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ABSTRACT
Fatigue life is a random variable. Thus, the reliability of a conservative fatigue life prediction
for a component in the helicopter dynamic system needs to be substantiated. A standard
analytical substantiation method uses averaged manoeuvre loads instead of seeing manoeuvre
loads as a random variable whose distribution is estimated with limited precision. This
simplification may lead to inaccuracies. A new simulation-based method is developed to
conservatively predict fatigue life, while also accounting for the full random distribution and
uncertainty of manoeuvre loads. Both methods fully account for uncertain fatigue strength
but assume that the mission profile is known or can at least be conservatively estimated.
Simulations under synthetic but realistic engineering conditions demonstrate that both
methods may be used for accurate substantiation of conservative fatigue life predictions. The
simulations also demonstrate that, under the tested conditions, uncertainties from manoeuvre
loads may be neglected in fatigue life substantiations as the resulting error is not significant
with respect to uncertainties in component fatigue strength.
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NOMENCLATURE
k GEV distribution parameter
l component accumulated flight hours [FH]
log10 base-10 logarithm
nsim number of simulations
ntest number of full scale constant amplitude fatigue test results
p PDF
s normalised fatigue strength, same as SF [-]
si ith interval or bin of normalised fatigue strength (i.e. subdomain i in �SF )

[-]
t student distribution
tF synthetic time (in Fourier series)
BMC basic Monte Carlo
CDF cumulative distribution function
CoV coefficient-of-variation
FH flight hour [hr]
Fm failure event conditional on the mth (intermediate) failure boundary.
FORM; SORM first- and second-order reliability modelling
GAG ground-air-ground (low frequency load cycles)
GEV generalised extreme value
K number of wave-functions in a Fourier series
L component fatigue life until failure [FH]
MLE maximum likelihood estimate
N number of stress cycles (until failure)
P probability (scalar) [-]
PDF probability density function
Pfail probability of failure per component service life
PfailnextF H probability of failure during the next flight hour
PV peak-valley
R stress ratio [-]
RBDO reliability based design optimisation
SF strength factor or normalised fatigue strength [-]
SFwork conservative value of SF [-]
SLL service life limit [FH]
SS subset simulation
U uniform distribution
α confidence level (defined as a distribution quantile) [-]
{αw, βw} Weibull function shape parameters
γ distribution quantile [-]
μ distribution mean
ν distribution degrees of freedom [-]
σ distribution standard deviation (unbiased definition)
σa amplitude of stress cycle [Nm−2]
σault stress amplitude of ultimate load (at stress ratio R) [Nm−2]
σa∞ stress amplitude of endurance limit (at stress ratio R) [Nm−2]
σm mean of a stress cycle [Nm−2]
{σmin, σmax} extremes of a stress cycle [Nm−2]
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σult ultimate stress [Nm−2]
χ2 chi-squared distribution
ω parameter vector that determines fatigue life
{a, f ,φ, m} parameters defining a Fourier series
I binary indicator function
N standard normal distribution
N−1 inverse CDF of N
� parameter space spanning all parameters determining fatigue life
^ embellishment indicating an MLE estimate

1.0 INTRODUCTION
Failure of components in the helicopter dynamic system, such as the main rotor mast
or the levers that control the angle-of-attack of main rotor blades, may have catastrophic
consequences. The period between crack initiation and component failure is usually too short
to detect a crack in time during inspection intervals. Such components thus need to be replaced
before there is too high of a probability that there may be a crack that could reduce the
component’s static strength. Rotorcraft certification according to FAR 27.571 or FAR 29.571
by means of AC 27-1B MG11 requires providing appropriate fatigue life substantiation for
each of these components. If necessary, an upper limit to the time a component can be used is
set by a fixed Service Life Limit (SLL).

Fatigue life of a component can be predicted when one knows the following three elements:

� How fatigue damage accumulates (i.e. by the Palmgren-Miner linear damage
accumulation hypothesis)

� The component’s fatigue strength (i.e. the S-N curve)
� The loads during life (i.e. the load spectrum)

The exact fatigue strength of a specific component is never known in advance. Scatter in,
for example, material properties, dimensioning, machining or other manufacturing processes
demands that fatigue strength is considered as a random variable.

The loads that a component experiences during its life depend on numerous variables; for
example, the type of missions that are flown, how these missions are executed (i.e. speed,
duration, number and type of manoeuvres, etc.), the precise technique of the pilot(s) executing
the manoeuvres or even the meteorological conditions. The loads that occur during life must
thus be regarded as a random variable, as well.

Clearly, the fatigue life of a specific component cannot be predicted exactly, but must also be
considered as a random variable. For certification, it is common to show that the probability of
a fatigue failure during the specified maximum service life of a randomly selected component
in the fleet is not higher than a certain probability (e.g. 10−6).

The load spectrum that a component is subjected to during its life may be decomposed into
two random variables:

� The mission profile (i.e. the sequence and timeshare of turns, hovers, landings)
� The loads that occur when flying each type of manoeuvre
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Figure 1. (Colour online) Flight test observations of the maximum load on a critical component in the
dynamic system when executing a lateral flight to the right under similar conditions.

A common standard analytical method to predict a conservative fatigue life simplifies the
full distribution of the loads during a flight regime1 to a single averaged load spectrum and
only uses the average manoeuvre minimum and maximum loads to form a low-frequency
Ground-Air-Ground load spectrum. Its reliability substantiation is fully derived from the
distribution of component strength. Such a method thus assumes that uncertainty in flight
regime loads is negligible with respect to uncertainty in fatigue strength. The validity of this
assumption is, however, not obvious and may not be general. For example, flight test results
in Fig. 1 clearly demonstrate significant variance in the maximum load when a lateral flight
manoeuvre is repeatedly flown with a similar weight, centre-of-gravity and altitude.

This paper, therefore, introduces a new simulation-based method to predict fatigue life
while also accounting for the full random distribution and uncertainty of loads.

Both methods make two core assumptions:

� The mission profile is known or can at least be conservatively estimated
� Inaccuracies in the modelling of fatigue strength, damage and accumulation are negligible

The two methodologies are applied to a simulated fatigue life prediction problem. The
accuracy and applicability of the two methods will be investigated under the conditions of this
synthetic problem.

1 A flight regime is defined as a manoeuvre flown under specific conditions, i.e. aircraft weight, centre-of-gravity
and environmental conditions. The further analysis by means of a simulated fatigue life prediction problem does,
however, not model the difference and the terms ‘flight regime’ and ‘manoeuvre’ may, hence, further be considered
as equivalent.
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2.0 ANALYTICAL FATIGUE LIFE PREDICTION
A baseline standard analytical fatigue life prediction methodology is outlined first. This
analytical method is similar to the approved lifetime prediction methods for rotorcraft dynamic
components applied by Airbus Helicopters Germany and to chapter 4.1 in NATO AGARD-
AG-292(1). Section 4 later introduces a simulation-based methodology that features more
complexity but aims for higher accuracy. The simulation-based method generally will make
use of the same basic model for fatigue life prediction as outlined here in Sections 2.1-4.

2.1 Fatigue damage accumulation model

A fatigue damage accumulation model is needed to predict fatigue life for given component
strength and loads during life. The model employed here consists of four main components:
a Weibull-type S-N curve, the Goodman relation, the Palmgren-Miner linear-damage
accumulation hypothesis and a specific cycle counting method.

