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Introduction

In this work, we introduce zero-pointed manifolds as a tool to solve two apparently

separate problems. The first problem, from manifold topology, is to generalize Poincaré

duality to factorization homology; the second problem, from algebra, is to show the

Koszul self-duality of n-disk, or En , algebras. The category of zero-pointed manifolds can

be thought of as a minimal home for manifolds generated by two kinds of maps, open

embeddings and Pontryagin–Thom collapse maps of open embeddings. In this work, we

show that this small formal modification of manifold topology gives rise to an inherent

duality. Before describing zero-pointed manifolds, we recall these motivating problems in

greater detail.

Factorization homology theory, after Lurie [28], is a comparatively new area,

growing out of ideas about configuration spaces from both conformal field theory and

algebraic topology. Most directly, it is a topological analogue of Beilinson & Drinfeld’s

algebro-geometric factorization algebras of [6]. In algebraic topology, factorization

homology generalizes both usual homology and the labeled configuration spaces of

Salvatore [34] and Segal [37]. See [1] for a more extended introduction. The last few years

has seen great activity in this subject, well beyond the basic foundations laid in [28],

[1], and [4], including Gaitsgory & Lurie’s application of algebro-geometric factorization

techniques to Tamagawa numbers in [16], and Costello & Gwilliam’s work on perturbative

quantum field theory in [10], where Costello’s renormalization machine is made to output

a factorization homology theory, an algebraic model for the observables in a quantum

field theory.

One can ask if these generalized avatars of homology carry a form of Poincaré duality.

An initial glitch in this question is that factorization homology is only covariantly natural

with respect to open embeddings of manifolds, and one cannot formulate even usual

Poincaré duality while only using pushforwards with respect to embeddings. One can then

ask, en route to endowing factorization homology with a form of duality, as to the minimal

home for manifold topology for which just usual Poincaré duality can be formulated.

That is, a homology theory defines a covariant functor from Mfldn , n-manifolds with
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embeddings; a cohomology theory likewise defines a contravariant functor from Mfldn .

For the formulation of duality results, what is the common geometric home for these two

concepts?

As one answer to this question, in § 1 we define zero-pointed manifolds. Our category

ZMfldn consists of pointed locally compact topological spaces M∗ for which the

complement M := M∗r ∗ is an n-manifold; every example of which is of the form M/∂M ,

the quotient of an n-manifold with compact boundary by its boundary. The interesting

feature of this category is the morphisms: a morphism between zero-pointed manifolds

is a pointed map f : M∗→ N∗ such that the restriction away from the zero point,

f −1 N → N , is an open embedding. This category ZMfldn contains both Mfldn and

Mfldop
n , the first by adding a disjoint basepoint and the second by 1-point compactifying.

A functor from ZMfldn thus has both pushforwards and extensions by zero, and both

homology and cohomology can be thought of as covariant functor from ZMfldn . Lemma

1.4.3 implies an isomorphism ¬ : ZMfldn ∼= ZMfldop
n between the category of zero-pointed

n-manifolds and its own opposite, which presages further duality.

In § 3, we extend the notion of factorization homology to zero-pointed manifolds. This

gives a geometric construction of additional functorialities for factorization homology

with coefficients in an augmented n-disk algebra. Namely, there exist extension-by-zero

maps. In particular, the factorization homology∫
(Rn)+

A

has the structure of an n-disk coalgebra via the pinch map, where (Rn)+ is the 1-point

compactification of Rn . By identifying the factorization homology of (Rn)+ with the

n-fold iterated bar construction, we arrive at an n-disk coalgebra structure on the n-fold

iterated bar construction, or topological André–Quillen homology, of an augmented n-disk

algebra.

This construction is closely bound to the Koszul self-duality of the En operad, first

conceived by Getzler & Jones in [18] contemporaneously with Ginzburg & Kapranov’s

originating theory of [19]. Namely, it has long been believed that the operadic bar

construction BarEn of the En operad is equivalent to an n-fold shift of the En co-operad.

This is interesting because the bar construction extends to a functor Algaug
O −→ cAlgaug

BarO
from augmented O-algebras to augmented coalgebras. If one stably identifies BarEn and

a shift of En , then one can construct a functor

Algaug
En
−→ cAlgaug

En

from augmented En-algebras to augmented En-coalgebras. We construct exactly such a

functor using this zero-pointed variant of factorization homology, which is given by taking

the factorization homology of the pointed n-sphere (Rn)+. In order to reduce from n-disk

algebras to En-algebras, we use the framed variant of the theory which is a special case

of theory of structured zero-pointed manifolds developed at the end of § 1.

A construction of such a functor has been previously accomplished by other means.

Fresse performed the chain-level calculation of the Koszul self-duality of C∗(En, R) in [14].

A direct calculation of self-duality of the bar construction of the operad En in spectra has

https://doi.org/10.1017/S1474748019000343 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000343


788 D. Ayala and J. Francis

not yet been given. The construction of a functor as above was however accomplished

in full generality by Lurie in [29] using a formalism for duality given by twisted-arrow

categories. We defer a comparison of our construction and theirs to another work; we will

not need to make use of any comparison in this work or its sequel [2].

A virtue of our construction is that it is easy, geometric, and for our purposes

accomplishes more via the connection to factorization homology. That is, in Appendix

we use this geometry to construct the Poincaré/Koszul duality map. Given a functor F

taking values on zero-pointed n-manifolds M∗, we obtain maps∫
M∗

F(Rn
+) −→ F(M∗) −→

∫ M∗
F((Rn)+).

The left-hand map is a universal left approximation by a factorization homology theory;

the right-hand map is a universal right approximation by a factorization cohomology

theory. The composite map is the Poincaré/Koszul duality map. While the operadic

approach to constructing the functor from En-algebras to En-coalgebras requires one

to work stably, such as in chain complexes or spectra, factorization homology applies

unstably: in the case in which F is a functor to spaces, the Poincaré/Koszul duality map

generalizes the scanning maps of McDuff [31] and Segal [35], as well as [8], [23], and

[34], which arose in the theory of configuration space models of mapping spaces. Finally,

we prove in Theorem 3.6.1 that the Poincaré/Koszul duality map is an equivalence for a

bicomplete Cartesian-sifted target. In particular, this gives a new proof of the non-abelian

Poincaré duality of Lurie in [28]. Our result further specializes to a version of linear

Poincaré duality, which assures that our duality map is an equivalence in the case of a

stable ∞-category with direct sum; in this last case, our Poincaré/Koszul duality map

becomes the Poincaré duality map of [11].

We summarize this discussion by stating our main result in a simplified articulation

(see Theorem 3.6.1 for a precise articulation).

Theorem 1 (Main Theorem). Let V be a symmetric monoidal ∞-category with suitable

colimits and limits. Let M be a compact framed n-manifold. For each augmented

En-algebra A in V, there is a canonical Poincaré duality morphism in V,

PD :
∫

M
A −→

∫ M
Barn(A),

from the factorization homology over M of A, to the factorization cohomology over M
of its n-fold bar construction. Under favorable conditions on V, if A is a member of a

Koszul duality, then this Poincaré duality morphism is an equivalence.

Remark 0.0.1. Theorem 1 can be generalized in two notable ways.

• First, the tangential structure of a framing on M can be replaced by any tangential

structure B on smooth n-manifolds. In this replacement, the En-algebra A is replaced by

that of a DiskB
n -algebra, in the sense of [1]. In the case that B = BG for G

ρ
−→ GLn(R) a

representation of a topological group G, a DiskBG
n -algebra is an En-algebra that is fixed

with respect to the resulting action of G on the∞-category of En-algebras. The n-fold
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bar construction on an augmented DiskB
n -algebra has the structure of a coaugmented

DiskB
n -coalgebra. Through these modifications, the Poincaré duality morphism still

exists canonically, as does the equivalence given a Koszul duality.

• Second, the B-manifold M can be replaced by a compact B-manifold with boundary M
together with a partition of the connected components of its boundary ∂M = ∂−M q
∂+M . Under these modifications the Poincaré duality morphism becomes

PD :
∫ red

Mr∂+M
A −→

∫ Mr∂−M

red
Barn(A),

involving reduced factorization (co)homology, which factorization (co)homology (as

developed in §2.5) with boundary conditions at 1. As with many proofs of Poincaré

duality, this non-compact phrasing is essential for the logic establishing of the compact

version.

Remark 0.0.2. As indicated above, and detailed in §3.6, in the case that (V,⊗) =

(Spaces,×), Theorem 1 generalizes non-abelian Poincaré duality of [28]; in the case

that (V,⊗) = (Spectra,⊕), Theorem 1 generalizes Atiyah duality.

Remark 0.0.3. Theorem 1 does not easily apply to the case (V,⊗) = (Modk,⊗) of chain

complexes and tensor products over k, which is a case of notable interest. We devote

a follow-up work, [2], to this case and give an algebro-geometric interpretation of the

result.

We note that the most appealing aspects of this work, such as the notions of

zero-pointed manifolds and their basic properties, are not difficult. The comparatively

technical stretch of this paper lies in § 3, where we show that factorization homology of

zero-pointed manifolds is well defined and well behaved. The mix of ∞-category theory

and point-set topology around the zero point introduces bad behavior in Diskn,+/M∗ , the

∞-overcategory appearing in the definition of factorization homology. Consequently, we

make recourse to a hand-crafted auxiliary version of this disk category, Disk+(M∗). This

adaptation has two essential features. First, Disk+(M∗) is sifted, a property which is

necessary to show that factorization homology exists as a symmetric monoidal functor.

Second, Disk+(M∗) has a natural filtration by cardinality of embedded disks. This is an
essential feature which Diskn,+/M lacks. This cardinality filtration gives rise to highly

non-trivial filtrations on factorization homology. This generalizes the Goodwillie–Weiss

embedding calculus of [39] to functors on zero-pointed manifolds or, alternatively, to

those functors on manifolds with boundary which are reduced on the boundary. In the

case n = 1, in which case factorization homology of the circle is Hochschild homology, our

cardinality filtration further specializes to the Hodge filtration on Hochschild homology

developed by Burghelea–Vigu-Poirrier [9], Feigin–Tsygan [13], Gerstenhaber–Schack [17],

and Loday [26]; for general spaces, but still in the case of commutative algebras, our

filtration specializes to the Hodge filtration of Pirashvili [32] and Glasman [20].

These small technical modifications involved in the construction of the auxiliary

Disk+(M∗) play an essential role in the sequel [2]. An essential step therein shows
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that the Poincaré/Koszul duality map interchanges the cardinality filtration and the

Goodwillie tower. That is, Goodwillie calculus [21] and Goodwillie–Weiss calculus are

Koszul dual in this context, a feature we ultimately use to present one solution as to

when the Poincaré/Koszul duality map is an equivalence.

Implementation of∞-categories. In this work, we use Joyal’s quasi-category model

of ∞-category theory [22]. Boardman and Vogt first introduced these simplicial sets in

[7], as weak Kan complexes, and their and Joyal’s theory has been developed in great

depth by Lurie in [27] and [28], our primary references; see the first chapter of [27]

for an introduction. We use this model, rather than model categories or simplicial

categories, because of the great technical advantages for constructions involving categories

of functors, which are ubiquitous in this work.

More specifically, we work inside of the quasi-category associated to this model category

of Joyal’s. In particular, each map between quasi-categories is understood to be an

iso- and inner fibration; (co)limits among quasi-categories are equivalent to homotopy

(co)limits with respect to Joyal’s model structure. As we work in this way, we refer

the reader to these sources for ∞-categorical versions of numerous familiar results and

constructions among ordinary categories.

We will also make use of topological categories, by which we mean categories enriched

in the Cartesian category of compactly generated weak Hausdorff topological spaces. A

key example of such is the topological category Mfldn , of n-manifolds and embeddings

among them.

By a functor S→ C from a topological category to an∞-category C we will always mean

a functor N Sing S→ C from the coherent nerve of the Kan-enriched category obtained

by applying the product preserving functor Sing to the morphism topological spaces.

The reader unfamiliar with this language can substitute the words “topological

category” for “∞-category” wherever they occur in this paper to obtain the correct

sense of the results, but they should then bear in mind the proviso that technical

difficulties may then abound in making the statements literally true. The reader only

concerned with algebras in chain complexes, rather than spectra, can likewise substitute

“pre-triangulated differential graded category” for “stable ∞-category” wherever those

words appear, with the same proviso.

1. Zero-pointed spaces

For this section, we use the letters X , Y , and Z for locally compact Hausdorff topological

spaces. For W a topological space, we denote the coproduct W+ := W q{∗} in topological

spaces.

1.1. Pointed extensions and negation

We define pointed extensions and negations thereof.

Definition 1.1.1. A pointed extension X∗ of X is a locally compact Hausdorff topology on

the underlying set of ∗q X extending the given topology on X . The category of pointed
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extensions (of X) is the full subcategory

PointX ⊂ TopX+/

of the undercategory consisting of the pointed extensions of X .

Example 1.1.2. The coproduct X+ is a pointed extension of X , and it is initial in the

category PointX . The 1-point compactification X+ is a pointed extension of X , and it is

final in the category PointX .

Example 1.1.3. Let M be a topological manifold with boundary ∂M . Provided the

boundary ∂M is compact, the pushout

∗ q
∂M

M

is a pointed extension of the interior M of M .

Remark 1.1.4. In the situation of Example 1.1.3, the pointed extension ∗ q
∂M

M contains

less information than the topological manifold with boundary M . For instance,

consider two compact topological manifolds M and M
′

with boundary together with

a homeomorphism M ∼= M ′ between their interiors. The pointed extensions ∗ q
∂M

M ∼=

M+ ∼= ∗ q
∂M ′

M
′

are both identified as the 1-point compactification of M . On the other

hand, it need not be the case that the identification between interiors extends as an

identification M ∼= M
′

of manifolds with boundary.

For instance, consider two topological manifolds P and Q that are h-cobordant but

not homeomorphic ([12] produces examples of such). For H such an h-cobordism, the

Whitehead torsion of the product S1
× P vanishes. It follows from the topological

s-cobordism theorem [24, Essay 3] that the interiors of [−1, 1]× P and of [−1, 1]× Q
are homeomorphic.

Observation 1.1.5. A pointed extension of X is determined by a basis for its topology

about the base point. More precisely, the identity map X∗→ X ′∗ is continuous if and only

if there are local bases

B := {∗ ∈ B ⊂ X∗} and B′ := {∗ ∈ B ′ ⊂ X ′∗}

for which, for each member B ′ ∈ B′, there is a member B ∈ B with B ⊂ B ′.

For the next result we make use of the Stone–Čech compactification X̂ of the locally

compact Hausdorff topological space X . Specifically, we make reference to its boundary

∂ X̂ := X̂ \ X , which is a closed subspace of X̂ .

Proposition 1.1.6. The category PointX is isomorphic to the poset clo(∂ X̂) of clopen

subsets of the boundary of the Stone–Čech compactification of X .
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Proof. Each morphism X∗→ X ′∗ in PointX is necessarily a bijection under the underlying

set of X+. It follows that PointX is a poset.

Consider the assignment

clo(∂ X̂) 3 (S ⊂ ∂ X̂) 7→ ∗q
S
(S ∪ X) ∈ PointX ; (1)

here, the union S ∪ X is understood as a subspace of X̂ . An inclusion of such clopens

S ⊂ S′ determines a continuous map ∗q
S
(S ∪ X)→ ∗q

S′
(S′ ∪ X) under X . It follows that

the assignment (1) defines a map between posets.

Consider the assignment

PointX 3 X∗ 7→ (!−1(∗) ⊂ ∂ X̂) ∈ clo(∂ X̂) (2)

where ! : X̂ → (X∗)+ is the unique continuous map under X obtained via the universal

property of the Stone–Čech compactification. Because the subspace (X∗)+ \ X ⊂ (X∗)+

is a discrete subspace consisting of two points, then !−1(∗) ⊂ ∂ X̂ is clopen, as required.

Consider the diagram comprised of continuous maps under X :

!
−1(∗)∪ X //

��

X̂

!

��
X∗ // (X∗)+.

(3)

This is a pullback diagram. Now suppose the identity map X∗→ X ′∗ between two

pointed extensions of X is continuous. There results a commutative diagram comprised

of continuous maps under X :

!
−1(∗)∪ X //

��

X̂

!

��

X∗

id
��

X ′∗ // (X ′∗)
+.

Because the diagram (3), applied to X ′∗, is a pullback, there results a canonical continuous

map

!
−1(∗)∪ X −→ (!′)−1(∗)∪ X

under X and over X̂ ; here, !′ : X̂ → (X ′∗)
+ is the unique continuous map under X . In

particular, there is an inclusion !−1(∗) ⊂ (!′)−1(∗). We conclude that the assignment (2)

is a map between posets, as desired.

We leave to the reader the verification that the assignments (1) and (2) are inverse to

one another.

The next result is a direct consequence of the fact that the poset clo(∂ X̂) is a Boolean

algebra.
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Corollary 1.1.7. The poset PointX is a Boolean algebra. In particular, it has an initial

object and a final object, it admits arbitrary colimits and limits, and products distribute

over colimits.

Remark 1.1.8. The poset PointX is the poset, ordered by inclusion, of connected

components of the topological space of ends of X , introduced by Freudenthal in [15].

Example 1.1.9. The initial object in PointX is X+, the space X with a disjoint based

point. The final object in PointX is X+, the 1-point compactification of X .

The data of a pointed extension X∗ of X determines which sequences in X that leave

compact subsets converge to the base point, which we think of as ‘infinity’. Consequently,

one can informally contemplate the negation X¬∗ of X∗ by making the complementary

declaration: such a sequence belongs to X¬∗ if and only if it does not belong to X∗. In

other words, X¬∗ is endowed with the complementary topology about ∗ from that of X∗.
The following makes this heuristic precise.

Corollary 1.1.10. There is a contravariant involution

¬: Pointop
X

∼=
−−→ PointX : ¬.

For X∗ a pointed extension of X , the value X¬∗ is the pointed extension of X that is initial

among pointed extensions X ′∗ of X for which the canonical map

X+ −→ X∗ ×
X+

X ′∗ (4)

is a homeomorphism.

Definition 1.1.11. For X∗ a pointed extension of X , we denote the value ¬(X∗) as X¬∗
and refer to this pointed extension of X as the negation (of X∗).

In other words, there is a relation X ′∗→ X¬∗ between pointed extensions of X if and

only if the canonical relation X+→ X∗ ×
X+

X ′∗ is an equality.

Example 1.1.12. The initial object and the final object are one another’s negations: X¬+ =
X+ and X+ = (X+)¬.

Example 1.1.13. The poset Point(−1,1) can be displayed as

(−1, 1)+ //

��

(−1, 1]

��
[−1, 1) // (−1, 1)+.

The contravariant involution ¬: Point(−1,1) ∼= Pointop
(−1,1) is the antipodal map on this

square diagram. Note that the two intermediate terms are abstractly isomorphic, as

pointed topological spaces.

https://doi.org/10.1017/S1474748019000343 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000343


794 D. Ayala and J. Francis

In the Boolean algebra clo(∂ X̂), negation is given by taking complements of clopen

subspaces. Unwinding the equivalence of Proposition 1.1.6 gives the next simple

identification of negations in PointX .

Corollary 1.1.14. For X∗ a pointed extension of X , its negation is the based topological

space

X¬∗ := (X∗)+r ∗,
which is the 1-point compactification without the base point of X∗. In particular, the

collection of subsets

{{∞}∪ (X r K ) ⊂ X¬∗ | ∗ ∈ K X∗
compact

}

is a local basis for the topology about the base point ∗ ∈ X¬∗ .

Observation 1.1.15. Let X be a compact Hausdorff topological space. Let ∂L , ∂R ⊂ X be

a pair of disjoint closed subspaces. Write ∂X := ∂L ∪ ∂R ⊂ X and X := X r ∂X . Consider

the two pointed extensions of X

X∗ := ∗q
∂L

(
X r ∂R

)
and X¬∗ := ∗ q

∂R

(
X r ∂L

)
.

These two pointed extensions of X are each other’s negation, as the notation suggests.

Example 1.1.16. Let M be a topological cobordism. This is to say that M is a compact

topological manifold with boundary ∂M = ∂L t ∂R which is partitioned as a coproduct.

Observation 1.1.15 offers a pair of mutually negating pointed extensions M∗ and M¬∗ of

the interior M .

Proposition 1.1.17. Let B be a compact Hausdorff topological space, and let X∗ be a

pointed extension of X . The smash product B+ ∧ X∗ is a pointed extension of the product

B× X . Furthermore, its negation (B+ ∧ X∗)¬ ∼= B+ ∧ X¬∗ .

Proof. The tube lemma gives that the smash product B+ ∧ X∗ is locally compact about

the base point. Furthermore, compactness of B results in a canonical homeomorphism

under B× X from the Stone–Čech compactification B̂× X ∼= B× X̂ . The statement

concerning negations follows.

Corollary 1.1.10 has the following immediate consequence, which characterizes
continuous based maps to negations.

Corollary 1.1.18. Let X∗ be a pointed extension of X . For Z∗ a based compactly generated

Hausdorff topological space, the subset Map∗/(Z∗, X¬∗ ) ⊂ Map∗/(Z∗, X+) consists of those

based continuous maps Z∗→ X+ for which the projection from the pullback factors:

X+

  
X∗ ×

X+
Z∗ //

;;

X+.
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1.2. Pointed embeddings

We define zero-pointed embeddings among pointed extensions.

Definition 1.2.1 (Zero-pointed embeddings). For X∗ and Y∗ pointed extensions of X and

Y , respectively, the space of zero-pointed topological embeddings from X∗ to Y∗ is the

compactly generated weak Hausdorff replacement of the subspace

ZEmbtop(X∗, Y∗) ⊂ Map∗/(X∗, Y∗)

of the compact-open topology consisting of those based maps f : X∗→ Y∗ for which the

restriction f| : f −1Y → Y is an open embedding.

