during [0, t], and 

 
n

n
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( ;

r
r r

( ;
; )

; ) ( )
F

F
R z F n

F
zn F

0

0 0 #
s

-c
P

c
= ,) f p  (6)

where F  ! F and z  ! �. Denote by Fn
obs the empirical distribution of n observed 

claim amounts, i.e. a realization of Fn. Then 
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r

r
; )

; )
f p (7)

is a P-value for the testing problem (5). Unfortunately, computing the P-value 
(7) in general involves two major diffi culties: the fi rst one is the determination 
of the distribution of the studentized probability of ruin under all F  !  F such 
that c( F; r0 )  =  c0 and the second one is the evaluation of the supremum over 
this subset of F. The second diffi culty can be reduced by assuming a simple 
parametric model for the individual claim amounts, which would restrict the 
search for the supremum from over an infi nite dimensional to over a low 
dimensional space. Nevertheless, in some practical situations it is preferable to 
avoid this assumption.

As mentioned in the beginning of Section 2, the asymptotic normality of 
the probability of ruin is established by Pitts (1994, Theorem 5.2). Thus, a fi rst 
general solution to our problem is to rely on the asymptotic normal approxi-
mation 

 ( ; ) ( ; ) ( ),limk z F R z F z
n n0

def
F= =

"3

for all z  !  � and all F  !  F, where F denotes the standard normal distribution 
function. The independence of the above limit from F is a consequence of the 
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( asymptotic ) pivotality obtained by studentizing the estimator of the probability 
of ruin in (6). The asymptotic P-value 
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f fp p  (8)

for all F  !  F, can be evaluated directly, but it is only fi rst-order accurate, in 
the sense that, for all F  !  F,

 ,A ( .P n nO asn n
2
1

" 3- =
-P ),  (9)

The asymptotic error in (9) follows from expansion (11) below. An asymptotic 
improvement to (9) can be obtained by applying the bootstrap principle as 
follows. Consider 
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( (r r
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; ) ; )
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R z n z
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#
c

s
=

-*

*
;n

c
r; )

f p  (10)

for all z  ! �, where PFn
 is the conditional probability measure where the 

unknown F has been replaced by Fn  !  F, given the claim amounts X1,  …,  Xn 
during [0, t], and where Fn

* denotes the empirical distribution function of a 
random sample generated from Fn, given X1,  …, Xn. From the asymptotic nor-
mality of the probability of ruin, we can assume that the expansion 

 - -( ; ) ( ; ) ( ; ) ( ), ,R z F k z F n z F n no asn 0 1
2
1

2
1

" 3= + +k  (11)

holds, thus 

 n n n
- -( ) ( ) ( ) ( ), .R k n n no asPn 0 1

2
1

2
1

" 3= + +; ; ;F F Fz z zk

Given two sequences of random variables  {Un}n  ≥  0 and  {Vn}n  ≥  0, the notation 
Un  =  oP( Vn ), as n " 3, means that Un  /Vn  "

P  0, as n " 3. Expansion (11) is in 
fact an Edgeworth expansion combined with expansions of the fi rst cumulants 
of the studentized probability of ruin and k1( z; F ) is the product of a polyno-
mial of degree two in z with the standard normal density at z, refer to Hall 
(1992, Section 2.3) for further explanations. Because k1( z; Fn ) – k1( z; F )  =  oP( 1 ), 
as n " 3, and k0( z; F )  =  F( z ) is in fact independent of F, we have 

 n
-( ) ( ; ) ( ) ,R R z F n no asPn n 2

1
" 3- = ,; Fz  (12)

for all F  !  F. Defi ning 
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approximation (12) yields, for all F  !  F,

 -( ) ,P P n no asB, Pn 2
1

" 3- = ,n

whose comparison with (9) shows that the bootstrap P-value PB, n is asymp-
totically more accurate than the asymptotic P-value PA, n. PB, n is second-order 
accurate, whereas PA, n is fi rst-order accurate.