2.1.1 S-N curve

A Weibull-type S-N curve that defines the number of load cycles until fatigue failure under
constant amplitude loading:

σa(N )|R = σa∞ + σault − σa∞

exp
[(

log10N
αw

)βw

] , … (2.1)

where σa is the applied stress amplitude (at stress ratio R); N is the number of load cycles
(until failure); σa∞ is the stress amplitude of the endurance limit or fatigue limit (at stress ratio
R); σault is the ultimate stress amplitude determined by: σault = σult × 1−R

2 , where σult is the
ultimate strength; R is the stress ratio σmin

σmax
; {αw, βw}are component-specific Weibull curve

parameters. Alternatively, many rotorcraft manufacturers use a two-parameter exponential
function to approximate an S-N function around N = 105. Although such a model is less
prone to over-fitting, it generally provides over-optimistic estimates for low-cycle fatigue.
A four-parameter Weibull curve, instead, can also accurately model low-cycle fatigue. A
Weibull type S-N curve is expected to provide results that are more realistic when fatigue
lives are simulated for very low strengths, as is done by the simulation-based model presented
in Section 4 and during the Monte-Carlo simulations in Section 5.

2.1.2 Goodman-relation

The Goodman-relation to translate load cycles to the stress ratio for which the S-N curve is
valid is:

σa (R) = σault × σa|Ri

σault − σm|Ri × 1+R
1−R

, … (2.2)

where: σa|Ri and σm|Ri are the stress amplitude and mean stress of the ith load cycle class,
respectively. This relation is often considered to be conservative for metallic parts, except for
high-strength but low-ductility alloys, according to Schijve(2).
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2.1.3 Cycle counting

Rainflow counting (according to ASTM E1049-85)2 preceded by proprietary peak-valley
(PV) filtering to determine the number of cycles in each load cycle class (load spectra are
discretised). Rainflow counting is generally regarded as an accurate method, e.g. Schijve(2);
however, other methods for cycle counting are common in industry, as well.

2.1.4 Damage accumulation hypothesis

The Palmgren-Miner linear damage accumulation hypothesis to define fatigue failure under
spectrum loading is

Fatigue failure ≡
∑ ni

Ni
= 1, … (2.3)

where ni is the number of load cycles in the ith load cycle class and Ni is the number of cycles
until fatigue failure under constant amplitude load defined by the ith load class. This model
is generally considered valid under conditions where loads are random and non-periodic.
Fatigue tests under these conditions show that a damage accumulation model such as (2.3)
is on average accurate, according to Schijve(2).

2.2 Random strength model

As fatigue strength is a random variable, both the shape and vertical translation of an S-
N curve can be considered as uncertain. While neglecting shape variations, the following
random fatigue strength model is used to define an S-N-P curve:

σa(N )|R = SF |σ̂ ×

⎧⎪⎪⎨
⎪⎪⎩σ̂a∞ + σ̂ault − σ̂a∞

exp
[(

log10N
α̂w

)β̂w

]
⎫⎪⎪⎬
⎪⎪⎭ … (2.4)

The strength factor SF herein is a random variable distributed according to a lognormal
distribution (as a transformation of an associated standard normal distribution N(0, 1)):

p (SF |μ̂, σ̂) = exp [σ̂ × N (0, 1) + μ̂] … (2.5)

{σ̂ault, σ̂a∞ , α̂w, β̂w} are Maximum Likelihood Estimates (MLEs) of the S-N curve parameters,
given component static test results and/or component constant amplitude fatigue tests. The
median of the strength distribution (i.e. the distribution of SF) should have its median equal to
one (i.e. μ̂ = 0) such that the expected S-N curve remains unaltered. Nevertheless, μ̂ is only
a sample estimate and its value can be biased and unequal to zero (i.e. offset with the true
mean).

The scatter of the strength factor is assumed to be independent of N (i.e. noise is assumed to
be homoscedastic). Therefore, it is allowed to translate all fatigue test results used to fit the S-N
curve to an arbitrary N. A straightforward one-dimensional distribution fit can then provide σ̂,
the MLE of the standard deviation of strength. Although the assumption of homoscedasticity
does not generally hold and can be invalidated by examples where scatter positively correlates

2 Implemented by an adapted and performance-optimised version of a software package provided by Adam Nieslony.
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Figure 2. (Colour online) Example of constant amplitude fatigue test results, the MLE S-N curve and
conservative working curve for a component from the dynamic system.

with N, e.g. Schijve(2), this engineering assumption is acceptable to aviation authorities and
general engineering practise in the rotorcraft industry, where scatter is often estimated in the
load dimension based on test results falling in the important region around N = 105.

With the full S-N-P curve defined, a conservative working curve can be derived. For
example, if a working curve should represent the fatigue strength of the (on average) weakest
component out of 1 million randomly selected components, then SFwork can be computed
according to

SFwork(Pfail = 10−6) = exp
{
σ̂ × N−1 (0, 1, Pfail ) + μ̂

}
, … (2.6)

with N−1(0, 1, Pfail ) denoting the inverse Cumulative Distribution Function (CDF) of the
standard normal distribution.

Figures 2 and 3 illustrate such a working curve.
Airworthiness regulations (i.e. AC 27-1B MG11) do not explicitly prescribe the use of

tolerance interval analysis for fatigue life substantiation. It is common among rotorcraft
manufacturers to assume that S-N relationships and associated scatter observed from large
numbers of coupon tests are sufficient to make a perfect estimate of an S-N-P diagram for
a specific component. Nevertheless, and according to NATO AGARD-AG-292(1), it is here,
instead, considered that the scatter in fatigue properties of a component mainly depends on
variability in tolerances, surface finishing and other properties affecting component-level
manufacturing quality, and that these influences cannot be predicted accurately by coupon
tests. Especially the scatter in S-N relationships must then be derived from fatigue tests of
full-scale components representative for serial production.

Since only a limited number of such component-level fatigue tests can be done, it is
considered to be impossible to make a perfect estimate of the S-N-P curve, especially
concerning its variability. Therefore, it is considered that any estimate of the probability
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Figure 3. (Colour online) Exemplary fatigue test results (normalised by the MLE S-N curve), the derived
MLE estimate of the PDF of normalised fatigue strength (SF), and the strength factor corresponding to

the conservative working curve.

density function (PDF) of SF itself, and thereby also a conservative strength quantileSFwork

estimated by Equation (2.6) is imperfect. To account for this uncertainty, a confidence
interval for the conservative SFwork must be computed; that is, to require a 95% upper single
sided confidence level here means that, if a set of fatigue tests would be repeated many
times, then 95% of the conservative SFworkestimates, one for each new set of fatigue test
results, would really meet a 0.999999 reliability requirement. The remaining 5% conservative
SFworkestimates would, in fact, correspond to a probability of failure that would be higher than
10−6. Hahn and Meeker(3) may be referred to for further explanations on confidence intervals.

Both the mean μ̂ and standard deviation σ̂ (of the associated normal distribution) of the
strength factor SF (2.5) must thus be considered as random variables and are distributed
according to(2)

p (μ̂|μ̂, σ̂, ntest ) = t
(

μ = μ̂, σ = σ̂√
ntest

, ν = ntest − 1
)

, … (2.7)

p (σ̂|σ̂, ntest ) ∝ σ̂ ×
√

ntest − 1
χ2 (ν = ntest − 1)

, … (2.8)

where t(μ, σ, ν) denotes the Student t-distribution and χ2(ν) is the Chi-squared distribution,
both with ν degrees of freedom; and ntest denotes the number of test results that are available
to fit the S-N-P curve.