Corollary 5.6 of [25] states that composition defines a continuous map between

compactly generated weak Hausdorff replacements of compact-open topologies on sets

of continuous maps. This offers the following.

Observation 1.2.2. For X∗, Y∗, and Z∗ locally compact Hausdorff pointed topological

spaces, composition of zero-pointed topological embeddings defines a continuous map:

◦: ZEmbtop(X∗, Y∗)×ZEmbtop(Y∗, Z∗) −→ ZEmbtop(X∗, Z∗), ( f, g) 7→ g ◦ f.

Example 1.2.3. Consider the poset of Example 1.1.13. Consider the map

f : [0, 1] −→ ZEmbtop((−1, 1], (−1, 1])

that evaluates as ft (x) = x + t if x + t 6 1 and as ft (x) = 1 if x + t > 1. This map is a

continuous path from the identity map to the constant map at the base point.

Example 1.2.4. The only zero-pointed topological embedding (Rn)+→ Rn
+ is the constant

map at the base point. On the other hand, evaluation at 0 ∈ Rn
+ defines a continuous

retraction ZEmbtop(Rn
+, (Rn)+)→ (Rn)+; a section is given by the continuous based map

(Rn)+→ ZEmbtop(Rn
+, (Rn)+) given as v 7→ (x 7→ x

1+‖x‖ + v).

Example 1.2.5. Let X and Y be locally compact Hausdorff topological spaces. Denote

their sets of connected components as [X ] and [Y ], respectively. There is a canonical

homeomorphism

ZEmbtop(X+, Y+)
∼=
−−→

∐
[X ]+

f
−→[Y ]+

∏
Y j∈[Y ]

Emb( f −1(Y j ), Y j ) (5)

to a coproduct indexed by the set of pointed maps between sets of connected components.

Here, for A and B locally compact Hausdorff topological spaces, Emb(A, B) is the set of

open embeddings from A to B, equipped with the compact-open topology.

Lemma 1.2.6. Let X∗ and Y∗ be pointed extensions of X and Y . Assume the topological

spaces (X∗)+ and (Y∗)+ are locally connected. Negation implements a homeomorphism

¬: ZEmbtop(X∗, Y∗)
∼=
−−→ ZEmbtop(Y¬∗ , X¬∗ ). (6)
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Proof. We first construct the map (6) between underlying sets; then we argue that this

map is continuous, and is a homeomorphism. The map (6) assigns to a zero-pointed

topological embedding f : X∗→ Y∗ the based map between underlying sets

f ¬ : Y¬∗ −→ X¬∗

determined by declaring the preimage of x ∈ X to be the subset {y ∈ Y | f (x) = y}.
Because f is a zero-pointed topological embedding, for x, x ′ ∈ X , the intersection {y ∈ Y |
f (x) = y} ∩ {y′ ∈ Y | f (x ′) = y′} is not empty if and only if x = x ′. This verifies that the

map f ¬ is well defined. We now argue that f ¬ is continuous. In light of Corollary 1.1.14,

we need only make the following checks:

• The preimage ( f ¬)−1(K r ∗) ⊂ Y¬∗ is closed for each compact subspace ∗ ∈ K ⊂ X∗
containing the base point.

• The preimage ( f ¬)−1U ⊂ Y¬∗ is open for each open subset U ⊂ X .

We examine the first case. By definition of the map f ¬, the preimage ( f ¬)−1(K r ∗) =
{ f (K )r ∗ ⊂ Y ⊂ Y¬∗ }. Because f is a continuous based map, the image f (K ) ⊂ Y∗ is a

compact subspace containing the base point of Y∗. Therefore f (K ) ⊂ (Y∗)+ is a compact

subspace of the 1-point compactification containing the base point ∗ ∈ (Y∗)+. Thus, the

complement f (K )r ∗ ⊂ (Y∗)+r ∗ = Y¬∗ is a closed subspace, as desired. We now examine

the second case. By definition of the map f ¬, the preimage ( f ¬)−1(U ) = { f (U )r ∗ ⊂
Y ⊂ Y¬∗ }. This preimage is the image of the restriction f| : U ∩ f −1Y

f
−→ Y ⊂ Y∗. Precisely

because f is a zero-pointed topological embedding, this restriction is an open embedding.

We conclude that the preimage ( f ¬)−1(U ) ⊂ Y¬∗ is open, as desired. This completes the

proof that f ¬ is continuous.

We now show that the map f ¬ : Y¬∗ → X¬∗ is a zero-pointed topological embedding. By

definition of f ¬, the preimage ( f ¬)−1 X = f ( f −1Y ) is the image of the open embedding

f| : f −1Y ↪→ Y . Through this identification, its restriction ( f ¬)−1 X ↪→ Y¬∗
f ¬
−→ X¬∗ is

identified as the inverse open embedding: f −1
: f ( f −1Y )

∼=
−→ f −1Y ⊂ X . This verifies that

f ¬ is a zero-pointed topological embedding, as desired.

We now prove that the map (6) is continuous. Both of the topological spaces

ZEmbtop(X∗, Y∗) and ZEmbtop(Y¬∗ , X¬∗ ) are endowed with compactly generated weak

Hausdorff topologies. Thus, continuity of the map (6) is equivalent to showing, for each

continuous map B → ZEmbtop(X∗, Y∗) from a compact Hausdorff topological space, that

the composite map

B → ZEmbtop(X∗, Y∗)
(6)
−→ ZEmbtop(Y¬∗ , X¬∗ ) (7)

is continuous. So let B be a compact Hausdorff topological space, and let B →
ZEmbtop(X∗, Y∗) be a continuous map. Because the topology on ZEmbtop(X∗, Y∗) is

the compactly generated weak Hausdorff replacement of the subspace topology on the

compact-open topology, this continuous map is the datum of a continuous map

f : B× X∗ −→ B× Y∗ (8)

over B via projections with the following property.
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For each b ∈ B, the restriction f|{b}×X∗ : X∗→ Y∗ = {b}× Y∗ is a zero-pointed

topological embedding.

We now argue that the canonically associated based continuous map

f : B+ ∧ X∗ −→ B+ ∧ Y∗ (9)

is, itself, a zero-pointed topological embedding. Proposition 1.1.17 gives that the domain

and the codomain of f are indeed locally compact Hausdorff topological spaces. Next,

note that the properties on f immediately imply that the restriction

f | : f
−1
(B× Y ) −→ B× Y (10)

is injective. Being an open subspace of a product topology, for each (b, x) ∈ f −1(B×
Y ) ⊂ B× X , there are open neighborhoods b ∈ V ⊂ B and x ∈ U ⊂ X for which V ×U ⊂
f −1(B× Y ). For such neighborhoods, consider the restriction

f| : V ×U −→ V × Y ⊂ B× Y, (11)

in which the first arrow lies over V via projections. The highlighted property of f
implies that this first arrow in (11) has the property that, for each b ∈ V , the restriction

f|{b}×U : U → Y = {b}× Y is an open embedding. Because the 1-point compactification

(Y∗)+ is assumed locally connected, then so too is its open subspace Y ⊂ (Y∗)+. We can

therefore apply the open track [38, Lemma 1.6], which grants that the map (10) is an

open embedding. This is to say that the map (10) is locally an open embedding. Because

the map (10) is injective, we conclude that it is an open embedding. We conclude that

the based map (9) is a zero-pointed topological embedding, as desired.

Now, established at the beginning of this proof is that the negation of a zero-pointed

topological embedding is again a zero-pointed topological embedding. Applying this to

the zero-pointed topological embedding f established just above gives the zero-pointed

topological embedding f
¬
: (B+ ∧ Y∗)¬→ (B+ ∧ X∗)¬. Proposition 1.1.17 identifies this

zero-pointed topological embedding as

f
¬
: B+ ∧ Y¬∗ −→ B+ ∧ X¬∗ . (12)

Inspecting the definition of this negation f
¬

reveals a continuous factorization of the

composition:

B× Y¬∗
f ¬ //

��

B× X¬∗

��
B+ ∧ Y¬∗

f ¬ // B+ ∧ X¬∗ ,

in which this map f ¬ lies over B via projections. This map f ¬, then, is adjoint to a

continuous map

B −→ Map∗/(Y¬∗ , X¬∗ ) (13)

to the compact-open topology. Because the map (12) is a zero-pointed embedding, and

because the map f ¬ above lies over B, this map (13) factors through the subset of
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zero-pointed topological embeddings:

B −→ ZEmbtop(Y¬∗ , X¬∗ ) ⊂ Map∗/(Y¬∗ , X¬∗ ). (14)

Finally, because B is compact and Hausdorff, the definition of the topology on this subset

of zero-pointed topological embeddings is just so that this factorization (14) is continuous.

We conclude, at last, that the composite map (7) is continuous. This completes the proof

that the map (6) is continuous.

1.3. Constructions

We observe a series of constructions among pointed extensions. The verification of each

statement therein is immediate from definitions, which we leave as an exercise for the

insistent reader. Recall that the letters X , Y , and Z denote locally compact Hausdorff

topological spaces.

Observation 1.3.1. Fix pointed extensions X∗, Y∗, and Z∗ of X , Y , and Z , respectively.

Wedge: The wedge sum X∗ ∨ Y∗ is a pointed extension of the coproduct X q Y . There is

an equality between pointed extensions of X q Y :

X¬∗ ∨ Y¬∗ = (X∗ ∨ Y∗)¬.

Smash: Suppose X∗, Y∗, and Z∗ have the property that the connected component

containing the base point is compact. Each of their negations has this property as

well. The smash product X∗ ∧ Y∗ := (X∗× Y∗)/(X∗ ∨ Y∗) is a pointed extension

of the product X × Y . Smash product distributes over wedge sum:

X∗ ∧ (Y∗ ∨ Z∗) = (X∗ ∧ Y∗)∨ (X∗ ∧ Z∗).

There is an equality between pointed extensions of X × Y :

X¬∗ ∧ Y¬∗ = (X∗ ∧ Y∗)¬.

Coinv: Let G be a finite group acting continuously on the topological space X∗. Suppose

this action restricts as a free action on X . The coinvariants (X∗)G is a pointed

extension of the coinvariants XG . This action of G on X extends as a continuous

action on X¬∗ . There is an equality between pointed extensions of the coinvariants

XG :

(X¬∗ )G = ((X∗)G)¬.

Sub: Let W ⊂ X be a subspace for which the union ∗∪W ⊂ X∗ is open. Then the

subspace

WX∗ := ∗∪ W ⊂ X∗

is a pointed extension of W . This pointed extension has the following universal

property:

Let f : Z∗→ X∗ be a zero-pointed topological embedding. Suppose f (Z∗)r ∗ ⊂
W ⊂ X . Then f factors through WX∗ → X∗.
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Quot: Let W ⊂ X be a subset for which the union ∗∪ W ⊂ X∗ is open with compact

closure. The quotient

W X∗ := X∗/(X∗r W∗)

is a pointed extension of W . This pointed extension has the following universal

property:

Let f : X∗→ Z∗ be a zero-pointed topological embedding. Suppose f −1(Z∗r∗)
⊂ W ⊂ X . Then f factors through X∗→ W X∗ .

There are equalities between pointed extensions of W :

W X¬∗ = (WX∗)
¬ and (W X∗)¬ = WX¬∗

.

1.4. Zero-pointed spaces

We define a category of zero-pointed spaces and zero-pointed topological embeddings

among them.

Recall Definition 1.2.1 of zero-pointed topological embeddings. In the next definition,

we understand the enrichment as in the Cartesian monoidal category of compactly

generated weak Hausdorff topological spaces.

Definition 1.4.1 (ZTop). The symmetric monoidal topological category

ZTop

of zero-pointed spaces is the following.

Ob: An object is a pointed locally compact Hausdorff topological space X∗ whose 1-point

compactification (X∗)+ is locally connected. Given such an object X∗, its underlying

topological space is the complement X := X∗r ∗ of the point.

Mor: The topological space of morphism from X∗ to Y∗ is the topological space

ZEmbtop(X∗, Y∗) of zero-pointed topological embeddings.⊗
: The symmetric monoidal structure is given by wedge sum

∨
among based spaces.

Remark 1.4.2 (Zero object = unit). Notice that the zero-pointed space ∗, with underlying

space ∅, is a zero object in ZTop. In other words, for each zero-pointed space X∗ there

are unique morphisms ∗ → X∗→ ∗ in ZTop. Moreover, this zero object ∗ is the unit of

the symmetric monoidal structure
∨

on ZTop.

Here is an immediate consequence of Lemma 1.2.6.

Lemma 1.4.3 (Negation). Negation implements a contravariant involution

¬: ZTop ∼= ZTopop
: ¬,

as a symmetric monoidal topological category.
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1.5. Zero-pointed singular manifolds

We introduce the category ZMfldn of zero-pointed n-manifolds. This is a modification

of the category ZTop introduced in §1.4. This subsection makes light reference to the

definition of a stratified space as in [3, §3], and of a category of basics as in §4 therein.

We briefly recall these notions.

In this section we fix a finite cardinality n.

1.5.1. Singular manifolds. All of the material in this subsection is extracted from the

works [3] and [4], which are joint works with Hiro Lee Tanaka.

The topological category Snglr consists of conically smooth singular manifolds, and

conically smooth open embeddings among them. The full topological subcategory Bsc ⊂
Snglr consists of the basic singularity types, or basics for short, each of which is of the

form Rk
×C(L) for k a non-negative integer and L a compact singular manifold – here

C(L) := ∗ q
L×{0}

L ×[0, 1)

is the open cone, which has a standard structure as a singular manifold. There is a

bijection between subcollections of basic singularity types and full subcategories B ⊂ Bsc.

Such a subcollection B is stable if the following conditions hold:

• For B ∼= B ′ an isomorphism between basics, then B ∈ B is a member of this

subcollection if and only if B ′ ∈ B is as well.

• For each member B of this collection, the collection of conically smooth open

embeddings {B ′ ↪→ B | B ′ ∈ B} from members of B forms a basis for the underlying

topology of B.

There is a bijection between stable subcollections of basics and of fully faithful right

fibrations B ↪→ Bsc up to equivalence over Bsc. Consequently, we proceed with this

understanding: fully faithful right fibrations over Bsc are stable collections of singularity

types.

Now, fix a fully faithful right fibration B ↪→ Bsc. There results the topological category

of B-manifolds, which is the full subcategory

Mfld(B) ⊂ Snglr

consisting of those singular manifolds X there exists a finite hypercover of X by conically

smooth open embeddings from objects of B. In other words, a singular manifold X belongs

to Mfld(B) if and only if each of the singularity types witnessed in X belongs to the

collection B, and if it admits a compactification as a singular manifold with corners.

Remark 1.5.1. Note that each object X ∈Mfld(B) has the property that it is locally

compact and Hausdorff, and its 1-point compactification X+ is locally contractible, and

in particular locally connected.

Disjoint union defines a symmetric monoidal structure on Snglr, which restricts as a

symmetric monoidal structure on Mfld(B). By definition, the full topological subcategory

B ⊂ Bsc ⊂ Snglr is contained in the full topological subcategory Mfld(B) ⊂ Snglr.
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The full symmetric monoidal topological subcategory of B-disks,

Disk(B) ⊂Mfld(B),

is the smallest such containing B ⊂Mfld(B).

Remark 1.5.2. In [3], the∞-category Mfld(B) was denoted by Mfld(B)fin, an object being

referred to as a finitary B-manifold. We omit this decoration in this article because we

will only concern with this class of B-manifolds.

Example 1.5.3. Here are some examples of subcategories B ⊂ Bsc for which the inclusion

B ↪→ Bsc is a right fibration.

• Dn ⊂ Bsc is the full subcategory consisting of the basic singularity type Rn . The full

symmetric monoidal topological subcategory

Mfldn :=Mfld(Dn) ⊂ Snglr

consists of smooth n-manifolds and smooth open embeddings among them (with the

compact-open topology). The full symmetric monoidal topological subcategory

Diskn := Disk(Dn) ⊂Mfld(Dn) =:Mfldn

consists of those objects that are diffeomorphic to a finite disjoint union of Euclidean

n-spaces.

• D∂
n ⊂ Bsc is the full subcategory consisting of the basic singularity types Rn and

Hn
:= R>0×Rn−1. The full symmetric monoidal topological subcategory

Mfld∂n :=Mfld(D∂
n) ⊂ Snglr

consists of smooth n-manifolds with boundary and smooth open embeddings among

them (with the compact-open topology). The full symmetric monoidal topological

subcategory

Disk∂n := Disk(D∂
n) ⊂Mfld(D∂

n) =:Mfld∂n
consists of those objects each of whose connected components is diffeomorphic to Rn

or Hn .

• D〈 n 〉 ⊂ Bsc is the full subcategory consisting of those basic singularity types R×i
>0×

Rn−i for each 0 6 i 6 n. The full symmetric monoidal topological subcategory

Mfld〈 n 〉 :=Mfld(D〈 n 〉) ⊂ Snglr

consists of smooth n-manifolds with corners and smooth open embeddings among

them (with the compact-open topology). The full symmetric monoidal topological

subcategory

Disk〈 n 〉 := Disk(D〈 n 〉) ⊂Mfld(D〈 n 〉) =:Mfld〈 n 〉
consists of those objects each of whose connected components is diffeomorphic to R×i

>0×

Rn−i for some 0 6 i 6 n.

Remark 1.5.4. While the notion of a B-manifold captures a very general class of

structured topological spaces, we will mainly be interested in the cases of Example 1.5.3.

https://doi.org/10.1017/S1474748019000343 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000343


802 D. Ayala and J. Francis

1.5.2. Zero-pointed singular manifolds. We now introduce zero-pointed manifolds,

which form a symmetric monoidal topological category. We do this as a special case

of zero-pointed singular manifolds – a degree of generality that is convenient for later

use.

Definition 1.5.5. Let B ↪→ Bsc be a fully faithful right fibration. A zero-pointed

B-manifold is an object X ∈Mfld(B) together with a pointed extension X∗ of its

underlying topological space, subject to the following condition.

The 1-point compactification (X∗)+ admits the structure of a conically smooth singular

manifold with respect to which the inclusion X ↪→ (X∗)+ is a conically smooth open

embedding.

A zero-pointed n-manifold is a zero-pointed Dn-manifold; a zero-pointed n-manifold with

boundary is a zero-pointed D∂
n-manifold.

Example 1.5.6. Let M be a smooth cobordism; this is to say that M is a compact smooth

manifold with boundary ∂M = ∂L q ∂R which identified as a coproduct. Then

(ML)∗ := ∗
∐
∂L

(M r ∂R) and (MR)∗ := ∗
∐
∂R

(M r ∂L)

are zero-pointed n-manifolds.

Remark 1.5.7. The extra condition on the datum of a zero-pointed n-manifold M∗ can be

regarded as a tameness condition. Specifically, given such a conically smooth structure

on (M∗)+, spherical blow-ups at the two special points ∗,+ ∈ (M∗)+ result in a smooth

cobordism M whose interior is canonically diffeomorphic to M . In other words, the named

condition ensures that Example 1.5.6 produces all examples of zero-pointed n-manifolds.

We emphasize, however, there are many smooth cobordisms that determine the same

pair of zero-pointed n-manifolds – see Remark 1.1.4, adapted to the smooth setting.

The next observation is manifest from definitions.

Observation 1.5.8. Let B ↪→ Bsc be a fully faithful right fibration. For M∗ a zero-pointed

B-manifold, the negation M¬∗ of its underlying zero-pointed topological space is

canonically equipped with the structure of a zero-pointed B-manifold.

Notation 1.5.9. Let B ↪→ Bsc be a fully faithful right fibration. For M∗ a zero-pointed

B-manifold, its negation M¬∗ is the zero-pointed B-manifold from Observation 1.5.8.

Definition 1.5.10. Let B ↪→ Bsc be a fully faithful right fibration. Let M∗ and N∗ be

zero-pointed B-manifolds. The topological space of zero-pointed embeddings from M∗ to

N∗ is the (compactly generated weak Hausdorff replacement of the) subspace

ZEmb(M∗, N∗) :=
{

M∗
f
−→ N∗ | f| : f −1(N )

conically smooth
−−−−−−−−−→

open embedding
N
}
⊂ ZEmbtop(M∗, N∗)
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consisting of those zero-pointed topological embeddings between their underlying pointed

extensions whose restriction to the open subspace of M over N is conically smooth open

embedding.

Notation 1.5.11. Let B ↪→ Bsc be a fully faithful right fibration. For M∗ a zero-pointed

B-manifold, we typically do not keep the smooth structure on M in the notation, and

denote its underlying zero-pointed topological space again as M∗.

Observation 1.5.12. Let B ↪→ Bsc be a fully faithful right fibration. Let M∗
f
−→ N∗

g
−→ K∗ be zero-pointed embeddings between zero-pointed B-manifolds. The composition

g ◦ f : M∗→ K∗ is again a zero-pointed embedding between zero-pointed B-manifolds.

The next observation is manifest from definitions, and the construction of the functor

of Lemma 1.2.6.

Observation 1.5.13. Let M∗ and N∗ be zero-pointed B-manifolds. The homeomorphism

of Lemma 1.2.6 restricts as a homeomorphism of spaces of zero-pointed embeddings:

¬: ZEmb(M∗, N∗)
∼=
−−→ ZEmb(N¬∗ ,M¬∗ ).

This next definition organizes Definitions 1.5.5 and 1.5.10, making use of Observation

1.5.12. We understand the enrichment as in the Cartesian monoidal category of compactly

generated weak Hausdorff topological spaces.