In the remaining part of this section we give some remarks. The P-values 
Pn, PA, n and PB, n are all based on n observed claim amounts, i.e. n realizations 
from F. If  we replace these observed claim amounts by their random counter-
part, we obtain the random versions of these P-values, denoted by Pn, PA, n and 
PB, n respectively. It can be shown that 

 n( u uF # #P P ) , (14)

for all u  !  [0, 1] and all F  !  F such that c( F; r0 )  =  c0. This allows for the 
following error rate interpretation: if  we decide to reject H0 whenever a P-value 
is smaller than or equal to Pn, then (14) shows that the probability of a false 
rejection is smaller than or equal to Pn. For a general reference about P-values, 
see Casella and Berger (2002, Section 8.3.4).

If  we had a simple null hypothesis, the supremum in the defi nition of Pn in 
(7) would be irrelevant and, as a consequence, the weak inequality outside the 
probability in (14) would become an equality. In this case, (14) would tell that 
the P-value is uniformly distributed. But because neither PA, n nor PB, n involve 
the supremum, it follows that both PA, n and PB, n are asymptotically uniformly 
distributed. The uniformity of both PA, n and PB, n will be checked in the simulation 
study of Section 3.

As already mentioned, computing the probability of ruin is generally not 
a simple problem. We suggest using a numerical approximation introduced by 
Dufresne and Gerber (1989), which yields upper and lower bounds with arbi-
trary precision. It is briefl y outlined in the Appendix.

For the estimation of the standard error of the estimator of the probability 
of ruin we use the jackknife. The jackknife is a useful nonparametric technique 
that allows to estimate various types of quantities and that shares some simi-
larities with the bootstrap, see Quenouille (1949), Tukey (1958), Efron (1979) 
and Efron (1982). Typical applications are for bias and variance estimation. 
In our situation, the jackknife estimator of the standard error is given by 

 ,1,1 i -n j-n n
1

11
( r r r

n
; ) ; ; ,F F Fn

n
n

1 1 nn

0 0 0-s c c-
-

ji ==

2

` `f j jp//  (15)
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where, for i  ! {1, …, n}, Fn  – 1,  i is the i-th “leave-one-out” version of Fn, i.e., the 
empirical distribution function based on the sample X1,  …,  Xi – 1, Xi  + 1,  …, Xn.

2.3. Remarks

In principle, the results derived in this article can be extended to the prob-
ability of ruin within a fi nite time horizon. In this case, we should fi rst note 
that the proof of the asymptotic normality of the probability of ruin given by 
Pitts (1994, Theorem 5.2) is valid in the infi nite horizon only. Loisel et al. 
(2008) prove the asymptotic normality of the fi nite horizon probability of ruin 
only in the case where the initial reserve is zero. However, numerical simula-
tions in Loisel et al. (2008, Section 7.1) seem to confi rm that the asymptotic 
normality holds for positive initial reserves as well, and this could be suffi cient 
for extending our bootstrap test. Note also that the algorithm used in Section 3 
for computing the probability of ruin and summarized in the Appendix is no 
longer valid for the fi nite horizon situation.

Both remarks above remain valid if  we were interested in probabilities of 
ruin, within either the infi nite or the fi nite time horizons, under a general 
renewal process instead of the Poisson process: we would not have asymptotic 
normality proofs and we would need an alternative algorithm for the compu-
tation of the probabilities of ruin.

3. SIMULATION RESULTS

In this section we present two simulation studies that compare the accuracy 
of the bootstrap with the asymptotic P-values presented in Subsection 2.2.
The programs of  the computations made in this section are written in the 
language R, see R Development Core Team (2008). They can be found in the 
software section at 

 http://www.stat.unibe.ch/content/research/publications.