A conservative strength factor for the working curve at a reliability level 1 − γ (i.e. 1-10−3)
and a lower single-sided confidence level α (i.e. 0.95 for 95%) can be computed by Wald and
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Figure 4. (Colour online) Flight regime loads and GAG loads. These loads together
make out the full load spectrum.

Wolfowitz(4):

SF (γ, α|μ̂, σ̂, ntest )

= exp
{
μ̂ −
√

ntest−1
invχ2(Pfail=1−α|ν=ntest−1) × r (γ, ntest ) × σ̂

}
,

… (2.9)

with

r (γ, ntest ) = 1√
ntest

− N−1 (Pfail = γ|μ = 0, σ = 1) … (2.10)

2.3 Load model

The loads during a service life are represented by a load spectrum that is cycle counted from
a load sequence. Ideally, this load sequence would be the continuous load signal measured on
the component during its life. In practise though, a conservatively estimated load spectrum is
used instead.

The first step in obtaining this load spectrum is to define a set of manoeuvres that cover
how the helicopter can be flown. For example, A: take-off; B: level flight; C: hover; etc. Using
these regimes, a mission profile can be made. This mission profile sets how much time, as a
percentage, the helicopter spends in each manoeuvre, e.g. [A: 3%; B: 80%; …], and in which
sequence the manoeuvres are flown per unit of time, e.g. [A C B F B …] every 100 flight
hours (FH).

In practise, this mission profile is generally based on pilot and operator surveys as well as
experience. In any case, it must be conservative for all helicopters in the fleet for which fatigue
life is predicted.

Test flights with a specially instrumented helicopter may, in practise, provide continuous
recordings of component loads during the manoeuvres. The same flight regimes are generally
flown multiple times to, for example, cover variations in manoeuvre execution.

The fatigue damage that is accumulated during a flight is computed with a load spectrum of
the type, as in Fig. 4. The total fatigue relevant load spectrum for a flight is thus the summation
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of the load spectra of each flight regime and the load spectrum from the Ground-Air-Ground
(GAG) load sequence. The GAG load sequence accounts for the transitions between the
manoeuvres and is the most severe load signal that goes through the extreme (i.e. minimum
or maximum) load in each manoeuvre.

There is uncertainty regarding manoeuvre loads and manoeuvre extreme loads when
predicting the loads during the full fatigue life. In case of manoeuvre loads, the measured
load spectra, one for each time the flight regime was flown during test flights, are averaged
and scaled by linear weighting to a reference time (i.e. 100FH). Extreme loads from multiple
manoeuvre load tests are simply averaged. Inserting these averaged loads into the conservative
mission profile and according to the model in Fig. 4, leads to an average load spectrum per
unit of time.

2.4 Perfect modelling assumption

Throughout all analysis, it is assumed that the outlined models for fatigue damage
accumulation, random fatigue strength and loads are perfect (i.e. do not introduce any errors
or additional uncertainties). This is in line with standard practise in rotorcraft industry and
in compliance with AC 27-1B MG11. Nevertheless, different manufacturers generally make
use of different models and design assumptions to comply with airworthiness regulations.
Everett(5) observed that fatigue life predictions by different manufacturers for the same
component can vary significantly. The accuracy and precision tests conducted in Section 5,
therefore, have a limited scope, as they also incorporate the assumption of perfect modelling.
Modifying or removing one or more of the adopted modelling assumptions may significantly
alter the outcome of the analysis.

2.5 Substantiated fatigue life prediction

Commonly, a Service Life Limit (SLL) is set according to a maximum allowed probability of
fatigue failure during the service life (e.g. Pfail(SLL) = 10−6). However, most general safety
analysis works with reliability requirements expressed as a probability of failure per flight
hour and not per service life.

When it must be substantiated that the probability of failure in a next flight hour will on
average never exceed a required Pfail, for example 10−9, and when this requirement is not
specified while assuming a constant failure rate, then the SLL follows from the following
optimisation problem:

SLL = arg min
{l∈R:L>0}

(
PfailnextF H (l ) − γF H

)2
, … (2.11)

where γF H is the maximum allowed average probability of failure per flight hour and
PfailnextF H (l ) denotes the average probability of failure during the next flight hour after l flight
hours have been accumulated. PfailnextF H (l ) can be computed using the SLL reliability estimator
Pfail(SLL):

PfailnextF H (l ) = Pfail (l + 1) − Pfail (l )
1 − Pfail (l )

… (2.12)

For simplicity, this work will only further consider the reliability estimator Pfail(SLL) i.e. the
estimator of a probability of failure per service life.
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In either case and in line with AGARD-AG-292(1), the analytical method assumes that
the reliability of a working curve can only substantiate overall reliability e.g. the standard
analytical method substantiates an SLL with a probability of failure of 10−6/life at a 95%
single-sided upper confidence level by:

� a working curve with γ = 10−6 and α = 0.95 in(2.9).
� a load spectrum according to a conservative mission profile and average manoeuvre

(extreme) loads.

There is no reliability derived from the conservative mission profile. The reliability
requirement must be met for all helicopters and for all flight hours. If the conservatism
that is incorporated in the conservatively estimated design mission profile would be used
to substantiate additional reliability, then this would only be valid for, at most, averagely
demanding operators; that is, this additional reliability would apply to VIP operators but
significantly less to Search and Rescue operators.

3.0 STATE-OF-THE-ART IN PROBABILISTIC FATIGUE
LIFE PREDICTION

Questions have been raised during the last decades on the accuracy of the reliability
substantiation in standard fatigue life predictions, for example by Lombardo and Fraser(6).
They specifically drew attention to uncertainties coming from mission profile and design load
spectrum estimation but also to possible inaccuracies in standard models used to estimate
fatigue damage (e.g. the Palmgren-Miner linear accumulation hypothesis). To the best of
the authors’ knowledge, there has so far been no systematic attempt to develop numerical
error models for such standard fatigue damage models. This is also outside the scope of this
analysis. The influence of uncertainties from the estimation of regime loads and design load
spectra on predicted fatigue life has, however, been researched before.

Thompson and Adams(7) were one of the first in the rotorcraft industry to extensively
model the reliability of SLLs. They included the combined uncertainty from variance in
component strength, regime loads and mission profiles in a reliability substantiation model
by using a Basic Monte Carlo (BMC) simulation and models for random strength, loads
and usage. For their random load model, the average load spectrum per manoeuvre and
also the statistical distribution of manoeuvre maximum loads was computed from results of
dedicated flight tests. The manoeuvre load spectrum was assumed linearly proportional to the
random manoeuvre maximum load; that is, when a maximum load is drawn that is twice the
average, the corresponding spectrum is the average spectrum but with the number of cycles
multiplied by two. Not accounting for GAG loads and assuming that helicopters randomly
change mission profile every 103FH, the percentage of time spent in each manoeuvre is set as
a random variable, as well (based on extensive usage data). Their (random) strength model was
similar to the model in Section 2.2. Due to the low efficiency of BMC for aerospace-typical
low-failure probabilities, it was necessary to estimate these probabilities by tail extrapolation
of a distribution fit through a limited number of BMC samples.