Definition 1.5.14. Let B ↪→ Bsc be a fully faithful right fibration. The symmetric

monoidal topological category

ZMfld(B)

is that for which an object is a zero-pointed B-manifold and, for M∗ and N∗ zero-pointed

B-manifolds, the topological space of morphisms from M∗ to N∗ is that of zero-pointed

embeddings from M∗ to N∗. Composition is given by composing zero-pointed embeddings.

The symmetric monoidal structure is given by wedge sum.

Notation 1.5.15. The symmetric monoidal topological category of zero-pointed

n-manifolds is

ZMfldn := ZMfld(Dn).

The symmetric monoidal topological category of zero-pointed n-manifolds with boundary

is

ZMfld∂n := ZMfld(D∂
n).

Remark 1.5.16. We follow up on Remark 1.5.7. Let M and N be two smooth

n-dimensional cobordisms. Consider the zero-pointed n-manifolds M∗ := (ML)∗ and

N∗ := (NL)∗ from Example 1.5.6. While there is a continuous injection Emb(M \ ∂R, N \
∂R) ↪→ ZEmb(M∗, N∗), this map is far from being an equivalence of any sort. This is
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demonstrated even in the simplest case of M = [−1, 1] with ∂L = {±1} and N = [−1, 1]
with ∂L = ∅. Namely, the topological space ZEmb((−1, 1)+, (−1, 1)+) retracts onto

(−1, 1)+, whereas Emb((−1, 1), [−1, 1]) is homotopy discrete.

Forgetting conically smooth structures defines a symmetric monoidal continuous

functor

ZMfld(B) −→ ZTop .
By definition, this functor is an embedding on Hom-topological spaces. Observations 1.5.8

and 1.5.13 compile as the following.

Observation 1.5.17. The contravariant involution of Lemma 1.4.3 restricts as a

contravariant involution

¬: ZMfld(B) ∼= ZMfld(B) : ¬,

as a symmetric monoidal topological category.

2. Reduced factorization (co)homology

For coefficients in an augmented algebra, we extend factorization homology to

zero-pointed manifolds; likewise for augmented coalgebras and factorization cohomology.

In this section we fix the following parameters.

• A dimension n.

• A symmetric monoidal ∞-category V.

Terminology 2.0.1 (⊗-sifted cocomplete). We say V is ⊗-sifted cocomplete if satisfies the

following two conditions.

(1) The underlying ∞-category of V admits sifted colimits. This is to say that

each functor K→ V from a sifted ∞-category admits a colimit. (Recall that an

∞-category K is sifted if it is not empty and the diagonal functor K→ K×K is

final.)

(2) The symmetric monoidal structure of V distributes over sifted colimits. This is to

say that, for each object v ∈ V, the functor v⊗−: V→ V carries sifted colimit

diagrams to sifted colimit diagrams.

We say V is ⊗-cosifted complete if the symmetric monoidal ∞-category Vop is ⊗-sifted

cocomplete.

Remark 2.0.2 (B-structures). For B → BO(n) a map between spaces, every result in

this section is valid after an evident modification that accounts for a B-structure. More

generally, for B→ Bsc a right fibration, every notion in this section is valid after an

evident modification for (zero-pointed) B-manifolds (see [4]), and Disk(B) in place of

Diskn . We choose to not carry such clutter with the discussion.

Recall from §1.5.1 the symmetric monoidal ∞-category Disk(B) associated to each

fully faithful right fibration B ↪→ Bsc.
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Definition 2.0.3. Let V be a symmetric monoidal ∞-category. For B ↪→ Bsc a fully

faithful right fibration, the respective ∞-categories of Disk(B)-algebras (in V) and of

Disk(B)-coalgebras (in V) are those of symmetric monoidal functors:

AlgDisk(B)(V) := Fun⊗
(
Disk(B),V

)
and cAlgDisk(B)(V) := Fun⊗

(
Disk(B)op,V

)
,

the latter which is alternatively identified as (Fun⊗
(
Disk(B),Vop))op. In the case Dn ↪→

Bsc, we refer to a Disk(Dn)-(co)algebra simply as an n-disk (co)algebra, and simplify

the notation:

Algn(V) := AlgDisk(Dn)
(V) and cAlgn(V) := cAlgDisk(Dn)

(V).

Remark 2.0.4. There is a close relationship between the topological operad En of

little n-disks and the symmetric monoidal topological category Diskn , as we now

explain. Change of framings defines an action of O(n) on En . There is a standard

En-algebra in the symmetric monoidal∞-category Diskn which selects Rn . There results

a symmetric monoidal functor Env(En)→ Diskn from the symmetric monoidal envelope.

This symmetric monoidal functor is manifestly O(n)-invariant; the resulting factorization

through the coinvariants

Env(En)O(n)
'
−→ Diskn

is an equivalence between symmetric monoidal ∞-categories (where the coinvariants

are calculated in symmetrical monoidal ∞-categories). Thereafter, there is a canonical

identification of the O(n)-invariants

Algn(V)
'
−−→ AlgEn

(V)O(n)

for each symmetric monoidal ∞-category V.

2.1. Augmentation

We establish a relationship between zero-pointed manifolds and augmentations.

Specifically, we characterize augmented n-disk algebras in terms of a full symmetric

monoidal topological subcategory Diskn,+ ⊂ ZMfldn .

Definition 2.1.1. Let M and V be symmetric monoidal ∞-categories. The ∞-category of

augmented symmetric monoidal functors is the ∞-overcategory

Fun⊗,aug(M,V) := Fun⊗(M,V)/1V

over the constant symmetric monoidal functor at the symmetric monoidal unit of V.

Notation 2.1.2. Note the forgetful functor

Fun⊗,aug(M,V) −→ Fun⊗(M,V).

We will typically not distinguish in notation between an augmented symmetric monoidal

functor and the symmetric monoidal functor which is its value under this forgetful functor.
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Example 2.1.3. Let M and V be symmetric monoidal ∞-categories. Suppose the

symmetric monoidal structure on V is Cartesian. Then, in particular, the symmetric

monoidal unit 1V = ∗ is final in the underlying ∞-category of V. Furthermore, the

forgetful functor

Fun⊗,aug(M,V) −→ Fun⊗(M,V)

is an equivalence between ∞-categories. This is to say that every symmetric monoidal

functor M→ V is uniquely augmented.

Notice the continuous functors

(−)+ : Mfldn ↪→ ZTop←↩Mfldop
n : (−)

+, (15)

given by adjoining a disjoint basepoint, and by 1-point compactification, respectively.

Each of these functors is naturally symmetric monoidal.

Observation 2.1.4. The expression in Example 1.2.5 reveals that the functor (−)+ is

faithful in the sense that, for X and Y finitary smooth manifolds, the continuous map

between Hom-topological spaces

(−)+ : Emb(X, Y ) −→ ZEmb(X+, Y+) (16)

is an inclusion of connected components. After Observation 1.5.17 it follows that the

functor (−)+, too, is faithful in this sense.

Definition 2.1.5. The full symmetric monoidal topological subcategories

Diskn,+ ⊂Mfldn,+ ⊂ ZMfldn ⊃Mfld+n ⊃ Disk+n

respectively consist of those objects in the image of the symmetric monoidal functors

Diskn ⊂Mfldn
(−)+
−−−→ ZMfldn

(−)+

←−−−Mfldop
n ⊃ Diskop

n .

The full symmetric monoidal topological subcategory

ZDiskn ⊂ ZMfldn

is the smallest such containing Diskn,+ and Disk+n .

Observation 2.1.6. Explicitly, an object in Mfldn,+ is the datum of a smooth n-manifold

that is the interior of a compact smooth manifold with boundary. For X and Y such, the

topological space of morphisms

ZEmb(X+, Y+) =
∐

[X ]+
f
−→[Y ]+

∏
Y j∈[Y ]

Emb( f −1Y j , Y j )

where the coproduct is indexed by based maps between sets of connected components.

Composition is given by composing such based maps, and composing smooth open

embeddings.
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Lemma 2.1.7. Let M be a finitary smooth n-manifold. The functor between

∞-overcategories

(−)+ : Diskn/M −→ Diskn,+/M+

is a fully faithful right adjoint.

Proof. Observation 2.1.6 reveals that this functor is fully faithful; its image consists

of those zero-pointed embeddings ( f : U+→ M+) for which inverse image of the zero

point is the zero point, f −1
{+} = +. We now argue that this functor is a right

adjoint. Let ( f : U+ ↪→ M+) ∈ (Diskn,+)/M+ be an object. We must show that the

∞-undercategory ((Diskn,+)/M+)
f/ has an initial object. Well, the object ( f : U+

collapse
−−−−→

f −1(M)+ ↪→ M+) in this∞-undercategory is initial, as seen by inspecting the expression

in Observation 2.1.6 of the mapping spaces in Mfldn,+.

Taking connected components defines a continuous symmetric monoidal functor

[−] : Diskn,+→ Fin∗,
∨

I

Rn
+ 7→ I+, (17)

to based finite sets, with wedge sum. The following result follows immediately from

[4, Theorem 4.3.1].

Observation 2.1.8. As a functor between ∞-categories, [−] : Diskn,+→ Fin∗ is

conservative. In other words, the maximal ∞-subgroupoid of Diskn,+ is canonically

identified as any of the following ∞-groupoids

Diskbij
n,+ := (Diskn,+)

|Finbij
∗

'

∐
i>0

Disk=i
n,+ ' B(Σ oO(n)) '

∐
i>0

B(Σi oO(n)),

the first which is the ∞-subgroupoid consisting of those morphisms which are bijections

on connected components, the second which is the coproduct over finite cardinalities of

the∞-subgroupoids with a specified cardinality of components, and the others which are

classical.

Observation 2.1.9. Through Observation 1.5.17, negation implements isomorphisms

between symmetric monoidal topological categories

Mfldop
n,+
∼=Mfld+n and ZDiskop

n
∼= ZDiskn and Diskop

n,+
∼= Disk+n .

Proposition 2.1.10. Let V be a symmetric monoidal ∞-category. Restriction along the

symmetric monoidal functors (−)+ and (−)+ defines equivalences between ∞-categories

Fun⊗
(
Diskn,+,V

) '
−−→ Algaug

n (V) and Fun⊗
(
Disk+n ,V

) '
−−→ cAlgaug

n (V),

Fun⊗
(
Mfldn,+,V

) '
−−→ Fun⊗,aug(Mfldn,V

)
and

Fun⊗
(
Mfld+n ,V

) '
−−→ Fun⊗,aug(Mfldop

n ,V
)
.

Proof. This proof is outsourced to the Appendix. Namely, the left two equivalences are

a direct application of Proposition A.2.8 applied to Example A.2.3, while making use of

Example 2.1.7. The right two equivalences follow thereafter by replacing V with Vop and

implementing Observation 2.1.9.
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2.2. Homology and cohomology

We extend factorization homology and cohomology to zero-pointed manifolds.

We first recall some notions within ∞-category theory. Let i : D→M and A : D→ V

be functors between ∞-categories. The left Kan extension of A along f is the functor

f!A : M→ V whose values, when they exist, can be computed as colimits:

f!A : M 3 M 7→ colim
(
D/M → D

A
−→ V

)
∈ V;

here, the ∞-category D/M := D×
M

M/M is the ∞-overcategory of D over the object M ∈

M. Likewise, the right Kan extension of A along f is the functor f∗A : M→ V whose

values, when they exist, can be calculated as limits:

f∗A : M 3 M 7→ lim
(
DM/

→ D
A
−→ V

)
;

here, the ∞-category DM/
:= D×

M
MM/ is the ∞-undercategory of D under M .

Definition 2.2.1 (Factorization (co)homology for zero-pointed manifolds). Let V be

a symmetric monoidal ∞-category. Let M∗ be a zero-pointed n-manifold. Let

A : Diskn,+→ V and C : Disk+n → V be functors. Whenever they exist, we define the

objects of V ∫
M∗

A := colim
((
Diskn,+

)
/M∗
→ Diskn,+

A
−→ V

)
= colim

U+→M∗
A(U+) (18)

and ∫ M∗
C := lim

((
Disk+n

)M∗/
→ Disk+n

C
−→ V

)
= lim

M∗→V+
C(V+) (19)

and refer to the first as the factorization homology of M∗ (with coefficients in A), and

the second as the factorization cohomology of M∗ (with coefficients in C).

We point out that the above notion of factorization homology agrees with that

considered in previous work [1].

Lemma 2.2.2. Let M be an n-manifold and let A be an augmented n-disk algebra. Consider

the symmetric monoidal functor A : Diskn,+→ V associated to A via Proposition 2.1.10.

There is a canonical equivalence ∫
M

A
'
−−→

∫
M+

A.

Proof. Lemma 2.1.7 implies the functor (−)+ : (Diskn)/M → (Diskn,+)/M+ is final.

https://doi.org/10.1017/S1474748019000343 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000343


Zero-pointed manifolds 809

We conclude this subsection by stating a universal property that factorization

(co)homology satisfies. Recall Conditions 2.0.1 that a symmetric monoidal ∞-category

might satisfy. We prove the following result in § 2.4, contingent on the key technical result

Proposition 2.3.8.

Theorem 2.2.3. Let V be a symmetric monoidal ∞-category. The following two

independent statements are true.

(1) If the underlying∞-category of V admits sifted colimits and the symmetric monoidal

structure V×V
⊗
−→ V distributes over sifted colimits separately in each variable, then

there are fully faithful left adjoints to the horizontal restriction functors

Algaug
n (V)

∫
−

""

��

Fun⊗
(
ZMfldn,V

)
oo

��
Fun

(
Diskn,+,V

)
∫
−

!!
Fun

(
ZMfldn,V

)
oo

(20)

with respect to which the downrightward square commutes.

(2) If the underlying∞-category of V admits cosifted limits and the symmetric monoidal

structure V×V
⊗
−→ V distributes over cosifted limits separately in each variable, then

there are fully faithful right adjoints to the horizontal restriction functors

Fun⊗
(
ZMfldn,V

)
//

��

cAlgaug
n (V).

∫
−

aa

��
Fun

(
ZMfldn,V

)
// Fun

(
Disk+n ,V

)
∫
−

aa

(21)

with respect to which the downleftward square commutes.

We prove Theorem 2.2.3 in § 2.4.

Remark 2.2.4. Even without the distribution assumptions on ⊗, we understand that the

lower adjoints in diagrams (20) and (21) are always defined on some full, possibly empty,

subcategories of the respective domain (co)algebra categories.

2.3. Exiting disks

The ∞-overcategory Diskn,+/M∗ appears in the defining expression for factorization
homology. We give a variant of this∞-category Disk+(M∗), of exiting disks in M∗, which
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offers several conceptual and technical advantages. Heuristically, objects of Disk+(M∗)
are embeddings from finite disjoint unions of disks into M , while morphisms are isotopies

that can witness sliding disks off to infinity where they are forgotten – disks are not

allowed to be created at infinity, unlike in Diskn,+/M∗ . We make light use of some theory

of stratified spaces as developed in [3], and of some results thereabout in [4].

For this subsection, fix a zero-pointed manifold M∗ together with a conically smooth

structure on (M∗)+ with respect to which the canonical continuous map M ↪→ (M∗)+ is

a conically smooth open embedding. In [4, §2.1] we define, for each stratified space X ,

the ∞-category

Disk(Bsc)/X

of finite disjoint unions of basics embedding into X ; this is a stratified version of Diskn/M .

Definition 2.3.1 (Disk+(M∗)). The ∞-category of exiting disks of M∗ is the full

∞-subcategory

Disk+(M∗) ⊂ Disk(Bsc)/M∗

consisting of those V ↪→ M∗ whose image contains ∗. We use the notation

Disk+(M∗) :=
(
Disk+(M¬∗ )

)op
.

Remark 2.3.2. Explicitly, an object in Disk+(M∗) is a conically smooth open embedding

B tU ↪→ M∗ where B ∼= C(L) is a cone neighborhood of ∗ ∈ M∗ and U is abstractly

diffeomorphic to a finite disjoint union of Euclidean spaces, and a morphism is an isotopy

to an embedding among such.

Lemma 2.3.3. Let L be a compact stratified space, and let C(L) ↪→ M∗ be a conically

smooth open embedding whose image contains the base point of M∗. The projection from

the ∞-overcategory defines an equivalence(
Disk(Bsc)/M∗

)C(L)/ '
−−→ Disk+(M∗) (22)

between ∞-categories.

Proof. Let C(L) ↪→ M∗ be a basic centered at the base point. Conically smooth open

embeddings C(L)→ C(L) form a basis for the topology of C(L) about the cone point.

Using this, it follows from [3, Lemma 4.3.7] that any conically smooth open embedding

from a basic B ↪→ M∗ whose image contains ∗ is isotopic to one that factors through

an isomorphism B ∼= C(L) ↪→ M∗. Stronger, it follows from that same reference that the

space of such isotopies is contractible. We conclude that the projection from the slice(
Disk(Bsc)/M∗

)C(L)/ '
−−→ Disk+(M∗)

is an equivalence between ∞-categories.

Lemma 2.3.4. The fully faithful functor Disk+(M∗) ↪→ Disk(Bsc)/M∗ is a right adjoint.

In particular, this functor is final.
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Proof. Let L be a compact stratified space, and let C(L) ↪→ M∗ be a conically smooth

open embedding whose image contains the base point of M∗. By way of Lemma 2.3.3,

the statement of this lemma is equivalent to showing the functor

(Disk(Bsc)/M∗)
C(L)/

−→ Disk(Bsc)/M∗ (23)

is a right adjoint. This is the problem of proving the following assertion:

For each object (U ↪→M∗) of Disk(Bsc)/M∗ , the ∞-undercategory

((Disk(Bsc)/M∗)
C(L)/)U/ has an initial object.

So let (U ↪→ M∗) be an object in Disk(Bsc)/M∗ . Suppose the image of the embedding

U ↪→ M∗ contains the base point of M∗. In this case, the object (U ↪→ M∗) of

Disk(Bsc)/M∗ belongs to the essential image of the fully faithful functor (23).

Consequently, this∞-undercategory has an initial object, which is (U = U ↪→ M∗) itself.

Now suppose the image of the embedding U ↪→ M∗ does not contain the base point of

M∗. Choose an embedding C(L)tU ↪→ M∗ making the diagram in Mfld(Bsc)

U inclusion //

  

C(L)tU

zz
M∗

commute – such a diagram exists by the supposition on the embedding U ↪→ M∗.
This diagram defines an object in the ∞-undercategory of concern. Making use of

[3, Lemma 4.3.7] again, notice that each conically smooth open embedding U ↪→ C(L)t V
over M∗ canonically factors, over M∗, through the above inclusion U ↪→ C(L)tU .

Consequently, the object in this ∞-undercategory depicted as the above diagram, is

initial. This proves the above assertion, which concludes this proof.

Lemma 2.3.5. Let D0 ↪→ D be a fully faithful right adjoint to a sifted ∞-category. The

∞-category D0, too, is sifted.

Proof. Siftedness of D means, in particular, that D is not empty. Because D0 is a

localization of D, then D0, too, is not empty.

It remains to prove the diagonal functor δ0 : D0 → D0×D0 is final. For this, it is

sufficient to show that, for each cocomplete ∞-category Z, the natural transformation

making the diagram

Fun(D0×D0,Z)
δ0 //

colim &&

Fun(D0,Z)

colimzz
Z .

commute is in fact a natural equivalence; in other words, that this diagram canonically

commutes.
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Denote the fully faithful functor i : D0 ↪→ D; denote the diagonal functor δ : D→

D×D. Consider the (a priori lax-commutative) diagram of ∞-categories

Fun(D0×D0,Z)
δ∗0 //

colim

&&

Fun(D0,Z)

colim

zz
Z

Fun(D×D,Z)

colim

88

δ∗
//

(i×i)∗

OO

Fun(D,Z).
colim

dd i∗

OO

Being a right adjoint in a localization, the functor i is final. Thus, the right

lax-commutative triangle is in fact commutative. Because a product of final functors

is a final functor, so too is the left lax-commutative triangle in fact commutative. The

assumption that the diagonal functor δ is final grants that the bottom lax-commutative

triangle is in fact commutative. Because i is a right adjoint in a localization, the functor

i∗ is fully faithful; likewise, the functor (i × i)∗ is fully faithful. We conclude that the

upper lax-commutative triangle is in fact commutative, thereby completing this formal

proof.

Corollary 2.3.6. The ∞-category Disk+(M∗) is sifted.

Proof. Lemma 2.3.4 states that Disk+(M∗)→ Disk(Bsc)/M∗ is a fully faithful right

adjoint. Using Lemma 2.3.5, the desired siftedness of Disk+(M∗) therefore follows from

siftedness of Disk(Bsc)/M∗ . This latter siftedness is [4, Corollary 2.28].

Lemma 2.3.7. There is a functor

Disk+(M∗) −→ Diskn,+/M∗ (24)

that evaluates on objects as

(B tU ↪→ M∗) 7→
(
U+

( f|U )+
−−−−→ M∗

)
;

here, the restricted embedding B ↪→ M∗ is such that its image contains the base point of

M∗.

Proof. The strategy of this proof is as follows. We first construct an auxiliary category

Disk+(M∗) that localizes to Disk+(M∗). We next construct a functor Disk+(M∗)→
Diskn,+/M ′∗ , where M ′∗ is a zero-pointed manifold that is equivalent to M∗. We finish

by observing that this constructed functor factors through the above localization.