For the fi rst simulation study we consider the nonparametric bootstrap 
approach. Each sample of claim amounts is generated from an exponential 
distribution and the bootstrap P-value is computed by resampling from the 
generated sample. For the second simulation study, we consider the parametric 
bootstrap approach. Each sample of  claim amounts is generated from a 
 log-normal distribution and the bootstrap P-value is computed by generating 
samples from the log-normal distribution with parameters estimated from the 
generated sample. The results of both simulations are placed side-by-side in 
the graphs of Figures 1-4. The left graphs refer to the nonparametric approach 
and the right ones refer to the parametric approach. In both situations we have 
considered a two-level simulation design in which we fi rst generate 1000 sam-
ples and then, for each sample, we generate 1000 bootstrap samples. Following 
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Hipp (1989a), we assume lm ( the mean payment per unit of time ) known. This 
assumption avoids diffi culties arising whenever the condition c  >  lm is violated 
by l and m replaced by estimated values. Since the parameters l, m and c 
appear in the computation of  the probability of  ruin only through lm / c  = 
( 1  +  b )–1  =  c( F; 0 ), this assumption reduces to b known. For both simulations 
studies we take b  =  0.2 and lm  =  10 and thus c( F; 0 )  =  10/12. Note that the 
knowledge of l is not necessary in these simulation studies. Practically, there 
is no need to simulate the Poisson process. We simply generate n claims that 
are supposed to belong to the time interval [0, t], for some t  ! ( 0,3).

In the fi rst simulation study we generate bootstrap P-values when the indi-
vidual claim amount distribution F is estimated by the empirical distribution 
of the individual claim amounts. We simulate 1000 samples of n  =  250 indi-
vidual claim amounts from the exponential distribution with mean 10. The 
probability of ruin is computed with the recursive method given in the Appen-
dix, where the distribution function FL defi ned in (4) is replaced by the estima-
tor given in (18) in the Appendix.

In the second simulation study, bootstrap P-values are based on the para-
metric estimation of the individual claim amount distribution. We generate 
1000 samples of n  =  100 individual claim amounts from the log-normal distri-
bution F, where the logarithmic random variable has mean 2 and variance 0.6. 
Lower and upper bounds to the probability of ruin are again computed with 
the recursive algorithm of the Appendix, where the distribution FL defi ned in 
(4) is replaced by a parametric estimator of it, by estimating the parameters of 
F and by numerical integration. In both simulation studies the probabilities of 
ruin are obtained by taking the average of the upper and the lower bounds 
defi ned in (17), using discretization steps of 1 for the estimators of the prob-
ability of ruin and of 4 for the estimator of the standard error given in (15).

FIGURE 1: Kernel estimators of the density of the studentized probability of ruin based on bootstrap 
replications ( solid lines ) and on simulations ( dashed lines ) with the standard normal density ( dotted lines ) 

for exponential ( left ) and log-normal claims ( right ).

93216_Astin40_1_10.indd   25093216_Astin40_1_10.indd   250 11-05-2010   09:40:3111-05-2010   09:40:31

https://doi.org/10.2143/AST.40.1.2049227 Published online by Cambridge University Press

https://doi.org/10.2143/AST.40.1.2049227


 A BOOTSTRAP TEST FOR THE PROBABILITY OF RUIN 251

Figure 1 compares the standard normal density with the kernel density 
estimators of the studentized probabilities of ruin obtained by 1000 simulations 
and by 1000  ≈  1000 bootstrap replications. For both the simulated probabilities 
of ruin and the bootstrap probabilities of ruin we use the kernel density estima-
tor with Gaussian kernels with bandwidths 0.25 and 0.1, respectively. Clearly, 
the density of the studentized probabilities of ruin is better approximated by 
the bootstrap densities than by the asymptotic normal densities, which are 
particularly misleading in the left tails. Figure 2 compares the distribution 
functions of the bootstrap and asymptotic P-values with the uniform distribution 

 FIGURE 2: Empirical distribution functions of the bootstrap ( solid lines ) and asymptotic normal
( dashed lines ) P-values with the uniform distribution function on [0, 1] ( dotted lines ) for exponential ( left ) 

and log-normal claims ( right ).