This work was extended by Zhao and Adams(8,9), where use was made of importance
sampling, preceded by First- and Second-Order Reliability Modelling (FORM/SORM) to
first estimate the critical failure region in the parameter space.
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Figure 5. (Colour online) Schematic of the random model framework for recent (semi-)analytical SLL
reliability models (shown with two load cases).

Benton(10) and others(11–14) have all introduced (semi-) analytical fatigue life reliability
substantiation models. Each of these requires specifying a PDF for the amplitude and number
of cycles of every load case to be considered, i.e. defined as a constant amplitude loading
block, and also made use of a random strength model similar to Section 2.2. This framework
is displayed in Fig. 5.

All previous work on reliability substantiation for fatigue life prediction confirmed the
importance and value of explicit and combined modelling of uncertainty in strength, loads
and usage. Thompson and Adams used their work to re-confirm their standard fatigue life
design methodology. However, Tong et al(15) have challenged the accuracy of the method
presented by Thompson and Adams and argue that the conservative treatment of loads by
Thompson and Adams does not add significant reliability to the overall fatigue life prediction.
The results from Tong et al encourage the assumption that all reliability may be substantiated
by a conservative working curve, as employed by the simplified analytical method in Section
2.2. In addition, their results demonstrate that the assumption by Thompson and Adams that
sources of reliability can be linearly added may not hold.

The following challenges were identified based on previous work:

� It is difficult to model situations of complex spectrum loading, i.e.as in Fig. 4, in the
framework of current (semi-)analytical methods (i.e. as in Fig. 5).

� The manoeuvre load model of Thompson and Adams effectively bounds the maximum
spectrum load to the highest load measured in test flights. In practise, however, it is
observed that the extreme load during a manoeuvre can be considered as an unbounded
random variable. Due to the non-linearity of the S-N curve, PV filtering and range
counting, it is expected that only scaling of the number of cycles in a reference spectrum
will generally, not accurately, reflect random variations in manoeuvre damage. For
example, even when considering a spectrum with only one cycle, then doubling the
maximum load of this cycle, can have a significantly different effect on manoeuvre
damage than doubling the count of this cycle.
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� None of the previous work includes tolerance intervals (i.e. confidence intervals
on quantiles) despite the high uncertainty associated with probabilistic fatigue life
predictions derived from few statistical samples, as is common in rotorcraft industry.

4.0 SIMULATION-BASED SUBSTANTIATION
A new simulation-based methodology to substantiate fatigue life predictions for critical
components in the helicopter dynamic system is presented. This new method aims to meet
the following main requirements:

� Model combined uncertainty from loads and strength
� Be applicable to problems of very high dimension (i.e. mission profiles with many flight

regimes)
� Be suitable up to very low failure probabilities (i.e. 10−9)
� Improve accuracy and generality with respect to previously introduced models
� Provide tolerance intervals
� Feature reasonable computational costs

4.1 Modelling assumptions

The following fundamental assumptions are made in the development of this model:

� Perfect fatigue modelling, see also Section 2.4
� Helicopters’ mission profile is known or can be conservatively assumed and can be

modelled as in Section 2.3
� Flight regime loads are independent. For example, an abnormally high load in a turn to

the left is uncorrelated to the load in a next right turn

The practical implementation of the model also assumes that regime loads are identical
throughout a fatigue life (e.g. all turns are flown identically). This practical assumption is
expected to promote variance in lifetime and thus to be conservative (i.e. loads do not average-
out during life). This feature can, however, easily be lifted and is not a necessary condition for
practical use of the proposed model. This is important, as it may also be argued that a small
change in a single load can have a major effect on fatigue life due to the non-linearity of the
S-N curve. The presence of a single high load ‘outlier’ may then have a dominating effect on
fatigue life. Then, it would be reasonable to conclude that the rate of occurrence of a high
load ‘outlier’ may be too restricted if loads are only sampled once for each manoeuvre type,
instead of once per occurrence of the manoeuvre.

4.2 Modelling of random variables

The substantiation model features an independent probabilistic strength model and a strength-
dependent combined probabilistic manoeuvre load and fatigue damage model which is similar
to the model used by the virtual fatigue damage accumulation sensor from Dekker et al(16).
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4.2.1 Stochastic fatigue strength model

The implemented random fatigue strength model is equal to Section 2.2. Note, that as the
proposed substantiation model is simulation-based, the new methodology may easily be
adapted to accommodate other strength models.

4.2.2 Stochastic load spectrum model

Ideally, flight regime loads can be modelled in full and with only a small number of random
parameters e.g. by means of Fourier decomposition and/or Principle Component Analysis.
It was observed that, especially in complex and dynamic manoeuvres, the high frequency
content of load signals is most relevant for fatigue damage modelling. Unfortunately, there is
often not enough flight data available to reliably derive the high number of model parameters
that would be necessary to properly represent these high frequency load signal features.

Instead, it was found that modelling of fatigue damage that is equivalent to the full
load signal during a flight regime is easier than attempting to model the full load signal.
Distribution fits through available test flight data, and large samples with synthetically
generated flight manoeuvre load sequences demonstrated that, for a given S-N curve, and
given that there is at least one half-cycle above the endurance limit, the flight regime fatigue
damage follows a generalised extreme value (GEV) distribution.

The GEV distribution of a parameter x is defined as follows:

if k �= 0 then:

p (x|k,μ, σ) = 1
σ
exp
[
−(1 + k x−μ

σ

)− 1
k

] (
1 + k x−μ

σ

)−1− 1
k ,

else:

p (x|k,μ, σ) = 1
σ
exp
[−exp

(− x−μ

σ

)− x−μ

σ

]
… (4.1)

where [k,μ, σ] are distribution parameters.
The magnitude of the minimum and maximum load that occurs within a flight regime is

also described by a GEV distribution. Again, distribution fits through large samples with
synthetically generated manoeuvre load sequences, but, as well as through available test flight
data, are in agreement with this choice.

A random model that represents the load model, as in Fig. 4, can now be established for a
given fatigue strength by defining for each manoeuvre:

� The probability that load cycles within the flight manoeuvre cause fatigue damage. This
can be estimated by computing the fatigue damage for each available manoeuvre loading
sample and by computing the ratio between the number of times the manoeuvre was flown
with and without causing damage. A visualisation of a resulting binomial distribution
is shown in Fig. 6. This feature circumvents a discontinuity in the manoeuvre damage
distribution. Due to the endurance limit, many manoeuvre instances may not cause
any manoeuvre damage at all, whereas the damage of the damaging instances is GEV
distributed.

� If there is no regime damage, a multivariate probability density functions for the minimum
and maximum load during the manoeuvre. Such a distribution is shown in Fig. 7.

� If there is manoeuvre damage, a multivariate PDF for manoeuvre damage and extreme
loads. Figure 8 shows an example of such a distribution.
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Figure 6. (Colour online) Pie chart showing how probable it is that there are load cycles within a particular
flight regime above the endurance limit (Z) or not (NZ).

Figure 7. (Colour online) A large sample from a fitted multivariate manoeuvre minimum and maximum
load distribution (i.e. manoeuvre damage is zero). The corresponding marginal

distributions are also shown.