Fix a conically smooth open embedding C(L) ↪→ M∗. Denote the compact subspace

C(L) := ∗ q
L×{0}

L ×[0, 1
2 ] ⊂ C(L);

it is equipped with a topological embedding C(L) ↪→ M∗. Consider the zero-pointed

manifold

M ′∗ := ∗ q
C(L)

M∗.
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Note that M ′∗ is canonically equipped with a zero-pointed embedding q : M∗→ M ′∗.
Choose a smooth family of self-embeddings ϕt : [0, 1)→ [0, 1), with t ∈ [0, 1

2 ], with the

following properties. The image of ϕt is [t, 1); for each t , the map ϕt is the identity

near 1; the map ϕ0 = id is the identity map. For t = 1
2 , the map ϕ 1

2
determines a

zero-pointed embedding q ′ : M ′∗→ M∗ as it affects the cone coordinate. The family ϕt for

t ∈ [0, 1
2 ] implements identifications q ◦ q ′ ' idM ′∗ in the mapping space ZEmb(M ′∗,M ′∗)

and q ′ ◦ q ' idM∗ in ZEmb(M∗,M∗). We conclude that the zero-pointed embedding

q : M∗→ M ′∗ is an equivalence in the ∞-category ZMfldn .

Consider the poset Disk(Bsc)/M∗ whose objects are finite disjoint unions of basics

conically smoothly and openly embedded into M∗, and whose morphisms are inclusions

between basics embedded in M∗. Consider the full subposet Disk+(M∗) ⊂ Disk(Bsc)/M∗
consisting of those (V ⊂ M∗) that satisfy the following two conditions. First, the base

point belongs to V . Second, the component B ⊂ V containing the base point is contained

in C(L).
Consider the subposet

I ⊂ Disk+(M∗)

consisting of the same objects and those inclusions between finite disjoint unions of basics

embedded in M∗ that are abstractly isotopy equivalences. It is manifest that the evident

functor Disk+(M∗)→ Disk+(M∗) factors through the localization

Disk+(M∗) −→ Disk+(M∗)[I−1
] −→ Disk+(M∗).

It follows from [4, Proposition 2.22] that the rightmost functor in the above display is an

equivalence between ∞-categories.

We now construct a functor

Disk+(M∗) −→ Diskn,+/M ′∗ .

Let (e : B tU ↪→ M∗) be an object in the domain; it is, in particular, the datum of a

conically smooth open embedding to M∗. To this object we assign the object (qe : U+→
M ′∗) of the codomain; it is the composite zero-pointed embedding

qe : U+
(e|U )+
−−−−−→ M∗

q
−−→ M ′∗.

Now let (e : B tU ↪→ M∗)→ (e′ : B ′ tU ′→ M∗) be a morphism in the domain; it is, in

particular, the datum of a conically smooth open embedding f : B tU ↪→ B ′ tU ′ over

M∗. To this morphism we assign the morphism in the codomain which is the composite

zero-pointed embedding

q f : U+
collapse
−−−−→ f −1(U ′)+

f
−−→ U ′+

e′
−−→ M∗

– it is quick to verify commutativity of the diagram

U+
q f //

qe
  

U ′+

qe′~~
M ′∗ .
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Further, this assignment on objects and on morphisms respects compositions of

morphisms, and carries identity morphisms to identity morphisms. In conclusion, we

constructed a functor

Disk+(M∗) −→ Diskn,+/M∗ . (25)

By direct inspection, the functor (25) carries isotopy equivalences to equivalences.

Consequently, there results a functor from the localization

Disk+(M∗)[I−1
] −→ Diskn,+/M ′∗ .

The desired functor (24) is obtained by precomposing this functor by the equivalence

Disk+(M∗)
'
←− Disk+(M∗)[I−1

], established above, and postcomposing this functor by

the equivalence Disk+(M ′∗)
q
←−−
'

Disk+(M∗) induced by the equivalence M∗
q
−→ M ′∗ above.

Inspecting the values of the functor (25) on objects validates the asserted values of the

functor (24) on objects.

We will prove the next result, which makes reference to Lemma 2.3.7, as §2.4.

Proposition 2.3.8. The functor

Disk+(M∗) −→ Diskn,+/M∗ (26)

is final. Likewise, the functor

Disk+(M∗) −→ (Disk+n )
M∗/

is initial.

Consider the composite functor

Algaug
n (V) −→ Fun(Diskn,+/M∗ ,V) −→ Fun(Disk+(M∗),V) : (27)

the first arrow is restriction along the projection Diskn,+/M∗ → Diskn,+; the second arrow

is restriction along the functor of Proposition 2.3.8.

Notation 2.3.9. Given an augmented n-disk algebra A : Diskn,+→ V, we will use the

same notation A : Disk+(M∗)→ V for the value of the functor (27) on A.

We content ourselves with this Notation 2.3.9 because of the following immediate

corollary of Proposition 2.3.8.

Corollary 2.3.10. Let V be a symmetric monoidal ∞-category whose underlying

∞-category admits sifted colimits. Let A : Diskn,+→ V be an augmented n-disk

algebra, and let C : Disk+n → V be an augmented n-disk coalgebra. There are canonical

identifications in V:∫
M∗

A ' colim
(
Disk+(M∗)

A
−−→ V

)
' colim
(BtU ↪→M∗)∈Disk+(M∗)

A(U+),

and ∫ M∗
C ' lim

(
Disk+(M∗)

C
−−→ V

)
' lim
(BtV ↪→M∗)∈Disk+(M∗)

C(V+),

where the right-hand expressions for the objects of the indexing categories are from

Remark 2.3.2.
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2.4. Proofs of Theorem 2.2.3 and Proposition 2.3.8

Fix a weakly pre-constructible bundle π : M∗→ [0, 1] between stratified spaces (see [3])

for which π−10 contains a neighborhood of ∗. Note that the subspace π−1( 1
2 ) ⊂ M is a

smooth (n− 1)-dimensional submanifold. For each open subset U ⊂ [0, 1], consider the

subspace π−1(U )∗ := π−1(U )∗ := {∗} ∪π−1(U ) ⊂ M∗. The assumption on π is just so

that π−1(U )∗ is equipped with a canonical structure of a zero-pointed manifold with

respect to which the inclusion π−1(U )∗→ M∗ is a zero-pointed embedding. Consider the

morphism between ∞-operads

Disk∂,or
1/[0,1]

π−1
−−−→ ZMfldn/M∗ , [0, 1] ⊃ U 7→ π−1(U )∗.

Notice that π−1(U )∗ = π−1(U )+ if 0 /∈ U . We have the composite morphism between

∞-operads

Disk∂,or
1/[0,1]

π−1
−−−→ ZMfldn/M∗

Diskn,+/−
−−−−−−−→ (Cat∞)/Diskn,+/M∗

.

The next result makes reference to the colimit of this functor.

Lemma 2.4.1. The canonical functor

colim
(U ↪→[0,1])∈Disk∂,or

1/[0,1]

Diskn,+/π−1(U )∗ −→ Diskn,+/M∗ . (28)

is an equivalence between ∞-categories.

Proof. Since (28) is a functor between right fibrations over Diskn,+, it is enough to show,

for each finite set I , that the induced map between fiber spaces

colim
U ↪→[0,1]

ZEmb
(
(Rn
+)
∨

I , π−1(U )∗
)
−→ ZEmb

(
(Rn
+)
∨

I ,M∗
)

is an equivalence.

Let I be a finite set. Consider a zero-pointed n-manifold Z∗. For Dn
⊂ Rn the closed

n-disk, consider the topological space ZEmb
(
(Dn
+)
∨

I , Z∗
)

which is the subspace of

the topological space of pointed maps (with the compactly generated weak Hausdorff

replacement of the subspace topology of the compact-open topology) consisting of those

f : (Dn
+)
∨

I
→ Z∗ for which the restriction f| : f −1 Z → Z is a smooth embedding. In a

standard manner, the evident restriction ZEmb
(
(Rn
+)
∨

I , Z∗
) '
−→ ZEmb

(
(Dn
+)
∨

I , Z∗
)

is a

weak homotopy equivalence, and it is functorial in the argument Z∗. So it is enough to

argue that the likewise map between spaces as displayed above in which each instance of

Rn is replaced by one of Dn , is an equivalence between spaces.

Each map π−1(U )∗ ↪→ M∗ appearing in the above colimit is an open embedding. It

follows from the topology on the set of zero-pointed embeddings that the collection{
ZEmb

(
(Dn
+)
∨

I , π−1(U )∗
)
−→ ZEmb

(
(Dn
+)
∨

I ,M∗
)
| (U ↪→ [0, 1]) ∈ Disk∂,or

1/[0,1]

}
(29)

is comprised of open embeddings among topological spaces. Consider the union

A ⊂ ZEmb
(
(Dn
+)
∨

I ,M∗
)
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of these open embeddings. We next show that the open inclusion A ↪→
ZEmb

(
(Dn
+)
∨

I ,M∗
)

is a weak homotopy equivalence. For this, it is sufficient to prove

that the following statement is true.

(†) Let D be a closed disk in some Euclidean space; let ∂D ⊂ D be its boundary sphere.

For each pair of horizontal continuous maps making the diagram

∂D
F|∂D //

��

A

��
D

F
//

f̃

55

ZEmb
(
(Dn
+)
∨

I ,M∗
)

commute, there is a dashed continuous map for which the resulting triangles commute

up to homotopy.

Consider the continuous map

σ : (0, 1]×ZEmb
(
(Dn
+)
∨

I ,M∗
)
−→ ZEmb

(
(Dn
+)
∨

I ,M∗
)
,(

ε , (Dn
+)
∨

I f
−→ M∗

)
7→

(
σε( f ) : (Dn

+)
∨

I v 7→ε·v
−−−−→ (Dn

+)
∨

I f
−→ M∗

)
,

given by pre-scaling a zero-pointed embedding. The statement (†) is implied by the

following statement.

(††) Let F : K → ZEmb
(
(Dn
+)
∨

I ,M∗
)

be a continuous map from a compact topological

space. There is a ε0 ∈ (0, 1] for which there is a continuous factorization as in the

commutative diagram:

(0, ε]× K //

��

A

��
(0, 1]× K F // (0, 1]×ZEmb

(
(Dn
+)
∨

I ,M∗
) σ // ZEmb

(
(Dn
+)
∨

I ,M∗
)
.

We proceed, now, to prove statement (††). So let F : K → ZEmb
(
(Dn
+)
∨

I ,M∗
)

be a

continuous map from a compact topological space.

The canonical projection (Dn
+)
∨I
→ I+ has a preferred section I+→ (Dn

+)
∨I that

selects the center 0 ∈ Dn of each disk. Precomposing by this section defines a continuous

map

ev0 : ZEmb
(
(Dn
+)
∨

I ,M∗
)
−→ Map∗/(I+,M∗).

Let k ∈ K . Consider the zero-pointed embedding Fk : (Dn
+)
∨I
→ M∗, which is the value

of F on k. Choose an element
(
Uk ↪→ [0, 1]

)
∈ Disk1/[0,1] for which π(ev0(Fk)) ⊂ Uk .

There is a εk ∈ (0, 1] for which there is a continuous factorization as in the commutative

diagram:

(0, εk]× (Dn
+)
∨I //

��

π−1Uk

��
(0, 1]× (Dn

+)
∨I (ε,v) 7→εv // (Dn

+)
∨I Fk // M∗.
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Because F is continuous, the given topology on ZEmb
(
(Dn
+)
∨

I ,M∗
)

grants the existence

of an open neighborhood k ∈ Wk ⊂ K for which the restriction of the adjoint of F factors

as in the commutative diagram:

Wk × (0, εk]× (Dn
+)
∨I //

��

π−1Uk

��
K × (0, 1]× (Dn

+)
∨I (ε,v) 7→εv // K × (Dn

+)
∨I F // M∗.

Choose such a Wk for each k ∈ K . The collection {Wk}k∈K is an open cover of K . Using

that K is compact, choose a finite subset {k1, . . . , kr } ∈ K for which {Wk j }16 j6r is an

open cover of K . Choose ε > 0 less than each εk j . The above diagram then determines,

for each 1 6 j 6 r , a continuous factorization as in the commutative diagram:

Wk j × (0, ε]× (Dn
+)
∨I //

��

π−1Uk j

��
K × (0, 1]× (Dn

+)
∨I (ε,v) 7→εv // K × (Dn

+)
∨I F // M∗.

For 1 6 j 6 r , this diagram is adjoint to a continuous factorization as in the commutative

diagram:

(0, ε]×Wk j
//

��

ZEmb
(
(Dn
+)
∨

I , π−1(Uk j )∗
)

��
(0, 1]× K F // (0, 1]×ZEmb

(
(Dn
+)
∨

I ,M∗
) σ // ZEmb

(
(Dn
+)
∨

I ,M∗
)
.

Taking a union indexed by 1 6 j 6 r determines the sought commutative diagram (††).
This completes the proof that the continuous map A ↪→ ZEmb

(
(Dn
+)
∨

I ,M∗
)

is a weak

homotopy equivalence.

It remains to show that the union A is a homotopy colimit of its terms in (29). The

collection of open embeddings
{
U ↪→ [0, 1]}, indexed by the objects of Disk∂,or

1/[0,1], is a

hypercover of [0, 1]. It follows that the collection {π−1(U )∗ ↪→ M∗}, too, is a hypercover;

and thereafter that the collection (29), too, is a hypercover of A. It follows from [28,

A.3.1] that the canonical map

colim
U ↪→[0,1]

ZEmb
(
(Dn
+)
∨

I , π−1(U )∗
)
−→ A

is an equivalence in Spaces.

Now, consider the likewise composite representation

Disk∂,or
1/[0,1]

f −1

−−−→ Snglrn/M∗

Disk(Bsc)/−
−−−−−−−−−→ (Cat∞)/Disk(Bsc)/M∗

.

A main result of [4] (Corollary 2.38) states that the likewise canonical functor from the

colimit

colim
(U ↪→[0,1])∈Disk∂,or

1/[0,1]

Disk(Bsc)/ f −1(U )
'
−−→ Disk(Bsc)/M∗ (30)
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is an equivalence. We highlight the following consequence of this equivalence. Denote the

full subcategory

Disk∂,or
1/(0∈[0,1]) ⊂ Disk∂,or

1/[0,1]

consisting of those U ↪→ [0, 1] for which 0 ∈ U .

Lemma 2.4.2. The equivalence (30) restricts as an equivalence between ∞-categories:

colim
(0∈U ↪→[0,1])∈Disk∂,or

1/(0∈[0,1])

Disk(Bsc)/ f −1(U )
∼
−→ Disk+(M∗). (31)

Proof. The identification of the colimit (30) is one in the ∞-category of right fibrations

over Disk(Bsc). Therefore, it restricts as an equivalence in the ∞-category of right

fibrations over the full ∞-subcategory of Disk(Bsc) consisting of the objects in the

image of the forgetful functor Disk+(M∗) ↪→ Disk(Bsc)/M∗ → Disk(Bsc). The resulting

restricted identification is the desired one.

Lemma 2.4.3. Let H : K×[1] → Cat∞ be a natural transformation between functors.

Suppose, for each k ∈ K, that the restriction H| : {k}× [1] → Cat∞ selects a final functor

between ∞-categories. The canonical functor between colimits

H0<1 : colim(K
H0
−→ Cat∞) −→ colim(K

H1
−→ Cat∞)

is final.

Proof. It suffices to show that, for every functor F : colim
k∈K

H1(k) −→ X that admits a

colimit, the canonical morphism in X,

colim
(
colim
k∈K

H0(k)
F◦H0<1
−−−−→ X

)
−→ colim

(
colim
k∈K

H1(k)
F
−→ X

)
,

is an equivalence. This assertion follows from the sequence of equivalences in X,

colim
(
colim
k∈K

H0(k)
F◦H0<1
−−−−→ X

)
' colim

k∈K

(
colim

(
H0(k)

H0<1(k)◦F|{k}
−−−−−−−−→ X

))
'
−−→ colim

k∈K

(
colim

(
H1(k)

F|{k}
−−→ X

))
' colim

(
colim
k∈K

H1(k)
F
−→ X

)
,

which we now explain. The middle equivalence is the finality of H0(k)→ H1(k) for each

k ∈ K. The outer equivalences use a formal commutation of colimits: left Kan extensions

compose.

Proof of Proposition 2.3.8. The two assertions in the statement of the proposition are

equivalent. To see this we note the following identifications. First, there is the definitional

identification Disk+(M¬∗ ) ' Disk+(M¬∗ )
op. Second is the identification ¬: ZMfldn '

ZMfldop
n of Observation 1.5.17, which lies under an identification ¬: Diskn,+ '

(Disk+n )
op.

There is a natural transformation between Cat∞-valued functors on Disk∂,or
1/(0∈[0,1])

which assigns to each U ∈ Disk∂,or
1/(0∈[0,1]) the functor

Disk(Bsc)/ f −1(U ) −→ Diskn,+/ f −1(U )∗ (32)
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given by Lemma 2.3.7. We prove that this functor (32) is final for each such U . There

are two cases. Suppose 0 ∈ U . In this case, f −1(U ) is itself a finite disjoint union of

basics. Consequently, the identity morphism ( f −1(U )
=
−→ f −1(U )) is a final object in

the ∞-category Disk(Bsc)/ f −1(U ). Also in this case, the morphism between zero-pointed

manifolds
(

f −1(U )
=
−→ f −1(U )

)
is a final object in the ∞-category Diskn,+/ f −1(U )∗ .

Clearly, the functor (32) carries the first final object to the second. We conclude that the

functor (32) is final in this case that 0 ∈ U , as desired.

We now consider the other case: 0 /∈ U . In this case, the natural functor Diskn/ f −1(U ) ↪→

Disk(Bsc)/ f −1(U ) is an equivalence between∞-categories. Also in this case, the canonical

zero-pointed embedding f −1(U )+→ f −1(U )∗ is an equivalence between zero-pointed

manifolds. In this way, we identify (32) as the standard functor

(−)+ : Diskn/ f −1(U ) −→ Diskn,+/ f −1(U )+ .

Lemma 2.1.7 gives that the functor (32) is a fully faithful right adjoint. In particular, the

functor (32) is final in this case that 0 /∈ U , as desired. We conclude that the functor (32)

is final in all cases for U .

Now, applying Lemma 2.4.3, we obtain from the conclusion of the previous paragraph

that the functor

colim
(0∈U ↪→[0,1])∈Disk∂,or

1/(0∈[0,1])

Disk(Bsc)/ f −1(U ) −→ colim
(U ↪→[0,1])∈Disk∂,or

1/[0,1]

Diskn,+/ f −1(U )∗

is final. Applying Lemmas 2.4.1 and 2.4.2 we identify this functor as

Disk+(M∗) −→ Diskn,+/M∗ ,

which we thus conclude is a final functor.

Proof of Theorem 2.2.3. We only concern ourselves with statement (1), for statement (2)

follows from statement (1) upon replacing V by Vop. Corollary 2.3.10 states that

factorization homology
∫

M∗
A can be computed as a colimit over the ∞-category

Disk+(M∗); Corollary 2.3.6 states that this∞-category is sifted. In this way, we conclude

that the factorization homology functor
∫
−
: Fun(Diskn,+,V)→ Fun(ZMfldn,V) exists

provided V admits sifted colimits.

To argue the existence of the factorization homology functor
∫
−
: Algaug

n (V)→

Fun⊗(ZMfldn,V) over the one examined in the previous paragraph, we appeal to [4,

Lemma 2.16]. Namely, must show that the functor between ∞-categories

Disk+(M∗)×Disk+(M ′∗) −→ Disk+(M∗ ∨M ′∗), (33)

which sends a pair (U tC(L) ↪→ M∗) and (U ′ tC(L ′) ↪→ M ′∗) to (U tU ′ tC(L t L ′) ↪→
M∗ ∨M ′∗), is final.

Consider the poset Disk+(M∗ ∨M ′∗) of open neighborhoods of ∗ ∈ M∗ ∨M ′∗ that are

abstractly isomorphic to a finite disjoint union of basics, and inclusions among them.

Inside the proof of Lemma 2.3.7 we show that the ∞-categorical localization of this

poset at those inclusions that are isotopy equivalences, is canonically equivalent to the

∞-category Disk+(M∗ ∨M ′∗). Consider the functor

Disk+(M∗ ∨M ′∗) −→ Disk+(M∗)×Disk+(M ′∗)
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whose projection onto the first factor is given by

(B tU ↪→ M∗ ∨M ′∗) 7→
(
(B tU ) \M ′ ↪→ (M∗ ∨M ′∗) \M ′ = M∗

)
,

and whose projection onto the second factor is similar. Notice that this functor carries

isotopy equivalences to equivalences. Therefore, this functor canonically determines a

functor from the localization:

Disk+(M∗ ∨M ′∗) −→ Disk+(M∗)×Disk+(M ′∗).

By direct inspection, this functor is an inverse to the functor (33). In particular, the

functor (33) is final.

2.5. Reduced homology theories

We use zero-pointed manifolds to implement additional functorialities of reduced

homology theories.

Recall the symmetric monoidal topological categories Disk∂n ⊂Mfld∂n of Example 1.5.3.

The concept of a homology theory for smooth n-manifolds with boundary is defined in [4]

– this is a symmetric monoidal functor H : Mfld∂n → V satisfying an ⊗-excision axiom.

We concern ourselves with an augmented version of this notion, defined momentarily.

For the following definition, recall the notion of a collar-gluing from [3]

(Definition 8.3.2), and of augmented symmetric monoidal functors (Definition 2.1.1 of

this paper).

Definition 2.5.1 (Reduced homology theories). For a symmetric monoidal∞-category V,

the ∞-category of augmented homology theories for n-manifolds with boundary is the

full ∞-subcategory

Haug(Mfld∂n,V
)
⊂ Fun⊗,aug(Mfld∂n,V)

consisting of those augmented symmetric monoidal functors H : Mfld∂n → V that satisfy

the following.