FIGURE 3: Estimated densities of the bootstrap ( solid lines ) and normal ( dashed lines ) P-values with the 
uniform density on [0, 1] ( dotted lines ) for exponential ( left ) and log-normal claims ( right ).
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function on [0, 1]. In both graphs we can see that the bootstrap P-values are 
closer to uniformity than the asymptotic ones. Thus, bootstrap P-values allow 
for accurate error rate interpretations, as explained at the end of Subsection 2.2. 
Asymptotic normal P-values are not close to uniformity and (14) is especially 
violated for small values, which are the most important ones for the error rate 
interpretation. Figure 3 shows the densities corresponding to Figure 2. Because 
the support of the distribution of P-values is bounded, the density estimators 
of the P-values in Figure 3 use a Gaussian copula-based method with under-
lying correlation 0.9 instead of  the kernel density estimator, see Jones and 
Henderson (2007) for details. Figure 4 shows how the proportions of P-values 
smaller than or equal to 0.05 ( indicated by the horizontal lines ) behave as 
functions of c0 with all other parameters left unchanged, for both simulation 
studies. Because the point c0  =  c( F; r0 ) ( indicated by the vertical lines ) cor-
responds to the case under which the simulation is performed, it follows from 
(14) that the proportion at this point should be lower than or equal to 0.05, 
which is the level of the test that rejects H0 for P-values smaller than or equal 
to 0.05. In both simulation studies, this proportion at this point is close to
0.05 with the bootstrap. The values corresponding to the asymptotic normal 
approximations exceed the level 0.05 signifi cantly.
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FIGURE 4: Proportion of bootstrap ( solid lines ) and normal ( dashed lines ) P-values smaller than or equal 
to 0.05 as a function of c0. The horizontal lines indicate the signifi cance level, the vertical lines indicate 

c( F; r0 ) for exponential ( left ) and log-normal claims ( right ).
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APPENDIX

A RECURSIVE METHOD FOR COMPUTING THE PROBABILITY OF RUIN

In this appendix we summarize an algorithm proposed by Dufresne and Ger-
ber (1989) for computing the probability of ruin within the infi nite horizon. 
Let us defi ne the aggregate loss process  {St}t  ≥  0  =  {Zt – ct}t  ≥  0 and let L1, L2,  … 
denote the increments of its running maximum  {max0  ≤  u  ≤  t  Su}t  ≥  0, recursively 
defi ned by 

 
i 0=

0L L S Land { 0 :infk t S L i
i

k

0
0

1

>t i
= = $

=

-

k 1- ,-} //

for k  !  {1, 2, …}. It can be shown that the maximal aggregate loss S def
=  maxt  ≥  0 

{St}  =  L1  +  …  +  LN, where P( N  =  n )  =  p( 1  –  p )n, for all n  !  {0, 1, …}, where 
p  =  1  –  c(F; 0 ), and L1, …, LN are independent with the distribution function 
FL(F; x ), for all x  ≥  0, defi ned by (4). The method presented here is essentially 
based on a discretization of (4) and it leads to upper and lower bounds to 
c(F; r0 ), with both bounds converging to c(F; r0 ) with decreasing discretiza-
tion steps ( denoted j below ).

We can compute a lower and an upper bound for the maximal aggregate 
loss S by discretizing its summands L1, …, LN on a mesh of width j  >  0 as 
follows,

 S L L S L Land(L) (U)
N N1 1g gj j j j j j j j= + + = + +1 1 1 1- - - - ,8 8B B ` `j j

where ⎣x⎦   =   max{k  !  � : k  ≤  x} and ⎡x⎤  =  min{k  !  � : k  ≥  x}, for all x  !  �. 
From c( F;  r0 )  =  P( S  >  r0 ) and S ( L )  ≤   S   ≤   S ( U ) it follows that 

 ; r1 ( ) ( ) 1 ( ) .P PS r F S r< 0 0 0# # #c- -
(L) (U)  (16)

Let us defi ne 

 P ( ; ( 1)) ( ; ),h L k F k F kk L L1j j j j j= = +( )L 1- F F= -a k8 B

for k  !  {0, 1, …}, and

 1)1P F( ; ) ( ; ( )h L F kk L L1j j j j= = - -( )U - F ,k Fj = ka k` j

for k  !  {1, 2, …}. Defi ne also, for i  !  {0, 1, …},

 ii P Pi i( ( ) .andS f Sf j j= = = =)(L) (U)U( ) ( )L
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From Dufresne and Gerber (1989, Section 2.4), the bounds of  (16) can be 
obtained using the recursive formulae
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Note that c( F; 0 )  =  lm/c depends on F through its mean only. Precisely, using 
(16), these bounds are given by 
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In the fi rst example of Section 3, F is unknown and estimated by the empirical 
distribution function Fn of  the claim amounts. In this case we estimate FL by
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where n is the number of claims observed during [0, t].
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