The multivariate distributions in the practical implementation of the model are realised by t-
copulas(17). An alternative implementation3 by means of NATAF transformation (Hurtado(18))
resulted in non-conservatively biased and inaccurate results according to an idealised
and synthetic verification test. (The method of this verification test will be detailed in
Section 5.2.2; a true probability of the failure of 10−3 was over-optimistically estimated as

3 An adapted version of the FERUM 4.1 reliability-modelling package was used for this initial test. All subsequent
results are obtained with newly developed proprietary software.
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Figure 8. (Colour online) A large sample from a fitted multivariate manoeuvre
damage and extreme load distribution.

5.9 × 10−4, whereas using t-copulas resulted in a virtually error-free estimate). Following
the work of Lebrun and Dutfoy(19), NATAF’s limitations in modelling (tail) dependence of
correlated multivariate distributions may provide an explanation.

4.3 Review of reliability estimation methods

The reliability of an SLL is one minus the probability that a component experiences a fatigue
failure before it reaches the SLL:

R (SLL) = 1 − Pfail (SLL) with failure ≡ L < SLL … (4.2)

Considering that the fatigue life L of a specific component is a function of the random
parameter vector ω (i.e. containing the sampled strength factor and sampled loads and
damages of the manoeuvres), the following indicator function I(...) can be defined:

I [L (ω)] =
{

1 ifL (ω) < SLL
0 otherwise

… (4.3)

Analytically, Pfail can now be computed as:

Pfail(SLL) =
∫
�

I [L (ω) |SLL] × p (ω) × dω … (4.4)

However, such an integral over the parameter space � is not expected to be mathematically
tractable for the model in Section 4.2.
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4.3.1 Practical numerical reliability estimators

The most intuitive way to estimate Pfail(SLL) is by a BMC estimator:

Pfail (SLL) = 1
nsim

nsim∑
i=1

{I [L (ωi ) |SLL]} as nsim → ∞, … (4.5)

which is simply drawing a large number, nsim, of parameter vectors from the parameter PDF
p(ω), computing the corresponding fatigue lives and then the fraction of parameter vectors
that produce a fatigue life lower than the SLL.

The coefficient of variation (CoV) of a BMC estimate of Pfail approximately approaches:

CoVPfail = σPfail

μPfail

=
√

1 − Pfail

Pfail × nsim
… (4.6)

The estimation error is thus proportional to 1/
√

nsim and independent of the dimension
of �. This is a highly advantageous feature, as the dimension of the parameter vector
according to the model in Section 4.2 is generally high. However, when the precision of the
estimate needs to have a CoV of 30%, then it is required to evaluate approximately 10/Pfail

BMC samples. This means that estimating an aerospace-typical small Pfail becomes highly
impractical due to the very large number of samples that need to be evaluated.

Traditionally, reliability problems have been solved semi-analytically by First- and Second-
Order Reliability Methods(18). These methods are, however, only accurate under strict
conditions, require transformation of the parameter space to a multivariate standard normal
distribution (e.g. by transformation of the marginal distributions into Gaussians and by
NATAF transformation), and their computational costs are strongly dependent on the
dimension of �. Utilisation of FORM/SORM to handle the high-dimensional and potentially
discontinuous parameter space that the model in Section 4.2 stipulates was probed4 but did
not yield encouraging results and was abandoned.

Importance Sampling(18) is another common technique to improve the efficiency of
the BMC estimator. However, this requires defining a special sampling distribution
around the critical region i.e. where L(ω) ≈ SLL, which is commonly obtained following
FORM/SORM solutions. Improperly setting this special sampling distribution may cause
large errors in the estimate of Pfail. The model in Section 4.2 dictates a high dimension and
complexity of the parameter space. Setting a proper sampling distribution is thus difficult,
even more so given the discouraging results from FORM/SORM for the simulation-based
model. Therefore, importance sampling was not pursued as a solution method.

Most other studied methods, such as BMC acceleration by statistically ‘learned’ indicator
functions, e.g. by Kriging(20) or Support Vector Machines(18), or recent Particle Algorithms(21)

were also considered unappealing for the particular problem at hand, mainly due to their
complexity and difficulties due to the high dimensionality and the complexity of � that the
model in Section 4.2 dictates.

4 Using an adapted version of the FERUM 4.1 reliability modelling package.
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4.3.2 Subset simulation

The method of choice that is implemented to estimate Pfail is subset simulation (SS) as
developed by Au and Beck(22). The core concept is to divide a difficult problem of estimating
a total probability of failure into multiple sub-problems that are, by themselves, easy to solve.
Considering the CoV of the BMC estimator (4.6), it shows that estimating, for example, a
1/10 probability of failure, can be done with reasonable accuracy while using ‘only’ 100
samples, independent of the dimension of the parameter space. SS exploits this benefit by
estimating the total probability of failure by multiplication of a sequence of conditional high
failure probabilities.

A set of intermediate failure events can be defined such that:

F1 ⊃ F2 ⊃ ... ⊃ Fm = F … (4.7)

This means that the failure event Fm ≡ L < SLLm is a subset of the more probable
intermediate failure event Fm−1 ≡ L < SLLm−1, which is, in turn, a subset of the even more
probable intermediate failure event Fm−2 ≡ L < SLLm−2, and so forth.

The total probability of failure is now:

Pfail = Pfail,1 ×
m∏

j=2

Pfail, j

∣∣
Fj−1

… (4.8)

Here, Pfail,1 is the probability of the first intermediate failure event F1. And Pfail, j |Fj−1 is the
probability of failure event Fj,, given that the more probable failure event Fj-1 occurs.

Computation of Pfail,1 can be done straightforwardly by a BMC estimator, especially when
the first intermediate failure event F1 is set such that Pfail,1 equals an easy to compute
probability γ (i.e. 1/10). Now, a limited number of samples are drawn (i.e. 100), and the
fatigue life is predicted for each of these samples. The intermediate failure event F1 is then
defined such that P(SLL1 > L) = γ. For example, the first intermediate limit state SLL1, or
intermediate failure boundary, an implicit hyper-surface in �, is set such that 10 out of 100 of
the initial samples lie in the first intermediate failure domain.

A similar procedure can be followed for the subsequent intermediate failure events. Again
making use of a simple BMC estimator, it is now, however, necessary to generate samples
that are part of the intermediate failure domain Fj-1. Generation of a random sample that is
conditional on the domain Fj-1 can be done with Modified Metropolis Hastings Markov Chain
Sampling, see Ref. 19 for a detailed description.

Additional intermediate failure events are added until the actual SLL for which Pfail needs
to be known is reached. Figures 9–11 show an example of computing Pfail(SLL, si ) by subset
simulation.

4.4 Estimating the reliability of an SLL

The load model from Section 4.2.2 causes that the PDFs for regime damage and extreme load
are dependent on the fatigue strength, which is itself a random variable. Therefore, Pfail should
be computed according to:

Pfail (SLL) =
∫

pfail (SLL, s) × p (s) × ds ≈
nbin∑

i

[Pfail (SLL, si ) × P (si )] … (4.9)

https://doi.org/10.1017/aer.2016.79 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2016.79


1676 October 2016The Aeronautical Journal

Figure 9. (Colour online) Example of SS, where it takes three intermediate failure events (black stars) to
reach the SLL under evaluation (red diamond). The initial lifetime sample is in yellow, the lifetime

distribution conditional on F1 is purple and the lifetime distribution conditional on F2 is light
blue.Pfail (SLL, si ) ≈ 0.1 × 0.1 × 0.2 = 0.002.