• ⊗-Excision: For M ∼= ML
⋃

R×M0

MR a collar-gluing among manifolds with boundary, the

canonical morphism in V,

H(ML)
⊗

H(M0)

H(MR)
'
−−→ H(M), (34)

is an equivalence.

The ∞-category of reduced homology theories is the full ∞-subcategory

Haug
red
(
Mfld∂n,V

)
⊂ Haug(Mfld∂n,V

)
consisting of those H for which, for each finitary smooth (n− 1)-manifold N , the

morphism in V induced by the augmentation of H ,

H
(
R>0× N

) '
−−→ 1 .
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The following is an immediate consequence of our previous work with Hiro Lee

Tanaka [4].

Proposition 2.5.2. Let V be a symmetric monoidal∞-category that is ⊗-sifted cocomplete.

There is a fully faithful functor

Algaug
Diskn

(V) ↪→ Algaug
Disk∂n

(V).

Composing this functor with factorization homology defines an equivalence between

∞-categories: ∫
−

: Algaug
Diskn

(V)
'
−−→ Haug

red
(
Mfld∂n,V

)
.

Proof. Consider the fully faithful symmetric monoidal functor

i : Diskn,+ −→ Disk∂n,+ .

For each object V+ ∈ Disk∂n,+, the ∞-undercategory DiskV+/
n,+ has an initial object.

Namely, writing V+ ' U+ ∨U ′+ as a wedge sum with each connected component of U
diffeomorphic to Rn and each connected component of U ′ diffeomorphic to Hn , this initial

object is the collapse map (V+
c
−→ U+) onto the Euclidean components. In this way we

conclude that the functor i is a right adjoint in a localization:

q : Disk∂n,+ � Diskn,+ : i.

Noting that this left adjoint carries wedge sums to wedge sums, this adjunction is one

among symmetric monoidal∞-categories. Implementing Proposition 2.1.10, we conclude

that the restriction functor

q∗ : Algaug
Diskn

(V) −→ Algaug
Disk∂n

(V) (35)

is fully faithful. We now identify the image of this fully faithful functor.

Consider the ∞-subcategory W := q−1(Diskn,+
)∼
⊂ Disk∂n,+ which is the preimage

of the maximal ∞-subgroupoid. Because q is a symmetric monoidal left adjoint in a

symmetric monoidal localization, the symmetric monoidal functor q canonically factors

q : Disk∂n,+[W
−1
]
'
−−→ Diskn,+

as an equivalence between symmetric monoidal ∞-categories. By inspection, W ⊂
Disk∂n,+ is the smallest symmetric monoidal subcategory containing the equivalences

as well as the morphism
(
Hn
+→+

)
. In this way, we identify the image of (35) as

those augmented Disk∂n-algebras A : Disk∂n,+→ V that carry each morphism in W to

an equivalence in V, which is to say that A(Hn)
'
−→ 1.

Now, the main result (Theorem 2.43) of [4] implies that the adjunction∫
−

: Algaug
Disk∂n

(V) � Haug(Mfld∂n,V) : Restriction
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is an equivalence between ∞-categories. Therefore, restriction defines a fully faithful

functor

Haug
red (Mfld∂n,V) ↪→ Algaug

Disk∂n
(V). (36)

The conclusion of the previous paragraph, which characterizes the image of the

functor (35), verifies that the fully faithful functor (36) factors:

Haug
red (Mfld∂n,V) ↪→ Algaug

Diskn
(V) ↪→

(35)
Algaug

Disk∂n
(V).

This result is proved upon showing that the left fully faithful functor is surjective. This

is implied by the following assertion.

Let A : Disk∂n,+→ V be an augmented Disk∂n-algebra. Suppose the augmentation

A(Hn)
'
−→ 1 is an equivalence. Then the factorization homology

∫
−

A : Mfld∂n,+→ V

is a reduced ⊗-excisive functor.

Let A be as in the above assertion. Let N be a finitary smooth (n− 1)-manifold. We

must show the augmentation
∫
R>0×N A

'
−→ 1 is an equivalence. The assumption on A

grants so provided N is isomorphic to a finite (possibly empty) disjoint union of Euclidean

(n− 1)-spaces. Because N is finitary, it can be witnessed as via a finite iteration of

collar-gluings from Rn−1. Let r be the minimal number of such iterations for witnessing

N . We proceed by induction on r . If r = 0, then N = ∅, and thus 1 '
∫
∅

A '
∫
R>0×N A,

as desired. So assume r > 0. Then N ∼= NR
⋃

R×N0
NL where NR and R× N0 and NL can

be witnessed via less than r iterations of collar-gluings from Rn−1. Now, factorization

homology for manifolds with boundary satisfies ⊗-excision, which is to say that the

canonical morphism in V/1 ∫
NL

A
⊗
∫

N0
A

∫
NR

A
'
−−→

∫
N

A

is an equivalence. By induction on r , the augmentations
∫

NL
A
'
−→ 1 and

∫
N0

A
'
−→ 1 and∫

NR
A
'
−→ 1 are each equivalences. We conclude that the augmentation

∫
N A

'
−→ 1 is an

equivalence, as desired.

Consider the full ∞-subcategory

Mfld∂cpt
n ⊂Mfld∂n

consisting of those smooth n-manifolds with boundary whose boundary is compact.

Collapsing boundary to a point defines a symmetric monoidal functor

Mfld∂cpt
n −→ ZMfldn, M 7→ ∗ q

∂M
M . (37)
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Theorem 2.5.3. Let V be a symmetric monoidal ∞-category that is ⊗-sifted cocomplete.

The diagram of ∞-categories

Algaug
n (V)∫

−

tt

∫
−

))
Fun⊗,aug(Mfld∂cpt

n ,V
)

Fun⊗
(
ZMfldn,V

)
(37)∗

oo

canonically commutes – here, the leftward diagonal arrow is through Proposition 2.5.2;

the rightward diagonal arrow term is as in Theorem 2.2.3. In other words, for each

augmented n-disk algebra A, and for each finitary smooth n-manifold M with compact

boundary, there is an equivalence in V∫
M

A '
∫
∗ q
∂M

M
A

which is functorial in the arguments M and A.

Proof. Let A be an augmented n-disk algebra in V. Let M be a finitary smooth n-manifold

with compact boundary. Denote the zero-pointed n-manifold M∗ := ∗ q
∂M

M . The smooth

structure on M determines a conically smooth structure on M∗.
We prove this result by establishing the zigzag of canonical equivalences in V:∫

M
A
'
−→
(a)

colim
Disk(Bsc)/M∗

π∗A

'
←−
(b)

colim
Disk+(M∗)

(π∗A)|

'
−→
(c)

colim
Disk+(M∗)

A|

'
−→
(d)

colim
Diskn,+/M∗

A '
∫

M∗
A,

which we explain as we go. The canonical map π : M → M∗ is a constructible bundle.

Consequently, the pushforward formula for factorization homology [4, Theorem 2.25] can

be applied, thereby granting the canonical equivalence (a). Here, π∗A is the functor

π∗A : Disk(Bsc)/M∗
π−1
−→Mfld∂n/M

∫
A
−→ V.

Also here, we denote the composite functor

(π∗A)| : Disk+(M∗)→ Disk(Bsc)/M∗
π∗A
−−−→ V,

(C(∂M)tU ↪→ M∗) 7→
(∫

∂M×[0,1)
A
)
⊗ A(U ).

The equivalence (b) therefore follows from the finality of Lemma 2.3.4.
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Here, we doublebook the notation for the composite functor

A : Diskn,+/M∗ −→ Diskn,+
A
−−→ V.

We denote the restriction

A| : Disk+(M∗)
(24)
−−−→ Diskn,+/M∗ −→ Diskn,+

A
−−→ V,

(
C(∂M)tU ↪→ M∗

)
7→ A(U ).

The equivalence (d) therefore follows from the finality of Proposition 2.3.8.

Finally, the augmentation of A defines a canonical natural transformation

(π∗A)| −→ A|
between functors Disk+(M∗)→ V. The second statement of Proposition 2.5.2 implies this

natural transformation is by equivalences in V. This establishes the equivalence (c).

Remark 2.5.4. Theorem 2.5.3 implies that a reduced homology theory for n-manifolds

with boundary has additional functorialities. For instance, consider a properly embedded

codimension-zero submanifold U ⊂ M with compact boundary. For a reduced augmented

homology theory H there is a canonically associated morphism

H(M) −→ H(∗ q
∂U

U ) ' 1V

⊗
H(∂U )

H(U ),

which is induced by the zero-pointed embedding M → ∗ q
∂U

U .

In the following statement we consider a collar-gluing M ∼= C
⋃
R×L

I of a manifold with

compact boundary with the property that both R× L and I are disjoint from an open

neighborhood of the boundary ∂M . In particular, the boundaries ∂L = ∅ = ∂ I are empty,

so that the inclusion ∂C ⊂ ∂M is an equality.

Corollary 2.5.5 (Reduced factorization (co)homology satisfies ⊗-(co)excision). Let V be a

symmetric monoidal ∞-category. Let M be a smooth n-manifold with compact boundary,

and let M ∼= C
⋃
R×L

I be a collar-gluing among smooth n-manifolds with boundary for which

both I and L are disjoint from an open neighborhood of the boundary ∂M. Consider

the associated zero-pointed n-manifolds M∗ := ∗ q
∂M

M and C∗ := ∗ q
∂M

C and I+ and L+.

Provided V is ⊗-sifted cocomplete, for each augmented n-disk algebra A in V, there is a

canonical equivalence in V, ∫
C∗

A
⊗
∫

L+
A

∫
I+
A
'
−−→

∫
M∗

A,

among reduced factorization homologies, from a two-sided bar construction. Likewise,

provided Vop is ⊗-sifted cocomplete, for each augmented n-coalgebra C in V, there is a

canonical equivalence in V ∫ M∗
C
'
−−→

∫ C∗
C

∫ L+ C⊗ ∫ I+
C

among reduced factorization cohomologies, to a two-sided cobar construction.
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Proof. Replacing V by Vop implements an equivalence between the two statements of the

theorem. So we only prove the first statement. By way of Theorem 2.5.3, the problem is

to prove that the canonical morphism∫
C
A

⊗
∫

L A

∫
I
A
'
−−→

∫
M
A

in V is an equivalence. This is the case because factorization homology for smooth

n-manifolds with boundary satisfies ⊗-excision [4, Corollary 2.40].

Example 2.5.6. Let V be a ⊗-sifted cocomplete symmetric monoidal ∞-category, and

let A be an augmented Diskn-algebra in V. Let M be a smooth manifold with compact

boundary. As in the proof of Theorem 2.5.3, there is a constructible bundle M → M∗
which restricts to the interior as a diffeomorphism onto M . Corollary 2.5.5 gives the

identification ∫
M∗

A ' 1V

⊗
∫
∂M A

∫
M

A.

3. Duality

Our setup is ripe for depicting a number of dualities: we will see Koszul duality among

n-disk (co)algebras, as well as Poincaré duality among manifolds. Here, we recover a

twisted version of Atiyah duality.

In this section we fix the following parameters.

• A dimension n.

• A symmetric monoidal ∞-category V whose underlying ∞-category admits sifted

colimits and cosifted limits.

3.1. Poincaré/Koszul duality map

We now construct the Poincaré/Koszul duality map.

Recall Definition 2.1.5, introducing the ∞-categories ZMfldn , Mfldn,+, and Mfld+n .

Consider the solid diagram of ∞-categories

Fun(Diskn,+,V)

∫
−

##
Fun

(
ZMfldn,V

)
(−)+

oo (−)+ // Fun(Disk+n ,V)

∫
−

cc
(38)

given by the evident restrictions. By way of Theorem 2.2.3, the assumption that the

underlying ∞-category of V is sifted cocomplete and cosifted complete grants that the

left functor has a left adjoint and the right functor has a right adjoint, as indicated by

the dashed arrows. There results a functor involving the arrow ∞-category of V

Fun⊗
(
ZMfldn,V) −→ Fun

(
ZMfldn,Ar(V)

)
;

https://doi.org/10.1017/S1474748019000343 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000343


826 D. Ayala and J. Francis

the value of this functor on A evaluates on a zero-pointed n-manifold M∗ as the composite

arrow in V ∫
M∗

A+
counit
−−−−→ A(M∗)

unit
−−−→

∫ M∗
A+, (39)

termed the Poincaré/Koszul duality map.

The following question drives this work and the sequel [2].

Question 3.1.1. What conditions on A guarantee that the Poincaré/Koszul duality

map (39) is an equivalence?

Remark 3.1.2. The definitions present in this work culminate as the duality map (39)

above, which is functorial in all arguments.

Remark 3.1.3. We point out that the Poincaré/Koszul duality maps are utterly

ambidextrous in the background symmetric monoidal ∞-category V in the sense that

these maps are equivalences if and only if they are when V is replaced by Vop.

Remark 3.1.4 (Scanning). The Poincaré/Koszul duality map in the case V = (Spaces,×)
is equivalent to the scanning map of [31], [36], [8]. In those works the map is defined one

manifold at a time, in compact families, upon making contractible choices; this makes the

establishment of continuous functoriality in the manifold a nuisance to verify. To sketch

this identification with scanning maps, for simplicity, we fix a smooth framed n-manifold

equipped with a complete Riemannian metric for which there is a uniform radius of

injectivity ε > 0. Again for simplicity, consider A to be a (discrete) commutative group.

In this case, we can identify the defining colimit for factorization homology as a labeled

configuration space:∫
M∗

A ' colim
S∈Ran(M∗)

AS
'

(∨
i>0

M∗×i
∧
Σi

A×i
)
/∼

(
=

{
(S ⊂

finite
M , S

l
−→ A)

} )
, (40)

where the equivalence relation in the third term is determined by declaring

[(x1, a1), . . . , (xi−2, ai−2), (x, a), (x, b)] ∼ [(x1, a1), . . . , (xi−2, ai−2), (x, a+ b)],

and the fourth term is just a convenient description of the underlying set of the third

space. Dold–Thom theory identifies the homotopy groups

π∗

∫
M∗

A ∼= H∗(M∗; A)

of this space as the reduced homology of M∗. (See [5] for a proof of the Dold–Thom

theorem in terms of factorization homology.) Through the same theory, we know∫
(Rn)+ A ' Bn A ' K (A, n) is an Eilenberg–MacLane space. Because we are working in

the Cartesian symmetric monoidal ∞-category Spaces, and using that M is framed,

factorization cohomology ∫ M∗
Bn A ' Map∗/

(
M¬∗ , K (A, n)

)
(41)
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is weakly equivalent to the space of based maps from the negation of M∗. Consequently,

we identify the homotopy groups

π∗

∫ M∗
Bn A ∼= H

n−∗
(M¬∗ ; A)

as the shifted reduced cohomology groups of M¬∗ . Through the identifications (40)

and (41), the map (39) is weakly equivalent to the assignment(
M ⊃ S

l
−→ A

)
7→

(
M 3 x 7→

(
Bε(x)∩ S

l|
−→ A

)
∈

∫
Bε(x)∗

A ' K (A, n)
)

– here x ∈ Bε(x) ⊂ M is the ε-ball about x . This assignment is continuous, and is the

scanning map as mentioned. Applying homotopy groups to this map results in the

classical Poincaré duality isomorphism

H∗(M∗; A) ∼= H
n−∗

(M¬∗ ; A).

3.2. Koszul duality

Evaluating the Poincaré/Koszul duality map (39) on pointed Euclidean spaces provokes

a meaningful examination: Koszul duality. Here we geometrically define a procedure for

assigning to an augmented n-disk algebra an augmented n-disk coalgebra (and vice versa)

– this is the bar–cobar adjunction.

Definition 3.2.1 (Koszul duality). Consider a symmetric monoidal ∞-category V. Say a

symmetric monoidal functor A : ZDiskn −→ V is a Koszul duality if it has the following

two properties.

• A is initial among all such whose restriction to Diskn,+ is A+. This is to say, A is initial

in the ∞-category that is the fiber over A+ of the restriction Fun⊗
(
ZDiskn,V

) (−)+
−−−→

Algaug
n (V).

• A is final among all such whose restriction to Disk+n is A+. This is to say, A is final

in the ∞-category that is the fiber over A+ of the restriction Fun⊗
(
ZDiskn,V

) (−)+

−−−→

cAlgaug
n (V).

Remark 3.2.2. A key feature of a Koszul duality, A, is that it is determined by its

restriction to either Diskn,+ or to Disk+n . Lemma 3.2.5 makes this explicit.

Remark 3.2.3. The notion of a Koszul duality has been developed in other works, such

as [19], [18], and [29]. We will leave it to another work to explain the relationship between

the notion presented here and that of [29].

The diagram (38) provokes the following definition, the notation for which is justified

as Theorem 3.3.2 to come. Recall Terminology 2.0.1 of sifted (co)complete.
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Definition 3.2.4 (Bar–cobar). Consider a symmetric monoidal∞-category V that is sifted

cocomplete and cosifted complete. Define the composite functors

Barn
: Fun(Diskn,+,V)

∫
−

−→ Fun
(
ZMfldn,V

)
−→ Fun

(
Disk+n ,V

)
and

cBarn
: Fun(Disk+n ,V)

∫
−

−→ Fun
(
ZMfldn,V

)
−→ Fun

(
Diskn,+,V

)
,

in which the unlabeled arrows are restrictions.

Recall the notation for the functors displayed in (38). The following result is a simple

rephrasing of universal properties, premised on Proposition 3.2.7.

Lemma 3.2.5. Let V be a symmetric monoidal ∞-category that is ⊗-sifted cocomplete

and ⊗-cosifted complete. Let A : ZDiskn → V be a symmetric monoidal functor. The

following statements are equivalent.

(1) A is a Koszul duality.

(2) Both of the universal arrows

Barn A+
'
−−→ A+ and A+

'
−−→ cBarn A+

are equivalences.

(3) The universal triangle in Fun⊗
(
ZDiskn,V

)
A

'

""∫
(−)

A+
' //

'

<<

∫ (−)
A+

is of equivalences.

Proof. The universal property of factorization (co)homology (Theorem 2.2.3) determines

the triangle of point (3). By Definition 2.1.5, any full symmetric monoidal

∞-subcategory of ZDiskn containing both Rn
+ and (Rn)+ is entire. Therefore, using

that factorization homology and factorization cohomology define symmetric monoidal

functors (Theorem 2.2.3), this triangle is comprised of equivalences if and only if it is

upon evaluating on Rn
+ and on (Rn)+. Inspecting Definition 3.2.4 of Barn and cBarn , this

establishes the equivalence between (2) and (3).

Now, because both of the symmetric monoidal functors Diskn,+ ↪→ ZDiskn ←↩ Disk+n
are fully faithful, both factorization homology and factorization cohomology are fully

faithful. Because these functors are left and right adjoints, respectively, it follows that∫
(−)

A+ ∈ Fun⊗(ZDiskn,V) is initial among such symmetric monoidal functors whose

restriction to Diskn,+ is A+; likewise,
∫ (−)

A+ is final among such symmetric monoidal

functors whose restriction to Disk+n is A+. From Definition 3.2.1 of a Koszul duality, that

A is a Koszul duality if and only if the above triangle in Fun⊗(ZDiskn,V) is comprised

of equivalences. This establishes the equivalence between (1) and (3).
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Remark 3.2.6. Recall the central Question 3.1.1, asking for conditions for when the

universal transformation
∫
(−)

A+→
∫ (−)

A+ is an equivalence. Evaluating on Rn
+ and

(Rn)+, we see that a necessary condition is that A is a Koszul duality. As we will see, in

controlled situations, this is a sufficient condition as well.

Proposition 3.2.7. Let V be a symmetric monoidal ∞-category whose underlying

∞-category admits sifted colimits and cosifted limits. The pair of functors

Barn
: Fun(Diskn,+,V)� Fun(Disk+n ,V) : cBarn (42)

is an adjunction. If V is ⊗-sifted cocomplete, then Barn canonically factors through

cAlgaug
n (V); dually, if V is ⊗-cosifted cocomplete, then cBarn canonically factors through

Algaug
n . If V is ⊗-sifted cocomplete and ⊗-cosifted complete then the adjunction (42)

restricts as an adjunction

Barn
: Algaug

n (V)� cAlgaug
n (V) : cBarn . (43)

Proof. The first statement follows immediately by composing the pair of adjunctions

in (38). The final two statements, regarding symmetric monoidal extensions of the first

two statements, follow thereafter from Theorem 2.2.3.

Checking for a Koszul duality can be reduced to just a condition either on the algebra,

or on the coalgebra.

Lemma 3.2.8. Let V be a symmetric monoidal∞-category that is ⊗-sifted cocomplete and

⊗-cosifted complete.

• An augmented Diskn-algebra A in V is a member of a Koszul duality if and only if the

unit morphism

unit : A −→ cBarn
◦Barn(A) (44)

is an equivalence.

• An augmented Diskn-coalgebra C in V is a member of a Koszul duality if and only if

the counit morphism

Barn
◦ cBarn

◦Barn(A) −→ Barn(A) (45)

is an equivalence.

Proof. The two assertions are equivalent, as implemented by replacing V by Vop. We are

therefore reduced to proving the first assertion, concerning an augmented Diskn-algebra

A in V. Through Lemma 3.2.5, A is a member of a Koszul duality if and only if both the

unit morphism (44) and the counit morphism (45) are equivalences. The functors Barn

and cBarn being adjoints to one another, there is a commutative triangle

Barn(A) = //

Barn(unit) ((

Barn(A)

Barn
◦ cBarn

◦Barn(A)
counit(Barn)

66

.

From the 2-out-of-3 property for equivalences in an∞-category, the morphism (45) is an

equivalence provided the morphism (44) is an equivalence.
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3.3. The bar construction

Let V be a symmetric monoidal∞-category that is ⊗-sifted cocomplete. The main result

in this section is Theorem 3.3.2, which justifies the notation

Barn
: Algaug

n (V) −→ V, A 7→
(
Rn
7→

∫
(Rn)+

A
)
,

as an n-fold iteration of a bar construction.

Recall from [28, §5.2.1] the bar construction Bar(A) ' 1⊗
A
1 of an augmented

associative algebra A→ 1 in V. There, it is explained that Bar(A) is equivalent to

the geometric realization of a simplicial object Bar•(A) in V, which is a two-sided bar

construction. Pointwise explicitly, the object of p-simplices is canonically equivalent to

A⊗p, and through this identification the inner face maps can be identified as (a choice

of) the associative multiplication map for A, the outer face maps can be identified as the

augmentation of A, and the degeneracy maps can be identified as (a choice of) the unit

of A.

Remark 3.3.1. Let A be a 1-disk algebra in Modk, chain complexes over a field k. There

is a naive comultiplication

1⊗
A
1 ' 1⊗

A
A⊗

A
1 −→ 1⊗

A
1⊗

A
1

given by the augmentation of A in the middle term. It is a classical result that one can

choose a model specific representation which admits a strict coalgebra refinement of this

homotopy associative map.

Let A be an n-disk algebra in V. Consider the continuous functor between topological

categories:

Disk1×Diskn−1 −→ Diskn, (U, V ) 7→ U × V . (46)

For each U ∈ Disk1, the restricted functor Diskn−1
U×−
−−−→ Diskn is canonically symmetric

monoidal; likewise, for each V ∈ Diskn−1, the restricted functor Disk1
−×V
−−−→ Diskn is

canonically symmetric monoidal. This is to say that the functor (46) is symmetric

bi-monoidal. Therefore, the restriction of A : Diskn → V along (46) is adjoint to a

symmetric monoidal functor Disk1 → Algn−1(V), that we will again denote as A. The

n-fold bar construction is inductively defined as the object in V

Barn(A) := Bar(Barn−1(A)).

(See §5.2.2 of [28] for a thorough discussion of this iterated bar construction.) Through

similar considerations as the case n = 1 of Remark 3.3.1, one can expect an n-disk

coalgebra structure on Barn(A). The non-iterative nature of an n-disk (co)algebra

puts tension against this expectation, particularly when considering the O(n)-module

structure on the underlying objects of n-disk (co)algebras. The coming results validate

this expectation.

https://doi.org/10.1017/S1474748019000343 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000343


Zero-pointed manifolds 831

Theorem 3.3.2. Let A be an augmented n-disk algebra in a symmetric monoidal

∞-category V. Provided V is ⊗-sifted cocomplete, there is a canonical equivalence∫
(Rn)+

A ' Barn(A)

between the factorization homology of the 1-point compactification of Rn with coefficients

in A, and the n-fold iteration of the bar construction applied to A.

Likewise, let C be an augmented n-disk coalgebra in V. Provided V is ⊗-cosifted

complete, there is a canonical equivalence∫ Rn
+

C ' cBarn(C).

Proof. The first statement implies the second by replacing V by Vop, so we only establish

the first. Theorem 2.5.3 gives the canonical identification∫
(Rn)+

A '
∫
Dn

A.

We proceed by induction on n. Consider the base case n = 1. The conditions on V give

that factorization homology for smooth manifolds with boundary satisfies ⊗-excision

[4, Corollary 2.40]. Applying this ⊗-excision for manifolds with boundary from [4] to the

collar-gluing D1 ∼= [−1, 1)
⋃

(−1,1)×{0}
(−1, 1], we have an identification∫

D1
A '

∫
[−1,1)

A
⊗
∫
{0} A

∫
(−1,1]

A ' 1
⊗

A

1 ' Bar(A).

This establishes the n = 1 case.

Now, the standard projection Dn pr
−→ D1 onto the first coordinate is a weakly

constructible bundle (see [3]). Consequently, the pushforward formula for factorization

homology [4, Theorem 2.25] gives a canonical identification between objects in V,∫
Dn

A '
∫
D1

pr∗A,

where pr∗A evaluates on U ↪→ D1 as
∫

pr−1U A. The ⊗-excision formula applied to the

collar-gluing D1 ∼= [−1, 1)
⋃

(−1,1)×{0}
(−1, 1], gives the canonical identification∫

D1
pr∗A '

∫
[−1,1)

pr∗A
⊗

∫
{0} pr∗A

∫
(−1,1]

pr∗A.

We land at a canonical identification between objects of V,∫
Dn

A ' 1
⊗

∫
Dn−1 A

1 ' 1
⊗

Barn−1 A

1 ' Barn A,

where the left equivalence is by inspection of the previous display, the middle equivalence

is by induction on n, and the right equivalence is by definition of the iterated bar

construction.
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Theorem 3.3.2 allows us to see the naive comultiplication above as exactly the fold

map (Rn)+→ (Rn)+ ∨ (Rn)+, the Pontryagin–Thom collapse map of an embedding Rn
t

Rn ↪→ Rn .

Corollary 3.3.3. For A an augmented n-disk algebra in V, a symmetric monoidal

∞-category which is ⊗-sifted cocomplete, the n-times iterated bar construction Barn(A)
carries a natural n-disk coalgebra structure.

Proof. Through Theorem 3.3.2, it is sufficient to exhibit an augmented n-disk coalgebra

structure on
∫
(Rn)+ A. Using the assumed ⊗-cosifted complete property V, Theorem 2.2.3

applies for the effect that the factorization homology functor
∫
−

A : ZMfldn → V as a

symmetric monoidal functor. The desired n-disk coalgebra structure is the composite

symmetric monoidal functor

Disk+n ↪→ ZMfldn

∫
−

A
−−−−→ V, (Rn)+ 7→

∫
(Rn)+

A ' Barn(A).

Remark 3.3.4. For a general operad O together with a left O-module A, such as an

O-algebra, and a right O-module M , one can define an analogue of factorization homology∫
M

A := M
⊗

Env(O)

A

as the coend of A and M over the symmetric monoidal envelope of O. If O is augmented,

then one can construct a likewise analogue of the map∫
M

A −→
∫ BM

BA (47)

to the factorization cohomology (i.e., the end) of the left 1 ◦O 1-module BA :=
|Bar(1,O, A)| and the right 1 ◦O 1-module BM := |Bar•(M,O,1)|. This map does not

reflect a phenomenon of Poincaré duality, however. In the case O = En , Poincaré duality

takes place in the identification of the bar construction 1 ◦En 1 with a stable shift

of En and, thus, in the identification of the right-hand side of (47) as factorization

cohomology. In particular, an operadic approach would not obviously account for
non-abelian Poincaré duality and the unstable Koszul self-duality of n-disk algebra

provided by Proposition 3.4.12. However, should the map (47) be of interest, the same

tools used here and in the sequel [2] to address when the Poincaré/Koszul duality map

is equivalence also apply to it. In short, one requires certain (co)connectivity bounds on

the objects A and M .

3.4. Koszul dualities in bicomplete Cartesian-sifted ∞-categories

Here we aim toward an answer to Question 3.1.1 in the case that the symmetric monoidal

∞-category V has certain (co)completeness and (co)continuity properties. In this section,

we simplify reduced factorization (co)homology, as well as characterize Koszul dualities,

in such situations.
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Definition 3.4.1 [27, Definition 6.1.2.7]. Let X be an ∞-category. A simplicial object

G : 1op
→ X is a groupoid object (in X) if, for each finite non-empty linearly ordered

set L, and each pair of subsets S, T ⊂ L whose union S ∪ T = L is entire and whose

intersection S ∩ T = {l} ⊂ L is a singleton, the diagram in X

G(L) //

��

G(T )

��
G(S) // G({l})

is a pullback. A groupoid object G in X is effective if the canonical diagram in X

G({0 < 1}) //

��

G({1})

��
G({0}) // |G|

is a pullback; here, |G| := colim(1op G
−→ X) ∈ X is the colimit.

Definition 3.4.2. An ∞-category S is bicomplete Cartesian-sifted if the following

conditions are satisfied.

• S admits limits and colimits.

• Sifted colimits in S are universal: for each morphism f : X → Y in S, the base change

functor

f ∗ : S/Y −→ S/X , (Z → Y ) 7→ (X ×
Y

Z → X),

preserves sifted colimits.

• Each groupoid object in S is effective.

Example 3.4.3. Here are some examples of bicomplete Cartesian-sifted ∞-categories.

• A presentable stable ∞-category S is a bicomplete Cartesian-sifted ∞-category. In

particular, for k a ring spectrum, Modk(Spectra) is a bicomplete Cartesian-sifted

∞-category.

• The opposite Sop of a stable presentable ∞-category is a bicomplete Cartesian-sifted

∞-category.

• An∞-topos E is a bicomplete Cartesian-sifted∞-category. In particular, for any small

∞-category C, the∞-category PShv(C) is bicomplete Cartesian-sifted. As the case C '

∗ is final, we see that the∞-category Spaces of spaces is bicomplete Cartesian-sifted.

• Let X ∈ S an object in a bicomplete Cartesian-sifted∞-category. The∞-overcategory

S/X is a bicomplete Cartesian-sifted∞-category; likewise, the∞-undercategory SX/ is

a bicomplete Cartesian-sifted ∞-category.

Notation 3.4.4. Each bicomplete ∞-category S has a final object, ∗ ∈ S. The

∞-undercategory S∗/ is canonically tensored and cotensored over pointed spaces:

⊗: Spaces∗/×S∗/ −→ S∗/,
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(∗ → Z , X) 7→ Z ⊗ X := colim
(
Z
!
−→ ∗

{X}
−−→ S∗/

)
' ∗q

X
colim

(
Z
!
−→ ∗

{X}
−−→ S

)
∈ S∗/,

and

Map∗(−,−) : (Spaces∗/)op
× S∗/ −→ S∗/,

(∗ → Z , X) 7→ Map∗(Z , X) := X Z
:= lim

(
Z
!
−→ ∗

{X}
−−→ S∗/

)
' ∗×

X
lim
(
Z
!
−→ ∗

{X}
−−→ S

)
.

Convention 3.4.5. We adopt the convention to regard a bicomplete Cartesian-sifted

∞-category S as a symmetric monoidal ∞-category whose underlying ∞-category is

S and whose symmetric monoidal structure is the Cartesian one.

Lemma 3.4.6. Let S be a bicomplete Cartesian-sifted ∞-category. Let O be a unital

∞-operad. The ∞-category AlgO(S) of O-algebras in the Cartesian symmetric monoidal

∞-category S is bicomplete Cartesian-sifted.

Proof. This follows after the following results from [28]. Corollary 3.2.3.5 thereby grants

that AlgO(S) is bicomplete. Corollary 3.2.2.5 thereby grants that the forgetful functor

AlgO(S)→ S preserves limits. Corollary 3.2.3.2 thereby grants that the forgetful functor

AlgO(S)→ S preserves sifted colimits.

Remark 3.4.7. Few symmetric monoidal ∞-categories arise as an instance of

Convention 3.4.5. We view bicomplete Cartesian-sifted ∞-categories as degenerate

examples of symmetric monoidal ∞-categories because comultiplication is unique and

commutative. For instance, for k a ring spectrum, tensor product over k defines a

symmetric monoidal structure on the ∞-category Modk of chain complexes over k. This

tensor product does not, in general, distribute over totalizations. This case of considerable

interest is the subject of the sequel [2].

Observation 3.4.8. Let S be a bicomplete Cartesian-sifted ∞-category. Then, as a

symmetric monoidal ∞-category, it is ⊗-sifted cocomplete and ⊗-cosifted complete.

Theorem 2.2.3 ensures the existence of the two adjunctions∫
−
: Algaug

n (S)

!!
Fun⊗

(
ZMfldn, S

)
//oo cAlgaug

n (S) :
∫
−
.

aa

The existence of a zero object in the ∞-category ZMfldn determines a canonical lift of

the Yoneda functor

Fun∗/(ZMfldop
n ,Spaces∗/)

��
ZMfldn

44

Yoneda // PShv(ZMfldn).

Definition 3.4.9. The frame bundle functor is the restricted Yoneda functor

Fr− : ZMfldn
Yoneda
−−−−→ Fun∗/(ZMfldop

n ,Spaces∗/) restriction
−−−−−→ Fun

(
BO(n)op,Spaces∗/

)
=: ModO(n)(Spaces∗/).
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Remark 3.4.10. The unstraightening construction identifies the ∞-category of

O(n)-modules in pointed spaces

ModO(n)(Spaces∗/) ' SpacesBO(n)/
/BO(n) (48)

with the ∞-category of retractive spaces over BO(n). We describe the frame bundle

of a zero-pointed n-manifold through this identification (48). Let M∗ be a zero-pointed

n-manifold. Choose a smooth n-manifold M with compact boundary ∂M together with

an identification ∗ q
∂M

M ∼= M∗ between pointed extensions of the interior M . Through

the identification (48), the frame bundle is the pushout

∂M //

(τM )|∂M

��

M

��
BO(n) // FrM∗

in spaces over BO(n), as it is equipped with the section offered by the bottom horizontal

map. In particular, a framing of a neighborhood of ∂M ⊂ M determines an identification

FrM∗ ' BO(n)
∨

M∗.

As special cases, we identify

Fr(Rn)+ ' BO(n)
∨
(Rn)+, as well as FrM+ '

(
BO(n)qM

τM
−−−→ BO(n)

)
.

We reference the following notion in Proposition 3.4.12; compare with the recognition

principle of [30].

Definition 3.4.11. Let V be a symmetric monoidal ∞-category. An augmented n-disk

algebra A : Diskn → V is grouplike if there is a framed open embedding e : Rn
tRn ↪→ Rn

for which the two squares in the diagram in S

A(Rn)

aug
��

A(Rn)⊗ A(Rn)
aug⊗id //

A(e)
��

id⊗augoo A(Rn)

aug
��

1 A(Rn) aug
//

aug
oo 1

are pullback, where aug is the augmentation morphism.

Proposition 3.4.12. The following statements are true concerning a bicomplete

Cartesian-sifted ∞-category S.

(1) The canonical functors between ∞-categories

Algaug
Diskn

(S)
'
−−→ AlgDiskn

(S) and cAlgaug
Diskn

(S)
'
−−→ ModO(n)(S

∗/)

are equivalences.
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(2) Let R : BO(n)→ S∗/ be a O(n)-module, which we regard as an augmented

Diskn-coalgebra in S through the equivalence above. Let M∗ be a zero-pointed

n-manifold. There is a canonical identification∫ M∗
R
'
−−→ MapO(n)

∗

(
FrM¬∗

, R
)
,

to the cotensor under BO(n).

(3) Through the above equivalences, the bar–cobar adjunction becomes the adjunction

Barn
: AlgDiskn

(S)� ModO(n)(S
∗/) : �n,

in which each value of the left adjoint is an n-fold bar construction, and the value

of the right adjoint on an O(n)-module R in S∗/ restricts to BO(n) as n-fold loops:

�n(R) : BO(n) 3 V 7→ Map∗
(
V+, R(V )

)
=: �V R(V ).

(4) Let A be an augmented Diskn-algebra in S. If n = 0, then A belongs to a Koszul

duality. If n > 0 is positive, then A belongs to a Koszul duality if and only if A is

grouplike.

Proof. We prove statement (1). Note that the symmetric monoidal structure of S is

Cartesian. It follows that the symmetric monoidal unit is final, which proves the first

part of statement (1). It also follows from [28, Proposition 2.4.3.9], applied to the

∞-operad O⊗ = Fin∗, that the restriction functor cAlgaug
Diskn

(S)
'
←−− cAlgDiskn

(S∗/)
'
−−→

Fun
(
BO(n), S∗/

)
is an equivalence. This concludes the proof of statement (1).

We now prove statement (2). Consider the solid commutative diagram of∞-categories:

Fun⊗
(
ZMfldn, S

)
//

��

cAlgaug
Diskn

(S)

��

∫
��

∫
tt

Fun∗/
(
ZMfldn, S

∗/
)

// Fun
(
BO(n), S∗/

)
.

RKan

\\

The dashed arrows are right given by right Kan extensions. Using that S∗/ is ⊗-cosifted

complete, Theorem 2.2.3 gives that these dashed arrows exist in such a way that the

upper leftward triangle commutes. Defined as right Kan extensions, the lower leftward

triangle therefore commutes as well. Finally, the value of the bottom dashed functor on

a zero-pointed functor R : BO(n)→ S∗/ evaluates on a zero-pointed manifold M∗ as the

end:

RKan(R) : M∗ 7→ lim
(
BO(n)M∗/→ BO(n) R

−→ S∗/
)

' lim
(
BO(n)/M¬∗

→ BO(n) R
−→ S∗/

)
' MapO(n)(FrM¬∗

, R
)
∈ S∗/.

This establishes statement (2).

https://doi.org/10.1017/S1474748019000343 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000343


Zero-pointed manifolds 837

Statement (3) follows upon establishing, for each functor R : BO(n)→ S∗/, and for

each vector space V ∈ BO(n), a canonical sequence of equivalences in S∗/:∫ V+
R
'
−−→ MapO(n)

∗

(
FrV+ , R

) '
−−→ Map∗

(
V+, R(V )

)
=: �V R(V ). (49)

The leftmost identification is statement (2). Now, for each vector space V ∈ BO(n), the

canonical map between O(n)-modules in based spaces,

HomBO(n)(Rn, V )+ ∧ V+ −→ FrV+ ,

is an equivalence. In particular, for each vector space V ∈ BO(n), the O(n)-module FrV+ in

pointed spaces is free on the pointed space V+. This establishes the rightmost equivalence

in (49), via the free-forgetful adjunction for O(n)-modules.

We now turn to proving statement (4). In the case n = 0, this statement is trivially

true; so we assume n > 0. We first establish the implication that, if A is a Koszul duality,

then A is grouplike. So suppose A is a member of a Koszul duality. By Lemma 3.2.5,

the unit morphism A→ cBarn
◦Barn(A) is an equivalence. In light of statement (3),

it is enough to show that each value of the functor �n
: ModO(n)(S

∗/)→ AlgDiskn
(S) is

grouplike. Statement (3) identifies this unit morphism as

A→ �n Barn A. (50)

There is a functor BO(n)⊗Diskfr
n → Diskn from the tensor among symmetric monoidal

∞-categories with the space BO(n). There results the functor

AlgDiskn
(S)

'
−−→ MapBO(n)

(
BO(n),Alg

Diskfr
n
(S)
)

which is an equivalence. And so, this unit morphism (50) is an equivalence if and only if

its restriction A
|Diskfr

n
→ �n Barn A

|Diskfr
n

is an equivalence for each point ∗
b
−→ BO(n). In

this way we are reduced to the framed case, as in [1].

Suppose this unit morphism (50) is an equivalence. Consider the commutative diagram

of based spaces

(−1, 0)+ //
(
(−1, 0)∪ (0, 1)

)+
(0, 1)+oo

+

OO

// R+

OO

+

OO

oo

in which the middle vertical map is the evident collapse map, and the other maps are the

evident inclusions. Each square in this diagram is a pushout square in the ∞-category

Spaces∗/ of based spaces – this can be seen, for instance, by applying the fundamental

group functor to this diagram, and using that each term is a 1-type. Now, for any object

Z ∈ S∗/, the cotensor functor Map∗(−, Z) : Spaces∗/→ S∗/ carries the (opposites of)

colimit diagrams to limit diagrams. In particular, applying this cotensor functor to the

above pushout diagrams among based spaces gives the pullback diagrams

�Z

��

�Z ×�Z //

��

oo �Z

��
∗ �Z //oo ∗
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in S. Applying this to the case that Z = �n−1 Barn(A) ∈ S∗/, we see that �n Barn(A)
is grouplike. Under our supposition that the unit morphism (50) is an equivalence, we

conclude that A is grouplike, as desired.

We now show that A being grouplike implies A is a member of a Koszul duality.

So suppose A is grouplike. Through Lemma 3.2.8, we need only prove that the unit

morphism (50) is an equivalence. Because the forgetful functor Algaug
Diskn

(S)→ S is

conservative, such an equivalence can be detected on underlying objects of S. We show

this by induction on n. Suppose n = 1. We show the simplicial object Bar•(A) : 1op
→ S

is a groupoid object in S. By definition of this simplicial object, for each 0 < i < p, the

canonical diagram in S,

Bar[p](A) //

��

Bar{0<···<i}(A)

��
Bar{i<···<p}(A) // Bar{i}(A) ' ∗,

is a pullback. The assumption that A is grouplike precisely implies that each square in

the canonical diagram in S,

Bar{0<1}(A) ' A

��

Bar{0<1<2}(A) ' A× A //

��

oo Bar{1<2}(A) ' A

��
∗ Bar{0<2}(A) ' A //oo ∗,

is a pullback. We conclude from these last two sentences that Bar•(A) is a groupoid object

in S. Because groupoids are effective in S, the canonical morphism in S to the pullback

A ' Bar[1](A) −→ Bar{0}(A) ×
|Bar•(A)|

Bar{1}(A) ' ∗ ×
Bar(A)

∗ ' �Bar(A)

is an equivalence. This canonical morphism agrees with the unit morphism (50) on

underlying objects of S. In this way, we conclude that the morphism (50) is an equivalence,

as desired.