Figure 10. (Colour online) Strength samples from SS from the example in Fig. 4.4. Note that the strength
generally decreases as the intermediate failure events become less probable.
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Figure 11. (Colour online) SS samples of the minimum load, maximum load and regime damage of a
flight regime from the example in Fig. 4.4. Note that the maximum load in the middle graph generally

increases with less likely intermediate failure events, as would be expected.

The discretised integral is evaluated by discretising the strength distribution into i intervals
(bins) and while assuming that, within each strength interval:

� Regime damage is constant and according to the lowest strength value in the interval
� Correlations between regime extreme loads (and regime damage) are invariant

The parameter PDFs are now fixed for each strength interval. The strength PDF in one
such interval is as in Fig. 12. Note that, in general, the coarser the strength discretisation grid,
the more conservative the estimates of Pfail, as regime damage is consistently overestimated.
This was confirmed by simulations under both ideal and small sample size conditions. High
imprecision may arise, though, if too few samples per subset are used in combination with a
very coarse strength grid.

4.5 Confidence interval on SLL reliability

In practise, the number of fatigue tests and flight tests that can be done is limited. Also,
computational resources are generally limited so that the sample sizes used in SS must be
limited. This means that both the parameter distributions themselves, as well as computational
results from the quantile estimator (4.8), are actually subject to significant uncertainty. It is
assumed that other sources of uncertainty (i.e. establishing of the copulas) can be neglected
or are conservatively hedged.

Confidence intervals on Pfail are computed by parametric and non-parametric
bootstrapping(23). Essentially, this means that Pfail is computed for several alternative variants
of the strength, regime extreme load and regime damage distributions, and for several
alternative SS estimates. Thus, a distribution for Pfail can be estimated and, for example, the
upper 95th percentile of Pfail can be selected for an upper single sided 95% confidence interval.
An example is shown in Fig. 13.

Au and Beck(22) provide an algorithm to estimate the coefficient of variation CoVPfail,i for
Pfail(SLL,si ) in (4.9), while assuming that Pfail(SLL,si ) is normally distributed. The standard
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Figure 12. (Colour online) Example of strength PDF that is conditional on a strength interval,
here in the upper right thick blue box.

deviation of Pfail can then be estimated as:

σ̂Pfail =
√√√√ nbin∑

i

[
CoVPfail,i × Pfail (SLL,si ) × P (si )

]2
… (4.10)

This feature is important as it allows using small sample sizes in SS (i.e. for low
computational costs) while still ensuring conservatism.

Alternative regime loads are determined by non-parametric bootstrapping (i.e. random
‘reshuffling’ with allowing duplicates) of the available manoeuvre load tests results. Note that
standard literature indicates that non-parametric bootstrapping is inaccurate and generally not
conservative for small sample sizes. This was also confirmed by extensive simulations by the
authors. Nevertheless, it is assumed that this inaccuracy is negligible (i.e. small in comparison
to variance due to parametric bootstrapping of the estimated strength distribution). Previous
sensitivity studies (e.g. by Zhao and Adams) show that fatigue strength is significantly
more influential than manoeuvre loads in fatigue life prediction and thereby support this
assumption.

Alternative strength factor distributions are simply drawn from the parameter PDFs (2.7)
and (2.8). This method of parametric bootstrapping was confirmed to be accurate by means of
extensive simulations by the authors.
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Figure 13. (Colour online) Example of the PDFs of bootstrap estimates of Pfail(SLL). The width of a PDF
represents uncertainty due to limited SS accuracy, and the variance in the mean of the different PDFs
represents uncertainty due to a low number of fatigue and manoeuvre load tests. It demonstrates that

imprecision from SS is small with respect to uncertainty due to a low number of fatigue and manoeuvre
load tests. The result was obtained for seven available fatigue tests and 15 instances per manoeuvre.

5.0 VALIDATION OF SUBSTANTIATION MODELS
5.1 Synthetic reference problem

Straightforward validation on a real fatigue life prediction case is fundamentally impossible
due to the extremely large sample sizes that would be required, e.g. to define a real
fatigue life distribution. It would imply flying a very large number (>>103) of helicopters
under an identical mission profile until (catastrophic) fatigue failure of the component
under investigation has occurred on all machines. Therefore, the analytical and simulation-
based fatigue life prediction substantiation models are both tested only on a synthetic
reference problem for which the ‘true’ fatigue life distribution can be simulated. This
reference case is designed to be realistic but is not specific for any particular helicopter
component.

The definition of the S-N-P curve is as in Fig. 14. The standard deviation of the strength
factor is set to a realistically low value to maximise the relative influence of variance in loads
on fatigue life. This is important as the simulation-based model is meant to improve accuracy
by explicitly accounting for the influence of uncertainty in loads on fatigue life.

Random synthetic flight regimes are used to doing ‘virtual manoeuvre load testing.’ A
Fourier series is used to form a random load signal for the ith synthetic regime of the ith
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Figure 14. (Colour online) Definition of the S-N-P curve in the reference problem. See also Equations
(2.1) and (2.5). ‘Loads’ refers to all sampled load signals, as in Fig. 15.

virtual manoeuvre load test:

[Load signal]i =
k∑

n=1

ai,nSin( fi,n × tF + φi,n) + mi,n, … (5.1)

where tF is a synthetic time vector discretising the domain [0, 2π] into 150 points, and where
{a, f ,φ, m} are randomly drawn load signal parameters defining an ordinary Fourier series.

For each manoeuvre, random manoeuvre-type parameters set a multivariate distribution
from which the load signal parameters are drawn. K = 5 signal parameters are randomly
drawn from the distributions that these random manoeuvre-type parameters define, each time
a virtual manoeuvre load test is performed:

[ai, fi,φi, mi] = N([μa,i,μ f ,i,μφ,ι,μm,i], [σa,i, σ f ,i, σφ,ι, σm,i]) … (5.2)

To define the virtual flight manoeuvres, the manoeuvre type parameters for i = 15 different
manoeuvres are randomly drawn from the following uniform and/or normal distributions:

μm = U [−10, 10] × 2.7 σm = N (0, 1) × 1.4
μ f = N (0, 1) × 45 σ f = N (0, 1) × 1.5
μa = N (0, 1) × 45 σa = N (0, 1) × 0.4
μφ = N (0, 1) × 0.2 × π σφ = N (0, 1) × 1.2,

… (5.3)

where the scaling factors were set by the tuning of the synthetic reference problem such that
it is representative and realistic. Changing the parameters in (5.3) can be used to change the
nature of the load spectra occurring in the synthetic reference problem.
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Figure 15. (Colour online) Example of artificially generated test flight data. Note the similarity between
samples for the same regime and the difference between the regimes.

Some load signals generated by the random flight regime model are shown in Fig. 15.
Corresponding distributions for regime minimum and maximum load are given in Fig. 16.
Figure 17, then, shows corresponding regime damage distributions, computed with strength
factors according to the distribution defined in Fig. 14.

The mission profile is randomly defined by drawing a random sequence of 150 flight
regimes and setting the regime timeshare proportional to the number of occurrences of
the regime in the random sequence. Figure 18 shows an example of a drawn sequence of
manoeuvre extreme loads.