Now suppose n > 1. Consider the symmetric monoidal restriction

A| : Diskfr
1 ×Diskfr

n−1 −→ Diskfr
n

A
−−→ S (51)

along the symmetric monoidal functor given by taking (ordered) products of smooth

framed manifolds. This symmetric monoidal functor is adjoint to a symmetric monoidal

functor A†
: Diskfr

1 → Alg
Diskfr

n−1
(S). Note that the restriction of the symmetric monoidal

functor (51) to each factor is surjective on mapping spaces. Because the Diskfr
n -algebra

A in S is grouplike, it follows that A† is a Diskfr
1 -algebra in Alggp.like

Diskfr
n−1
(S), grouplike

Diskfr
n−1-algebras in S. Furthermore, because the forgetful functor Alg

Diskfr
n−1
(S)→ S

preserves pullbacks, it also follows that this Diskfr
1 -algebra A† in Alggp.like

Diskfr
n−1
(S) is itself

grouplike. Lemma 3.4.6 gives that Alg
Diskfr

n−1
(S) is bicomplete Cartesian-sifted. Therefore,
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the n = 1 case established above, and the inductive hypothesis on n, gives that the two

unit morphisms

A† '
−−→ �Bar

(
A
|Diskfr

n−1

) '
−−→ �

(
�n−1 Barn−1(Bar A

|Diskfr
n−1
)
)

(52)

are each equivalences between Diskfr
1 -algebras in Alg

Diskfr
n−1
(S). Via the commutativity of

the diagram of ∞-categories

Alg
Diskfr

n
(S) //

##

Alg
Diskfr

1

(
Alg

Diskfr
n
(S)
)

ww
S ,

this equivalence (52) forgets to the desired equivalence in S:

A
'
−−→ �n Barn(A).

The next result is the specialization of Proposition 3.4.12 to the case that S is stable.

Corollary 3.4.13. Let S be a stable presentable ∞-category. The following statements are

true.

(1) Each of the projections to underlying O(n)-modules,

Algaug
n (S)

'
−→ ModO(n)(S)

'
←− cAlgaug

n (S),

is an equivalence between ∞-categories from augmented n-disk (co)algebras in S.

(2) Let E and F be O(n)-modules in S. Through the identifications of (1) above, consider

the unique extension of E as an augmented Diskn-algebra AE in S, and the unique

extension of F an augmented Diskn-coalgebra C F in S. Each of the canonical

morphisms in S,

FrM∗

⊗
O(n)

E
'
−−→

∫
M∗

AE

and ∫ M∗
C F '
−−→ MapO(n)(FrM¬∗

, F
)
,

is an equivalence.

(3) Through the above equivalences, the bar–cobar adjunction becomes the adjunction

(Rn)+⊗ (−) : ModO(n)(S)� ModO(n)(S) : (−)
(Rn)+ ,

the left adjoint with the diagonal O(n)-module structure, and the right adjoint with

the conjugation O(n)-module structure. Each of these adjoint functors is, in fact,

an equivalence between ∞-categories.

(4) Every augmented Diskn-algebra in S belongs to a Koszul duality.

(5) Every augmented Diskn-coalgebra in S belongs to a Koszul duality.
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3.5. Interval duality

In this subsection we examine the Poincaré/Koszul duality map (39) in the special case

of a closed interval. Following through with Remark 3.2.6, examining the values of the

Poincaré/Koszul duality maps on basics gives rise to Koszul duality, definitionally.

In the sense of [3, §5], consider the category of basics D∂,fr1 for whose manifolds are

oriented 1-manifolds with boundary. In [4, §2.6] we proved that the symmetric monoidal

∞-category Disk∂,fr1 corepresents the data of an associative algebra A together with

a unital right A-module P and a unital left A-module Q. Therefore, the symmetric

monoidal ∞-category Disk∂,fr1,+ corepresents the likewise augmented data:

Alg
Disk∂,fr1,+

(V) ' Algaug
AssocR,L(V) =

{
(P, A, Q) in V/1

}
. (53)

Likewise, Disk∂,fr,+1 corepresents the data of a coaugmented coassociative algebra C
together with a counital and coaugmented right C-comodule R and a counital and

coaugmented left C-comodule S:

Alg
Disk∂,fr,+1

(V) ' cAlgaug
AssocR,L(V) =

{
(R,C, S) in V1 /}. (54)

Notation 3.5.1. Through the identification (53), we notate a symmetric monoidal functor

(P, A, Q) : Disk∂,fr1,+ −→ V.

Likewise, through the identification (54), we notate a symmetric monoidal functor

(R,C, S) : Disk∂,fr,+1 −→ V.

Here is an analogue to Definition 3.2.1.

Definition 3.5.2. Let V be a symmetric monoidal∞-category. An interval Koszul duality

is a symmetric monoidal functor

A : ZDisk∂,fr1 −→ V

with the following properties. Use the notation (P, A, Q) for the restriction A
|Disk∂,fr1,+

,

and (R,C, S) for the restriction A
|Disk∂,fr,+1

.

• A is initial among all such whose restriction to Disk∂,fr1,+ is (P, A, Q). This is to say,

A is initial in the ∞-category that is the fiber over the restriction (P, A, Q) of the

restriction Fun⊗
(
ZDisk∂,fr1 ,V

) (−)+
−−−→ Algaug

AssocR,L(V).

• A is final among all such whose restriction to Disk∂,fr,+1 is (R,C, S). This is to

say, A is final in the ∞-category that is the fiber over (R,C, S) of the restriction

Fun⊗
(
ZDiskn,V

) (−)+

−−−→ cAlgaug
AssocR,L(V).

There is this direct result, which is analogous to Lemma 3.2.5.
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Lemma 3.5.3. Let V be a symmetric monoidal∞-category that is ⊗-sifted cocomplete and

⊗-cosifted complete. Let

A : ZDisk∂,fr1 −→ V

be a symmetric monoidal functor. Use the notation (P, A, Q) for the restriction A
|Disk∂,fr1,+

,

and (R,C, S) for the restriction A
|Disk∂,fr,+1

. Then A is an interval Koszul duality if and

only if the following canonical comparison maps are equivalences in V:

A
'
−−→ cBar(1,C,1) =: 1

C⊗
1 and 1

⊗
A

1 := Bar(1, A,1)
'
−−→ C,

P
'
−−→ cBar(R,C,1) =: R

C⊗
1 and P

⊗
A

1 := Bar(P, A,1)
'
−−→ R,

Q
'
−−→ cBar(1,C, S) =: 1

C⊗
S and 1

⊗
A

Q := Bar(1, A, Q)
'
−−→ S.

Lemma 3.5.4. Let S be an ∞-topos. Let A : ZDisk∂,fr1 −→ S be a symmetric monoidal

functor. Use the notation (P, A, Q) for the restriction A
|Disk∂,fr1,+

, and (R,C, S) for the

restriction A
|Disk∂,fr,+1

. Suppose A is an interval Koszul duality. Then A is grouplike, and

the Poincaré/Koszul duality map (39)∫
[−1,1]+

(P, A, Q)
'
−−→

∫
[−1,1]+

(R,C, S)

is an equivalence.

Proof. Through ⊗-excision, this Poincaré/Koszul duality morphism is identified as the

morphism

Bar(P, A, Q) −→ cBar(R,C, S)

from a bar construction to a cobar construction. We must, then, verify that the canonical

morphism in S,

Bar(P, A, Q) −→ cBar(R,C, S) ' R×
C

S,

from the two-sided bar construction to the pullback, is an equivalence. The data (P, A, Q)
determines the evident diagram S

Bar(P, A, Q)

��

// Bar(∗, A, Q)

��
Bar(P, A, ∗) // Bar(∗, A, ∗).

(55)

Inspecting the expressions displayed in Lemma 3.5.3, because A is assumed to be an

interval Koszul duality, the problem is to verify that this square (55) is a pullback.

https://doi.org/10.1017/S1474748019000343 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000343


842 D. Ayala and J. Francis

The diagram (55) is the geometric realization of the simplicial square diagram in S

whose value on [p] is the square of projections

P × A×p
× Q //

��

A×p
× Q

��
P × A×p // A×p,

(56)

which is certainly pullback. Therefore, the square (55) is a pullback provided, for each

[p] ∈ 1, both of the canonical squares,

P × A×p
× Q //

��

Bar(P, A, Q)

��

A×p
× Q //

��

Bar(∗, A, Q)

��
P × A×p // Bar(P, A, ∗) and A×p // Bar(∗, A, ∗),

(57)

are pullbacks. We show as much for each such left square; each such right square follows

via an identical argument (replacing P with ∗). Consider the natural transformation

(1op)F

Bar•(P,A,Q)→Bar(P,A,Q)

��

Bar•(P,A,∗)→(̄P,A,∗)

KK⇓ S (58)

between colimit diagrams. Using that S is assumed an ∞-topos, Theorem 6.1.0.6 of [27]

applies to this natural transformation (58) between colimit diagrams. The result is that

each left square in (57) is a pullback provided, for each morphism ρ : [p] → [q] in 1, the

square

P × A×q
× Q //

��

P × A×p
× Q

��
P × A×q // P × A×p

is a pullback. This is always the case for ρ degenerate. This is the case for ρ an arbitrary

face map if and only if A acts invertibly on Q and on P, as well as on itself by both

left and right translation. This is the case if and only if A is grouplike. Because A is

assumed an interval Koszul duality, Lemma 3.5.3 gives that, in particular the augmented

associative algebra A in S is a member of a Koszul duality. Using that A is grouplike,

Proposition 3.4.12 implies that A is indeed a member of a Koszul duality.

3.6. Atiyah duality and non-abelian Poincaré duality

We prove that the Poincaré/Koszul duality map is an equivalence for coefficients in a

Koszul duality in a bicomplete Cartesian-sifted ∞-category. This immediately implies

the classical Atiyah duality, as well as the non-abelian Poincaré duality of [28].
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Theorem 3.6.1 (Non-abelian Poincaré duality). Let A : ZDiskn −→ S be a Koszul duality

in a bicomplete Cartesian-sifted ∞-category S. For each zero-pointed n-manifold M∗, the

Poincaré/Koszul duality map ∫
M∗

A+
(39)
−−−→

∫ M∗
A+

is an equivalence.

Proof. Consider the full ∞-subcategory M ⊂ ZMfldn consisting of all zero-pointed

n-manifolds M∗ for which the Poincaré/Koszul duality map is an equivalence. Being

bicomplete Cartesian-sifted, the Cartesian symmetric monoidal ∞-category S is both

⊗-sifted cocomplete and ⊗-cosifted complete. It follows using Theorem 2.2.3 that M is

closed under the formation of wedge sum; in other words, M ⊂ ZMfldn is a symmetric

monoidal ∞-subcategory. Precisely because A is a Koszul duality, this M collection

contains the objects of ZDiskn , each of which is a finite wedge sum of Rn
+ and (Rn)+.

Consequently, from the very definition of finitary, once we show this collection M is

closed under collar-gluings, the argument is complete. After Observation 3.4.8, and

Theorem 2.5.3, it is enough to prove that

M∗ 7→
∫

M∗
A+

satisfies ⊗-coexcision.

Choose a conical smoothing of a conically finite zero-pointed n-manifold M∗. Choose

a weakly constructible bundle M∗
f
−→ [-1, 1] so that f is constant in a neighborhood of

∗ ∈ M∗. Because S is bicomplete Cartesian-sifted, Corollary 2.5.5 ensures ⊗-excision for

factorization homology and ⊗-coexcision for factorization cohomology. With this, the

naturality of the Poincaré/Koszul duality map gives the diagram in S:

∫
M∗ A+

(39) // ∫ M∗ A+

'

��

∫
f -1[-1,1)M∗

A+
⊗∫

f -1(-1,1)M∗
A+

∫
f -1(-1,1]M∗

A+
(39) //

'

OO

∫ f -1[-1,1)M∗A+

∫ f -1(-1,1)M∗A+⊗ ∫ f -1(-1,1]M∗A+

(here we have used the super- and sub-script notation for the zero-pointed manifolds of

Observation 1.3.1). So we must show the bottom horizontal map is an equivalence. For

this, we will apply Lemma 3.5.4.

In [4] we established a pushforward formula for factorization homology; the pullback

formula for factorization cohomology follows dually. In [4] we also showed that the

∞-category of [−1, 1]-algebras is canonically identified as that of Disk∂,fr1 -algebras,

and so likewise for their augmented versions, as well as their dual versions. Through

these means, the pushforward f∗A is canonically identified as a ZDisk∂,fr1 -algebra in
S. To apply Lemma 3.5.4, we need only show that f∗A is an interval Koszul duality.
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From Lemma 3.5.3, this amounts to verifying that the canonical arrow

1
⊗

∫
f -1(-1,1)M∗

A+

∫
f -1(-1,1]M∗

A+ −→

∫ f -1(-1,1]M∗

A+, (59)

is an equivalence, and likewise for the five other terms presented in the conditions of the

lemma. Through ⊗-excision, we recognize the left-hand side of this expression (59) as

1
⊗

∫
f -1(-1,1)M∗

A+

∫
f -1(-1,1]M∗

A+ '

∫
f -1(-1,1]M∗

A+.

Through the negation relations of Observation 1.3.1, we recognize
(

f -1(-1, 1]M∗
)¬
=

f -1(-1, 1]M∗ . And so, should the Poincaré/Koszul duality map be an equivalence for each

of f -1(-1, 1]M∗ and f -1
[-1, 1)M∗ and f -1(-1, 1)M∗ , then the Poincaré/Koszul duality map

is an equivalence for M∗. Thus, M is closed under the formation of collar-gluings, which

completes the proof.

The next result makes use of the following construction. Let Z : BO(n)→ Spaces∗/

and G : BO(n)→ S be functors from an ∞-groupoid. We denote the composite functor

Z ⊗G : BO(n)
diagonal
−−−−→ BO(n)×BO(n) Z×G

−−−→ Spaces∗/×S ⊗−→ S

in which the rightmost arrow is tensoring with pointed spaces as in Notation 3.4.4. Its

colimit is denoted

Z ⊗
O(n)

G := colim(BO(n) Z⊗G
−−−→ S).

We denote the composite functor

Map(Z ,G) : BO(n)
diagonal
−−−−→ BO(n)×BO(n) Z×G

−−−→ (Spaces∗/)op
× S

Map(−,−)
−−−−−−→ S

in which the rightmost arrow is cotensoring with pointed spaces as in Notation 3.4.4. Its

limit is denoted

MapO(n)(Z ,G) := lim(BO(n)
Map(Z ,G)
−−−−−−→ S).

Corollary 3.6.2 (Linear Poincaré duality). Let S be a stable presentable ∞-category. Let

E, F : BO(n)→ S be a pair of functors. Suppose there is an equivalence between functors

BO(n)→ S:

(Rn)+⊗ E ' F or equivalently E ' F (R
n)+ .

For each zero-pointed n-manifold M∗, there is an equivalence in S:

FrM∗

⊗
O(n)

E ' MapO(n)(FrM¬∗
, F
)
.

Proof. Left Kan extension of E along the canonical monomorphism BO(n) ↪→ Diskn,+
defines an augmented n-disk algebra in S, with respect to the direct sum monoidal

structure. Since direct sum is a colimit, there is a natural equivalence∫
M∗

E ' FrM∗

⊗
O(n)

E
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for every zero-pointed manifold M∗. Likewise, right Kan extension of F defines an

augmented n-disk coalgebra in S, again with respect to the direct sum monoidal structure.

Since direct sum is a limit, since S is stable, there is a natural equivalence∫ M∗
F ' MapO(n)(FrM¬∗

, F
)

for every zero-pointed manifold M∗. By condition (2) of Lemma 3.2.5, the condition of

the lemma exactly gives that E and F form a Koszul duality. The result follows by

non-abelian Poincaré duality, Theorem 3.6.1.

Corollary 3.6.3 (Atiyah duality). Let M be a compact smooth n-manifold with boundary

∂M = ∂L q ∂R which is partitioned by connected components. Denote M∗ := ∗q
∂L
(M r ∂R)

and M¬∗ := ∗ q
∂R
(M r ∂L). There is an equivalence between spectra

(M∗)−τM ' SM¬∗

between the Thom spectrum of the normal bundle of M∗ and the Spanier–Whitehead dual

of the based space M¬∗ .

Proof. We apply Corollary 3.6.2 to the case that S is the ∞-category of spectra and

F = S is the constant functor from BO(n) at the sphere spectrum. So the functor

E : BO(n) V n
7→SV+

−−−−−−→ Spectra. To prove this corollary we must therefore establish these

identifications among spectra

(M∗)−τM ' FrM∗

⊗
O(n)

E and MapO(n)(FrM¬∗
, F
)
' SM¬∗ . (60)

Choose a smooth manifold M with compact boundary together with an isomorphism

∗ q
∂M

M ∼= M∗ between pointed extensions of the interior M . We utilize Remark 3.4.10.

The first identification in (60) is the concatenation of the following identifications:

(M∗)−τM ' colim
(
M

τM
−→ BO(n) V n

7→SV+

−−−−−−→ Spectra
) ⊕
colim

(
∂M

(τM )
|∂M

−−−−→BO(n)
V n 7→SV+

−−−−−−→Spectra
)0

' FrM∗

⊗
O(n)

E .

The first identification is the definition of the Thom spectrum of the virtual negative of

the tangent bundle. The second identification is the definition of the reduced coend.

The latter identification in (60) is the concatenation of the following identifications:

MapO(n)(FrM¬∗
, F
)
' Map∗

(
colim

(
BO(n)

FrM¬∗
−−−→ Spaces∗/

)
,S
)

' Map∗
(
M¬∗ ,S

)
=: SM¬∗ .
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The first identification makes use of the fact that the functor F is constant at the sphere

spectrum S, using the universal property of colimits. The second identification follows

from the canonical identification of the underlying based space of M¬∗ as the colimit:

colim
(
BO(n)

FrM¬∗
−−−→ Spaces∗/

)
' M¬∗ .

The final line is the definition of the Spanier–Whitehead dual, or linear dual.

Here is an immediate corollary of Theorem 3.6.1, which is a gentle generalization of

the non-abelian Poincaré duality of Lurie (see [28, Theorem 5.5.6.6]).

Corollary 3.6.4 (Poincaré/Koszul duality for ∞-topoi). Let E be an ∞-topos. Let A be a

grouplike Diskn-algebra in E. Let C → BO(n) be an n-connective morphism in E, equipped

with a section. Let M∗ be a zero-pointed n-manifold. There are canonical equivalences in

E:∫
M∗

A
'
−−→ MapO(n)(FrM¬∗

,Barn A) and

∫
M∗
�nC

'
−−→ Map/BO(n)((FrM¬∗

)O(n),C).

In particular, taking S = Spaces and C = BO(n)× Z with Z an n-connective pointed

space, there is a canonical equivalence between spaces∫
M∗
�n Z

'
−−→ Map∗(M

¬
∗ , Z)

from reduced factorization homology to the based mapping space.
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Appendix. Making units final

In this appendix we characterize some symmetric monoidal ∞-categories whose

symmetric monoidal unit is final. We do this so as to give a construction for how

to minimally modify certain symmetric monoidal ∞-categories to this effect – this

is phrased as a left adjoint construction. The main result here supports the proof of

Proposition 2.1.10.

For this section, X is a presentable ∞-category.

A.1. Final objects in internal categories

We give a definition of a category internal to X, and of a final object in such.

These developments are tailored just for the purposes of this article; specifically, for

Example A.1.5.

Definition A.1.1. The ∞-category of categories internal to X is the full ∞-subcategory

Cat[X] ⊂ Fun(1op,X), C 7→ C(•),
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consisting of those simplicial objects C in X that satisfy the following conditions (compare

with [33]):

(1) Segal: The functor C : 1op
→ X carries (the opposite of) each pushout diagram in

1 comprised of convex inclusions,

K //

��

J

��
I // L ,

to a pullback diagram in X.

(2) Univalence: The functor C : 1op
→ X carries the (opposite of the) diagram in 1

{1 < 3} //

��

∗

��

{0 < 2} //

��

{0 < 1 < 2 < 3}

&&
∗ // ∗

to a limit diagram in X

Our next goal is to define, for each category C ∈ Cat[X], and each morphism ∗
c
−→ C from

the final category internal to X, a category C/c internal to X. Consider the subcategory

1+ ⊂ 1

consisting of the same objects and those order-preserving maps that preserve maxima.

Notice the zero object + := [0] ∈ 1+. Adjoining a maximum to each finite non-empty

linearly ordered set defines a functor

F: 1 −→ 1+, [p] 7→ [p]F := {0 < 1 < · · · < p < +}.

This functor F is left adjoint to the inclusion inc : 1+ ↪→ 1. Therefore, for each

∞-category X, restriction along these adjoint functors defines an adjunction

F
∗
: Fun(1op

+ ,X)� Fun(1op,X) : inc∗.

Also, the inclusion of the initial object ! : {+} → 1+ is a left adjoint, thereby determining

another adjunction

!
∗
: Fun(1op

+ ,X)� X : !∗.

The counit for the (F∗, inc∗)-adjunction, and the unit for the (!∗, !∗)-adjunction, together

define a functor

Fun(1op,X) −→ Fun(1op,X)(•←•→•) (61)

given by

C 7→
(
C

counit
←−−− F

∗inc∗C unit
−−→ F

∗
!∗!
∗inc∗C

)
.
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Recognize the value F∗!∗!
∗inc∗C as simply the constant functor 1op C(0)

−−→ X at the object

C(0) ∈ X. Suggestively, we denote the values of the functor (61) as

C 7→
(
C

evs
←−− Ar(C)|C∼

evt
−→ C∼

)
.

Using that X is presentable, and in particular admits base change, there results a functor

Fun(1op,X)∗/
(61)
−−→

(
Fun(1op,X)(•←•→•)

)∗/ base change
−−−−−−→ Ar

(
Fun(1op,X)

)∗/
, (62)

given by

(∗
c
−→ C) 7→

(
C/c

evs
−−→ C

)
.

– here, we have used the suggestive notation:

C/c := Ar(C)|C∼ ×
C∼
∗.