Defining a reference problem in this way allows doing a virtually infinite number of flight
and fatigue tests. For a randomly generated problem, it is thus possible to very accurately
simulate the ‘true’ distribution of fatigue life by simple BMC simulation. Figure 20 shows
such a reference fatigue life distribution. All the reference distributions that are used for
validation contain 105 samples. The CoV of the ‘true’ Pfail of the ‘true’ 10−3 lifetime quantile
is then 10%, according to Equation (4.6). This means that it is roughly 99.7% certain that the
Pfail of the ‘true’ 10−3 lifetime quantile is actually between 1.3 × 10−3 and 0.7 × 10−3. This
imprecision must be considered when regarding observed estimation errors of the models.

The 10−3 quantile of the ‘true’ lifetime distribution can thus be estimated with high
precision by BMC simulation and without making any assumptions about the distribution of
fatigue life. However, tests for estimating a more realistic 10−6 quantile can only be conducted
when the distribution of the ‘true’ reference sample of size 105 is extrapolated. To do this, it
is assumed that fatigue life follows a GEV distribution. Although GEV distribution models
generally fit simulated lifetime distributions very well, cases have been observed where the fit
appeared to model the lower tail too conservatively, potentially leading to the presentation of
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Figure 16. (Colour online) Example of reference flight regime maximum (above) and minimum (below)
load (marginal) distributions.

Figure 17. (Colour online) Example of reference flight regime damage (marginal) distributions.

(slightly) over-conservative test results in this work. The use of dedicated tail modelling may
remediate this inaccuracy in future work.

Such ‘true’ reference distributions of fatigue life are used to validate the analytical and
simulation-based methods (see also Fig. 19).

5.2 Verification test under idealised circumstances

First, the ideal performance of the standard analytical (Section 2) and new simulation-
based (Section 4) fatigue life substantiation models are tested to see if these models are
asymptotically correct. Ideal conditions are defined as having 5 × 105 fatigue tests and 104

flight tests available5. Hence, if a model makes wrong estimates, then this must be due to
fundamental shortcomings in the model itself, as there is practically no uncertainty in the
fitted strength and load distributions that serve as input to the models.

5.2.1 Standard analytical method

The standard method is tested by using the ‘true’ lifetime distribution to compute the actual
Pfail of the lifetime quantile that the standard method predicts. As in Fig. 20, this actual Pfail is

5 These sample sizes followed from limitations in memory capacity of the computational resources used to conduct
presented work.
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Figure 18. (Colour online) Example of sampled GAG extreme manoeuvre loads
before extreme load and Peak Valley filtering.

Sample fa�gue strength and 
manoeuver load data to predict fa�gue 
life for a given reliability requirement

Defini�on of synthe�c fa�gue 
life predic�on problem

Basic Monte 
Carlo simula�on 

fa�gue life that 
sa�sfies the 

given reliability 
requirement

Standard 
analy�cal method

New simula�on-
based method

fa�gue life that 
should sa�sfy 

the given 
reliability 

requirement

fa�gue life that 
should sa�sfy 

the given 
reliability 

requirement

Compare

Figure 19. Overview of the validation procedure to test the reliability of the analytical and
simulation-based fatigue life prediction methods.
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Figure 20. (Colour online) Comparison between the (synthetic) 10−3 lifetime quantile according to the
reference distribution and the standard prediction method.

about 7 × 10−3 (i.e. the failure probability of the predicted lifetime is about seven times higher
than the target of 10−3). A repetition of the test, while instead targeting a more realistic and
challenging 10−6 lifetime quantile, also led to a non-conservatively biased ‘true’ fatigue life
quantile of about 5.9 × 10−5. These results indicate that the standard reliability substantiation
model is, under ideal circumstances, inaccurate and non-conservative. The cause is that the
standard method only computes with the average (extreme) loads and neglects effects of their
variance.

5.2.2 Simulation-based method

The new simulation-based fatigue life substantiation model is tested differently, as it does not
directly predict a lifetime quantile. It is only tested if the new model indeed predicts a 10−3

probability of failure for the lifetime that is already known to be the 10−3 quantile of the ‘true’
reference lifetime distribution.

The test result is depicted in Fig. 21. The circles in the blue line show Pfail(SLLref )
for the ith strength interval. The probability of having a component in the ith strength
interval is displayed by the squared red line. The triangulated black line shows the point-
wise multiplication between Pfail(SSL,si), given strength and the probability of this given
strength. The dotted green line finally shows the cumulative probability of failure, which here
accumulates to 1.05 × 10−3. The Pfail(SSL,si)estimates are made for sequentially increasing
strength intervals, starting at the lower tail. When these probability estimates become very
small, and as soon as the product of the ith estimated probability of failure and the probability
of a strength value in the ith interval itself no longer provides a significant contribution to the
overall reliability integral (4.9), the Pfail(SSL,si) estimates for the remaining strength intervals
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Figure 21. (Colour online) SS results under ideal circumstances.

are conservatively assumed to save computational costs. For the case in Fig. 21, the failure
probability was conservatively assumed for intervals with normalised strength higher than
about 0.9.

The predicted Pfail(SLLref ) of 1.05 × 10−3 is practically a perfect result, as the estimate is
well within an approximate ‘one sigma’ confidence interval of the ‘true’ reference quantile.
Repetition of the test for predicting Pfail(SLLref ) for a reference SLL corresponding to a more
realistic but also more challenging ‘true’ 10−6 lifetime quantile, demonstrated similar results.
The ‘true’ 10−6 lifetime quantile was only slightly over-optimistically estimated to correspond
to the 6.75 × 10−7 quantile.

Overall, the test results provide very strong evidence that the newly proposed fatigue life
substantiation model is asymptotically correct. This is in contrast to the standard model.

The computations were executed with 103 samples per subset and a strength distribution
discretised in 250 intervals. This represents a very accurate but computationally expensive
configuration.

5.3 Validation test with realistic, small samples

In practice, the number of tests that can be done is small and computational resources are
limited. Therefore, the validation tests are repeated, but now, while assuming that only seven
fatigue tests have been done and that every flight regime was only test-flown 15 times.
Computational costs are limited by dividing the strength distribution in wide intervals and
by using a low number of samples per subset distribution.

It can now no longer be expected that any of the models perfectly predicts the 10−3 fatigue
life quantile. The small amount of test results available to make a prediction does not give a
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Figure 22. (Colour online) Testing of the standard fatigue life prediction method
for realistically small samples.

perfect representation of the ‘true’ load and strength distributions and thus causes inevitable
errors. Instead, it is tested if the models give a conservative estimate of the 10−3 fatigue life
quantile in 95% of repeated prediction cases.

5.3.1 Standard method

Figure 22 shows 250 repetitions of estimating the same conservative lifetime quantile with the
standard method. Seven virtual fatigue tests and 15 virtual tests per manoeuvre were newly
performed per repetition. It shows that if no confidence interval would be computed, only
about 40% of the lifetime predictions would actually meet the 0.999 reliability requirement.
This can be understood by noting that the estimator of the variance, most notably of fatigue
strength, is biased towards underestimating the variance. Straightforward simulations confirm
that it is ‘normal’ to underestimate the standard deviation in roughly 60% of the cases if only
seven tests are done. In case of the standard fatigue life prediction method, this automatically
means that the lifetime percentile is non-conservatively overestimated in 60% of the cases, as
strength dominates the prediction. However, Fig. 22 shows that if the 10−3 lifetime quantile
is computed with a single-sided 95% confidence interval, then 241 out of 250 (96.4%) of
repeated predictions met the 0.999 reliability requirement. This demonstrates that the targeted
95% confidence level is met.