Lemma A.1.2. For each category C internal to X, and each morphism ∗
c
−→ C, the

simplicial object C/c in X∗/ is a category internal to X∗/.

Proof. Let F : JF→ 1 be a functor from a right cone on a category. Restricting the

composite functor (62) along F gives a composite functor

Fun
(
(Jop)G,X∗/

) (61)
−−→ Fun

(
(Jop)G, (X(•←•→•))∗/

) base change
−−−−−−→ Fun

(
(Jop)G,Ar(X)∗/

)
evs
−−−→ Fun

(
(Jop)G,X∗/

)
. (63)

By direct inspection, the value of each of these functors on (Jop)G-points that are limit

diagrams are again (Jop)G-points that are limit diagrams. Now, take F to be a Segal

diagram, or the univalence diagram. Let C be a category internal to X; let ∗
c
−→ C be a

morphism from the final category internal to X. By definition of a category internal to

X, the (Jop)G-point of X, which is the composite functor (Jop)G→ 1op (∗
c
−→C)
−−−−→ X∗/, is

a limit diagram. This composite functor (63) thus carries this (Jop)G-point in X∗/ to a

(Jop)G-point in X that is again a limit diagram. This is to say that C/c satisfies the Segal

and univalence conditions.

Definition A.1.3. The full ∞-subcategory

Catfinal
[X] ⊂ Cat[X]∗/

consists of those pointed categories (∗
c
−→ C) internal to X for which the canonical

morphism C/c → C is an equivalence. We refer to an object in Catfinal
[X] as a category

internal to X equipped with a final object.

Example A.1.4. It follows from Rezk’s work [33] that there is a canonical identification

between ∞-categories

Cat∞ ' Cat[Spaces]
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between ∞-categories and categories internal to the ∞-category Spaces. Thereafter

follows a canonical identification between ∞-categories

Catfinal
∞ ' Catfinal

[Spaces]

from∞-categories equipped with a final object, and functors between such that preserve

final objects.

Example A.1.5. Through Example A.1.4, there is a canonical identification

CAlg(Cat×∞) ' Cat[CAlg(Spaces×)]

between the ∞-category of symmetric monoidal ∞-categories and that of categories

internal to commutative monoids in Spaces. Likewise, there is a canonical identification

CAlg(Cat×∞) ⊃ CAlg1=∗(Cat×∞) ' Catfinal
[CAlg(Spaces×)]

from the full ∞-subcategory of symmetric monoidal ∞-categories for which the

symmetric monoidal unit is final.

In the next result, we regard X∗/ as the pointed ∞-category ∗
{∗
=

−→∗}
−−−−→ X∗/ selecting

its final object, which exists if X admits finite limits; we also regard 1
op
+ as the pointed

∞-category ∗
{[0]}
−−→ 1

op
+ .

Lemma A.1.6. Let X be an ∞-category with finite limits. There is a pullback diagram of

∞-categories:

Catfinal
[X] //

��

Cat[X∗/]� _

��
Fun∗/(1op

+ ,X
∗/)

F
∗

// Fun(1op,X∗/).

In particular, a category C internal to X has a final object if and only if its associated

simplicial object C(•) : 1op
→ X admits an extension along 1

F
−→ 1+ whose value on [0]

is final.

Proof. The base change functor in (62) restricts as the base change functor

b : Fun∗/(1op
+ ,X

∗/)
base change
−−−−−−−−→ Fun∗/(1op

+ ,X
∗/), (∗ → C̃) 7→

(
[p] 7→ ∗ ×

C̃(p)
C̃(p)

)
.

Consider the adjunction between ∞-categories:

F
∗
: Fun∗/(1op

+ ,X
∗/) � Fun(1op,X∗/) : b ◦ inc∗. (64)

This left adjoint evaluates on a pointed functor C̃ : 1
op
+ → X∗/ as the functor

F
∗(̃C) : [p] 7→ C̃([p]F).
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This right adjoint evaluates on a simplicial object (∗
c
−→ C) : 1op

→ X∗/ as the functor

b ◦ inc∗(C) : I F 7→ C(I F) ×
C({∞})

∗,

which is indeed pointed. The unit for this adjunction evaluates on a pointed functor

C̃ : 1
op
+ → X∗/ as the natural transformation between pointed functors whose value on

I F ∈ 1+ is the morphism in X∗/,

unit : C̃(I F) −→ C̃
(
(I F)F

′)
×

C̃({∞}F
′
)

∗, (65)

induced by the canonical morphism (I F)F
′

→ I F in 1+ that identifies the two cone points.

The counit for this adjunction evaluates on a pointed simplicial object (∗
c
−→ C) : 1op

→

X∗/ as the natural transformation between pointed simplicial objects whose value on

[p] ∈ 1 is the morphism in X∗/,

counit : C/c([p]) := C([p]F) ×
C({∞})

∗ −→ C[p], (66)

induced by the canonical morphism [p] → [p]F in 1 whose image is all but the adjoined

maximum.

Now, consider the pullback ∞-category

Fun∗/(1op
+ ,X

∗/)|Cat[X∗/]
//

��

Cat[X∗/]

��
Fun∗/(1op

+ ,X
∗/)

F
∗

// Fun(1op,X∗/).

By direct inspection, should the simplicial object (∗
c
−→ C) : 1op

→ X∗/ be a category

internal to X∗/, then so is this value (∗
c=c
−−→ C/c). We conclude that the adjunction (64)

restricts as an adjunction:

F
∗
: Fun∗/(1op

+ ,X
∗/)|Cat[X∗/] � Cat[X∗/] : b ◦ inc∗. (67)

Let C̃ be an object of Fun∗/(1op
+ ,X

∗/)|Cat[X∗/]. Inspecting (65), the unit transformation

of the adjunction (67) on C̃ evaluates on an object I F ∈ 1+ in a way that canonically fits

into a commutative diagram in X∗/:

C̃(I F)
unit (65) //

=

,,

C̃
(
(I F)F

′)
×

C̃({∞}F
′
)

∗ // C̃(I F) ×
C̃({∞})

C̃({∞}F
′

) ×

C̃({∞}F
′
)

∗

��
C̃(I F).

The downward morphism is an equivalence because of cancelation in pullbacks and

because, by definition, the value of the functor C̃ is pointed: C̃(∗)
'
−→ ∗. The right

horizontal morphism is an equivalence precisely because the simplicial object F∗(̃C) in

https://doi.org/10.1017/S1474748019000343 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000343


Zero-pointed manifolds 851

X∗/ is assumed a category object, and in particular it is Segal. We conclude from the

2-of-3 properties for equivalences in the ∞-category X∗/ that the unit transformation of

the adjunction (67) is by equivalences. Therefore, the left adjoint in the adjunction (67)

is fully faithful.

The adjunction (67) determines, for each object C̃ ∈ Fun∗/(1op
+ ,X

∗/)|Cat[X∗/], a

commutative triangle among simplicial objects of X∗/:

F
∗(̃C)

= //

F
∗
◦unit ''

F
∗(̃C)

F
∗
◦b ◦ inc∗ ◦ F∗(̃C)

counit◦F∗

77

.

Argued above is that this unit transformation is by equivalences. We conclude from

the 2-of-3 properties for equivalences in ∞-categories that the uprightward arrow in

the above triangle is an equivalence. Inspecting Definition A.1.3 of the full ∞-category

Catfinal
[X] ⊂ Cat[X∗/], we conclude that the left adjoint in the adjunction (67) takes

values in the full ∞-subcategory Catfinal
[X] ⊂ Cat[X∗/]. So the adjunction (67) restricts

as an adjunction

F
∗
: Fun∗/(1op

+ ,X
∗/)|Cat[X∗/] � Catfinal

[X∗/] : b ◦ inc∗. (68)

A further inspection of Definition A.1.3 of the full ∞-subcategory Catfinal
[X] ⊂ Cat[X∗/]

reveals that the counit of this adjunction (68) is by equivalences. With both the unit

and the counit of the adjunction (68) being by equivalences, we conclude that this

adjunction (68) is an equivalence between ∞-categories, as desired.

Presentability of X accommodates the adjunction

F! : Fun(1op,X) � Fun(1op
+ ,X) : F

∗

with right adjoint given by restriction along Fop and with left adjoint given by left Kan

extension along Fop.

Lemma A.1.7. Let X be an ∞-category that admits finite coproducts, and let M be a

category internal to X. The value of the endofunctor F∗F! on M evaluates on objects as

F
∗
F! (M) : 1

op
3 [p] 7→ |M| q

∐
06i6p

M[i] ∈ X

where |M| := colim(1op M
−→ X) is the colimit; and on a convex inclusion σ : {k < · · · <

`} → [p] in 1 as the canonical morphism in X

σ ∗ : |M| q
∐

06i6p

M[i] '
(
|M| q

∐
06i<k or `<i6p

M[i]
)
q

( ∐
k6i6`

M[i]
)
−→ |M| q

∐
k6i6`

M[i].

Proof. The value of the left Kan extension F! on M evaluates as the colimit

F!(M) : 1
op
+ 3 [p]

F
7→ colim

(
1op

/[p]F → 1op M
−→ X

)
∈ X;
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here, p > −1 and it is understood that [p]F = [0] if p = −1. Let p > 0. Consider the full

subcategory

Cp ↪→ 1op
/[p]F (69)

consisting of those objects ([p]F
c
−→ [q]F) for which the preimage c−1([q]) = ∅ is empty

or the restriction c| : c−1([q])→ [q] is an isomorphism. Notice the functor

Cp → {0, 1, . . . , p,+}, ([p]F
c
−→ [q]F) 7→ Min{c−1(+) ⊂ [p]F}

to a finite set, regarded as a discrete category. The fiber of this functor over each of i =
1, 2, . . . , p,+ is a terminal category, whereas the fiber of this functor over 0 is identified

as 1op. In summary, there is an isomorphism between categories

Cp ∼= 1op
q
{
([p]F

c
−→ [i]F) | 0 6 i 6 p

}
. (70)

Now, for each object ([p]F
f
−→ [q]F) in 1op

/[p]F , the undercategory C f/
p has an initial

object, as we name now. Provided f −1([q]) 6= ∅ is non-empty, this initial object is

([p]F
c
−→ ( f −1([q]))F

f|
−→ [q]F) where c is the morphism in 1 characterized by declaring

the composite morphism f −1([q])→ [p]F
c
−→ ( f −1([q]))F to be the standard inclusion. If

f −1([q]) = ∅, this initial object is ([p]F
+
−→ [q]F

id
−→ [q]F). It follows that the functor (69)

is a right adjoint in a localization. In particular, the functor (69) is final.

The established finality of (69), together with the identification (70), identifies the

values

F
∗
F! (M) : 1

op
3 [p] 7→ colim

(
Cp ↪→ 1op

/[p]F → 1op M
−→ X

)
' |M| q

∐
06i6p

M[i] ∈ X

as coproducts, as desired. The asserted values of F∗ F! (M) on convex inclusions follow

directly by inspection.

A.2. Making units final

We observe some facts about the ∞-category CAlg(Spaces×) of commutative monoids

in Spaces.

Observation A.2.1.

(1) The ∞-category CAlg(Spaces×) is presentable [28, §3.2.2 & §3.2.3].

(2) The ∞-category CAlg(Spaces×) has a zero object, which is the unique

commutative algebra structure on the terminal space ∗.

(3) Because CAlg(Spaces×) has a zero object, for each functor I → CAlg(Spaces×)
from a finite set, there is a canonical morphism in CAlg(Spaces×)∐

i∈I

X i −→
∏
i∈I

X i

from the I -indexed coproduct to the I -indexed product. Proposition 3.2.4.7 of [28]
implies that this canonical morphism is in fact an equivalence.
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(4) The forgetful functor CAlg(Spaces×)→ Spaces preserves limits [28, §3.2.2].

Definition A.2.2. A symmetric monoidal∞-category M is disjunctive if the following two

conditions are satisfied.

• The unit 1 = ∅ is initial.

• For each pair of objects X, Y ∈M, the tensor product functor

⊗: M/X ×M/Y
'
−−→M/X⊗Y

is an equivalence between ∞-categories.

Example A.2.3. For each right fibration B→ Bsc, both of the symmetric monoidal

∞-categories Disk(B) and Mfld(B) are disjunctive. In particular, both of the symmetric

monoidal ∞-categories Diskn and Mfldn are disjunctive.

Observation A.2.4. Let M be a disjunctive symmetric monoidal ∞-category. The unit

being initial is equivalent to the unit morphism ∗
1
−→M being a symmetric monoidal

left adjoint. It follows that the colimit |M| := colim(1op M(•)

−−−→ CAlg(Spaces×)) ' ∗ is

equivalent to the zero object in CAlg(Spaces×), which is the unique commutative algebra

structure on the terminal space.

Lemma A.2.5. For each disjunctive symmetric monoidal ∞-category M, the simplicial

commutative monoid

F
∗
F! (M) : 1

op
−→ CAlg(Spaces×)

is a symmetric monoidal ∞-category whose unit is final.

Proof. In this proof, we denote M+ := F
∗
F! (M).

In light of Lemma A.1.6, we need only verify that M+ := F
∗
F! (M) satisfies the Segal

and univalence conditions, and that the value F!(M) ' ∗ is terminal. The calculation

of Lemma A.1.7 makes the univalence condition immediate, because M satisfies the

univalence condition. We now prove the Segal condition. Let [p] ∈ 1 be an object. We

must show that the diagram of commutative monoids in Spaces

M+[p] //

��

M+{p− 1 < · · · < p}

��
M+{0 < · · · < p− 1} // M+{p− 1}

is a pullback. Importing the calculation of Lemma A.1.7, this diagram becomes∐
06i6p

M[i] //

��

M{p− 1 < p}qM{p}

��∐
06i6p−1

M[i] // M{p− 1}

(71)
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– here we have used that |M| ' ∗ is a zero object in CAlg(Spaces×) (Observation A.2.4).

The facts reported in Observation A.2.1 imply that the diagram (71) is a pullback if and

only if the solid diagram of underlying spaces

∏
06i6p

M[i]
pr //

(id×ev[p−1])×id

��

M[p]×M[p− 1]
ev{p−1<p}×evp−1 //

ev[p−1]×id

��

M{p− 1 < p}×M{p− 1}

evp−1×id

��(
M[p− 1]×M[p− 1]

)
×
( ∏
06i<p−1

M[i]
)

⊗×id

��

M[p− 1]×M[p− 1]

⊗

��

evp−1×evp−1 // M{p− 1}×M{p− 1}

⊗

��∏
06i6p−1

M[i]
pr // M[p− 1]

evp−1 // M{p− 1}

(72)

is a pullback – here, we expanded each map as the composition from Lemma A.1.7. Note

the indicated fillers in this diagram of spaces. By direct inspection, the left square in (72)

is a pullback. Because M satisfies the Segal condition, the upper right square in (72) is

a pullback as well. Consequently, the outside solid diagram (72) is a pullback provided

the lower left square in the diagram is a pullback. This lower right square is a pullback

if and only if, for each point (X, Y ) ∈M{p− 1}×M{p− 1}], the map between fibers(
M[p− 1]×M[p− 1]

)
|(X,Y ) −→

(
M[p− 1]

)
|X⊗Y

is an equivalence between spaces. Recognize this map as that between spaces of functors

from [p− 2],

Cat∞
(
[p− 2],M/X ×M/Y

) ⊗
−−→ Cat∞

(
[p− 2],M/X⊗Y

)
,

induced by the tensor product functor for M. This map between spaces is an equivalence

precisely because M is disjunctive. This completes the proof.

Notation A.2.6. For M a disjunctive symmetric monoidal∞-category, we denote by M+
the symmetric monoidal ∞-category F∗ F! (M) of Lemma A.2.5.

Remark A.2.7. Let M be a disjunctive symmetric monoidal ∞-category. The symmetric

monoidal ∞-category M+ has the following explicit, though partial, description. The

maximal symmetric monoidal ∞-subgroupoid of (M+)
∼
'M∼ is that of M. The

symmetric monoidal ∞-groupoid of morphisms is

M
(1)
+ 'M(1)

×M({0}).

The source map is

M
(1)
+ 'M(1)

×M({0}) ev0×id
−−−−→M({0})

×M({0}) ⊗
−→M({0}), (X → Y, Z) 7→ X ⊗ Z;

the target map is

M
(1)
+ 'M(1)

×M({0}) pr
−→M(1) ev1

−−→M({1}), (X → Y, Z) 7→ Y.
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In other words, for X+, Y+ ∈M+ two objects, the space of morphisms in M+ from X+
to Y+ is

M+(X+, Y+) '
∐

U⊗V'X

M(U, Y ),

a colimit indexed by the maximal ∞-subgroupoid of the fiber of the tensor product

functor M×M
⊗
−→M over X .

Note that, for M a disjunctive symmetric monoidal ∞-category, the unit of the

(F!, F
∗)-adjunction is a symmetric monoidal functor

M −→M+. (73)

Proposition A.2.8. Let V be a symmetric monoidal ∞-category. For each disjunctive

symmetric monoidal ∞-category M, restriction along the symmetric monoidal functor

M
(73)
−−→M+ defines an equivalence between ∞-categories

Fun⊗(M+,V) −→ Fun⊗,aug(M,V)

of symmetric monoidal functors.

Proof. We begin by explaining the diagram of ∞-categories of symmetric monoidal

functors

Fun⊗(M+,V/1) //

'

��

Fun⊗(M,V/1)

'

��
Fun⊗(M+,V) Fun⊗,aug(M+,V) //

'
oo Fun⊗,aug(M,V).

The functor (Cat⊗∞)
op
→ Spaces, given by K 7→ Fun⊗,aug(K,V), is represented by a

symmetric monoidal∞-category V/1, which is a canonical symmetric monoidal structure

on the∞-overcategory V/1. This explains the vertical equivalences of∞-categories in the

above diagram. The leftward forgetful functor is an equivalence because the symmetric

monoidal unit of M+ is terminal. This explains the diagram.
With this diagram, to prove the result it is enough to show that the top horizontal

functor is an equivalence. By construction, the symmetric monoidal unit of the symmetric

monoidal ∞-category V/1 is final. We are therefore reduced to proving that restriction

along M→M+ defines an equivalence between ∞-categories of symmetric monoidal

functors to a symmetric monoidal∞-category V whose unit is final; we proceed with this

assumption on V.

The functor (Cat⊗∞)
op
→ Spaces, given by K 7→ Ar

(
Fun⊗(K,V)

)
, is represented by

a symmetric monoidal ∞-category Ar(V), which is a canonical symmetric monoidal

structure on the ∞-category Ar(V) of morphisms in V. Because the unit of V is final,

so too is the unit of Ar(V). In this way, we are reduced to proving the result just on the
level of maximal ∞-subgroupoids:
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Under the assumption that the symmetric monoidal unit of V is final, restriction along

M→M+ ' F
∗
F! (M) defines an equivalence

Map⊗(M+,V) −→ Map⊗(M,V) (74)

between spaces of symmetric monoidal functors.

Through Lemma A.1.6, there is a functor Ṽ : 1
op
+ → CAlg(Spaces×) and an

equivalence V ' F∗(Ṽ). We therefore fit the map (74) into a commutative diagram of

spaces of morphisms

Map
(
F
∗
F! (M), F

∗(Ṽ)
) (74) // Map

(
M, F∗(Ṽ)

)

Map
(
F!(M), Ṽ

)F
∗

'

ii
'

(F!,F
∗)-adj

66

.

The diagonal rightward arrow is an equivalence because of the (F!, F
∗)-adjunction. The

diagonal leftward arrow is an equivalence because the functor F∗ is fully faithful on

Catfinal
[CAlg(Spaces×)], as observed at the end of Example A.1.5. This completes the

proof.

Example A.2.9. Consider the disjunctive symmetric monoidal ∞-category Mfldn from

Example A.2.3. Recall from Definition 2.1.5 the symmetric monoidal∞-category Mfldn,+
under Mfldn . Through Proposition A.2.8, there is a unique symmetric monoidal functor

(Mfldn)+ −→Mfldn,+

under Mfldn . Through Remark A.2.7, this symmetric monoidal functor is an equivalence.

Likewise, there is a canonical identification (Diskn)+ ' Diskn,+ between symmetric

monoidal ∞-categories under Diskn .
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(1931), 692–713.
16. D. Gaitsgory and J. Lurie, Weil’s conjecture for function fields, preprint, Available at

http://www.math.harvard.edu/∼lurie/.
17. M. Gerstenhaber and S. Schack, A Hodge-type decomposition for commutative

algebra cohomology, J. Pure Appl. Algebra 48(3) (1987), 229–247.
18. E. Getzler and J. Jones, Operads, homotopy algebra and iterated integrals for double

loop spaces. Unpublished work, preprint, 1994, available at arXiv:hep-th/9403055.
19. V. Ginzburg and M. Kapranov, Koszul duality for operads, Duke Math. J. 76(1) (1994),

203–272.
20. S. Glasman, A spectrum-level Hodge filtration on topological Hochschild homology,

preprint.
21. T. Goodwillie, Calculus. III. Taylor series, Geom. Topol. 7 (2003), 645–711. (electronic).
22. A. Joyal, Quasi-categories and Kan complexes. Special volume celebrating the 70th

birthday of Professor Max Kelly, J. Pure Appl. Algebra 175(1–3) (2002), 207–222.
23. S. Kallel, Spaces of particles on manifolds and generalized Poincaré dualities, Q. J.
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Éc. Norm. Supér. (4) 33(2) (2000), 151–179.

33. C. Rezk, A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc.
353(3) (2001), 973–1007.

34. P. Salvatore, Configuration spaces with summable labels, in Cohomological Methods in
Homotopy Theory (Bellaterra, 1998), Progress in Mathematics, Volume 196, pp. 375–395
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