The test as in Fig. 22 was repeated 25 times for redrawn synthetic problems. Each redrawing
from Equation (5.2) generates a slightly different fatigue life prediction problem by modifying
the overall behaviour of the distributed flight regime loads. This approach explicitly tests
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Figure 23. (Colour online) Repeated testing of the standard fatigue life prediction
method for realistically small samples.

the repeatability of the accurate behaviour of the standard method. The distribution of the
decimal meeting the reliability requirement is shown in Fig. 23. Following Equation (4.6),
approximately ‘one-sigma’ confidence intervals of the realised confidence levels themselves
have an approximate width of 2.8%. Therefore, it may be concluded that the standard method
yields practically perfect estimates, at least for the tested problem family. To further increase
confidence in the accuracy of the standard method, the test, as in Fig. 23, is repeated, but
while simulating that ‘only’ seven, instead of 15, manoeuvre load tests were performed
per manoeuvre. So the relative uncertainty in estimated manoeuvre loads is increased. The
realised confidence levels followed a comparable normal distribution, as in Fig. 23, but with
slightly increased variance (imprecision). The observed ‘bottom-of-scatter’ of the decimal
meeting the reliability requirement reduced slightly from to 91.2%, instead of 94% before.
Repeating the test, but estimating a 10−6 lifetime quantile and simulating only 50 instead of
250 predictions per repetition, demonstrated a ‘bottom-of-scatter’ of the decimal meeting the
reliability requirement of 86%.

Overall, this indicates that the error that the method generally makes by neglecting any
effects of uncertainty in loads is, in practice, not too significant in comparison to the effects
of uncertainty in strength, which is duly accounted for.

5.3.2 Simulation-based method

The new simulation-based method is first tested by checking if it indeed predicts a 10−3

probability of failure for the lifetime that is already known to be the 10−3 quantile of the ‘true’
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Figure 24. (Colour online) Testing of the simulation-based fatigue life substantiation model for realistically
small samples. The simulation used 150 samples per subset, a strength distribution discretised in 25

intervals and 25 bootstraps per repeated sample. This is a computationally ‘cheap’ configuration.

reference lifetime distribution. The predicted Pfail may not be lower than 10−3 for 95% of the
load and strength sampling repetitions when the method targets a 95% single-sided confidence
interval. Figure 24 shows that 5/100 of the repeated predictions were too optimistic regarding
the probability of failure of the true 10−3 lifetime quantile. This is practically ‘perfect’
performance when considering the precision of this ‘true’ reference. The test, as in Fig. 24,
is also repeated, while simulating that ‘only’ seven manoeuvre load tests were performed per
manoeuvre. Then, 89/100 MLE estimates and 99/100 upper confidence level estimates were
observed to meet the actual reliability requirement. This overly conservative result is believed
to be caused by an over-conservatively designed custom procedure that hedges practical
issues in fitting multi-dimensional distributions through few sample points. The authors are
confident though, that adjustments in the fitting procedure, possibly in combination with more
bootstraps per repeated sample, will yield more accurate results.

Finally, the test is repeated again, but now for a more challenging and realistic 10−6 lifetime
quantile and while simulating that 15 load samples are available per manoeuvre. The result
demonstrated that 7/25 (28%) MLE estimates were conservative and that 23/25 (92%) upper
confidence level estimates were conservative, thereby indicating that the simulation-based
method can accurately predict 10−6 lifetime quantiles under small sample size conditions and
using a ‘cheap’ computational setting, such as in Fig. 24.

The practical engineering problem is, however, not to predict Pfail of a given lifetime,
but rather to predict a lifetime that meets a reliability requirement (i.e. 0.999). Hence,
a Reliability Based Design Optimization (RBDO) application was developed to use the
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Figure 25. (Colour online) Illustrative result from a custom RBDO application to predict fatigue life using
the simulation-based fatigue life substantiation model. Note that Pfail estimates around the same lifetime

do not differ much, demonstrating the high precision of SS in the newly proposed method
(i.e. with 150 samples per subset).

simulation-based lifetime substantiation model to ‘design’ lifetimes that meet a reliability
requirement. Figure 25 shows an illustrative result from the RBDO application.

Figure 26 shows 50 repetitions of estimating the same conservative 10−3 lifetime quantile
with the custom RBDO application, while having only seven fatigue and 15 manoeuvre
load tests available. It shows that none of the repeated lifetime designs fell below the ‘true’
10−3 lifetime quantile. As a 95% upper single sided confidence level was targeted, this
test clearly demonstrates overly conservative results. The validation test of the simulation-
based Pfial(SLL) estimates, as in Fig. 24, was passed successfully. Therefore, the authors are
confident that manageable adjustments of the RBDO application will yield more accurate
results.

5.3.3 Simultaneous comparison

The results in Fig. 26 also allow direct comparison between the simulation-based and
analytical method. The test result demonstrates that lifetime quantiles designed by the
simulation-based method are similar to estimates from the standard method, though somewhat
over-conservative. In general though, it seems that for the tested problem family and with
realistically small sample sizes, the ideally attainable precision in estimating a reliable lifetime
is simply governed by the precision up to which a quantile of a lognormal strength distribution
can be estimated.
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Figure 26. (Colour online) Testing of both the simulation-based (red, ‘+’ for MLE and ‘*’ for confidence
interval estimates) and standard (blue, ‘o’ for MLE and ‘�’ for confidence interval estimates) fatigue life

quantile prediction models. The simulation used 150 samples per subset, a strength distribution
discretised in 20 intervals and 25 bootstraps per repeated sample.

6.0 CONCLUSIONS
This work confirms that, under idealised circumstances, a fundamental and non-conservative
error is made when the reliability of a predicted fatigue life is substantiated using only the
distribution of fatigue strength and simplifying the flight manoeuvre load distributions to their
mean values. As a solution, a new simulation-based fatigue life prediction method was suc-
cessfully validated and was shown to yield accurate results under all described test conditions.

However, it is also demonstrated that the simple analytical method does, nevertheless,
feature practically perfect performance under all studied realistic engineering conditions.
Direct comparison under these realistic conditions between the analytical and simulation-
based method actually revealed no practically significant differences in precision and
accuracy. This means that under small sample size conditions, uncertainties in manoeuvre
loads may be fully neglected and the full reliability substantiation may be derived from the
fatigue strength distribution only.

Future work may include expansion of the synthetic test conditions to estimate boundaries
for reliable application of the analytical and simulation-based methods. Expanded test
conditions may include:

� Increased variation in manoeuvre loads
� A broad range of S-N curve shapes, strength variations and mission profiles
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Additionally, future work may also include a detailed study on the numerical efficiency of
the presented methods.

It is recommended to only make use of the new and complex simulation-based method
when circumstances are encountered where the simple and easy-to-apply analytical method
is clearly not applicable i.e. when variance and uncertainties from manoeuvre loads are no
longer insignificant in comparison to variance and uncertainty from fatigue strength.

Finally, given the work’s modelling assumption that only full-scale component fatigue tests
can provide relevant data to estimate an S-N-P curve, emphasis is put onto the importance
of properly mitigating uncertainty coming from inadvertent inaccurate fatigue strength
estimates, due to availability of only few samples. The reach of such uncertainty is clearly
exemplified. It is therefore strongly recommended to explicitly determine a confidence interval
for any critical fatigue life quantile prediction and clearly state modelling assumptions. This
may prevent misconceptions on the reliability that can really be guaranteed by statistical
methods.
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